B R T EREL

Using Perspective Invariants in;Some Computer Vision Applications

=R -

AR (o S EL R 8



FHALT FHATT R 2
Using Perspective Invariants in Some Computer Vision Applications

M

B4R A

Student : Jau-Hong Kao
AR BT R Advisor : Jen-Hui Chuang

A Dissertation
Submitted to Department of Computer Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

PEARA LA E



ERAilm2 22 T3 HFEEBES

(B i gt A mhrF 2R %)

AT TERBELFEHT 0 F AR S FFTAPRTE BT AT
S w05 RERY 2 BYFFELILE LB o

He 3P B BEN TR T Y
do BHcp B TR

Wi

AN AR R RER L F L F s
P A REEET TFREL I AL -

Frzpa 2l ~F2 o e < § R

T AR RBAFELFEE &
E@%%@w,g%ﬂgﬁﬁjﬁ%\%@‘w§§ﬂgo

HmY R PR OB R ER

AR SETE AR AR RER [ N
Rk e vE e | B




IS S SRS

BALNkpe FreEgiEs
(FERELAETT 2R IR BEETZ R )

AR TR kY 0 FAANREZ A F —«*Miﬁbtn AT 3 o
SHtafe w05 FERY 2 FYFEELE 2 ]

He AR AR R TR 2
TR S Sl S

[ R

AAEHAFE AL R RFEERA LA ANHEH AR T F
By 2

MEF IR ET,) 208 %#g PR 2P R il < &

RIS AWk ol LRSI R F TR SR PRP O FEE
Fjﬁﬁ ]l""fvo

A 5 A A e EASUTERY SR AN Y ARG 7 L g )
dL"@%Q%ﬁ- R L

! PR e

¥ ALIRES

RLE L




RIBEERALm T I RFL RRES

ID:GT008823804

S SRS AN AT ARG BT B St i S e A
SRl w005 BERY Q BN EELE -2 B

e AE DB RPN THRLL

#F' Whrds L R ok

: &%&%*%F*Wﬁ’*wﬁvié(ﬁﬁﬁ)’ﬂg”‘%ﬁﬁﬁ@
LA 3 U B A R 2 e
Flth= £ 8 T2 KB EHY T F A $ K e I B |
géﬁﬁA;%ﬁ]iﬁxﬁiﬁﬂ A N AR

(] s> 22 fpramz PRz @R 2007.6.21 =@

MO A LT LA A SRR T PRAE E % o e F (TR AP BRI .
B CREZ
LR L

EN0 1 R S P




Are EEIRIEE TR it S52EE B

FiiEamC: Bk RPN T e L2 B

Using Perspective Invariants in Some Computer Vision Applications

EUNE RN (- SR S ON = T

OHZER

RERIY -

HREML

+

2
A
%
S
+
>t
A
Jn



b
:54‘:“
>

R A RO ¥ 2. R

413K

M
=%
R
«3«;\&;
¥
X
B
R
R

T AL L & PR A B R g 2
CRATERPP R E S FELT ,,‘!’—.’"Lrja"ii'—mé —’z‘r? L ’"TF&?@ QLA S A
ﬁwﬁﬁﬂ’%ﬁﬁ—%ﬁtﬁ&gog?i .

'E\Lft _"5 ps’%ﬁa’% R 'E\ﬁk'é--g m:}j:,{f-:r7 - L?l ;[Ljr,{gy;miv%;‘g = )i;: e = 1A ttfl #
%’—@"FJF" 7@'* aﬁ_ﬂ\%;ﬁvt’ af\‘.ffﬂ)f@;? Ql’l";"fgjg”“‘sﬁl%/}ﬁ!?$+m"jz{’Il&—f ';[-—,’-LL
&R f“%”“*%ﬂ’%ﬁ?ﬂﬁi*i_?@mrﬁ~E;W?ﬂﬁgi,

B 4ot at&m%u_ fri Mz Edpat e ad R 04 REH M- AN = i
HEREAPL FET - BATO 23R 2 it AW AT A 4 DI L o
P ET R EREEERRGE R Hed A 2 2 R N P R A DR R
G & o Flptas FIEA A G oxF B FRH ST B ¥ b AP B AR R R
R EROS P S AFDREGEMERTE 2 2N TRV RE B AT e
FWE AV HEEANEE ARG TRNNEBTETGRE R -

~

BE4ES @ 2t o BALEE 0 A 3“%'}:}—  HERELSF Bﬁ,;’b%%_%y_ S »f\]/:;;%_ s pEL Y



Using Perspective Invariants Cross-Ratio in Computer Vision

Student : Jau-Hong Kao Advisor : Dr. Jen-Hui Chuang

Department of Computer Science
National Chiao Tung University

ABSTRACT

One of the main purposes of computer vision is to develop a reliable system that can carry out
its tasks with satisfactory efficiency and precision in a realistic environment. Approaches based on
projective geometry are often associated with reference points given as prior knowledge. As a
geometric invariant under projective transformations, cross-ratio is the basis of many recognition
and reconstruction algorithms. In fact, cross-ratio=based approaches are important techniques to
address various computer vision problems, such as planar feature recognition, 3-D localization and
autonomous navigation applications. In this dissertation, applications of cross-ratio in shadow
generation and identity verification are investigated. The common idea of these algorithms is to use
cross-ratio to determine measurements of object structure without tedious and expensive
computation to infer 3-D information, including object modeling and camera calibration. Meanwhile,
for error analysis of cross-ratio-based approaches, we derive efficient means to predict and to
describe the characteristic of localization error. The approach allows one to select appropriate
reference image points by providing corresponding regions of localization error. Finally, an efficient
approach for finding correspondences between image features based on local similarity and global
constraints is also conducted as an applicable stage of image analysis, which will be suitable for
various real-time applications of computer vision, including those developed in this dissertation.

keywords : cross-ratio, perspective projection, invariant, shadow of linear light source, identity
verification, localization error, feature point correspondence
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1. Introduction

One of the main purposes of computer vision is to develop a reliable system that can carry out
its tasks, e.g., reconstruction of scene structures, with satisfactory efficiency and precision in a
realistic environment. There are basically two classes of methods to reconstruct 3-D structures from
2-D images. The first class involves strategies relying on camera calibration to establish
reconstruction matrices while the second class consists of approaches based on projective geometry
associated with reference points given as prior knowledge. An invariant is a property of a geometric
configuration that does not change when a transformation is applied to that geometric configuration.
As a geometric invariant under projective transformations, cross-ratio is the basis of many
recognition and reconstruction algorithms which are based on projective geometry [1][2]. In fact,
cross-ratio-based approaches are important techniques to address various computer vision problems,
such as planar feature recognition, 3-D localization and autonomous navigation applications.

In general, an immediate advantage to use cross-ratio measurement in computer vision
applications is that most calibration works, which aims to obtain 3-D data, are no longer necessary.
Since various tasks can thus be processed with simple. 2-D computation, such a view-invariant
measurement plays a very important role in this dissertation. The proposed shadow generation
approach uses cross-ratio to compute 2-D.quantities-which are traditionally obtained with 3-D scene
and projection data. In the proposed face identification approach, it is found that cross-ratio
measurements are actually equivalent to relative affine structure described in [3], which is then
utilized to derive relative 3-D information of facial features.

On the other hand, as indicated in [4][5], the quality of scene reconstruction and structure
inference strongly depends on the quality of the image data. In addition to other possible
measurement uncertainties, 2-D coordinates of feature points in an image plane will always have
quantization errors due to limited image resolution. Hence, values of projective coordinates, i.e.,
pairs of cross-ratios with respect to some given reference points, will also be noisy. Since the error in
the calculation of cross-ratio will also propagate in the subsequent computations, it must be carefully
analyzed and controlled so as to avoid too much negative influence on the final reconstruction
results. In this dissertation, we propose an efficient way of analyzing localization error for systems
which use cross-ratio for planar localization. We first inspect the linear nature of localization error
due to small inaccuracy in cross-ratio measurements. Properties of the localization error due to two
dimensional noises of reference image points are then investigated. Based on our computationally
efficient error analysis, we derive means to predict and to describe the characteristic of localization
error, assisting ones to select reference image points accordingly and to efficiently provide picture of
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resultant localization error in advance, without generating similar results by using a large amount of
synthesized noisy data. In order to efficiently obtain reliable correspondences between image
features, we also conduct a method to find point correspondences using local similarity and global
constraint. Such an approach can be conducted as a preprocess stage of image analysis. Related
works for shadow generation, face identification, error analysis of cross-ratio, and the determination
of image feature correspondence will be presented in the following subsections.

1.1 Survey of shadow generation of linear light source

Shadows increase the perception of image realism, and can also enhance users’ spatial
awareness. Several shading and shadowing algorithms, which are based on 3-D information of the
scene, have been proposed for directional lights, point lights, spot lights, and so on [6][7]. There are
two general-purpose shadow algorithms for interactive applications. The approaches based on
shadow volume are continuous methods working in object space and the ones based on shadow map
are discrete methods that sample depth images of the scene [8]. Among them, illumination from
linear and area light sources generates penumbras along shadow boundaries which notably enhance
the photo-realism of an image. For the illumination due to a linear light source, sampling methods,
which represents the light source with a series of point light sources, are often used [9]. This is
because a shadowing algorithm for a point light source-is simple. However, if the point samples are
too sparse, serious aliasing artifacts will accur. On the other hand, for very dense samples, the
computation cost will become excessive.

Instead of sampling, another type of shadowing algorithms, e.g., the ones use light clipping
process, determines the illumination of a point on the object surface by identifying the portions of
each linear light source visible from that point. However, when many complex objects cast shadows
onto rugged object surfaces, the cost for the light clipping process is extremely high. To reduce the
cost, Bao et al. [7] proposed an extension of the BSP tree-based shadowing algorithm which is
originally developed for point light sources [10][11].

In [12], an algorithm which can precisely generate shadows due to a linear light source for
complex (curved) objects other than planar polygons is introduced. The algorithm computes the
illumination of each point in the penumbra by using an integral function to evaluate the diffuse and
specular effects simultaneously. In order to reduce the higher cost due to more complex object
shapes, only the objects occupying the subdivisions that intersect the light triangle are considered. In
[13], a ray-oriented buffer is proposed to improve the rendering performance by reducing the
computation time for the selection of candidate polygons. The authors of [14] proposed a soft
shadow algorithm to produce penumbra regions for linear light sources. It is not an exact method and
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will produce artifacts if the light source is severely undersampled. Other model-based approaches are
based on radiosity methods, which need to address the problem of high computation cost [15][16].

On the other hand, geometries between 2-D image features are also used to derive 3-D
information in some approaches, such as [17]. In that method, a special setup of the scene and some
assumptions speed up the computation of the camera calibration. However, these simplified
calibration model are often sensitive to the quality of imaging device and depend on the sophisticate
Image processing techniques. In addition, there has been some work on generating shadows from
image-based scene representations [18].

Previous works such as those in [6]-[19] are generally based on 3-D geometry. Relevant 3-D
data required in the shadow computation includes the object model, the location of light sources and
the surfaces on which the object shadows are to be cast. In this dissertation, an algorithm which
obtains realistic shadowing effects purely using 2-D information is proposed. By using cross-ratios,
the system neither utilizes calibrated cameras nor performs 3-D reconstruction of the scene.

1.2 Survey of identity verification using multiple facial images

Machine recognition of faces has been a very active research topic in recent years [20]-[23].
Face recognition technology for still and video images has potentially numerous commercial and law
enforcement applications. These applications range-from static matching of well-formatted
photographs such as passports, credit cards, driver's licenses, and mug shots, to real-time matching
of surveillance video images presenting different constraints in terms of various processing
requirements. Although humans seem to recognize faces in cluttered scene with relative ease,
machine recognition which often spans several disciplines such as image processing, pattern
recognition, computer vision, and neural networks is a much more daunting task. In particular, the
problem can be formulated as follows: Given still or video images of a scene, identify one or more
persons in the scene using a stored database of faces. A complete face recognition system generally
includes two main stages. The first stage is the face detection stage that determines the existence of
one or more faces in an image. Techniques used in this stage involve segmentation of faces from
cluttered scenes and extraction of features from the face region. The challenges are mainly due to the
fact that the position, orientation and size of face regions in an arbitrary image are usually unknown
[24][25][26]. A survey of face detection techniques can be found in [27]. The second stage is the
recognition stage which deals with the identification and matching problems. The goal is to
determine the identities of the target faces obtained in the first stage. Considering important works
developed so far in the recognition stage in the engineering literature, a brief survey on the face

recognition researches in recent years is provided in what follows.
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Most of existing face recognition algorithms are 2-D based. In terms of the nature of the facial
features utilized, these 2-D algorithms can generally be divided into two major categories:
structure-based approaches and statistics-based approaches. The class of structure-based ones uses
structural facial features, which are mostly local structures, e.g., the shapes of mouth, nose, and eyes
[28]-[31]. In [30], an automated recognition system that uses a top-down control strategy directed by
a generic model of expected feature characteristics is developed. They proposed an elastic graph
matching model which extracts the feature vectors from image lattices based on a set of 2-D Gabor
filters. The main advantage of a structure-based face recognition method is the low sensibility to
irrelevant data, e.g., moving hair or background, since it only handles data of interest instead of
using all image data indiscriminately. The main disadvantage of such approaches is the high
complexity in feature extraction.

The statistics-based approaches basically use the whole 2-D image as facial features [20]
[32][33][34]. In this category of approaches, the principal component analysis (PCA) exhibits
particular importance [35]. The principal components, e.g., Eigenface [36][37], of training face
images are calculated and then used as a set of orthonormal basis. The complete space can be
represented effectively by a significant small subset of these orthonormal facial images and the
dimension of the feature space of facial images is thus reduced. Moreover, theoretical neuroscience
has contributed to account for the view-invariance perception; which is also the underlying idea of
our work for identify verification, of universals such.as the explicit perception of featural parts and
wholes in visual scenes. A survey of recent developments in theoretical neuroscience for machine
vision can be found in [38]. These unsupervised learning methods are used to make predictive
perceptual models of the spatial and temporal statistical structure in natural visual scenes. In
particular, given the spatial-temporal continuity of the statistics of sensory input, invariant object
recognition might be implemented using a learning rule that uses a trace of previous neural activity
capturing the same object under different transforms in the short time scale. By first relating a
modified Hebbian rule to error correction rules and exploring a number of error correction rules that
can be applied to invariant pattern recognition, learning rules related to temporal difference learning
are developed in [39]. The analysis of temporal difference learning provides a theoretical framework
for better understanding the operation and convergence properties of rules useful for learning
invariant representations. In contrast to structure-based approaches, statistics-based ones are more
straightforward and simple. However, it happens that important local features are used with small
factor of importance. As for theoretical neuroscience, it is not yet obvious whether the full power of
learning rules is expressed in the brain, and the practical applications in face recognition are needed
for the understanding of the performance. The work in [39] provides suggestions about how they

might be implemented. Although the above 2-D based face recognition approaches produce



satisfactory results under normal conditions, their performance can deteriorate quickly by varying
lighting condition or large change of the viewing geometry.

As the face recognition technology is an essential tool for law enforcement agencies' efforts to
combat crime, fake or duplicated facial images which can easily cheat the 2-D based facial
recognition systems raise problems of interest [21]. To avoid such problems, a few 3-D model-based
face recognition are proposed wherein 3-D feature points are reconstructed which provide important
information for facial recognition. In [40] a method based on Karhonen-Loeve expansion is
developed to reconstruct 3-D face features. The method is claimed to be independent on lighting
conditions. In [41], the reconstruction of face surface is made rotation-invariant. A similar approach
based on a depth map obtained from stereo images to perform face segmentation and recognition can
be found in [42]. In [43], a model-matching approach is provided to reduce the computational cost of
3D-based facial recognition algorithms.

In this dissertation, we propose a novel approach to identify a person with facial images using
3-D information of facial feature points. Three reference points are first extracted to construct a
reference plane in every image. By calculating a view-invariant relative depth with respect to the
obtained reference plane for each relevant feature point, an efficient face recognition algorithm is
developed using relative affine structure  introduced in. [3],. which are found in our work to be
equivalent to some cross-ratio measurement.

1.3 Survey of error analysis of cross-ratio-based planar
localization

Recently, more and more computer vision researchers are paying attention to error analysis so
as to fulfill various accuracy requirements arising from different applications. One of the main
purposes of computer vision is to develop a reliable system that can carry out its tasks, e.g.,
reconstruction of scene structures, with satisfactory efficiency and precision in a realistic
environment. There are basically two classes of methods to reconstruct 3-D structures from 2-D
images. The first class involves strategies relying on camera calibration to establish reconstruction
matrices while the second class consists of approaches based on projective geometry associated with
reference points given as prior knowledge.

As a geometric invariant under projective transformations, cross-ratio is the basis of many
recognition and reconstruction algorithms which are based on projective geometry [1][2]. For
example, cross-ratios calculated from vertices of polygons are used in [44]-[48] to recognize planar
features in a 3-D environment. In addition to recognition, given prior knowledge about a scene,

object structure can also be reconstructed using cross-ratio. For example, an approach that



transforms relative affine structure defined in [3] into equivalent cross-ratio measurement is used to
determine relative 3-D face structure from facial images in an identity recognition system [49]. Such
a projective invariant can also be utilized to match trajectories across video streams and applied to
image retrieval problems [50][51]. For autonomous navigation of vehicles, cross-ratio is often used
to identify artificial landmarks or beacons placed in the environment [52]-[56].

As indicated in [4][5], the quality of scene reconstruction and structure inference strongly
depends on the quality of the image data. In addition to other possible measurement uncertainties,
2-D coordinates of feature points in an image plane will always have quantization errors due to
limited image resolution. Hence, values of projective coordinates, i.e., pairs of cross-ratios with
respect to some given reference points, will also be noisy. Since the error in the calculation of
cross-ratio will also propagate in the subsequent computations, it must be carefully analyzed and
controlled so as to avoid too much negative influence in the final reconstruction results. Some
studies of cross-ratio are proposed to assess its use in invariant-based recognition systems
[4]1[5]157][58][59]. These studies mainly focus on robust estimations of the cross-ratio regarding to
the uncertainty in measurement, or concerning with the analysis of error propagation, so as to
provide relevant information of quality estimation in different steps of a vision system. However,
such sensitivity analysis only considers .the computation of cross-ratio itself instead of the final
localization or reconstruction results or autonomous navigation-applications.

In this dissertation, we propose an-efficient way.-of analyzing localization error for systems
which use cross-ratio for planar localization. Based on such a computationally efficient error
analysis, one may obtain the picture of resultant regions of localization error in advance, instead of
generating similar results by using a large amount of synthesized noisy data for a particular
cross-ratio configuration, and select proper reference image points accordingly.

1.4 Survey of finding point correspondence using local similarity
and global constraint

Extraction and correspondence establishment for image features have been intense areas of
research in computer vision for decades. Feature extraction analyzes images and obtains meaningful
image features, e.g., corners, which abstract the scene structure to reduce the amount of data for
further computation. Establishing correspondences of image features, which is also a fundamental
topic in vision, forms the basis for stereo depth computation as well as most optical flow algorithms.
Given two images of the same scene, a pixel in one image corresponds to another pixel in the other
image if both pixels are projections along lines of sight of the same physical element in space.
Regarding the state of the art in related researches, it seems that no general solution to the



correspondence problem exists, due to ambiguous matches. Some common causes include occlusion,
lack of texture, and photometric distortions, etc.

A number of constraints for feature extraction (e.g., corner points should be well localized as
stated in [60]), correspondence determination (e.g., via epipolar geometry [61]), and some other
assumptions (e.g., image brightness constancy and surface smoothness), are exploited to make the
problem tractable. Hager et al. refer to constraints on a small region surrounding the pixel of interest
as local constraints, and constraints on scan-lines or on the entire image as global constraints [62].
They outline the principle methods for exploiting both local and global constraints. In general, local
methods can be very efficient. However, they are sensitive to locally ambiguous regions in an image
such as uniform textures and occlusion regions. On the other hand, global methods are usually more
robust by providing additional support for regions difficult to match locally. But the computation is
generally more expensive. Recently, SIFT is proposed and used to describe and match digital image
content between views [63]. However, while the purpose is to compute features invariant to
transformations, the SIFT description is typically too expensive especially when the transformation
among images is not significant, e.g., between two consecutive frames of a video sequence.

In this dissertation we propose a novel approach to feature extraction and correspondence
establishment for images of indoor scenes. Since image transforms include mainly pan and tilt in
common reconstruction scenarios, we assume the scaling and roll are insignificant.

1.5 Organization of the dissertation

In this dissertation, various applications of cross-ratio are investigated. The common idea of
these algorithms is to use cross-ratio to determine measurements of object structure without tedious
and expensive computation to infer 3-D information, including object modeling and camera
calibration. Meanwhile, for error analysis of cross-ratio, we derive efficient means to predict and to
describe the characteristic of localization error. The approach allows one to select reference image
points efficiently and to obtain picture of resultant localization error in advance, instead of
generating similar results by using a large amount of synthesized noisy data. Finally, the approach
for correspondence establishment can be considered as a pre-process for proposed cross-ratio-based
applications when the scaling and roll are insignificant. The organization of this dissertation is
shown in Figure 1.1.
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Figure 1.1 Organization of the dissertation.

The remainder of this dissertation is organized as follows. In Chapter 2, an efficient approach to
generating object shadows on a base plane due:to a linear light source in 3-D space is proposed.
With the use of cross-ratio, the computation is performed purely in 2-D image space, thus it needs
neither calibrated cameras nor 3-D reconstruction of the scene. Chapter 3 describes an identity
verification system based on cross-ratio measurement computed from multiple facial images. The
measurement interprets 3-D structure of a face as a set of relative quantities. Using the property of
invariant, the system is able to perform identity verification without camera calibration. In addition,
iterative training is not required which leads to the issue of convergence in the neural network based
face recognition approaches. In Chapter 4, an efficient way of analyzing localization error for
systems using cross-ratio for planar localization is proposed. Starting from the 1st-order
approximation of one dimensional error functions, we eventually investigate conditions for the
existence of a nominal boundary of an ellipse due to some circularly distributed 2-D errors. In
Chapter 5, we develop an algorithm to find correspondences between images. Under the assumption
of insignificant scaling and roll, the approach uses local similarity and global constraint to match
image feature points. The system is efficient and suitable to real-time applications. Finally, Chapter
6 gives conclusions of this dissertation.



2. Shadow Generation of Linear Light Source
Using Stereo Images without 3D Reconstruction

2.1 Overview

Shadows contribute to the perception of image realism, and can also enhance users’ spatial
awareness. Several shading and shadowing algorithms based on 3-D information of the scene have
been proposed [6]-[19]. However, they are generally based on 3-D geometry. In this chapter, an
algorithm which obtains realistic shadowing effects purely using 2-D information is proposed. The
system neither utilizes calibrated cameras nor performs any 3-D reconstruction of the scene. Similar
to the sampling methods, we use a set of point samples to approximate a linear light source. In the
next two sections, we briefly review the definition of the projective invariant cross-ratio and its use
in planar point localization, respectively, which plays a fundamental role in algorithms described in
following chapters. In Sections 2.4, the approach developed in [64] to generating shadow due to a
point light source is briefly reviewed. The approach is then extended to the generation of shadows
due to a linear light source in Section 2.5..Experimental results and a brief summary are given in
Sections 2.6 and 2.7, respectively.

2.2 Definition of cross-ratio

Figure 2.1 Cross-ratio of five coplanar points.

Before the description of a typical framework for 3-D reconstruction of a scene point from four
reference points, all in a 2-D space, using the projective invariant cross-ratio, we first review some
mathematics involved in the computation. By denoting image points with lowercase letters and scene
points with uppercase letters, let O, A, B, C and D be five coplanar points in a general configuration



(with no three of them being collinear), as shown in Figure 2.1. One form of cross-ratio is given as®

, sing,sin g, ‘AXE“EXB‘
sin 6, sin 9, ‘éxEHZ\xB‘

[A,B,C,D], £CR, 2 (1)

where A=(A,, A)) stands for the directed vector OA, and so on. Alternately, we can rewrite (1) as

AX CX BX DX
A, CJB, D
[AB,C,Dlp =2 % y.Q ()
BX CX AX DX QZ
By Cy Ay Dy

where Ay, ..., Dy denote the x-components of vectors A, ..., D, respectively, and Q; and Q; are the

denominator and numerator of CRo, respectively. With (2), a cross-ratio can be obtained without
actually computing the angles between the pencils OA, OB, OC, OD.

2.3 Use of cross-ratio in Planar:Point Localization

Figure 2.2 A perspective projection of some feature points.

Figure 2.2 illustrates a typical geometry of perspective projection. Five scene points O, A, B, C,
D located on a 3-D plane =y, with no three of them being collinear, are projected on image plane

! Note that a total of 24 different cross-ratios k;, 1<i <24, can be defined for a scene point and Eq. (1) corresponds to

k, defined in [57].
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maso,a, b, candd, respectively®. The invariant property of cross-ratio guarantees that if the five
feature points can be identified in the image plane accurately, the cross-ratio [a,b,c,d], obtained
by (2) will be identical to the cross-ratio [A,B,C,D],.

An immediate application of projective invariant is to determine ray directions. For example, if
the origin and three of the rest four points are known in Figure 2.1, the vector passing through the
fourth point from the origin can be determined easily from o, a, b, c and d if [A,B,C,D]o is given. For
example, let D=(X, Y) and OD is to be determined. From (1), we have

a, C,llby X-0,

-
X X || “x X Qz
b, c,ja, Y-0,

which can be rewritten as

(QKpcAy — QK acBy) X +(QuK pc By —Q K A()Y

O, A Oy ®3)
= QoKnc| ~QKge
BY Oy A}’ Oy
AX CX X C:X o Bk . - —
where K, = c and Kpge = . This'is'in fact the line equation of I (OD).
y y oy

Furthermore, if O, A, B, C are known, so as [A, B, C, D]o and [B, C, D, O]a, we can obtain point
D by intersecting OD and AD . Accordingly, a localization system can be developed for a mobile
robot based on the view-invariant cross-ratio, assuming perfect image acquisition and feature
extraction, as described in Chapter 4.

2.4 Shadows of Point Light Sources

In this section, we briefly review the approach developed in [64] for shadow generation of due
to a point light source using 2D image data. The 2D data are extracted, possibly interactively, from
pictures taken by some unknown cameras. Given two images | and Il, the approach assumes that the
object region, and the base plane where the object’s shadow is to be cast upon, can be identified in
both I and 11. Moreover, at least five reference points on the base plane can be identified and any
three of them must not be collinear in the images. The 3D information of the base plane, e.g., the
position in the scene, is not required in the process.

2 In a robot navigation environment, 7, can be the ground plane and the five points can be landmarks or beacons
placed in the environment, or the robot itself.
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(a) (b)

Figure 2.3 (a) A wireframe image (1) rendered at viewpoint Vy. (b) A
wireframe image (I1) rendered at viewpoint V..

(@) (b)

Figure 2.4 (a) The shadow region of the base plane due to a point light
source located at V. (b) The shadow region of the base plane due to a point
light source located at V,.

Figure 2.3(a) and Figure 2.3(b) show images | and Il obtained from viewpoints V; and V5,
respectively, where an object is put on a base pentagon (whose vertices will be treated as reference
points). The border segments shown by bold lines in Figure 2.3(a) (Figure 2.3(b)) is the shadow area
on the base plane due to a point light source located at V; (V2). In general, if some reference points in
image | can be located correctly in image Il, such as intersections of extended lines of the border
segments of the shadow region and the diagonals of the pentagon, the shadow region in image 1l can
be found, as shown in Figure 2.4(a) and Figure 2.4(b).

Figure 2.5(a) illustrates an object and its shadow thus obtained. A similar shadow generation
result is shown in Figure 2.5(b). The detail of the process which accurately locates the intersections
and the shadow regions using view-invariant quantities, i.e., cross-ratios, is provided as follows.
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(a) (b)

Figure 2.5 (a) An object and its shadow due to a point light source located at V5. (b)
An object and its shadow due to a point light source located at V;.

Consider a sequence of four points A, B, C, and D located along a straight line in the 3D space. The
cross-ratio, in another form, is defined as

[A, B,C,D]éM, 4)
BC-AD

It has been proved in [19] that any linear. transformation in homogeneous coordinates, i.e.,
perspective projection, linear scaling, skewing, -etc., preserves the above cross-ratio value. For
example, if the image of the four points a, b, ¢ and d can be located accurately along the

corresponding image of the line, then we have

[A B,C,D]=[a;b,c,d]. (5)

0]
view point

Figure 2.6 A perspective view of four points lying

along a straight line.

A straightforward application of the view invariant cross-ratio, is the determination of the
location of a point along a line segment in an image. Given the cross-ratio of four points on a line
segment, if three of them can be identified accurately in an image, the location of the fourth in the

13



image can be determined easily by solving a linear equation of a single variable. Consider the line

segment and its image shown in Figure 2.6. Assume that

AC-BD ac-hd R
BC-AD bc-ad

If points a = (ax, ay), b = (bx, by) and d = (dy, dy) can be identified in the image, then we have

(a,—c,)-(b,-d) (a,—c))-(b,—d,)

= =R.
(bx_cx)'(ax_dx) (by_cy)'(ay_dy)

Hence the location of the fourth point ¢ = (c,, cy) can be determined by solving

C. = be(ax _dx)_ax(bx _dx)
““ " R(a,—d,)—b +d

and
_Rby(a,ndy)-a,(b, - d,) |
Y~ _R(a,-d,)-b,+d,

For a line segment almost parallel to x-axis (or y-axis) of the image plane, only one of the two
equations, which will not result in a near zero. denominator, should be used to ensure numerical
stability (see [57]). It is also worth noting that if points B and C are too close to each other, the

calculation of the cross-ratio in equation (4) may become unstable.

Figure 2.7 The object shadow generated for a point

light source located at V;.
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Figure 2.8 A perspective view of four points lying

along a straight line.

The above cross-ratio properties are used in [64] to derive object shadows for stereo images.
For example, the blocked base region with solid border segments shown in Figure 2.4(a) is identified
in Figure 2.5(b) as the shadow region. The two figures are redrawn in Figure 2.7 and Figure 2.8,
respectively. In Figure 2.7 and Figure 2.8, if the five reference point can be located precisely, one
can identify four reference points along each diagonal of the pentagon, e.g., B, F, J and E along BE.
In Figure 2.7, in order to specify the extended line of a border segment of the blocked base region,
say L, at least two of its intersections with the extended lines of the diagonals of the pentagon need
to be found. (Here, we choose BD and '‘BE which intersect with L; with angles closest to 90
degrees in Figure 2.7 so that the intersections can be found more accurately.)

Along BE (BD), its intersection with L, K; (K»), and three of the four reference points on the
diagonal are used to calculate the cross-ratio value 'which is then used to locate the intersection k; (kz)
in Figure 2.8. Thus I; can be determined by k; and k,. Note that to improve the numerical stability in
the calculation, the selection of the three reference points is based upon the requirement that none of
the quantities in the denominator of equation (4) has an extremely small value. Working in exactly
the same manner, I,, as well as other lines containing the border segments can also be determined in
Figure 2.8. With these lines, points P', Q', R', S', T" and U', which are the vertices of the shadow
region shown in Figure 2.8 are computed.

Assume Image | is taken from the light source viewpoint and Image Il is taken from the eye
viewpoint, and let L;, (1<i<n), denote the lines of the border segments of the base plane region
blocked by the object in Image 1. The algorithm of the above shadow generating process for Image |1
is summarized as Shadow_Point_Source. Figure 2.5(a) (Figure 2.5(b)) shows the result for a point
light source located at the viewpoint from which Figure 2.4 (b) (Figure 2.4(a)) is obtained.
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ALGORITHM 1 Shadow_ Point_Source

- ForeachLi(1<i<n){
- Select two of the extended lines of the diagonals of the pentagon Di;, Di; which
intersect L; with angles closest to 90°, identify the intersections Kis, Kip.
-  ForeachD;(j=1,2){
- Select one of the two intersections of Dj; with two other diagonals, Xj;, which
guarantees that the following cross-ratio calculation will be numerically stable.
- Calculate the cross-ratio R of the four reference points (two endpoints of the
diagonal, X , and Kj).
¥
- ldentify the positions of Kj; and Kj, in image Il, i.e., ki; and ki,.
- Derive the line I;, which is the image of L;, defined by ki; and k;,.
¥
- Determine the vertices of the shadow border by calculating the intersections of pairs of I;'s

containing two adjacent border segments.

2.5 Shadows of Linear Light Sources

A linear light source casts soft shadows which include umbra and penumbra. In this section, a
process of generating shadows due to a linear light source based on the algorithm for a point light
source is described. The proposed shadow generation approach is very efficient since the
computations use only 2D image data.

Given stereo images of an object obtained from two viewpoints, the proposed approach can
generate in either image the shadow due to the linear light source connecting the two viewpoints. To
simplify the shadow generation process, the umbra and penumbra regions are not explicitly
identified by the proposed approach. Instead, the shadow is formed by superposing shadow regions
due to a series of point light sources sampled along the linear light source. The first and the last
shadow regions of the two ends of the linear light source are generated by the approach presented in
Section 2.4. In order to derive the remaining shadow regions, the proposed approach first identifies
trajectories of shadows of object features such as vertices and edges in an image as a point light
source moves along the line connecting the two viewpoints, as discussed in Section 2.5.1. The
shadow algorithm which uses these feature trajectories to derive the object shadow due to a linear

light source is provided in Section 2.5.2.
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2.5.1 Trajectories of shadows of object features due to point light
sources moving along a straight line

In this subsection, the point light source algorithm described in the previous section is extended
to locate trajectories of shadows of object features due to point light sources moving along a straight
line in an image. Object shadows due to a linear light source can then be obtained from these object
features. The object image obtained from viewpoint Vi which is shown in Figure 2.4(a) is redrawn
here in Figure 2.9 to explain this trajectory locating process for object features.

Figure 2.9 Edge-and vertex features 'of an object in

image space.

Assume that X, X €{A,B,C,D,E,F,G,H}, is the image of an object vertex obtained at
viewpoint Vi, and X', X'e{A',B',C',D',E',F',G",H'}, is the shadow of X due to a point light
source located at viewpoint V,. The correspondence between Xs and X's can be established by the
framework developed in [47] wherein the correspondence between base vertices are determined first.
It is easy to see that in image space the shadows of object features due to a series of point light
sources lying on the extended line of V)V, , have the following two geometric properties:

(i) For a vertex X of an object, its shadows lie on the straight line XX . (For example, E, E' and
E" are collinear as shown in Figure 2.9.)

(i) The extended lines of the shadows of each object edge are either intersected at the same point
or parallel to each other. (Note that the parallel case is only associated with special 3D
configurations of an object edge.)

For each X in Figure 2.9, the straight line described in (i) and the intersection point of the

extended lines in (ii) can be obtained easily by identifying X' with Shodow_Point_Source. Therefore,
given a vertex (or/and an edge) of an object shadow due to a point light source located on V.V, , one
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can derive the remaining vertices and edges of the shadow by intersecting corresponding linear
trajectories of object vertices described in (i) and the extended lines of object edges given in (ii). An

algorithm to derive shadow due to a linear light source using these features will be presented next.

2.5.2 The Generation of an Object Shadow due to a linear light
source

In this subsection, a shadow generation algorithm which uses shadows of object features

discussed in the previous subsection to generate object shadows due to a linear light source is given.
Consider B"e{BB%} in Figure 2.9 which is the shadow of object vertex B due to a point light source

lying on V,V, . According to (ii), one can easily find the straight line B"C" passing through B" and
parallel to BC and B'C'. Itintersects CC' at C", which is the shadow of C. Similarly, for each X,
X e{A, B, C,DE, F, G,H}, one can obtain X", where X"e{A",B",C",D",E",F",G",H"}. (Note
that in this example A", D", F" and G" coincide with A, D, F and G, respectively, since they are
actually the base points.) With this shadow boundary identifying process, object shadows due to a
series of point light sources located along a straight line can also be generated in an image.

In particular, given two images A and B obtained from two different viewpoints Vi and V,,

respectively, if all object vertices can be seen in both images, then the object shadow corresponding
to a point light source on V,V, can be obtained if the shadow of an arbitrary, non-base object vertex

is given. Assume X;, 1<i<n, are object vertices viewed from V;, and X;, 1<i<n, are shadows of

these vertices computed with Shadow_Point_Source for a point light source located at V,. Given the
shadow X, of an arbitrary non-base object vertex Xs due to a point light source on \E the

process to locate X;, 1<i<n, and thus to identify the shadow region of the object in image A, can

be formulated as follows.

ALGORITHM 2 Shadow Point Source on_Line

(1) Find all base points which satisfy X; = XI
(2) For each non-base vertex X; adjacent to X, determine X¢"X;".

(3) Calculate X which is the intersection of X;X;' and Xg"X;".

(4) If there are unprocessed non-base vertices X;,
i) Xs<Xj.
(i) Go to Step 2.
(5) Connect the vertices X;, 1<i<n, into a shadow region.
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Two images are sufficient to generate the shadow if all of the projections of the utilized vertices
on object boundary can be identified in both of them. In general, it is not always true that all the
needed object vertices can be identified in two images. In this case, we will need additional image(s)
to ensure that these vertices can be seen from at least two view points. In fact, we only need to
consider vertices which will become vertices of the shadow boundary. For instance, B in Figure 2.9
needs correspondence and F does not need however. On the other hand, if an object vertex has been
identified as a base point, possibly interactively, only one image is sufficient for that vertex. The
developed approach can then be used to obtain shadows of the object with minor modifications, i.e.,
by separating vertices into groups that utilize different sets of images and generating all the needed
trajectories of object features.

In order to derive soft shadows, an intensity buffer is used to calculate the illuminations of all
image points. Depending on the density of the virtual point light sources sampled between the two
view points, there is a trade-off between the quality of the synthesized image and the computation

time.

2.6 Experimental Results

(b)

(d)

Figure 2.10 (a) and (b): Two images of an object placed on a base plane.

Reference points on both planes are marked with black color. (c) and (d):

Shadow generation results of (a) and (b), respectively.
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This section illustrates experimental results for both synthetic and real images. In complicated
scenes, shadows of an object are often projected onto multiple planes. The algorithm developed in
previous sections can deal with such scenes if at least five reference points are identifiable in two or
more images for each projection plane. In general, shadow regions may go beyond the boundary of a
projection plane. In that case, the boundary of the projection plane needs to be specified in the image.
One may need to clip certain portions of the derived shadow regions which are outside a projection
plane with a finite size or blocked by other polygon objects (or projection planes). Although in our
implementation, the shapes of projection planes and the geometric relationships among them, e.g.,
the visibility with respect to different viewpoints, are established manually in advance, the proposed
approach can be enhanced by importing a fraction of 3D information or by applying other algorithms
such as the BSP tree. Figure 2.10 illustrates shadow generation examples of scenes with multiple
projection planes. A box is placed on the base plane hung in the air. Shadows are cast upon the base
plane and the ground plane underneath the base plane, with five reference points also shown for both
planes. Note that shadows of the base plane are also cast upon the ground plane.

The developed algorithms are implemented with Microsoft Visual Basic 6.0 running on a
Pentium Il PC. All images are rendered in 32-bit RGBA color mode and the sizes are 800 by 600
pixels. The computation time for shadow:region:generation is much less than that for updating the
intensity buffers. For example, Figure 2.10 'and Figure 2.11 take 0.48, and 0.81 seconds for shadow
region generation, and 1.07, 2.16 seconds for updating-the intensity buffers, respectively. The time
spends for updating the intensity buffers is roughly proportional to the amount of accesses of the
intensity buffers. Though our implementation does not use special instruction for fast memory access
provided by modern CPU, we believe the use of this support of hardware can extremely improve the
overall performance of the proposed approach.

(@) (b)
(© (d)

Figure 2.11 Shodows generated for multiple objects using 20 virtual point light sources.
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(c) (d)
Figure 2.12 A real image example. (a) and (b): Source images. (c) and (d):

Shadows generated with 30 virtual point light sources are blended.

(d)

Figure 2.13 Another real image example. (a) and (b): source images. (C)

and (d): Shadows generated with 30 virtual point light sources are blended.

Figure 2.12 and Figure 2.13 demonstrate shadow generation examples of real scenes. In real
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scenes, shadows may already exist in the original images. It can be seen that additional shadows
added by the proposed algorithm blend naturally into the images. For the examples considered in this
section, the time spent in calculating a shadow due to a point light source for the real scenes is in fact
less than that for synthetic ones since the geometry of the latter is more complex.

2.7 Summary

In this chapter, we propose a novel approach to generating object shadows due to a linear light
source. The purpose is to obtain realistic shadowing effects with very limited data and simple
calculations. The shadows are derived without 3D reconstruction of the scene. A shadow generation
algorithm which uses trajectories of shadows of object features on base plane due to a linear light
source connecting two viewpoints is developed. Satisfactory shadow generation results are obtained

for synthetic as well as real images.
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3. ldentity Verification by Relative 3-D Structure
Using Multiple Facial Images

3.1 Overview

Machine recognition of faces has been a very active research topic in recent years [20]-[23]. As
indicated in Section 1.2, most of existing face recognition algorithms are 2-D based. In this chapter,
we propose a novel approach to identify a person with facial images. The approach uses a measure
of 3-D facial structure without explicit 3-D reconstruction. Three reference points are first extracted
to construct a reference plane in every image. By calculating a view-invariant relative depth, i.e.,
relative affine structure with respect to the obtained reference plane introduced in [3] which is
equivalent to cross-ratio measurement, for each relevant feature point, an efficient face recognition
algorithm is developed. The approach is a structure-based method which has the advantage of low
sensibility to irrelevant data. Compared with other 3-D approaches that require specific structures in
Euclidean space [40][41], the proposed method uses only a few facial feature points and requires no
camera calibration. In addition, iterative ‘training is not-required which leads to the issue of
convergence in the neural network approaches.-Experimental results show that the developed
approach performs satisfactorily with an experimental facial image database.

In the following sections, we first introduce related projection geometry for one and two
cameras. The geometrical relationships between two cameras such as parallax and relative affine
structure are discussed in Section 3.3, together with the geometrical meaning of such a structure
which is expressed in terms of the invariant under perspective projection, i.e., cross-ratio.
Algorithms for face recognition using relative affine structure are presented in Section 3.4.
Simulation results for an experimental facial image database are given in Section 3.5. Finally, a brief

summary is given in Section 3.6.
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3.2 Projective geometry for one and two cameras

Figure 3.1 A scene with two cameras and three 3D points.

The basic procedure of projecting 3D points onto an image by a perspective camera can be
described as
mec PM (6)
where oc denotes the equality up to.’a scaling factor, P is the 3 X 4 projection matrix,
M =[X Y Z 1]T and mz[x y 1]T represent the homogeneous coordinates of a 3D world

point and the corresponding image point, respectively.In general, the image coordinate system is
defined in terms of image pixels. The general form of the projection matrix can be represented as

fX S pX R t
Pouc «KRT=| 0 f, py [I |O]{ T } )
0O 0 1

In (7), K gives the intrinsic parameters of the camera, the imaging system. As for T, it describes
the location and orientation of the camera with respect to the world coordinate system. Itisa 4x4
matrix describing the pose of the camera in terms of a rotation R and a translation t, which give the
extrinsic parameters. For an ideal camera model, both K and T are identity matrices and (7) becomes

m=RM . (8)

Consider two cameras taking pictures of an object, as illustrated in Figure 3.1, wherein C and C, are
the two optical centers of the two cameras and v and v, are their associated image planes,
respectively. The projection of C’ on v, e = PC’, observed from C and the projection of C on v’
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observed from C’, e’ = P’'C, are defined as the epipoles of the two cameras, respectively. Without
loss of generality, we assume that the world coordinate system is aligned with the image coordinate
system of camera C, thus the projection matrices for C and C’ become

P =Kz.3[l3310]=[K|0], 9)
P'=K'33[Raaltzq]=[K'RIK't]. (10)

In addition, we have, by definition, PC =Kz,3[l331034]Csq=0 or Coc[0 0 0 1]T . Since e

Is the projection of C on vy,
e'=P'C=K'"t. (12)

Consider a 3D point M whose depth is z with respect to the camera coordinate system of camera C.

Its projection on the image plane v, from (8), is equal to
moc PMi = KM

with

Vi =
M = M - ZK™™m
X 1
if m is normalized as (x, y, 1)". The projection on image plane vy is then

m'ocP'MocK'RK1m+%K't. (12)

With the above geometrical relationships and coordinate transformations between two cameras,
the authors of [3] derived the view invariant relative affine structure. The following section provides

a brief review, together with its explicit geometric meaning.

3.3 Relative affine structure and its geometric meaning

In [3], an affine framework for perspective views is proposed which is captured by a simple
equation based on an invariant called relative affine structure. It is shown in [3] that the framework
unifies projection tasks including Euclidean, projective and affine in a natural and simple way.
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While the algebraic form of the relative affine structure is given clearly in [3], as reviewed next, the
direct relationship between the relative affine structure and a view-invariant cross-ratio under

perspective projection is derived at the end of this section.

Figure 3.2 An example of parallax. M is a point which is not on the
reference plane .

Given a reference plane m where the image points m and m' are projections of a 3D point
M, € m on image planes v and v', respectively. The-homography induced by 7 can be obtained
by M, = Hymand M, = H,m' as follows:

m'=H,'M_=H,"Hm=H_m. (13)

Since H, has eight entries (nine minus a scale factor), H, can be determined uniquely by

solving a system of linear equations obtained from three point correspondences in general positions
on m and the relationship e'=H _e. Moreover, once H_ is computed we can use it to determine

positions of points on p from a single image.

The homogeneous coordinates of 7 can be written as

— |:n3><1:| , (14)
d

T

where n and d,, describe the normal vector and the depth of =, respectively. For the projection m
of M, on the image plane v, we have m=PM_=[K|0]M . Since the depth of M, is

unknown, we can assume that
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-1

On the other hand, since M, ison m, we have

-1 _
p=—0n K 1m. (16)
T
Now, by projecting M, on v’, we have
: . vo T g
m'=H_moP M,,zK(R—d—)K m. (17)

T

For more general scenes wherein not all of the 3D points are co-planar, parallax will be
produced. For instance, M is a 3D point which is not on the plane 7 in Figure 3.2. m"” and H,m
are projections of Mand M, on v, respectively. From (12), (13), (17) and e = K't, we have

zn' K 'm+d,

d,z

m"ocK'RK‘lm+%K't:H,rm+( Je'. (18)

For a point M = [zK~1m, 1]7 which is not on the reference plane =, the distance from M to

is equal to
d=n"M=zm"K'm+d,. (19)
Substituting (19) into (18), we have

" d ! ]
m ocHn+(dn—Z)e = H,m + Be’. (20)

Since the value of the parallax term g in (17) is normalized, d, can be dropped out, as stated in
[3]. If we let B, =1 for a reference point My which is not on the reference plane (see Figure 3.3),

we are left with

d, =
Zy
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and (20) can be rewritten as
m’ =H.m+ e’ (21)

with A being the relative affine structure. In the following paragraph, we will investigate its
relationship with cross-ratio.

Figure 3.3 The geometry of the relative affine structure. z and z, are depths of M and Mg
with respect to v, respectively.

In (21), it is not difficult to see that A is an invariant quantity since the variables zo, z, do, d are
governed by camera C only. Consider Figure 3.3, by extending MM, , we can obtain two

intersection points mand M ., which are on v and the reference plane m, respectively. By triangular

similarity, we have

Mg MMz

mM MoM

=CR(M,M,My,M ). (22)

N
o
&

T

This leads to a conclusion that relative affine structure is in fact a measure of cross-ratio. Since it is
view-invariant, 4 can be used as a useful feature to describe object structure. Algorithm 3
summarizes the process to calculate the relative affine structure for n pairs of image points. By
calculating relative affine structures of facial features of persons, we have developed an identity

verification system based on face recognition using A, as discussed next.
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ALGORITHM 3 Computation of relative affine structure for n pairs of image points

- Calculate the fundamental matrix F with 8 pairs of correspondences.

- Derive the epipoles e and e’ using FTe' = 0 and Fe = 0.

- Derive the homography H, of the reference plane with an epipole and 3 pairs of point
correspondences.

- Choose a pair of correspondence my and m, where my and m, are image points on the
left image and the right image, respectively.

- Scale H, suchthat my = H,my+e (1, = 1).

- Obtain A, with m; =H,m; + Le,1<i<n-—1,

3.4 Face recognition using relative affine structures

."; *“ i "\4 )

o (c)

Figure 3.4 Face images of person A. From left to right side, the images are labeled as A,,

i

Ay, and Aq, respectively.

With the properties of the view-invariant relative affine structure investigated in the previous
section, this section presents the proposed approach to face recognition using such invariants. Recall
that the relative affine structure of an object point depends only on the configuration of the first
camera C, the position of the reference plane m and the reference point M. So, two facial images
are used first to derive the relative affine structure for each feature point. The first image is denoted
as the reference image and the extracted facial features are stored together with the obtained relative
affine structures. To verify the identity of a new facial image, a new set of relative affine structures
are obtained by the reference facial image and the new image. The similarity between the stored
relative affine structures and the new set of relative affine structures is evaluated. Finally, the
identity is verified by checking whether the similarity is higher than some specified thresholds.

In this chapter, in order to focus on the correctness of the theory, feature points are obtained
manually from facial images taken from different points of view. On each given face image, fifteen
feature points including eye and mouth corners, nose tip, ear lobes, etc. are extracted as shown in

Figure 3.4(b). The image of the front view of person A is labeled as A; while the upward and
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downward looking facial images are labeled as A, and Ay, respectively. In the same manner, three
images are also taken for each person in the database. For example, Figure 3.5 shows the images
obtained for person B.

Figure 3.5 Face images of person B. From left to right side, the images are labeled as B,
By, and By, respectively.

Figure 3.6 Face image of side view of person F. The reference plane is defined by the two
ear lobes and the chin. The 2D projections on images of these three feature points are used
to calculate relative affine structures.

Table 1 shows the relative affine structures obtained for persons A and B with A, and B, being
the reference images, respectively. Since the reference plane is defined by right ear lobe (point 14),
right ear lobe (point 13) and chin (point 15), as illustrated in Figure 3.6, the relative affine structure
values of these three points are all zeros. The value of the relative affine structure of the nose tip
(point 12), which is the reference point My, is defined as 1 for normalization. Since the depth from
the camera to a person is usually several meters, zo/z in (22) is close to 1. Thus, the values of other
relative affine structures given in (22) are close to d/dy. From Figure 3.6, we can see that the ratio for
the eye corner is close to unity, the ratio for the mouth corner is about 0.4, while the ratios for the
upper and lower lips are about 0.65 and 0.45, respectively.

In our experiments, we use six groups of facial images for persons A through F (see Figure 3.7
for facial images C; through Fy). Each group consists of three images from three different points of
view. With a personal computer equipped with a 333 MHz Pentium Il processor and memory of 128
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MB, the program is implemented with MATLAB 6.1 under Microsoft Windows 2000 and spends
0.1 seconds to obtain the relative affine structure for each data set, e.g., A,_As in Table 1 with A,
being the reference image. A database is used to store such information obtained from the facial
images. Details of the verification process using this database and possible ways to improve the

stability of the verification results are given in the next section.

Table 1. Relative affine structures obtained for persons A (4;;) and B (41,;) using A,_A¢and
B._B;, respectively.

i Feature point Ay Ay

1 Right eye corner (outer) 0.9951 1.0111
2 Right eye corner (inner) 0.9050 1.0391
3 Left eye corner (inner) 0.8112 1.0400
4 Left eye corner (outer) 0.7242 1.0590
5 Mouth corner (right) 0.4358 0.4594
6 Mouth corner (left) 0.4228 0.3430
7 Upper lip 0.6663 0.6598
8 Lower lip 0.4748 0.4518
9 Nose (right) 0.7256 0.7436
10 Nose (left) 0.6808 0.7281
11 Nose (center) 0.7734 0.8849
12 Nose (tip) 1.0000 1.0000
13 Ear lobe (right) 0.0000 0.0000
14 Ear lobe (left) 0.0000 0.0000
15 Chin 0.0000 0.0000

3.5 Experimental results

This section gives some experimental results of face recognition. For example, given the
relative affine structures previously stored in the database for X, _X; and a facial image of an
unknown person Y, we can investigate the identity of Y by evaluating the similarity between the
relative affine structures for X, X; and that for X,_Y. The result of the comparison is then
transformed into a score of matching error. If the score exceeds a threshold, the unknown person Y is

not identified as person X.
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Figure 3.7 Facial images (a) Cs, (b) Dy, (c) E;, (d) F+.

Table 2. Relative affine structures for A,_As (11;) and A,_Aq (4;), and their dissimilarity Ds;
= max(Ay;/dp;, AzilAy;).

i Feature point A1 Ayi Ds;

1 Right eye corner (outer) 0.9951 0.9510 1.0463
2 Right eye corner (inner) 0.9050 0.8961 1.0100
3 Left eye corner (inner) 0.8112 0.8183 1.0087
4 Left eye corner (outer) 0.7242 0.7189 1.0073
5 Mouth corner (right) 0.4358 0.4271 1.0204
6 Mouth corner (left) 0.4228 0.4409 1.0428
7 Upper lip 0.6663 0.6719 1.0084
8 Lower lip 0.4748 0.4871 1.0259
9 Nose (right) 0.7256 0.7243 1.0018
10 Nose (left) 0.6808 0.6853 1.0066
11 Nose (center) 0.7734 0.7593 1.0185
12 Nose (tip) 1.0000 1.0000 1.0000
13 Ear lobe (right) 0.0000 0.0000 1.0000
14 Ear lobe (left) 0.0000 0.0000 1.0000
15 Chin 0.0000 0.0000 1.0000
Overall dissimilarity 1.2141

Table 2 shows the relative affine structure values for the fifteen facial features calculated for
A,_As and A,_Aq. Here, the dissimilarity between two corresponding relative affine structures, say
A; and Ay;, is calculated as Ds; = max(dy;/4,;, A;/A41;). For feature points lay on the reference
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plane, the relative affine structures are 0’s by definition and the dissimilarity values are set to 1.
Eventually, the overall dissimilarity between these two set of relative affine structures are defined as
the product of all Ds;’s. For this example, the person with facial image Aq will be identified as person
A since the overall dissimilarity, denoted as DS(A,_As, A,_Aq), is very close to 1.

Table 3 gives results similar to that in Table 2 but using facial image By of person B in place of
Aq. It is readily observable that there are major differences between quite a few corresponding
relative affine structure pairs. In particular, if 1;; X A1,; < 0, that means the feature points are not on
the same side of the reference plane in the 3D space, the dissimilarity value are set to 2 which leads
to a big contribution to the overall dissimilarity. Since the overall dissimilarity of this example
exceeds the threshold, person B is not identified as person A.

Table 3. Relative affine structures for A,_As (11;) and A,_Bg (45;), and their dissimilarity Ds;
= max(Ay;/dy;, AzilAy;)

i Feature point A Ayi Ds;
1 Right eye corner (outer) 0.9951 1.0243 1.0293
2 Right eye corner (inner) 0.9050 2.3284 2.5727
3 Left eye corner (inner) 0.8112 3.5765 4.4088
4 Left eye corner (outer) 0.7242 4.5082 6.2254
5 Mouth corner (right) 0.4358 43.423 99.632
6 Mouth corner (left) 0.4228 -2.701 2.0000
7 Upper lip 0.6663 -3.049 2.0000
8 Lower lip 0.4748 -6.584 2.0000
9 Nose (right) 0.7256 -2.721 2.0000
10 Nose (left) 0.6808 -0.186 2.0000
11 Nose (center) 0.7734 -0.711 2.0000
12 Nose (tip) 1.0000 0.9999 1.0000
13 Ear lobe (right) 0.0000 0.0000 1.0000
14 Ear lobe (left) 0.0000 0.0000 1.0000
15 Chin 0.0000 0.0000 1.0000
Overall dissimilarity (DS) 4.63E+05

To further improve the stability of the verification system, every facial image can be used as the
reference image and a composite measure of dissimilarity, say the geometric mean of individual
results, can be obtained. Table 4 shows the result of the verification of As using A, and Aq while
Table 5 shows similar results by using Bs in place of A;. The composite dissimilarity 1.5821 in Table
4 indicates that the person with facial image As can be identified as person A. On the other hand, it is
obvious that By is not a facial image of person A since the composite dissimilarity in Table 5 is too
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high.

By using the composite dissimilarity measure, a more robust identity verification system is
developed and more experimental results are obtained. Table 6 shows the composite dissimilarity for
the verifications of facial images A, through F, using frontal and downward looking facial images of
different people. Similarly, Table 7 verifies facial images As through F; and Table 8 verifies facial
images Aq through Fq, respectively. It can be seen from these results that the threshold for similarity
can be set comfortably at 2.5 for the composite dissimilarity that every person in our database can be

correctly verified with the proposed approach.

Table 4. Verification of As using A, and Aq

Overall dissimilarity

DS(Au_Ar, Au_Aq) 1.2141
DS(A_Au Ar_Ad) 1.9270
DS(Ag_Au, Ag_Ar) 1.6926
Composite dissimilarity 1.5821

Table 5. Verification of B; using-A, and Ay

Overall dissimilarity

DS(Ay_Br, Au_Aq) 499057.33
DS(B;_Au, Br_Ad) 631.10
DS(Aq_Au, Aq_By) 195554
Composite dissimilarity 8508.22

Table 6. Composite dissimilarities for the verification of facial images A, through F,

As, Ag By, By Cy, Cy Dy, Dy Er Eg Fr, Fq
Ay 1.58 22925.14 1509.41 1.6456.43 110.70 1995.84
B, 95.19 1.87 439.52 1.48E+05 1.50E+06 1.23E+05
Cy 12.17 211.89 1.94 1.22E+05 351.99 86389.45
Dy 4.08E+05 122.75 3055.30 161 50602.31 10.73
E, 7.85E+06 2861.12 38943.89 62857.37 1.70 810.17
F 2.89E+05 2348.07 206.42 32115.82 1.29E+07 1.89

=
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Table 7. Composite dissimilarities for the verification of facial images A; through F;

Ay, Ay By, By Cu, Cyq Dy, Dy Eu Eq Fu, Fq
A 1.58 13738.93 9625.68 26941.43 8.06E+06 1.02E+06
By 8508.22 1.87 372.59 18755.60 1.15E+06 8985.88
Ct 11998.25 14275.11 1.94 2791.98 2013.52 5650.15
D¢ 3042.51 310.53 51170.61 1.61 425738 195.46
E¢ 6979.54 1.90E+06 171595 3329.84 1.70 105005
F+ 151.60 2.03E+06 1146.79 1262.61 134511 1.89

Table 8. Composite dissimilarities for the verification of facial images Ay through Fy

Ay As By, Bt Cu, Ct Dy, D¢ == Fu Ft
Aq 1.58 149.81 11.38 2654.73 1336.72 162.87
By 705.13 1.87 422.78 3.18 4536.51 16885.11
Cyq 10160.21 24.72 1.94 34498.32 6919.54 762.24
Dy 8318.70 1.09E+07 5.61E+05 161 1.75E+05 20261.21
Eq4 14.15 3155.22 24.01 781.89 1.70 423.75
Fq 726.86 219.91 8222.20 4.88 5292.08 1.89

As for the sensitivity of the proposed algorithm, the. relative affine structure is actually
cross-ratio in a form which is quite stable numerically. This can be seen from Figure 3.3 that the
error of feature detection, in terms of variance of image pixels on the image plane, will results in
minor change in the depth of the spatial structure, e.g., z and zo, associated with a face. From above
simulation results, it seems that differences among face structures of different individuals are much
more significant than the differences due to the error of feature detection of facial images of the
same person, which gives the robustness of the proposed approach.

3.6 Summary

This chapter presents a study on computer vision technique and its application in face
recognition to achieve identity verification. The explicit relationship between the relative affine
structure and the cross-ratio - an invariant under perspective projection, is addressed. Subsequently,
relative affine structures derived from multiple images are used for face recognition. The proposed
method neither requires camera calibration nor reconstructs 3D models. Moreover, as long as feature
points of facial images are located accurately, the orientation and depth of the face are allowed to
very more freely. As shown in our preliminary experiments, the proposed approach does achieve
satisfactory results given the feature points of facial images. Slightly large scale of face database can
be established for further investigation of the performance.
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4.Practical Error Analysis of Cross-ratio-based
Planar Localization

4.1 Overview

As mentioned in Section 1.3, cross-ratio plays an important role in many recognition and
reconstruction algorithms which are based on projective geometry [1][2]. Thus, error associated with
the calculation of cross-ratio must be carefully analyzed and controlled so as to avoid too much
negative influence in the final reconstruction results. However, most of studies of sensitivity analysis
of cross-ratio only consider the computation of cross-ratio itself instead of the final localization or
reconstruction results. In this chapter, we propose an efficient way of analyzing localization error for
systems which use cross-ratio for planar localization.

Through the 1st-order approximation of the derived one dimensional error function, we first
inspect the linear nature of localization error due to small inaccuracy in image data. Similar
properties of the localization error due to two dimensional noises are then investigated. In particular,
an approximation of a nominal boundary of error ellipse can be determined efficiently for one of
image points being affected by radially symmetric errors of a fixed magnitude. Based on such a
computationally efficient error analysis, one may obtain the picture of resultant regions of
localization error in advance, instead of generating similar results by using a large amount of
synthesized noisy data for a particular cross-ratio configuration, and select proper reference points in
an image accordingly.

The rest of this chapter is organized as follows. Reconstruction error resulted from cross-ratio
computation due to 1-D and 2-D noises in image data is formulated in Section 4.2. We determine
how error propagates, including its direction and magnitude range, through a linear approximation of
such a cross-ratio-based formulation. In Section 4.3, synthesized noises are added to real data in the
experiments for the verification of the theoretical investigations. Finally, a summary is given in
Section 4.4.

4.2 Error analysis of cross-ratio-based localization

Referring to Section 2.3 and (3), one can develop a localization system based on the invariant
cross-ratio, assuming perfect image acquisition and feature extraction. However, measurement
uncertainty and system noise, such as quantization errors of 2-D coordinates of feature points in an
image plane due to limited image resolution, usually occur in practice. These uncertainties will
propagate through computation process, resulting in erroneous localizations or reconstructions. In
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this section, we will investigate how the error propagates in the reconstruction process of the above

localization system.

. Pa
e

(P49: + AQ;P@)

Figure 4.1 A general configuration of coplanar points where p;
is the origin to compute cross-ratio CRy;.

A general configuration of coplanar points for cross-ratio-based localization is shown in Figure

4.1. Here, we also denote image points with lowercase letters and scene points with uppercase letters

(not shown). Assume P;, P, P3, P4 are known planar points in 3-D space with P, and Py, as well as

p1 and p4, being origins of two cross-ratios. The position of a scene point R (or the location of a

robot), which corresponds to image point r, can be determined with the procedure described in
Section 2.3. For simplicity, let ﬁ=(dx,dy) and-assume the location of p, has noise Ax along

x-direction and is extracted as p,, we have

a, Cy+A,lb, d,
A A a c b d A j ql—kbda A
[p2,p3,p4,r]p1=CRp1: by y y dy :A_]_:—yx,
x  Cx+Axl|ay Oy| Gy 0y —kygbyAy
b, ¢y, |y dy
X X a, d,
where kyy = b d and k.4 = Nt From (3) and (23) we have
y oy y “y

(Kgc Ay —G2KacBy) X +(G2K ac By —hKgc AY

o BoR L AR
UK ac By P]_y iKBc Ay Rl_y

_—

which yields the line equation of PR
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[0 —kogayAy)Kac Ay = (0 —kagbyAy) K ac By} X
+[(92 —Kaaby Ag)K ac By = (0 —kpgayAy) Kpe A JY (24)
X F?].X

R

Ax Plx
Ay Ply

= (qz - kad byAx)KAC

B (0 —KngayAy)Kec
y

y

n

N (p4w ‘|" Awa p4y)

Figure 4.2 P, is used as the origin to compute cross-ratio CRp4

On the other hand, with p4 being the origin, as. shown in Figure 4.2, CRy, can be

computed as

a;_Ax C>’<_Ax b;<_Ax d>’<_Ax
a;, C;, bg, dg, N qi
b>’<_Ax C;( Ax a;(—Ax d;(_Ax qu
b, ¢, || a d; (25)
_ O+ UKacAy HUpkpg Ay + u1“2A§
G+ UgkfoAy +Ugkg Ay +UgligAY
where
T S T s A R O
ay Cy y dy y Cy y dy

and up =by —dy, u; =ay —cy,uz =ay —dy,us =by, —cy. Similarly, from (3) and (25), we can

—_—

obtain line equation of F34R as

(GiKgc Ay —GoKacBy) X + (2K ac By —G1Kpc ALY
A>l< I:)4x
Ay Py

B>,< I:)4x

B, P,

IRV NIV (26)
=GoKac -G Kpe

y
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where (Pax, Pay) is coordinate of image point P,. It is easy to see that (24) and (26) are of the form

{aix +pY =y
asX + Y =y,

Therefore, by solving the above equations, the robot position can be obtained as

R2(R.R,) =

n Bl la n
va Bol loz 72
o Bla B
ay Bol laz B

To simplify (27), by skipping high order terms of Ax, we have

(27)

noBl_n A , o (RA Al
‘Al AN 1 +[(q1U1kl+q1UZk2qlkzay)Ksz RXA A +AxAx(Ply_P4y)
Y2 Po| 172 P2 Ay A
! ' ! r R),(AX B)’( ,
~ (Chusks + Cyuaks — akaay KoKl 1™ o |+ AB (Ry —Pay)
Xy y
! ! 1 r R)’(BX A)’( '
+ (02U3ka + hligks — GoKaDy JK1K RyB, Al + By Ac(Py —Pyy)
XTY Yy
! ! ! r R)'(BX A;( ,
+ (Aath Ky +GUzks —Gikaby KoK | o' o 1+ BeAd(Ry = Fay) |14,
Xy Yy
Al A RyAC A RyA, By
= + Ml !+AXA)'((F?L —P4) +M2 ) +A)(B,(F?|_ —P4)
72 Po |: [RXAy Ay y y R, Ay By x\My y
(BB A e am ey Lo (BB AL e am —pylla
+ M3 RxBy Ag/ + By A 1y — 4y) + My RxBy A; + B, A ( Ly~ 4y) "
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A N a ' Br B B( B '
N 'Blz ! ﬂl{mlﬁx 2,X+M22X B,X+|\/|3E3X B,X+|v|4 BX ::),(:IAX,
Gy B o2 B y By y By y By y My
and
T R/A, A R,/A, B;
(04 (04
Al }:1 ~ 1 + Ml . . +AyA§/(P4x_Plx) +M2 . : +AyB£/(P4x_P1x)
Oy Vo Oy V2 R;,Ay A;, R;Ay B;
R,B, B, R,By, A
y=X X , y=X ,
+M3LR;B ' +ByBy(P4xPlx)]"'wu[R;B A +ByAy(P4xP1x)] Ax
yPy Py yPy Ty
o (24 . .
where |71 A1 | Pl and %0 71 are the corresponding noise-free terms. Thus, the
a, Po| |12 B a 72
approximate location of robot R becomes
n B a7
A % A ar 7
Ro=l2 Pel g _1%2 72l (28)
‘051 B a . p
a B a B
Since (28) has the form of
A EAX+ F
Ry=—— 29
Rt ] (29)
~  GAx+H
R, =—"—"2" 30
Y 1AX+ ] (30)
for constants E through J, we can obtain the following linear equation by eliminating Ax 3
s IH-GJ5 GF-EH
R, —IH-GJp .G (31)

YIUF-E) Y IF-E)

The above equation gives the trajectory of the reconstructed locations of robot R due to relatively
small image extraction errors in x-component of p4 in Figure 4.1 (and Figure 4.2).

In general, as will be demonstrated with simulation results in the next section, if the 2-D image
error of a feature point is within a reasonably small range, it can also be transformed approximately
linearly into a planar region in the 3-D space of the reconstructed scene*. In particular, such a linear

transformation of coordinate system will transform a circular region of image error into an elliptic

% One can show that by applying Taylor series expansion to (28), which gives a linear relationship between 2-D image
extraction error and 3-D localization error, a linear equation identical to (31) can also be obtained.

* A formal derivation of such a property is omitted for brevity.
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one in the above planar region. Therefore, with only transformations of the image error in two
linearly independent directions, an approximate ellipse of reconstruction error can be obtained. Such
error ellipses will be useful indicators for one to choose among point features in an image to
establish the probabilistically most accurate planar location system using cross-ratios.

4.3 Simulation results

We conduct a series of simulations for the error analysis of cross-ratio-based planar localization
for a real robot with synthesized noises added to some reference points in an image. The real scene
used in our simulations is set up as shown in Figure 4.3. In these simulations, we consider the
situation when extraction noises only affect a single image point. First, we investigate the
characteristics of the localization error assuming 1-D noise along x-direction, as discussed in the
previous section, as well as along other directions. Subsequently, nominal boundary of an error
ellipse due to two dimensional noises is computed to approximate the real error region resulted from
circularly distributed image inaccuracy. Finally, we give a cross-ratio-based localization scheme
which adopts the proposed error analysis method to assist.the selection of reference image points to
optimize the reconstruction results.

Figure 4.3 The scene which provides real data that used in our experiments.
The reference points attached on the wall are co-planar. The size of each tile is
40cm X 40cm.
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Figure 4.4 (Left) Extracted feature points in an input image. p; ... ps are identified as
images of reference points, and r is identified as the robot. Image extraction noises within a
range of +2 pixels along x-direction are added to p,. (Right) Trajectory of reconstructed
robot locations: blue and magenta points are obtained by (27) while red and green lines are
obtained by (31). The former are hardly visible since they are almost entirely covered by the
latter. R is the robot location in 3-D space resulted from the noise-free extraction of image
points.

Figure 4.4 illustrates the trajectory of the reconstructed robot locations due to noises within the
range of +2 pixels along x-direction being added to p,> The locations obtained from linear equation
(31) are represented in red and green color, corresponding to deviations of p, into +x and —x
directions, respectively. Points in blue and magenta colors represent similar results but computed
with original rational equation (27). One can see that the latter, which are drawn first, are hardly
visible since (31) gives a nearly perfect approximation of the former.

Figure 4.5 illustrates results similar to Figure 4.4 but due to noise added to y-coordinate of p.
In fact, similar results (which are omitted for brevity) can be obtained for 1-D noises in arbitrary
directions. In general, if the 2-D image errors are within a reasonable small range, the errors can also
be transformed approximately linearly into the 3-D space of the reconstructed scene. Figure 4.6
illustrates the trajectory of the reconstructed robot locations due to circularly distributed image
extraction noises of 2 pixels added to p, as well as the error ellipse obtained from the linear

> Itis assumed in the rest of the chapter that two cross-ratios involved in the computation use p; and p, as origins,

respectively.
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Figure 4.5 (Left) Extracted feature points in the input image. p; ... p4 are identified as images
of reference points, and r is identified as the robot. Image extraction noises within a range of
+2 pixels along y-direction are added to p,. (Right) Trajectory of reconstructed robot
locations: blue and magenta points are obtained by (27) while red and green lines are obtained
by (31). R is the robot location in 3-D space resulted from noise-free extraction of image
points.

transformation

ARx| [a blfAx
w2 a5 @

which is derived from (Ax,Ay)=(2,0) and (Ax,Ay)=(0,—2) (corresponding to reconstructed robot

locations R and R, respectively)®. It can be shown that the orientation of such an ellipse is

1 —2(ac+hd) (33)
Bellipse = 5 arctan(c2 a2 2 —b2)
while its semimajor axis and semiminor axis are
2(ad —bc)? sin(26,jinse)
Bgllipse = P (34)

(a2 +b? +¢? +d?)Sin(20jipse) — 2(abcd)

® Eq. (32) can be used to derive the approximate error ellipse only if there is a linear relationship between image and

reconstruction errors Various ways of inspecting such a relationship exist, but is not discussed here for brevity.

43



Image Scene

e
-324.5 J IR,
50
Ry
0 -325 £
Fof
50 . ) VA
Py | pP 325.5
2 100 . 3 R
g P2 S 326 o
>-
> 150 /
" b, r -326.5 /
-200
-250 827 ¢ — * noise-free loc.
® exact loc.
-300 3275 approx. error ellipse
sample point
-350 I I ]
100 150 200 250 300 -1 -0.5 0 0.5 1

X (pixel) X (cm)

Figure 4.6 (Left) Extracted feature points in the input image. p; ... ps are identified as
images of reference points, and r is identified as robot image. Circularly distributed
image extraction noises of 2 pixels are added to p,; (Right) Trajectory of
reconstructed robot locations: blue points are obtained by (8), while the approximate

error ellipse is obtained using (13). The reconstructed locations of robot due to image
errors (Ax,Ay)=(2,0) and (Ax,Ay)=(0,—2)0n p, are at R; and R,, respectively.

and

_ 2(ad —bc)? SiN(26yjipse)
\j(aZ +b? +¢% +d?)sin(26,jpse) +2(abed)

beIIipse (35)

respectively.

One can easily see that the above elliptical trajectory can be used to appropriately express the
spatial characteristics of the localization error without the computation of a lot of reconstructed robot
locations using the expensive high-order equation (27). For the application of a general
cross-ratio-based localization algorithm to a scene where many image features (points) can be
extracted, multiple choices of reference points, as well as the origins for the computation of
cross-ratios, are possible. Figure 4.7 shows simulation results similar to that given in Figure 4.6 but
using reference point ps in place of p,. According to the results obtained with either (27) or (32),
localization results in Figure 4.7 give similar worst-case error (4.2cm), but with approximately twice
the ellipse area, compared to that in Figure 4.6.
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The above results suggest that when there are multiple choices of reference points or cross-ratio
origins, one can perform the proposed analysis to predict possible localization errors for each choice
and select the optimal one accordingly. For each choice, one needs to ensure first that the noises are
restricted to a reasonable range that (32) obtained using two noisy samples of the reference point of
interest can appropriately describe the localization error. Subsequently, an optimal choice can be
determined by using (33), (34) and (35) to compare the direction of error, worst-case error, average

error magnitude, or other metrics suggested by specific applications.
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Figure 4.7 (Left) Extracted feature points in the input image. p; ... ps are
identified as images of reference points, and r is identified as robot image.
Circularly distributed image extraction noises of 2 pixels are added to ps. ps,
Ps, P3, P4 are selected to compute cross-ratios to locate the robot R in the scene.
(Right) Trajectory of reconstructed robot locations. Blue points are obtained
by (27), while the approximate error ellipse is obtained using (32).

4.4  Summary

As a geometric invariant under projective transformations, cross-ratio is the basis of many
recognition and reconstruction algorithms which are based on projective geometry. We propose an
efficient way to approximately analyze localization error for systems, which use cross-ratio for
planar localization, by establishing a linear relationship between the error and small inaccuracy in
measurements of image features due to 1-D and 2-D noises in the image space. Such an analysis will
be useful for one to choose among point features, as well as cross-ratio origins, in an image to
establish the probabilistically most accurate planar location system. The proposed approach is
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applicable whenever multiple choices of image features are available, which happens frequently in

various computer vision applications, e.g., in robot navigation systems.
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5.Finding Point Correspondence Using Local
Similarity and Global Constraint Under
Insignificant Scaling and Roll

5.1 Overview

Regarding the state of the art in research works related to extraction and correspondence
establishment for image features, as partly discussed in Section 1.4, it seems that no general solution
to the correspondence problem exists, due to ambiguous matches. In this chapter we propose a novel
approach to feature extraction and correspondence establishment for images of indoor scenes. We
assume the scaling and roll are insignificant (less than 5" of roll angle) since image transforms
include mainly pan and tilt in common reconstruction scenarios, especially those associated with
video data. The proposed algorithm first extracts corner points from the images as feature points by
the Harris corner detector. The image gradients obtained as by-products from the corner detector are
then classified into nine groups (represented. by nine. colors) according to their directions and
magnitudes. Thus, local gradient directions in the vicinity of each feature point form a color code.
As a non-parametric local transform, the color code summarizes local structure of image features.
Finally, the point correspondences are obtained by comparing the color codes, and by utilizing some
global relationships among feature points. The developed method not only achieves satisfactory
efficiency but also resolves the ambiguous problems effectively.

The reminder of this chapter is structured as follows: in Section 5.2, related works are briefly
reviewed, as an extension of Section 1.4. The extraction of feature points based on Harris corner
detector is discussed in Section 5.3. The color code transform and its properties are also described.
The correspondence determination algorithm using the color code is presented Section 5.4. Finally,

experiments are presented in Section 5.5 and a summary is given in Section 5.6.
5.2 Related works

In general, feature extraction methods can be categorized into two classes: surrounding
pixel-based and edge structure-based methods. The surrounding pixel-based approaches extract
feature points by analyzing local gradients or curvatures with the colors and grey levels surrounding
the pixel of interest [65][66][67][68]. The edge structure-based approaches obtain feature points
using geometrical features such as edges, followed by finding specific geometric structures like
maximum curvatures and/or intersections of edges [69][70][71]. The edge structure-based

approaches generally have the disadvantages of high computational cost. In the rest of this section,
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discussions are mainly given for surrounding pixel-based approaches which motivates the corner
detector-based algorithm presented in the next section.

Many works have been carried out on corner detection. As indicated in [60], corner detection
should satisfy a number of important criteria, such as all the true corners should be detected and no
false corners should be detected, etc. Brady et al. [67] proposed an approach known as SUSAN
which uses a circular mask scanning the entire image. The basis for SUSAN is the concept that each
image point is associated with it a local area of similar brightness, which contains much information
about the geometric structure among surrounding image pixels. For each point in the image, a
circular region centered at that point is considered. The number of pixels within the circular region
having similar brightness to the center point then provides specific information to produce an edge
strength image. Finally, moment calculations are applied to find edge directions followed by corner
feature derivation.

In [66], Harris et al. extended Moravec’s approach [65] and proposed a combined corner and
edge detector based on a local auto-correlation function. The approach defines a measure of corner
and edge quality or response, which is then used to select isolated corner pixels and to thin the edge
pixels. The feature extraction algorithm of the proposed approach is based on Harris corner detector

because of its efficiency and the consistency with the criteria stated in [60].
5.3 Extraction of corner features and color codes

We start this section by a review of Harris corner detector. Then, we continue with the
development of the feature extraction algorithm based on the gradients computed by such a detector.
As an improvement of Moravec’s corner detector, Harris corner detector functions by considering a
local window in the image, and determines the average changes of local image intensity due to small
shifts of the window in various directions. Denoting the image intensities as |, the change E
produced by a shift (x,y) is given by

2
Ex,y =z‘,"\’U,V‘|X+u,y+v —lyyv (36)
uv

where w specifies the weighted image window. To reduce the sensitivity of image noise, Harris and

: . : : —(u*+v?)/20° .
Stephens define w as a Gaussian function, i.e., W,, =€ Wwvize . According to some

mathematical manipulations given in [65], the response in (36) can be approximately expressed in
the following matrix form
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E(xy)=(X y)M(x,y)'

where M is a symmetric matrix

2]

with

2 2
ol
A:(—glj W, B—(—) W, ,
X A ] a' ’ 1

37)

2.

The gradients are computed using a convolution window. Figure 5.1 shows an image of indoor scene

I, and gradient images ol /ox and ol /oy, respectively.

(a)

Figure 5.1 (a) An image of indoor scene I. (b) The image of ol /dx, and (c) the image of ol /oy .

With some analysis for the two eigenvalues, @« and £, of M, Harris derived the following

formulation for the corner response

R = Det(M) - k[Tr(M)J?

with

(38)

Det(M) = AB-C? = of8
Tr(M)=A+B=a+/f

In particular, when k=0.04, (38) can be rewritten as

R =0.92AB —C” —0.04(A” + BY)
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Often, it is very likely that corresponding pixels in two images taken from two closely located
viewpoints will have very similar local gradients. The calculations of the image gradients in (37)
motivate the idea in this chapter of using them as additional support in the correspondence
determination of corner points. Note that no extra effort is needed in obtaining the gradients, which
often requires the most time-consuming process. For each pixel of the image, we can form its
gradient vector directly from (37) as

ol ol

VI=(X¥)=( 5

),

and obtain its cotangent magnitude cot&=VI, I'V1,. To obtain a reliable subset of the image

pixels whose gradient is obvious and less noisy, the image pixels can be thresholded by
VI >T (40)
where T is a predefined threshold. In our experiments, T is defined as 10. Figure 5.2(a) shows an

image of an indoor scene overlaid with the detected corners. The thresholded gradient image is
shown in Figure 5.2(b).

@ (b)
Figure 5.2 (a) Stereo images of an indoor scene overlaid with the detected corners, and

(b) the thresholded gradient image of the image.

In this chapter, we make use of non-parametric local transforms as the addition support for
finding correspondence of image features. Instead of exploiting local intensity values as [72], we use
gradient directions in the transforms, which relay on the quantization of local gradient directions,
rather than on the gradients themselves. Specifically, Figure 5.3 shows a quantization of the
cotangent magnitudes of the gradient direction into eight sections, each covers 45°. For instances,
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Vi,

the white cluster corresponds to VI, >10 and > 3.2, while the cyan cluster corresponds to

y
v, 1 .
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Figure 5.3 The color code representing eight clusters of directions.

With the quantized gradient directions, e.g., the representation using different colors, we now
develop a way to determine the correspondence of feature points. The idea is to establish a word of
color code by identifying local gradient directions for pixels surrounding each feature point obtained
from Harris corner detector. As illustrated.in Figure 5.4, a window containing nine 3x3 cells is
defined with the feature point located at the center of the central cell. The representative color of
each 3x3 cell is defined as the majority of the associated -3x3 colors of gradient directions. For
the example shown in Figure 5.4, the resultant 8-color codeword for this particular feature (corner)
point consists of blue, blue, grey, red, red, red, magenta and blue, clockwise starting from the upper

right cell.

(a) (b)

Figure 5.4 The color code transform of a detected corner point. (a) The nine 3x3
windows defined for the corner point, and (b) the colors which form a color code of

the corner point.

An indoor scene, as shown in Figure 5.5, is used as an example for the above transform. First,
corner points of the scene are obtained by Harris corner detector. The intensity gradients produced
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by the corner detector are then used to calculate the color code for each corner point. For the upper
right corner of the door window in the left image, the associated color code is exactly the same as
that in the right image, as shown in the two close-up 9x9 windows in Figure 5.5(a). For the lower
right corner of the door window, on the other hand, there is a difference between a pair of the
corresponding colors as shown in Figure 5.5(b). Under stable lighting conditions, the probability of
having such differences is relatively low. However, the differences may still occur due to
quantization noises associated with image acquisition, etc. Fortunately, the corner point shown in
Figure 5.5(b) is likely to be matched correctly since there are only few unmatched colors. To
improve the robustness of correspondence determination, consistency check and additional global
constraints are also considered in the proposed approach, as discussed in the next section.

(b)

Figure 5.5 The color codes of corner points. (a) The two color codes are the

same. (b) The two color codes are not the same.

5.4 Correspondence establishment using color code

In the paradigm of establishing correspondence of feature points in different images, several
local methods as well as global methods are proposed, as summarized in [62]. Local methods are
efficient but sensitive to locally ambiguous regions while global methods are less sensitive but
computationally expensive. Therefore, it is plausible to exploit local and global constraints
simultaneously when computing the correspondence for feature points of images. Figure 5.6 shows
the block-diagram of the proposed correspondence determination approach which combines local
matching, a consistency check, and iterative global matching. The basic idea of the approach to local
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matching is similar to that of the rank transform and the census transform proposed in [72]. The
proposed color code transform is gradient-based, which captures the spatial structure of the region
surrounding a corner point without additional cost. Moreover, a consistency check mechanism is
adopted to remove incorrect local matching results, which are mostly introduced at object edges due
to occlusions. The global matching uses constraints of distances and relative angular positions
among feature points to establish additional correspondences. With the already matched feature
point pairs utilized as geometrical references during each iteration, the correspondences of remaining

feature points are established incrementally.

Color words

calculation

}

Local matching

4

Consistency
check
Global

matching

l—

Correspondence

establishment

Figure 5.6 The proposed approach to correspondence

establishment of corner points using color code.

Similar to the rank and census transforms, color code transform does not allow pixels from a
small faction to contribute in a manner proportional to their intensity. However, the approach differs
from rank and census transforms in that it does not rely heavily upon the intensity of the center pixel.
Besides, it does not perform autocorrelation thus can achieve higher efficiency. To develop the
approach to local matching using color codes, we first define two quantitative measurements. Let
Cqirt be the number of different color pairs between two color codes associated with two corner
points, each in one of the two images under investigation, and let Cgis be the relative distance
between a pair of colors. Define k as the quantized angular distance between the two non-gray colors.
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For the i-th pair of colors, 1<i<8, we have’

k, ifk > 2.

Caist = . . i (41)
0, if k <2, or if at least one of the colors is gray.

For example, if the j-th pair of colors are black and green, respectively, then Ccfist = 3. (Note that

Ciist <4 is always true.) Thus, we obtain Cgit  between two color codes as

8 .
1
Cdiff = sziﬁ
i=1
where
i e A
Car =11 Chq 22,

With the two quantitative measures defined above, we now describe the local matching
algorithm to determine the correspondence of two-corner points. Given two color codes associated
with two corner points, each of them consists of 8 colors, if the two words are exactly the same (Cyjs
= 0), the two corner points are matched perfectly.-Otherwise, the words are further investigated by
thresholding Cgis to see whether the corner points match to each other. Figure 5.7 shows an example
where one corner point is zoomed-in in two images to illustrate the two somewhat different color
codes. One can see that there are only two pairs of different colors between the two color codes, i.e.,
cyan-white ( Cg’ist =0) and gray-cyan (CJ =0). Hence Cqir= 0 and the correspondence between

the two corner points can be established.

Figure 5.7 A pair of stereo images of an indoor scene overlaid with

color codes of corner feature points.

" To improve the robustness of the computation a threshold of unity is chosen to suppress the noise in the calculation

of gradient direction.
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To further enhance the robustness of feature point correspondence, the proposed approach also
addresses the problem of ambiguity due to occlusion and noise through a consistency check after the
local matching of color codes. In Figure 5.8, the corner point A in the left image is matched with the
corner point A’ in the right image, and vise versa. This pair of feature points thus passes the check
and satisfies the principle of symmetric correspondence [73]. On the other hand, corner point B in
the left image matches to the corner point C’ in the right image while C’ matches to C in the left
image. Hence, the correspondence between B and C’ cannot be established since the symmetric
correspondence property is violated. Nonetheless, C and C’ do match to each other, so the
correspondence is established. More results of performance improvement of feature point matching

with the consistency check will be shown in the next section.

Left Right

Figure 5.8 An example of consistency check.

Figure 5.9 Determining the correspondence of point A using global

constraints.

After performing the consistency check, some global constraints are used to further resolve the
problem of ambiguity in the matching of feature points, e.g., due to similar local intensity gradients.
The global constraints are based on geometrical relationships among corner points, which are
assumed to change little between two images. The correspondences based on global constraints are
established in an order such that correspondences with less ambiguity are determined first. The
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already established correspondences are thus used as geometrical references in subsequent processes.
The global constraints utilized in the proposed approach include distances and relative angular
positions among feature points. Figure 5.9 shows an example of stereo images where the two
windows of a house have very similar local intensity gradients. In particular, it is easy to see that
point A can be matched to both A’ and B’ in the right image if only local matching and the
consistency check are performed. However, if C and C’ are corner points whose correspondences
have been established already, they can be used as the geometrical references to resolve the
ambiguity. Consider vector AC and its length ‘A_C‘ in the left image, and the same for vectors
A'C', B'C" in the right image. It can be seen that HR—A_CH is much less than HW—A_CH

and the angle between vectors AC and A'C" is much less than that between AC and B'C'.
These relative geometric relationships suggest the following formulation of global constraints for the
proposed approach.

Assume that we want to determine the correspondence for a feature point A. Given a set of |
already matched feature points, {(R,R"....(R,P "}, and a set of J candidate points,

{AA",..., Ay}, for Ato match. Let

0, = > { |RAl=[P7A%] ) “2)

=1

be the total length difference between RA and PB'A;‘, 1<i<I. In addition, we compute the sum

of error in the cosine of relative angular positions,

C-=ZI‘,(1—cose-)=lZ 1- @ 13
) Ry @)

Besides such global geometrical information, we also incorporate the differences in color codes
between A and A;,

CG; = Cofiff + Cojnst- (44)

Finally, the overall score of matching can be calculated as

G = + + ) 45
. Dmax + I:)min Cmax +Cmin CGmax +CGmin ( )
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for each A}, where Dimax, Dmin, Cmax, Cmin, CGmax and CGpin are maximum and minimum values of D;,
Cj, CG;, respectively. It is easy to see that if a candidate for correspondence is similar to A in their
color code patterns and also in their locations (and angular positions) relative to the earlier matched
feature points, (45) will have a small value.

Based on the approach described above, comprehensive experiments for correspondence

establishment can be carried out, as presented in the next section.
5.5 Experimental results

This section gives experimental results of the proposed approach. The algorithms are
implemented with Matlab 6.5 running on a Pentium 111 800Mhz machine under Microsoft Windows
XP. The correspondence establishment results are presented first for some test images with readily
observable ambiguities, and then for stereo images of real scenes. Some of the images used in the
experiments are obtained from the CMU VASC image database [74].

5.5.1 Correspondences for images with readily observable
ambiguities

We first performed the experiments for stereo images with readily observable ambiguities. The
synthesized images used in the first experiment, as shown in Figure 5.10, are the ‘housel’ images
from the CMU VASC image database. The images are of size 250x250 and there is only
horizontal translation of the camera. Figure 5.10(a) illustrates the global constraints used to
determine the correspondence for point #5 whose vicinity has almost identical local intensity
variation as point #1. Figure 5.10(b) presents the final result of the determined correspondences with
that ambiguity resolved. In this experiment, all of the 19 correspondences are determined correctly.
Figure 5.11 presents another experiment. There are many ambiguities since, as illustrated in Figure
5.11(a), many color codes are very similar. With the proposed approach, we obtain the final results
presented in Figure 5.11(b) wherein only 2 of the 156 correspondences are determined incorrectly.
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(b)
Figure 5.10 Two synthesized images used in an experiment. (@) The
global constraints used to assist the determination of the correspondence

of a feature point. (b) The final result of the established correspondences.

(b)

Figure 5.11 Two test images used in another experiment. (a) The color codes of

the corner points. (b) The final result of the established correspondences.
5.5.2 Correspondences for stereo images of real scenes

Figure 5.12 shows a sample image obtained from a sequence of images of an indoor scene. The
images was taken with Canon PowerShot G1 and the size was 640x450. A total of 36
correspondences are determined among 59 corner features in the left image and 53 corner features in
the right image. Among the obtained results, only one correspondence is incorrect and the execution

time is 3.23 seconds.
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Figure 5.12 A sample image obtained from a sequence of images of an
indoor scene. A total of 36 correspondences are determined, with only

one of them being incorrect, with the proposed approach.

The next two experimental results are performed for images obtained from the VASC image
database. Figure 5.13(a) shows a 512x400 image of a laboratory. A total of 90 correspondences
are determined among 142 corner features in the left image and 156 corner features in the right
image. Among the obtained correspondence, only four of them are incorrect. The execution time is
12.33 seconds. Figure 5.13(b) uses the ‘cart-alt” images from the same image database where far-off
objects as well as near-by objects are present. A total of 42 correspondences are determined among
83 corner features in the left image and 42 corner features in the right image. The obtained
correspondences are all correct and the execution time is 12.5 seconds.

@) (b)

Figure 5.13 Two samples of Image sequences used in two experiments both

overlaid with the established point correspondences.

5.6 Summary

In this chapter, we propose an algorithm using local similarity and global constraint to obtain
point correspondence. Image gradients obtained as by-product from corner detector are classified
into nine groups, represented by nine distinct colors, according to their directions and magnitudes.
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Local gradients in the vicinity of each feature point thus form a color code. The proposed approach
obtains point correspondences by comparing these color codes followed by consistency check, and
iteratively global matching using some spatial relationships among feature points. Experiments show
that the proposed algorithm is not only efficient but also very robust for finding point

correspondence among multiple images.
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6. Conclusions

As a geometric invariant under projective transformations, cross-ratio is the basis of many
recognition and reconstruction algorithms. In fact, cross-ratio-based approaches have major
contributions to many important techniques which address various computer vision issues. In this
dissertation, some applications of view-invariant cross-ratio are investigated. The common idea of
these algorithms is to use cross-ratio to determine object structure without tedious and expensive
computation to infer 3-D information, including object model and camera parameters. Meanwhile,
for error analysis of cross-ratio, we derive efficient means to predict and to describe the
characteristic of localization error. The approach enables one to select appropriate reference image
points by efficiently providing approximate regions of localization error in advance, with no need to
generate similar results for each configuration of reference points by using a large amount of data
with synthetic noise.

In this dissertation, an efficient approach for finding correspondences between image features
based on local similarity and global constraints is conducted as an applicable stage of image analysis,
which is suitable for real-time applications. Several computer vision applications based on 1-D
projective coordinates (cross-ratios) are ‘proposed, which include (i) shadow generation of linear
light source, and (ii) identity verification using facial images. According to simulation results,
satisfactory results can be obtained for. both applications. As for robot localization using 2-D
projective coordinates, if multiple choices of reference points exist, the proposed error analysis

technique can readily be applied to improve the localization accuracy.
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