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透 視 不 變 性 於 電 腦 視 覺 之 應 用 

學生：高肇宏 

 

指導教授：莊仁輝 教授 

 
 

國立交通大學資訊科學與工程研究所 

摘 要       

 

電腦視覺的主要目標，是發展能以良好效率及精確性完成特定影像分析工作的穩定系統。

其中，基於透視投影幾何的方法，常與參考點所提供的已知資訊有所關連。交比不變性在此類

投影轉換中，扮演了一個重要的角色。事實上，它是許多辨識和影像重建方法的基礎，同時也

是處理電腦視覺問題最重要的技術之一，例如平面特徵的辨認、三度空間的定位，以及在自動

導航領域之應用。在本篇論文中，我們應用交比發展了產生線光源影子的方法，以及利用交比

進行臉孔辨識的系統。基於此不變性，我們可以避免大量且繁複的有關三維空間資訊的計算，

例如攝影機的校正，和物體完整結構的重建，而直接使用交比去求得物體二維或三維結構的相

對量測值。我們也發展了一個新的方法，去預測及描述交比計算過程所產生的定位誤差的特性。

此方法並不直接進行整個影像空間的誤差計算。由於此方法可提供我們對此類誤差的傳播較具

象的概念，因此能幫助我們有效率地選擇參考點。另外，我們也提出了以影像特徵點間的區域

相似度和整體的幾何關係為基礎的影像特徵對應計算方法。此演算法可做為影像分析的前處理

運算，並可望適用於包括本論文所提出的各種即時電腦視覺應用。 

 
關鍵字：交比，透視投影，不變性，線光源影子，臉孔辨識，定位誤差，特徵點對應
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Using Perspective Invariants Cross-Ratio in Computer Vision 
 

 
Student：Jau-Hong Kao 

 

Advisor：Dr. Jen-Hui Chuang 

 
 

Department of Computer Science 

National Chiao Tung University 

ABSTRACT 

 

One of the main purposes of computer vision is to develop a reliable system that can carry out 

its tasks with satisfactory efficiency and precision in a realistic environment. Approaches based on 

projective geometry are often associated with reference points given as prior knowledge. As a 

geometric invariant under projective transformations, cross-ratio is the basis of many recognition 

and reconstruction algorithms. In fact, cross-ratio-based approaches are important techniques to 

address various computer vision problems, such as planar feature recognition, 3-D localization and 

autonomous navigation applications. In this dissertation, applications of cross-ratio in shadow 

generation and identity verification are investigated. The common idea of these algorithms is to use 

cross-ratio to determine measurements of object structure without tedious and expensive 

computation to infer 3-D information, including object modeling and camera calibration. Meanwhile, 

for error analysis of cross-ratio-based approaches, we derive efficient means to predict and to 

describe the characteristic of localization error. The approach allows one to select appropriate 

reference image points by providing corresponding regions of localization error. Finally, an efficient 

approach for finding correspondences between image features based on local similarity and global 

constraints is also conducted as an applicable stage of image analysis, which will be suitable for 

various real-time applications of computer vision, including those developed in this dissertation. 

 
keywords：cross-ratio, perspective projection, invariant, shadow of linear light source, identity 

verification, localization error, feature point correspondence 
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1.  Introduction 
 

One of the main purposes of computer vision is to develop a reliable system that can carry out 

its tasks, e.g., reconstruction of scene structures, with satisfactory efficiency and precision in a 

realistic environment. There are basically two classes of methods to reconstruct 3-D structures from 

2-D images. The first class involves strategies relying on camera calibration to establish 

reconstruction matrices while the second class consists of approaches based on projective geometry 

associated with reference points given as prior knowledge. An invariant is a property of a geometric 

configuration that does not change when a transformation is applied to that geometric configuration. 

As a geometric invariant under projective transformations, cross-ratio is the basis of many 

recognition and reconstruction algorithms which are based on projective geometry [1][2]. In fact, 

cross-ratio-based approaches are important techniques to address various computer vision problems, 

such as planar feature recognition, 3-D localization and autonomous navigation applications. 

In general, an immediate advantage to use cross-ratio measurement in computer vision 

applications is that most calibration works, which aims to obtain 3-D data, are no longer necessary. 

Since various tasks can thus be processed with simple 2-D computation, such a view-invariant 

measurement plays a very important role in this dissertation. The proposed shadow generation 

approach uses cross-ratio to compute 2-D quantities which are traditionally obtained with 3-D scene 

and projection data. In the proposed face identification approach, it is found that cross-ratio 

measurements are actually equivalent to relative affine structure described in [3], which is then 

utilized to derive relative 3-D information of facial features.  

On the other hand, as indicated in [4][5], the quality of scene reconstruction and structure 

inference strongly depends on the quality of the image data. In addition to other possible 

measurement uncertainties, 2-D coordinates of feature points in an image plane will always have 

quantization errors due to limited image resolution. Hence, values of projective coordinates, i.e., 

pairs of cross-ratios with respect to some given reference points, will also be noisy. Since the error in 

the calculation of cross-ratio will also propagate in the subsequent computations, it must be carefully 

analyzed and controlled so as to avoid too much negative influence on the final reconstruction 

results. In this dissertation, we propose an efficient way of analyzing localization error for systems 

which use cross-ratio for planar localization. We first inspect the linear nature of localization error 

due to small inaccuracy in cross-ratio measurements. Properties of the localization error due to two 

dimensional noises of reference image points are then investigated. Based on our computationally 

efficient error analysis, we derive means to predict and to describe the characteristic of localization 

error, assisting ones to select reference image points accordingly and to efficiently provide picture of 
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resultant localization error in advance, without generating similar results by using a large amount of 

synthesized noisy data. In order to efficiently obtain reliable correspondences between image 

features, we also conduct a method to find point correspondences using local similarity and global 

constraint. Such an approach can be conducted as a preprocess stage of image analysis. Related 

works for shadow generation, face identification, error analysis of cross-ratio, and the determination 

of image feature correspondence will be presented in the following subsections. 

  

1.1 Survey of shadow generation of linear light source 

 

Shadows increase the perception of image realism, and can also enhance users‟ spatial 

awareness. Several shading and shadowing algorithms, which are based on 3-D information of the 

scene, have been proposed for directional lights, point lights, spot lights, and so on [6][7]. There are 

two general-purpose shadow algorithms for interactive applications. The approaches based on 

shadow volume are continuous methods working in object space and the ones based on shadow map 

are discrete methods that sample depth images of the scene [8]. Among them, illumination from 

linear and area light sources generates penumbras along shadow boundaries which notably enhance 

the photo-realism of an image. For the illumination due to a linear light source, sampling methods, 

which represents the light source with a series of point light sources, are often used [9]. This is 

because a shadowing algorithm for a point light source is simple. However, if the point samples are 

too sparse, serious aliasing artifacts will occur. On the other hand, for very dense samples, the 

computation cost will become excessive. 

Instead of sampling, another type of shadowing algorithms, e.g., the ones use light clipping 

process, determines the illumination of a point on the object surface by identifying the portions of 

each linear light source visible from that point. However, when many complex objects cast shadows 

onto rugged object surfaces, the cost for the light clipping process is extremely high. To reduce the 

cost, Bao et al. [7] proposed an extension of the BSP tree-based shadowing algorithm which is 

originally developed for point light sources [10][11]. 

In [12], an algorithm which can precisely generate shadows due to a linear light source for 

complex (curved) objects other than planar polygons is introduced. The algorithm computes the 

illumination of each point in the penumbra by using an integral function to evaluate the diffuse and 

specular effects simultaneously. In order to reduce the higher cost due to more complex object 

shapes, only the objects occupying the subdivisions that intersect the light triangle are considered. In 

[13], a ray-oriented buffer is proposed to improve the rendering performance by reducing the 

computation time for the selection of candidate polygons. The authors of [14] proposed a soft 

shadow algorithm to produce penumbra regions for linear light sources. It is not an exact method and 
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will produce artifacts if the light source is severely undersampled. Other model-based approaches are 

based on radiosity methods, which need to address the problem of high computation cost [15][16]. 

On the other hand, geometries between 2-D image features are also used to derive 3-D 

information in some approaches, such as [17]. In that method, a special setup of the scene and some 

assumptions speed up the computation of the camera calibration. However, these simplified 

calibration model are often sensitive to the quality of imaging device and depend on the sophisticate 

image processing techniques. In addition, there has been some work on generating shadows from 

image-based scene representations [18]. 

Previous works such as those in [6]-[19] are generally based on 3-D geometry. Relevant 3-D 

data required in the shadow computation includes the object model, the location of light sources and 

the surfaces on which the object shadows are to be cast. In this dissertation, an algorithm which 

obtains realistic shadowing effects purely using 2-D information is proposed. By using cross-ratios, 

the system neither utilizes calibrated cameras nor performs 3-D reconstruction of the scene.  

 

1.2 Survey of identity verification using multiple facial images 

 

Machine recognition of faces has been a very active research topic in recent years [20]-[23]. 

Face recognition technology for still and video images has potentially numerous commercial and law 

enforcement applications. These applications range from static matching of well-formatted 

photographs such as passports, credit cards, driver's licenses, and mug shots, to real-time matching 

of surveillance video images presenting different constraints in terms of various processing 

requirements. Although humans seem to recognize faces in cluttered scene with relative ease, 

machine recognition which often spans several disciplines such as image processing, pattern 

recognition, computer vision, and neural networks is a much more daunting task. In particular, the 

problem can be formulated as follows: Given still or video images of a scene, identify one or more 

persons in the scene using a stored database of faces. A complete face recognition system generally 

includes two main stages. The first stage is the face detection stage that determines the existence of 

one or more faces in an image. Techniques used in this stage involve segmentation of faces from 

cluttered scenes and extraction of features from the face region. The challenges are mainly due to the 

fact that the position, orientation and size of face regions in an arbitrary image are usually unknown 

[24][25][26]. A survey of face detection techniques can be found in [27]. The second stage is the 

recognition stage which deals with the identification and matching problems. The goal is to 

determine the identities of the target faces obtained in the first stage. Considering important works 

developed so far in the recognition stage in the engineering literature, a brief survey on the face 

recognition researches in recent years is provided in what follows. 
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Most of existing face recognition algorithms are 2-D based. In terms of the nature of the facial 

features utilized, these 2-D algorithms can generally be divided into two major categories: 

structure-based approaches and statistics-based approaches. The class of structure-based ones uses 

structural facial features, which are mostly local structures, e.g., the shapes of mouth, nose, and eyes 

[28]-[31]. In [30], an automated recognition system that uses a top-down control strategy directed by 

a generic model of expected feature characteristics is developed. They proposed an elastic graph 

matching model which extracts the feature vectors from image lattices based on a set of 2-D Gabor 

filters. The main advantage of a structure-based face recognition method is the low sensibility to 

irrelevant data, e.g., moving hair or background, since it only handles data of interest instead of 

using all image data indiscriminately. The main disadvantage of such approaches is the high 

complexity in feature extraction. 

The statistics-based approaches basically use the whole 2-D image as facial features [20] 

[32][33][34]. In this category of approaches, the principal component analysis (PCA) exhibits 

particular importance [35]. The principal components, e.g., Eigenface [36][37], of training face 

images are calculated and then used as a set of orthonormal basis. The complete space can be 

represented effectively by a significant small subset of these orthonormal facial images and the 

dimension of the feature space of facial images is thus reduced. Moreover, theoretical neuroscience 

has contributed to account for the view-invariance perception, which is also the underlying idea of 

our work for identify verification, of universals such as the explicit perception of featural parts and 

wholes in visual scenes. A survey of recent developments in theoretical neuroscience for machine 

vision can be found in [38]. These unsupervised learning methods are used to make predictive 

perceptual models of the spatial and temporal statistical structure in natural visual scenes. In 

particular, given the spatial-temporal continuity of the statistics of sensory input, invariant object 

recognition might be implemented using a learning rule that uses a trace of previous neural activity 

capturing the same object under different transforms in the short time scale. By first relating a 

modified Hebbian rule to error correction rules and exploring a number of error correction rules that 

can be applied to invariant pattern recognition, learning rules related to temporal difference learning 

are developed in [39]. The analysis of temporal difference learning provides a theoretical framework 

for better understanding the operation and convergence properties of rules useful for learning 

invariant representations. In contrast to structure-based approaches, statistics-based ones are more 

straightforward and simple. However, it happens that important local features are used with small 

factor of importance. As for theoretical neuroscience, it is not yet obvious whether the full power of 

learning rules is expressed in the brain, and the practical applications in face recognition are needed 

for the understanding of the performance. The work in [39] provides suggestions about how they 

might be implemented. Although the above 2-D based face recognition approaches produce 
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satisfactory results under normal conditions, their performance can deteriorate quickly by varying 

lighting condition or large change of the viewing geometry.  

As the face recognition technology is an essential tool for law enforcement agencies' efforts to 

combat crime, fake or duplicated facial images which can easily cheat the 2-D based facial 

recognition systems raise problems of interest [21]. To avoid such problems, a few 3-D model-based 

face recognition are proposed wherein 3-D feature points are reconstructed which provide important 

information for facial recognition. In [40] a method based on Karhonen-Loeve expansion is 

developed to reconstruct 3-D face features. The method is claimed to be independent on lighting 

conditions. In [41], the reconstruction of face surface is made rotation-invariant. A similar approach 

based on a depth map obtained from stereo images to perform face segmentation and recognition can 

be found in [42]. In [43], a model-matching approach is provided to reduce the computational cost of 

3D-based facial recognition algorithms.  

In this dissertation, we propose a novel approach to identify a person with facial images using 

3-D information of facial feature points. Three reference points are first extracted to construct a 

reference plane in every image. By calculating a view-invariant relative depth with respect to the 

obtained reference plane for each relevant feature point, an efficient face recognition algorithm is 

developed using relative affine structure introduced in [3], which are found in our work to be 

equivalent to some cross-ratio measurement. 

 

1.3 Survey of error analysis of cross-ratio-based planar 

localization 
 

Recently, more and more computer vision researchers are paying attention to error analysis so 

as to fulfill various accuracy requirements arising from different applications. One of the main 

purposes of computer vision is to develop a reliable system that can carry out its tasks, e.g., 

reconstruction of scene structures, with satisfactory efficiency and precision in a realistic 

environment. There are basically two classes of methods to reconstruct 3-D structures from 2-D 

images. The first class involves strategies relying on camera calibration to establish reconstruction 

matrices while the second class consists of approaches based on projective geometry associated with 

reference points given as prior knowledge. 

As a geometric invariant under projective transformations, cross-ratio is the basis of many 

recognition and reconstruction algorithms which are based on projective geometry [1][2]. For 

example, cross-ratios calculated from vertices of polygons are used in [44]-[48] to recognize planar 

features in a 3-D environment. In addition to recognition, given prior knowledge about a scene, 

object structure can also be reconstructed using cross-ratio. For example, an approach that 
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transforms relative affine structure defined in [3] into equivalent cross-ratio measurement is used to 

determine relative 3-D face structure from facial images in an identity recognition system [49]. Such 

a projective invariant can also be utilized to match trajectories across video streams and applied to 

image retrieval problems [50][51]. For autonomous navigation of vehicles, cross-ratio is often used 

to identify artificial landmarks or beacons placed in the environment [52]-[56]. 

As indicated in [4][5], the quality of scene reconstruction and structure inference strongly 

depends on the quality of the image data. In addition to other possible measurement uncertainties, 

2-D coordinates of feature points in an image plane will always have quantization errors due to 

limited image resolution. Hence, values of projective coordinates, i.e., pairs of cross-ratios with 

respect to some given reference points, will also be noisy. Since the error in the calculation of 

cross-ratio will also propagate in the subsequent computations, it must be carefully analyzed and 

controlled so as to avoid too much negative influence in the final reconstruction results. Some 

studies of cross-ratio are proposed to assess its use in invariant-based recognition systems 

[4][5][57][58][59]. These studies mainly focus on robust estimations of the cross-ratio regarding to 

the uncertainty in measurement, or concerning with the analysis of error propagation, so as to 

provide relevant information of quality estimation in different steps of a vision system. However, 

such sensitivity analysis only considers the computation of cross-ratio itself instead of the final 

localization or reconstruction results or autonomous navigation applications. 

In this dissertation, we propose an efficient way of analyzing localization error for systems 

which use cross-ratio for planar localization. Based on such a computationally efficient error 

analysis, one may obtain the picture of resultant regions of localization error in advance, instead of 

generating similar results by using a large amount of synthesized noisy data for a particular 

cross-ratio configuration, and select proper reference image points accordingly. 

 

1.4 Survey of finding point correspondence using local similarity 

and global constraint 
 

Extraction and correspondence establishment for image features have been intense areas of 

research in computer vision for decades. Feature extraction analyzes images and obtains meaningful 

image features, e.g., corners, which abstract the scene structure to reduce the amount of data for 

further computation. Establishing correspondences of image features, which is also a fundamental 

topic in vision, forms the basis for stereo depth computation as well as most optical flow algorithms. 

Given two images of the same scene, a pixel in one image corresponds to another pixel in the other 

image if both pixels are projections along lines of sight of the same physical element in space. 

Regarding the state of the art in related researches, it seems that no general solution to the 
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correspondence problem exists, due to ambiguous matches. Some common causes include occlusion, 

lack of texture, and photometric distortions, etc.  

A number of constraints for feature extraction (e.g., corner points should be well localized as 

stated in [60]), correspondence determination (e.g., via epipolar geometry [61]), and some other 

assumptions (e.g., image brightness constancy and surface smoothness), are exploited to make the 

problem tractable. Hager et al. refer to constraints on a small region surrounding the pixel of interest 

as local constraints, and constraints on scan-lines or on the entire image as global constraints [62]. 

They outline the principle methods for exploiting both local and global constraints. In general, local 

methods can be very efficient. However, they are sensitive to locally ambiguous regions in an image 

such as uniform textures and occlusion regions. On the other hand, global methods are usually more 

robust by providing additional support for regions difficult to match locally. But the computation is 

generally more expensive. Recently, SIFT is proposed and used to describe and match digital image 

content between views [63]. However, while the purpose is to compute features invariant to 

transformations, the SIFT description is typically too expensive especially when the transformation 

among images is not significant, e.g., between two consecutive frames of a video sequence. 

In this dissertation we propose a novel approach to feature extraction and correspondence 

establishment for images of indoor scenes. Since image transforms include mainly pan and tilt in 

common reconstruction scenarios, we assume the scaling and roll are insignificant.  

 

1.5 Organization of the dissertation 

 

In this dissertation, various applications of cross-ratio are investigated. The common idea of 

these algorithms is to use cross-ratio to determine measurements of object structure without tedious 

and expensive computation to infer 3-D information, including object modeling and camera 

calibration.  Meanwhile, for error analysis of cross-ratio, we derive efficient means to predict and to 

describe the characteristic of localization error. The approach allows one to select reference image 

points efficiently and to obtain picture of resultant localization error in advance, instead of 

generating similar results by using a large amount of synthesized noisy data. Finally, the approach 

for correspondence establishment can be considered as a pre-process for proposed cross-ratio-based 

applications when the scaling and roll are insignificant. The organization of this dissertation is 

shown in Figure 1.1.  
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The remainder of this dissertation is organized as follows. In Chapter 2, an efficient approach to 

generating object shadows on a base plane due to a linear light source in 3-D space is proposed. 

With the use of cross-ratio, the computation is performed purely in 2-D image space, thus it needs 

neither calibrated cameras nor 3-D reconstruction of the scene. Chapter 3 describes an identity 

verification system based on cross-ratio measurement computed from multiple facial images. The 

measurement interprets 3-D structure of a face as a set of relative quantities. Using the property of 

invariant, the system is able to perform identity verification without camera calibration. In addition, 

iterative training is not required which leads to the issue of convergence in the neural network based 

face recognition approaches. In Chapter 4, an efficient way of analyzing localization error for 

systems using cross-ratio for planar localization is proposed. Starting from the 1st-order 

approximation of one dimensional error functions, we eventually investigate conditions for the 

existence of a nominal boundary of an ellipse due to some circularly distributed 2-D errors. In 

Chapter 5, we develop an algorithm to find correspondences between images. Under the assumption 

of insignificant scaling and roll, the approach uses local similarity and global constraint to match 

image feature points. The system is efficient and suitable to real-time applications. Finally, Chapter 

6 gives conclusions of this dissertation. 

  

 Local 

similarity 

and global 

constraint 

 Insignificant 

roll and 

scaling 

 Face recognition 

(1-D) 

 Shadow 

generation (1-D) 

 Localization 

using 

cross-ratios 

 Linear 

transformation 

approximation 
 Robot 

localization 

(2-D) 

Correspondence 

establishment 

Cross-ratio-based 

applications 
Error analysis 

Figure 1.1 Organization of the dissertation. 
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2.  Shadow Generation of Linear Light Source 

Using Stereo Images without 3D Reconstruction 
 

2.1 Overview 
 

Shadows contribute to the perception of image realism, and can also enhance users‟ spatial 

awareness. Several shading and shadowing algorithms based on 3-D information of the scene have 

been proposed [6]-[19]. However, they are generally based on 3-D geometry. In this chapter, an 

algorithm which obtains realistic shadowing effects purely using 2-D information is proposed. The 

system neither utilizes calibrated cameras nor performs any 3-D reconstruction of the scene. Similar 

to the sampling methods, we use a set of point samples to approximate a linear light source. In the 

next two sections, we briefly review the definition of the projective invariant cross-ratio and its use 

in planar point localization, respectively, which plays a fundamental role in algorithms described in 

following chapters. In Sections 2.4, the approach developed in [64] to generating shadow due to a 

point light source is briefly reviewed. The approach is then extended to the generation of shadows 

due to a linear light source in Section 2.5. Experimental results and a brief summary are given in 

Sections 2.6 and 2.7, respectively. 

 

2.2 Definition of cross-ratio 
 

 

 

Before the description of a typical framework for 3-D reconstruction of a scene point from four 

reference points, all in a 2-D space, using the projective invariant cross-ratio, we first review some 

mathematics involved in the computation. By denoting image points with lowercase letters and scene 

points with uppercase letters, let O, A, B, C and D be five coplanar points in a general configuration 

Figure 2.1 Cross-ratio of five coplanar points. 
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(with no three of them being collinear), as shown in Figure 2.1. One form of cross-ratio is given as
1
 

 

1 2

3 4

sin sin
[ , , , ]

sin sin
O O

A C B D
A B C D CR

B C A D

 

 

 


 
 

   

     (1) 

 

where ( , )x yA A A


stands for the directed vector OA


, and so on. Alternately, we can rewrite (1) as  

 

1

2

[ , , , ]

x x x x

y y y y

O
x x x x

y y y y

A C B D

A C B D Q
A B C D

B C A D Q

B C A D

   (2) 

 

where Ax, ..., Dx denote the x-components of vectors , ...,A D
 

, respectively, and Q1 and Q2 are the 

denominator and numerator of CRO, respectively. With (2), a cross-ratio can be obtained without 

actually computing the angles between the pencils , , ,OA OB OC OD
   

. 

 

2.3 Use of cross-ratio in Planar Point Localization 

 

 

Figure 2.2 illustrates a typical geometry of perspective projection. Five scene points O, A, B, C, 

D located on a 3-D plane 0 , with no three of them being collinear, are projected on image plane 

                                                 
1
 Note that a total of 24 different cross-ratios ki, 1 24i  , can be defined for a scene point and Eq. (1) corresponds to 

k1 defined in [57]. 

Figure 2.2 A perspective projection of some feature points. 
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1 as o, a, b, c and d, respectively
2
. The invariant property of cross-ratio guarantees that if the five 

feature points can be identified in the image plane accurately, the cross-ratio  odcba ],,,[  obtained 

by (2) will be identical to the cross-ratio ODCBA ],,,[ . 

An immediate application of projective invariant is to determine ray directions. For example, if 

the origin and three of the rest four points are known in Figure 2.1, the vector passing through the 

fourth point from the origin can be determined easily from o, a, b, c and d if [A,B,C,D]O is given. For 

example, let D=(X, Y) and OD


 is to be determined. From (1), we have 

 

1

2

,

x x x x

y y y y

O
x x x x

y y y y

a c b X O

a c b Y O Q
CR

b c a X O Q

b c a Y O












 

 

which can be rewritten as 

 

1 2 2 1

2 1

( ) ( )BC y AC y AC x BC x

x x x x

AC BC
y y y y

Q K A Q K B X Q K B Q K A Y

B O A O
Q K Q K

B O A O
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 
 (3) 

 

where 
x x

AC
y y

A C
K

A C
  and 

x x

BC
y y

B C
K

B C
 . This is in fact the line equation of l4 ( OD


).  

Furthermore, if O, A, B, C are known, so as [A, B, C, D]O and [B, C, D, O]A, we can obtain point 

D by intersecting OD


 and AD


. Accordingly, a localization system can be developed for a mobile 

robot based on the view-invariant cross-ratio, assuming perfect image acquisition and feature 

extraction, as described in Chapter 4. 

 

2.4 Shadows of Point Light Sources 
 

In this section, we briefly review the approach developed in [64] for shadow generation of due 

to a point light source using 2D image data. The 2D data are extracted, possibly interactively, from 

pictures taken by some unknown cameras. Given two images I and II, the approach assumes that the 

object region, and the base plane where the object‟s shadow is to be cast upon, can be identified in 

both I and II. Moreover, at least five reference points on the base plane can be identified and any 

three of them must not be collinear in the images. The 3D information of the base plane, e.g., the 

position in the scene, is not required in the process. 

                                                 
2
 In a robot navigation environment, 

0  
can be the ground plane and the five points can be landmarks or beacons 

placed in the environment, or the robot itself. 
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(a) (b) 

Figure 2.3 (a) A wireframe image (I) rendered at viewpoint V1. (b) A 

wireframe image (II) rendered at viewpoint V2. 

 

  

(a) (b) 

Figure 2.4 (a) The shadow region of the base plane due to a point light 

source located at V1. (b) The shadow region of the base plane due to a point 

light source located at V2. 

 

Figure 2.3(a) and Figure 2.3(b) show images I and II obtained from viewpoints V1 and V2, 

respectively, where an object is put on a base pentagon (whose vertices will be treated as reference 

points). The border segments shown by bold lines in Figure 2.3(a) (Figure 2.3(b)) is the shadow area 

on the base plane due to a point light source located at V1 (V2). In general, if some reference points in 

image I can be located correctly in image II, such as intersections of extended lines of the border 

segments of the shadow region and the diagonals of the pentagon, the shadow region in image II can 

be found, as shown in Figure 2.4(a) and Figure 2.4(b). 

Figure 2.5(a) illustrates an object and its shadow thus obtained. A similar shadow generation 

result is shown in Figure 2.5(b). The detail of the process which accurately locates the intersections 

and the shadow regions using view-invariant quantities, i.e., cross-ratios, is provided as follows. 
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(a) (b) 

Figure 2.5 (a) An object and its shadow due to a point light source located at V2. (b) 

An object and its shadow due to a point light source located at V1. 

 

Consider a sequence of four points A, B, C, and D located along a straight line in the 3D space. The 

cross-ratio, in another form, is defined as 

[ , , , ]
AC BD

A B C D
BC AD




 . (4) 

It has been proved in [19] that any linear transformation in homogeneous coordinates, i.e., 

perspective projection, linear scaling, skewing, etc., preserves the above cross-ratio value. For 

example, if the image of the four points a, b, c and d can be located accurately along the 

corresponding image of the line, then we have 

 

],,,[],,,[ dcbaDCBA  . (5) 

 

 

Figure 2.6 A perspective view of four points lying 

along a straight line. 

 

A straightforward application of the view invariant cross-ratio, is the determination of the 

location of a point along a line segment in an image. Given the cross-ratio of four points on a line 

segment, if three of them can be identified accurately in an image, the location of the fourth in the 

A

D

C

B

c

b

a

d

O

view point
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image can be determined easily by solving a linear equation of a single variable. Consider the line 

segment and its image shown in Figure 2.6. Assume that 

 

R
adbc

bdac

ADBC

BDAC










. 

 

If points a = (ax, ay), b = (bx, by) and d = (dx, dy) can be identified in the image, then we have 
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. 

 

Hence the location of the fourth point c = (cx, cy) can be determined by solving  
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x
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. 

 

For a line segment almost parallel to x-axis (or y-axis) of the image plane, only one of the two 

equations, which will not result in a near zero denominator, should be used to ensure numerical 

stability (see [57]). It is also worth noting that if points B and C are too close to each other, the 

calculation of the cross-ratio in equation (4) may become unstable. 

 

Figure 2.7 The object shadow generated for a point 

light source located at V1. 

 

L1 
1 L 

2 
C 

B 

A 
E 

D 

F 

G 
H 

J 

S 

T U 

P 

Q R 

K1 

I 

K2 



15 

 

Figure 2.8 A perspective view of four points lying 

along a straight line. 

 

The above cross-ratio properties are used in [64] to derive object shadows for stereo images. 

For example, the blocked base region with solid border segments shown in Figure 2.4(a) is identified 

in Figure 2.5(b) as the shadow region. The two figures are redrawn in Figure 2.7 and Figure 2.8, 

respectively. In Figure 2.7 and Figure 2.8, if the five reference point can be located precisely, one 

can identify four reference points along each diagonal of the pentagon, e.g., B, F, J and E along BE


. 

In Figure 2.7, in order to specify the extended line of a border segment of the blocked base region, 

say L1, at least two of its intersections with the extended lines of the diagonals of the pentagon need 

to be found. (Here, we choose BD


 and BE


 which intersect with L1 with angles closest to 90 

degrees in Figure 2.7 so that the intersections can be found more accurately.) 

Along BE


( BD


), its intersection with L1, K1 (K2), and three of the four reference points on the 

diagonal are used to calculate the cross-ratio value which is then used to locate the intersection k1 (k2) 

in Figure 2.8. Thus l1 can be determined by k1 and k2. Note that to improve the numerical stability in 

the calculation, the selection of the three reference points is based upon the requirement that none of 

the quantities in the denominator of equation (4) has an extremely small value. Working in exactly 

the same manner, l2, as well as other lines containing the border segments can also be determined in 

Figure 2.8. With these lines, points P', Q', R', S', T' and U', which are the vertices of the shadow 

region shown in Figure 2.8 are computed. 

Assume Image I is taken from the light source viewpoint and Image II is taken from the eye 

viewpoint, and let Li, ( ni 1 ), denote the lines of the border segments of the base plane region 

blocked by the object in Image I. The algorithm of the above shadow generating process for Image II 

is summarized as Shadow_Point_Source. Figure 2.5(a) (Figure 2.5(b)) shows the result for a point 

light source located at the viewpoint from which Figure 2.4 (b) (Figure 2.4(a)) is obtained. 
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ALGORITHM 1 Shadow_Point_Source 

- For each Li (1 ≤ 𝑖 ≤ 𝑛) { 

- Select two of the extended lines of the diagonals of the pentagon Di1, Di2 which 

intersect Li with angles closest to 90°, identify the intersections Ki1, Ki2. 

- For each Dij (j = 1, 2) { 

- Select one of the two intersections of Dij with two other diagonals, Xij, which 

guarantees that the following cross-ratio calculation will be numerically stable. 

- Calculate the cross-ratio R of the four reference points (two endpoints of the 

diagonal, Xij , and Kij). 

} 

- Identify the positions of Ki1 and Ki2 in image II, i.e., ki1 and ki2. 

- Derive the line li, which is the image of Li, defined by ki1 and ki2. 

} 

- Determine the vertices of the shadow border by calculating the intersections of pairs of li's 

containing two adjacent border segments. 

 

 

2.5 Shadows of Linear Light Sources 
 

A linear light source casts soft shadows which include umbra and penumbra. In this section, a 

process of generating shadows due to a linear light source based on the algorithm for a point light 

source is described. The proposed shadow generation approach is very efficient since the 

computations use only 2D image data. 

Given stereo images of an object obtained from two viewpoints, the proposed approach can 

generate in either image the shadow due to the linear light source connecting the two viewpoints. To 

simplify the shadow generation process, the umbra and penumbra regions are not explicitly 

identified by the proposed approach. Instead, the shadow is formed by superposing shadow regions 

due to a series of point light sources sampled along the linear light source. The first and the last 

shadow regions of the two ends of the linear light source are generated by the approach presented in 

Section 2.4. In order to derive the remaining shadow regions, the proposed approach first identifies 

trajectories of shadows of object features such as vertices and edges in an image as a point light 

source moves along the line connecting the two viewpoints, as discussed in Section 2.5.1. The 

shadow algorithm which uses these feature trajectories to derive the object shadow due to a linear 

light source is provided in Section 2.5.2. 
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2.5.1 Trajectories of shadows of object features due to point light 

sources moving along a straight line 
 

In this subsection, the point light source algorithm described in the previous section is extended 

to locate trajectories of shadows of object features due to point light sources moving along a straight 

line in an image. Object shadows due to a linear light source can then be obtained from these object 

features. The object image obtained from viewpoint V1 which is shown in Figure 2.4(a) is redrawn 

here in Figure 2.9 to explain this trajectory locating process for object features. 

 

 

Figure 2.9 Edge and vertex features of an object in 

image space. 

 

Assume that X, { }X A, B, C, D, E, F, G, H , is the image of an object vertex obtained at 

viewpoint V1, and X', ' { }X A', B', C', D', E', F', G', H' , is the shadow of X due to a point light 

source located at viewpoint V2. The correspondence between Xs and X's can be established by the 

framework developed in [47] wherein the correspondence between base vertices are determined first. 

It is easy to see that in image space the shadows of object features due to a series of point light 

sources lying on the extended line of 21VV , have the following two geometric properties: 

(i) For a vertex X of an object, its shadows lie on the straight line 'XX


. (For example, E, E' and 

E'' are collinear as shown in Figure 2.9.) 

(ii) The extended lines of the shadows of each object edge are either intersected at the same point 

or parallel to each other. (Note that the parallel case is only associated with special 3D 

configurations of an object edge.) 

For each X in Figure 2.9, the straight line described in (i) and the intersection point of the 

extended lines in (ii) can be obtained easily by identifying X' with Shodow_Point_Source. Therefore, 

given a vertex (or/and an edge) of an object shadow due to a point light source located on 21VV , one 
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can derive the remaining vertices and edges of the shadow by intersecting corresponding linear 

trajectories of object vertices described in (i) and the extended lines of object edges given in (ii). An 

algorithm to derive shadow due to a linear light source using these features will be presented next. 

 

2.5.2 The Generation of an Object Shadow due to a linear light 

source 
 

In this subsection, a shadow generation algorithm which uses shadows of object features 

discussed in the previous subsection to generate object shadows due to a linear light source is given. 

Consider }'{'' BBB   in Figure 2.9 which is the shadow of object vertex B due to a point light source 

lying on 21VV . According to (ii), one can easily find the straight line '' ''B C  passing through B'' and 

parallel to BC  and ' 'B C . It intersects 'CC  at C'', which is the shadow of C. Similarly, for each X, 

}{  H, E, F, G,A, B, C, DX  , one can obtain X'', where '' { }X A'', B'', C'', D'', E'', F'', G'', H'' . (Note 

that in this example A'', D'', F'' and G'' coincide with A, D, F and G, respectively, since they are 

actually the base points.) With this shadow boundary identifying process, object shadows due to a 

series of point light sources located along a straight line can also be generated in an image. 

In particular, given two images A and B obtained from two different viewpoints V1 and V2, 

respectively, if all object vertices can be seen in both images, then the object shadow corresponding 

to a point light source on 21VV  can be obtained if the shadow of an arbitrary, non-base object vertex 

is given. Assume Xi, ni 1 , are object vertices viewed from V1, and '
iX , ni 1 , are shadows of 

these vertices computed with Shadow_Point_Source for a point light source located at V2. Given the 

shadow "
sX  of an arbitrary non-base object vertex Xs due to a point light source on 1 2V V


, the 

process to locate "
iX , ni 1 , and thus to identify the shadow region of the object in image A, can 

be formulated as follows. 

 

ALGORITHM 2 Shadow_Point_Source_ on_ Line 

(1) Find all base points which satisfy 
'

i iX X . 

(2) For each non-base vertex Xj adjacent to Xs, determine " "S JX X .  

(3) Calculate 
"
jX  which is the intersection of 'J JX X  and " "S JX X . 

(4) If there are unprocessed non-base vertices Xi, 

(i) 
" "
s jX X . 

(ii) Go to Step 2. 

(5) Connect the vertices "
iX , ni 1 , into a shadow region. 
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Two images are sufficient to generate the shadow if all of the projections of the utilized vertices 

on object boundary can be identified in both of them. In general, it is not always true that all the 

needed object vertices can be identified in two images. In this case, we will need additional image(s) 

to ensure that these vertices can be seen from at least two view points. In fact, we only need to 

consider vertices which will become vertices of the shadow boundary. For instance, B in Figure 2.9 

needs correspondence and F does not need however. On the other hand, if an object vertex has been 

identified as a base point, possibly interactively, only one image is sufficient for that vertex. The 

developed approach can then be used to obtain shadows of the object with minor modifications, i.e., 

by separating vertices into groups that utilize different sets of images and generating all the needed 

trajectories of object features. 

In order to derive soft shadows, an intensity buffer is used to calculate the illuminations of all 

image points. Depending on the density of the virtual point light sources sampled between the two 

view points, there is a trade-off between the quality of the synthesized image and the computation 

time. 

 

2.6 Experimental Results 
 

  

(a) (b) 

  

(c) (d) 

Figure 2.10  (a) and (b): Two images of an object placed on a base plane. 

Reference points on both planes are marked with black color. (c) and (d): 

Shadow generation results of (a) and (b), respectively. 
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This section illustrates experimental results for both synthetic and real images. In complicated 

scenes, shadows of an object are often projected onto multiple planes. The algorithm developed in 

previous sections can deal with such scenes if at least five reference points are identifiable in two or 

more images for each projection plane. In general, shadow regions may go beyond the boundary of a  

projection plane. In that case, the boundary of the projection plane needs to be specified in the image. 

One may need to clip certain portions of the derived shadow regions which are outside a projection 

plane with a finite size or blocked by other polygon objects (or projection planes). Although in our 

implementation, the shapes of projection planes and the geometric relationships among them, e.g., 

the visibility with respect to different viewpoints, are established manually in advance, the proposed 

approach can be enhanced by importing a fraction of 3D information or by applying other algorithms 

such as the BSP tree. Figure 2.10 illustrates shadow generation examples of scenes with multiple 

projection planes. A box is placed on the base plane hung in the air. Shadows are cast upon the base 

plane and the ground plane underneath the base plane, with five reference points also shown for both 

planes. Note that shadows of the base plane are also cast upon the ground plane.  

The developed algorithms are implemented with Microsoft Visual Basic 6.0 running on a 

Pentium II PC. All images are rendered in 32-bit RGBA color mode and the sizes are 800 by 600 

pixels. The computation time for shadow region generation is much less than that for updating the 

intensity buffers. For example, Figure 2.10 and Figure 2.11 take 0.48, and 0.81 seconds for shadow 

region generation, and 1.07, 2.16 seconds for updating the intensity buffers, respectively. The time 

spends for updating the intensity buffers is roughly proportional to the amount of accesses of the 

intensity buffers. Though our implementation does not use special instruction for fast memory access 

provided by modern CPU, we believe the use of this support of hardware can extremely improve the 

overall performance of the proposed approach. 

 

  

(a)           (b) 

  

(c)           (d) 

Figure 2.11 Shodows generated for multiple objects using 20 virtual point light sources. 
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(a) (b) 

  

(c) (d) 

Figure 2.12 A real image example. (a) and (b): Source images. (c) and (d): 

Shadows generated with 30 virtual point light sources are blended. 

 

  

(a) (b) 

  

(c) (d) 

Figure 2.13 Another real image example. (a) and (b): source images. (c) 

and (d): Shadows generated with 30 virtual point light sources are blended. 

 

Figure 2.12 and Figure 2.13 demonstrate shadow generation examples of real scenes. In real 
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scenes, shadows may already exist in the original images. It can be seen that additional shadows 

added by the proposed algorithm blend naturally into the images. For the examples considered in this 

section, the time spent in calculating a shadow due to a point light source for the real scenes is in fact 

less than that for synthetic ones since the geometry of the latter is more complex. 

 

2.7 Summary 

 

In this chapter, we propose a novel approach to generating object shadows due to a linear light 

source. The purpose is to obtain realistic shadowing effects with very limited data and simple 

calculations. The shadows are derived without 3D reconstruction of the scene. A shadow generation 

algorithm which uses trajectories of shadows of object features on base plane due to a linear light 

source connecting two viewpoints is developed. Satisfactory shadow generation results are obtained 

for synthetic as well as real images. 
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3.  Identity Verification by Relative 3-D Structure 

Using Multiple Facial Images 
 

3.1 Overview 

 

Machine recognition of faces has been a very active research topic in recent years [20]-[23]. As 

indicated in Section 1.2, most of existing face recognition algorithms are 2-D based. In this chapter, 

we propose a novel approach to identify a person with facial images. The approach uses a measure 

of 3-D facial structure without explicit 3-D reconstruction. Three reference points are first extracted 

to construct a reference plane in every image. By calculating a view-invariant relative depth, i.e., 

relative affine structure with respect to the obtained reference plane introduced in [3] which is 

equivalent to cross-ratio measurement, for each relevant feature point, an efficient face recognition 

algorithm is developed. The approach is a structure-based method which has the advantage of low 

sensibility to irrelevant data. Compared with other 3-D approaches that require specific structures in 

Euclidean space [40][41], the proposed method uses only a few facial feature points and requires no 

camera calibration. In addition, iterative training is not required which leads to the issue of 

convergence in the neural network approaches. Experimental results show that the developed 

approach performs satisfactorily with an experimental facial image database. 

In the following sections, we first introduce related projection geometry for one and two 

cameras. The geometrical relationships between two cameras such as parallax and relative affine 

structure are discussed in Section 3.3, together with the geometrical meaning of such a structure 

which is expressed in terms of the invariant under perspective projection, i.e., cross-ratio. 

Algorithms for face recognition using relative affine structure are presented in Section 3.4. 

Simulation results for an experimental facial image database are given in Section 3.5. Finally, a brief 

summary is given in Section 3.6. 
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3.2 Projective geometry for one and two cameras 
 

 

 

The basic procedure of projecting 3D points onto an image by a perspective camera can be 

described as 

m PM , (6) 

where ∝  denotes the equality up to a scaling factor, P is the 3 × 4  projection matrix, 

 1
T

M X Y Z  and  1
T

m x y  represent the homogeneous coordinates of a 3D world 

point and the corresponding image point, respectively. In general, the image coordinate system is 

defined in terms of image pixels. The general form of the projection matrix can be represented as 

 

 0

3

0 | 0
0 1

0 0 1

x x

euc y y T

f s p
R t

P KP T f p I

 
  

    
   

 

. (7) 

 

In (7), K gives the intrinsic parameters of the camera, the imaging system. As for T, it describes 

the location and orientation of the camera with respect to the world coordinate system. It is a 4 4

matrix describing the pose of the camera in terms of a rotation R and a translation t, which give the 

extrinsic parameters. For an ideal camera model, both K and T are identity matrices and (7) becomes 

 

0m P M . (8) 

 

Consider two cameras taking pictures of an object, as illustrated in Figure 3.1, wherein C and C0 are 

the two optical centers of the two cameras and v and v0 are their associated image planes, 

respectively. The projection of C’ on v, e = PC’, observed from C and the projection of C on v’ 

Figure 3.1 A scene with two cameras and three 3D points. 
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observed from C’, e’ = P’C, are defined as the epipoles of the two cameras, respectively. Without 

loss of generality, we assume that the world coordinate system is aligned with the image coordinate 

system of camera C, thus the projection matrices for C and C’ become 

 

   3 3 3 3 | 0 | 0P K I K   , (9) 

   3 3 3 3 3 1' ' | ' | 'P K R t K R K t    . (10) 

 

In addition, we have, by definition,  3 3 3 3 3 1 4 1| 0 0PC K I C      or  0 0 0 1
T

C  . Since e0 

is the projection of C on v0, 

 

' ' 'e P C K t  . (11) 

 

Consider a 3D point M whose depth is z with respect to the camera coordinate system of camera C. 

Its projection on the image plane v, from (8), is equal to 

 

m PM KM   

 

with  

 

 1

1 1

M zK m
M

  
    

    

 

 

if m is normalized as (x, y, 1)
T
. The projection on image plane v0 is then 

 

1 1
' ' ' 'm P M K RK m K t

z

   . (12) 

 

With the above geometrical relationships and coordinate transformations between two cameras, 

the authors of [3] derived the view invariant relative affine structure. The following section provides 

a brief review, together with its explicit geometric meaning. 

 

3.3 Relative affine structure and its geometric meaning 

 

In [3], an affine framework for perspective views is proposed which is captured by a simple 

equation based on an invariant called relative affine structure. It is shown in [3] that the framework 

unifies projection tasks including Euclidean, projective and affine in a natural and simple way. 
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While the algebraic form of the relative affine structure is given clearly in [3], as reviewed next, the 

direct relationship between the relative affine structure and a view-invariant cross-ratio under 

perspective projection is derived at the end of this section. 

 

 

 

Given a reference plane 𝜋 where the image points m and 𝑚′ are projections of a 3D point 

𝑀𝜋 ∈ 𝜋 on image planes 𝑣 and 𝑣′, respectively. The homography induced by 𝜋 can be obtained 

by 𝑀𝜋 = 𝐻1𝑚 and 𝑀𝜋 = 𝐻2𝑚′ as follows: 

 
1 1

2 2 1'm H M H H m H m 
    . (13) 

 

Since H  has eight entries (nine minus a scale factor), H  can be determined uniquely by 

solving a system of linear equations obtained from three point correspondences in general positions 

on 𝜋 and the relationship 'e H e . Moreover, once H  is computed we can use it to determine 

positions of points on p from a single image. 

The homogeneous coordinates of 𝜋 can be written as 

 

3 1n

d


 
  
 

, (14) 

 

where n and 𝑑𝜋  describe the normal vector and the depth of 𝜋, respectively. For the projection m 

of M  on the image plane v, we have  | 0m PM K M   . Since the depth of M  is 

unknown, we can assume that 

Figure 3.2 An example of parallax. M is a point which is not on the 

reference plane 𝜋. 
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1

3 1( )K m
M






 
  
  

. (15) 

 

On the other hand, since M  is on 𝜋, we have 

 

11 Tn K m
d

 
 . (16) 

 

Now, by projecting M  on 𝑣′, we have 

 

1' ' '( )
Ttn

m H m P M K R K m
d

 


    . (17) 

 

For more general scenes wherein not all of the 3D points are co-planar, parallax will be 

produced. For instance, M is a 3D point which is not on the plane 𝜋 in Figure 3.2. 𝑚′′ and 𝐻𝜋𝑚 

are projections of M and 𝑀𝜋  on 𝑣′, respectively. From (12), (13), (17) and 𝑒′ = 𝐾′𝑡, we have 

 
1

1 1
'' ' ' ( ) '

Tzn K m d
m K RK m K t H m e

z d z







 

    . (18) 

 

For a point 𝑀 =  𝑧𝐾−1𝑚, 1 𝑇  which is not on the reference plane 𝜋, the distance from M to 𝜋 

is equal to 

 

𝑑 = 𝜋𝑇𝑀 = 𝑧𝑛𝑇𝐾−1𝑚 + 𝑑𝜋 . (19) 

 

Substituting (19) into (18), we have 

 

𝑚′′ ∝ 𝐻𝜋 +  
𝑑

𝑑𝜋𝑧
 𝑒′ = 𝐻𝜋𝑚 + 𝛽𝑒′. (20) 

 

Since the value of the parallax term 𝛽 in (17) is normalized, 𝑑𝜋  can be dropped out, as stated in 

[3]. If we let 𝛽0 = 1 for a reference point M0 which is not on the reference plane (see Figure 3.3), 

we are left with 

 

𝑑𝜋 =
𝑑0

𝑧0
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and (20) can be rewritten as 

 

𝑚′′ ≅ 𝐻𝜋𝑚 + 𝜆𝑒′ (21) 

 

with 𝜆 being the relative affine structure. In the following paragraph, we will investigate its 

relationship with cross-ratio. 

 

 

 

In (21), it is not difficult to see that 𝜆 is an invariant quantity since the variables z0, z, d0, d are 

governed by camera C only. Consider Figure 3.3, by extending 0MM , we can obtain two 

intersection points m and M , which are on v and the reference plane 𝜋, respectively. By triangular 

similarity, we have 

 

0 0
0

0 0

( , , , )
z mMd MM

CR m M M M
z d mM M M





    . (22) 

 

This leads to a conclusion that relative affine structure is in fact a measure of cross-ratio. Since it is 

view-invariant, 𝜆  can be used as a useful feature to describe object structure. Algorithm 3 

summarizes the process to calculate the relative affine structure for n pairs of image points. By 

calculating relative affine structures of facial features of persons, we have developed an identity 

verification system based on face recognition using 𝜆, as discussed next. 

 

 

Figure 3.3 The geometry of the relative affine structure. z and z0 are depths of M and M0 

with respect to v, respectively. 
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ALGORITHM 3 Computation of relative affine structure for n pairs of image points 

- Calculate the fundamental matrix F with 8 pairs of correspondences. 

- Derive the epipoles e and 𝑒′ using 𝐹𝑇𝑒′ = 0 and Fe = 0. 

- Derive the homography 𝐻𝜋  of the reference plane with an epipole and 3 pairs of point 

correspondences. 

- Choose a pair of correspondence m0 and 𝑚0
′  where m0 and 𝑚0

′  are image points on the 

left image and the right image, respectively. 

- Scale 𝐻𝜋  such that 𝑚0
′ ≅ 𝐻𝜋𝑚0 + 𝑒′(𝜆0 = 1). 

- Obtain 𝜆𝑖  with 𝑚𝑖
′ ≅ 𝐻𝜋𝑚𝑖 + 𝜆𝑖𝑒

′ , 1 ≤ 𝑖 ≤ 𝑛 − 1. 

 

3.4 Face recognition using relative affine structures 
 

 

 

With the properties of the view-invariant relative affine structure investigated in the previous 

section, this section presents the proposed approach to face recognition using such invariants. Recall 

that the relative affine structure of an object point depends only on the configuration of the first 

camera C, the position of the reference plane 𝜋 and the reference point M0. So, two facial images 

are used first to derive the relative affine structure for each feature point. The first image is denoted 

as the reference image and the extracted facial features are stored together with the obtained relative 

affine structures. To verify the identity of a new facial image, a new set of relative affine structures 

are obtained by the reference facial image and the new image. The similarity between the stored 

relative affine structures and the new set of relative affine structures is evaluated. Finally, the 

identity is verified by checking whether the similarity is higher than some specified thresholds. 

In this chapter, in order to focus on the correctness of the theory, feature points are obtained 

manually from facial images taken from different points of view. On each given face image, fifteen 

feature points including eye and mouth corners, nose tip, ear lobes, etc. are extracted as shown in 

Figure 3.4(b). The image of the front view of person A is labeled as Af while the upward and 

(a) (b) (c) 

Figure 3.4 Face images of person A. From left to right side, the images are labeled as Au, 

Af, and Ad, respectively. 
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downward looking facial images are labeled as Au and Ad, respectively. In the same manner, three 

images are also taken for each person in the database. For example, Figure 3.5 shows the images 

obtained for person B. 

 

 

 

 

 

Table 1 shows the relative affine structures obtained for persons A and B with Au and Bu being 

the reference images, respectively. Since the reference plane is defined by right ear lobe (point 14), 

right ear lobe (point 13) and chin (point 15), as illustrated in Figure 3.6, the relative affine structure 

values of these three points are all zeros. The value of the relative affine structure of the nose tip 

(point 12), which is the reference point M0, is defined as 1 for normalization. Since the depth from 

the camera to a person is usually several meters, z0/z in (22) is close to 1. Thus, the values of other 

relative affine structures given in (22) are close to d/d0. From Figure 3.6, we can see that the ratio for 

the eye corner is close to unity, the ratio for the mouth corner is about 0.4, while the ratios for the 

upper and lower lips are about 0.65 and 0.45, respectively. 

In our experiments, we use six groups of facial images for persons A through F (see Figure 3.7 

for facial images Cf through Ff). Each group consists of three images from three different points of 

view. With a personal computer equipped with a 333 MHz Pentium II processor and memory of 128 

Figure 3.6 Face image of side view of person F. The reference plane is defined by the two 

ear lobes and the chin. The 2D projections on images of these three feature points are used 

to calculate relative affine structures. 

(a) (b) (c) 

Figure 3.5 Face images of person B. From left to right side, the images are labeled as Bu, 

Bf, and Bd, respectively. 
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MB, the program is implemented with MATLAB 6.1 under Microsoft Windows 2000 and spends 

0.1 seconds to obtain the relative affine structure for each data set, e.g., Au_Af in Table 1 with Au 

being the reference image. A database is used to store such information obtained from the facial 

images. Details of the verification process using this database and possible ways to improve the 

stability of the verification results are given in the next section. 

 

Table 1. Relative affine structures obtained for persons A (𝜆1𝑖) and B (𝜆2𝑖) using Au_Af and 

Bu_Bf, respectively. 

i Feature point 𝜆1𝑖  𝜆2𝑖  

1 

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

Right eye corner (outer) 

Right eye corner (inner) 

Left eye corner (inner) 

Left eye corner (outer)  

Mouth corner (right)  

Mouth corner (left)  

Upper lip   

Lower lip   

Nose (right)  

Nose (left)  

Nose (center)  

Nose (tip)  

Ear lobe (right)  

Ear lobe (left)  

Chin   

0.9951 

0.9050 

0.8112 

0.7242 

0.4358 

0.4228 

0.6663 

0.4748 

0.7256 

0.6808 

0.7734 

1.0000 

0.0000 

0.0000 

0.0000 

1.0111 

1.0391 

1.0400 

1.0590 

0.4594 

0.3430 

0.6598 

0.4518 

0.7436 

0.7281 

0.8849 

1.0000 

0.0000 

0.0000 

0.0000 

 

3.5 Experimental results 

 

This section gives some experimental results of face recognition. For example, given the 

relative affine structures previously stored in the database for Xu_Xf and a facial image of an 

unknown person Y, we can investigate the identity of Y by evaluating the similarity between the 

relative affine structures for Xu_Xf and that for Xu_Y. The result of the comparison is then 

transformed into a score of matching error. If the score exceeds a threshold, the unknown person Y is 

not identified as person X. 
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Table 2. Relative affine structures for Au_Af (𝜆1𝑖) and Au_Ad (𝜆2𝑖), and their dissimilarity Dsi 

= max(𝜆1𝑖/𝜆2𝑖, 𝜆2𝑖/𝜆1𝑖). 

i Feature point 𝜆1𝑖  𝜆2𝑖  Dsi 

1 

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

Right eye corner (outer) 

Right eye corner (inner) 

Left eye corner (inner) 

Left eye corner (outer)  

Mouth corner (right)  

Mouth corner (left)  

Upper lip   

Lower lip   

Nose (right)  

Nose (left)  

Nose (center)  

Nose (tip)  

Ear lobe (right)  

Ear lobe (left)  

Chin   

0.9951 

0.9050 

0.8112 

0.7242 

0.4358 

0.4228 

0.6663 

0.4748 

0.7256 

0.6808 

0.7734 

1.0000 

0.0000 

0.0000 

0.0000 

0.9510 

0.8961 

0.8183 

0.7189 

0.4271 

0.4409 

0.6719 

0.4871 

0.7243 

0.6853 

0.7593 

1.0000 

0.0000 

0.0000 

0.0000 

1.0463 

1.0100 

1.0087 

1.0073 

1.0204 

1.0428 

1.0084 

1.0259 

1.0018 

1.0066 

1.0185 

1.0000 

1.0000 

1.0000 

1.0000 

Overall dissimilarity   1.2141 

 

Table 2 shows the relative affine structure values for the fifteen facial features calculated for 

Au_Af and Au_Ad. Here, the dissimilarity between two corresponding relative affine structures, say 

𝜆1𝑖  and 𝜆2𝑖 , is calculated as Dsi = max(𝜆1𝑖 /𝜆2𝑖 , 𝜆2𝑖 /𝜆1𝑖). For feature points lay on the reference 

(a) (b) 

(c) (d) 

Figure 3.7 Facial images (a) Cf, (b) Df, (c) Ef, (d) Ff. 
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plane, the relative affine structures are 0‟s by definition and the dissimilarity values are set to 1. 

Eventually, the overall dissimilarity between these two set of relative affine structures are defined as 

the product of all Dsi‟s. For this example, the person with facial image Ad will be identified as person 

A since the overall dissimilarity, denoted as DS(Au_Af, Au_Ad), is very close to 1. 

Table 3 gives results similar to that in Table 2 but using facial image Bd of person B in place of 

Ad. It is readily observable that there are major differences between quite a few corresponding 

relative affine structure pairs. In particular, if 𝜆1𝑖 × 𝜆2𝑖 < 0, that means the feature points are not on 

the same side of the reference plane in the 3D space, the dissimilarity value are set to 2 which leads 

to a big contribution to the overall dissimilarity. Since the overall dissimilarity of this example 

exceeds the threshold, person B is not identified as person A. 

 

Table 3. Relative affine structures for Au_Af (𝜆1𝑖) and Au_Bd (𝜆2𝑖), and their dissimilarity Dsi 

= max(𝜆1𝑖/𝜆2𝑖, 𝜆2𝑖/𝜆1𝑖) 

i Feature point 𝜆1𝑖  𝜆2𝑖  Dsi 

1 

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

Right eye corner (outer) 

Right eye corner (inner) 

Left eye corner (inner) 

Left eye corner (outer)  

Mouth corner (right)  

Mouth corner (left)  

Upper lip   

Lower lip   

Nose (right)  

Nose (left)  

Nose (center)  

Nose (tip)  

Ear lobe (right)  

Ear lobe (left)  

Chin   

0.9951 

0.9050 

0.8112 

0.7242 

0.4358 

0.4228 

0.6663 

0.4748 

0.7256 

0.6808 

0.7734 

1.0000 

0.0000 

0.0000 

0.0000 

1.0243 

2.3284 

3.5765 

4.5082 

43.423 

-2.701 

-3.049 

-6.584 

-2.721 

-0.186 

-0.711 

0.9999 

0.0000 

0.0000 

0.0000 

1.0293 

2.5727 

4.4088 

6.2254 

99.632 

2.0000 

2.0000 

2.0000 

2.0000 

2.0000 

2.0000 

1.0000 

1.0000 

1.0000 

1.0000 

Overall dissimilarity (DS)   4.63E+05 

 

To further improve the stability of the verification system, every facial image can be used as the 

reference image and a composite measure of dissimilarity, say the geometric mean of individual 

results, can be obtained. Table 4 shows the result of the verification of Af using Au and Ad while 

Table 5 shows similar results by using Bf in place of Af. The composite dissimilarity 1.5821 in Table 

4 indicates that the person with facial image Af can be identified as person A. On the other hand, it is 

obvious that Bf is not a facial image of person A since the composite dissimilarity in Table 5 is too 
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high. 

By using the composite dissimilarity measure, a more robust identity verification system is 

developed and more experimental results are obtained. Table 6 shows the composite dissimilarity for 

the verifications of facial images Au through Fu using frontal and downward looking facial images of 

different people. Similarly, Table 7 verifies facial images Af through Ff and Table 8 verifies facial 

images Ad through Fd, respectively. It can be seen from these results that the threshold for similarity 

can be set comfortably at 2.5 for the composite dissimilarity that every person in our database can be 

correctly verified with the proposed approach.  

 

Table 4. Verification of Af using Au and Ad 

 Overall dissimilarity 

DS(Au_Af, Au_Ad) 

DS(Af_Au, Af_Ad) 

DS(Ad_Au, Ad_Af) 

1.2141 

1.9270 

1.6926 

Composite dissimilarity  1.5821 

 

Table 5. Verification of Bf using Au and Ad 

 Overall dissimilarity 

DS(Au_Bf, Au_Ad) 

DS(Bf_Au, Bf_Ad) 

DS(Ad_Au, Ad_Bf) 

499057.33 

631.10 

1955.54 

Composite dissimilarity  8508.22 

 

Table 6. Composite dissimilarities for the verification of facial images Au through Fu 

 Af, Ad Bf, Bd Cf, Cd Df, Dd Ef, Ed Ff, Fd 

Au 

Bu 

Cu 

Du 

Eu 

Fu 

1.58 

95.19 

12.17 

4.08E+05 

7.85E+06 

2.89E+05 

22925.14 

1.87 

211.89 

122.75 

2861.12 

2348.07 

1509.41 

439.52 

1.94 

3055.30 

38943.89 

206.42 

1.6456.43 

1.48E+05 

1.22E+05 

1.61 

62857.37 

32115.82 

110.70 

1.50E+06 

351.99 

50602.31 

1.70 

1.29E+07 

1995.84 

1.23E+05 

86389.45 

10.73 

810.17 

1.89 
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Table 7. Composite dissimilarities for the verification of facial images Af through Ff 

 Au, Ad Bu, Bd Cu, Cd Du, Dd Eu, Ed Fu, Fd 

Af 

Bf 

Cf 

Df 

Ef 

Ff 

1.58 

8508.22 

11998.25 

3042.51 

6979.54 

151.60 

13738.93 

1.87 

14275.11 

310.53 

1.90E+06 

2.03E+06 

9625.68 

372.59 

1.94 

51170.61 

171595 

1146.79 

26941.43 

18755.60 

2791.98 

1.61 

3329.84 

1262.61 

8.06E+06 

1.15E+06 

2013.52 

425738 

1.70 

134511 

1.02E+06 

8985.88 

5650.15 

195.46 

105005 

1.89 

 

Table 8. Composite dissimilarities for the verification of facial images Ad through Fd 

 Au, Af Bu, Bf Cu, Cf Du, Df Eu, Ef Fu, Ff 

Ad 

Bd 

Cd 

Dd 

Ed 

Fd 

1.58 

705.13 

10160.21 

8318.70 

14.15 

726.86 

149.81 

1.87 

24.72 

1.09E+07 

3155.22 

219.91 

11.38 

422.78 

1.94 

5.61E+05 

24.01 

8222.20 

2654.73 

3.18 

34498.32 

1.61 

781.89 

4.88 

1336.72 

4536.51 

6919.54 

1.75E+05 

1.70 

5292.08 

162.87 

16885.11 

762.24 

20261.21 

423.75 

1.89 

 

As for the sensitivity of the proposed algorithm, the relative affine structure is actually 

cross-ratio in a form which is quite stable numerically. This can be seen from Figure 3.3 that the 

error of feature detection, in terms of variance of image pixels on the image plane, will results in 

minor change in the depth of the spatial structure, e.g., z and z0, associated with a face. From above 

simulation results, it seems that differences among face structures of different individuals are much 

more significant than the differences due to the error of feature detection of facial images of the 

same person, which gives the robustness of the proposed approach. 

 

3.6 Summary 
 

This chapter presents a study on computer vision technique and its application in face 

recognition to achieve identity verification. The explicit relationship between the relative affine 

structure and the cross-ratio - an invariant under perspective projection, is addressed. Subsequently, 

relative affine structures derived from multiple images are used for face recognition. The proposed 

method neither requires camera calibration nor reconstructs 3D models. Moreover, as long as feature 

points of facial images are located accurately, the orientation and depth of the face are allowed to 

very more freely. As shown in our preliminary experiments, the proposed approach does achieve 

satisfactory results given the feature points of facial images. Slightly large scale of face database can 

be established for further investigation of the performance. 
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4. Practical Error Analysis of Cross-ratio-based 

Planar Localization 
 

4.1 Overview 
 

As mentioned in Section 1.3, cross-ratio plays an important role in many recognition and 

reconstruction algorithms which are based on projective geometry [1][2]. Thus, error associated with 

the calculation of cross-ratio must be carefully analyzed and controlled so as to avoid too much 

negative influence in the final reconstruction results. However, most of studies of sensitivity analysis 

of cross-ratio only consider the computation of cross-ratio itself instead of the final localization or 

reconstruction results. In this chapter, we propose an efficient way of analyzing localization error for 

systems which use cross-ratio for planar localization.  

Through the 1st-order approximation of the derived one dimensional error function, we first 

inspect the linear nature of localization error due to small inaccuracy in image data. Similar 

properties of the localization error due to two dimensional noises are then investigated. In particular, 

an approximation of a nominal boundary of error ellipse can be determined efficiently for one of 

image points being affected by radially symmetric errors of a fixed magnitude. Based on such a 

computationally efficient error analysis, one may obtain the picture of resultant regions of 

localization error in advance, instead of generating similar results by using a large amount of 

synthesized noisy data for a particular cross-ratio configuration, and select proper reference points in 

an image accordingly.  

The rest of this chapter is organized as follows. Reconstruction error resulted from cross-ratio 

computation due to 1-D and 2-D noises in image data is formulated in Section 4.2. We determine 

how error propagates, including its direction and magnitude range, through a linear approximation of 

such a cross-ratio-based formulation. In Section 4.3, synthesized noises are added to real data in the 

experiments for the verification of the theoretical investigations. Finally, a summary is given in 

Section 4.4. 

 

4.2 Error analysis of cross-ratio-based localization 
 

Referring to Section 2.3 and (3), one can develop a localization system based on the invariant 

cross-ratio, assuming perfect image acquisition and feature extraction. However, measurement 

uncertainty and system noise, such as quantization errors of 2-D coordinates of feature points in an 

image plane due to limited image resolution, usually occur in practice. These uncertainties will 

propagate through computation process, resulting in erroneous localizations or reconstructions. In 
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this section, we will investigate how the error propagates in the reconstruction process of the above 

localization system. 

 

 

 

A general configuration of coplanar points for cross-ratio-based localization is shown in Figure 

4.1. Here, we also denote image points with lowercase letters and scene points with uppercase letters 

(not shown). Assume P1, P2, P3, P4 are known planar points in 3-D space with P1 and P4, as well as 

p1 and p4, being origins of two cross-ratios. The position of a scene point R (or the location of a 

robot), which corresponds to image point r, can be determined with the procedure described in 

Section 2.3. For simplicity, let 1 ( , )x yp r d d


 and assume the location of p4 has noise x  along 

x-direction and is extracted as 4p̂ , we have 

1

11
2 3 4 1

2 2

ˆ
ˆ[ , , , ] ,

ˆ

x x x x x

y y y y bd y x
p p

x x x x x ad y x

y y y y

a c b d

a c b d q k aq
p p p r CR

b c a d q q k b

b c a d

 

 
 

   
   (23) 

where 
x x

bd
y y

b d
k

b d
  and 

x x
ad

y y

a d
k

a d
 . From (3) and (23) we have 

 

1 2 2 1

1 1
2 1

1 1

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ

BC y AC y AC x BC x

x x x x
AC BC

y y y y

q K A q K B X q K B q K A Y

B P A P
q K q K

B P A P

  

 
 

 

which yields the line equation of RP1  

 

Figure 4.1 A general configuration of coplanar points where p1 

is the origin to compute cross-ratio CRp1. 
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

 

1 2

2 1

1 1
2 1

1 1
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     

     

 
(24) 

 

 

 

On the other hand, with 4p̂  being the origin, as shown in Figure 4.2, ˆ 4pCR  can be 

computed as 

1

2

2
1 1 2 1 2

2
2 3 4 3 4

ˆ
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,

x x x x x x x x

y y y y
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y y y y
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    

        

   

       

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

 (25) 

where  

 
' ' ' ' ' ' ' '

' ' ' ' ' ' ' '
, , ,

x x x x x x x x
ac bd bc ad

y y y y y y y y

a c b d b c a d
k k k k

a c b d b c a d
       , 

 

and yyyyyyyy cbudaucaudbu  4321 ,,, . Similarly, from (3) and (25), we can 

obtain line equation of RP4
ˆ  as 

 

1 2 2 1

4 4
2 1

4 4

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ

BC y AC y AC x BC x

x x x x
AC BC

y y y y
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 
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

 (26) 

Figure 4.2 4p̂  is used as the origin to compute cross-ratio ˆ 4pCR  

( 1 

. 
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where (P4x, P4y) is coordinate of image point P4. It is easy to see that (24) and (26) are of the form 

 









222

111





YX

YX

 

 

Therefore, by solving the above equations, the robot position can be obtained as 

 

' ' ' '
1 1 1 1

' ' ' '
2 2 2 2

' ' ' '
1 1 1 1

' ' ' '
2 2 2 2
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 

  
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  (27) 

 

To simplify (27), by skipping high order terms of x , we have 
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Since (28) has the form of  
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for constants E through J, we can obtain the following linear equation by eliminating x 3  
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The above equation gives the trajectory of the reconstructed locations of robot R due to relatively 

small image extraction errors in x-component of p4 in Figure 4.1 (and Figure 4.2).  

In general, as will be demonstrated with simulation results in the next section, if the 2-D image 

error of a feature point is within a reasonably small range, it can also be transformed approximately 

linearly into a planar region in the 3-D space of the reconstructed scene
4
. In particular, such a linear 

transformation of coordinate system will transform a circular region of image error into an elliptic 

                                                 
3
 One can show that by applying Taylor series expansion to (28), which gives a linear relationship between 2-D image 

extraction error and 3-D localization error, a linear equation identical to (31) can also be obtained. 

4
 A formal derivation of such a property is omitted for brevity. 
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one in the above planar region. Therefore, with only transformations of the image error in two 

linearly independent directions, an approximate ellipse of reconstruction error can be obtained. Such 

error ellipses will be useful indicators for one to choose among point features in an image to 

establish the probabilistically most accurate planar location system using cross-ratios. 

 

4.3 Simulation results 
 

We conduct a series of simulations for the error analysis of cross-ratio-based planar localization 

for a real robot with synthesized noises added to some reference points in an image. The real scene 

used in our simulations is set up as shown in Figure 4.3. In these simulations, we consider the 

situation when extraction noises only affect a single image point. First, we investigate the 

characteristics of the localization error assuming 1-D noise along x-direction, as discussed in the 

previous section, as well as along other directions. Subsequently, nominal boundary of an error 

ellipse due to two dimensional noises is computed to approximate the real error region resulted from 

circularly distributed image inaccuracy. Finally, we give a cross-ratio-based localization scheme 

which adopts the proposed error analysis method to assist the selection of reference image points to 

optimize the reconstruction results.  

 

 

Figure 4.3 The scene which provides real data that used in our experiments. 

The reference points attached on the wall are co-planar. The size of each tile is 

40cm × 40cm. 
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Figure 4.4 illustrates the trajectory of the reconstructed robot locations due to noises within the 

range of ± 2 pixels along x-direction being added to p4
5

. The locations obtained from linear equation 

(31) are represented in red and green color, corresponding to deviations of p4 into +x and –x 

directions, respectively. Points in blue and magenta colors represent similar results but computed 

with original rational equation (27). One can see that the latter, which are drawn first, are hardly 

visible since (31) gives a nearly perfect approximation of the former.  

Figure 4.5 illustrates results similar to Figure 4.4 but due to noise added to y-coordinate of p4. 

In fact, similar results (which are omitted for brevity) can be obtained for 1-D noises in arbitrary 

directions. In general, if the 2-D image errors are within a reasonable small range, the errors can also 

be transformed approximately linearly into the 3-D space of the reconstructed scene. Figure 4.6  

illustrates the trajectory of the reconstructed robot locations due to circularly distributed image 

extraction noises of 2 pixels added to p4 as well as the error ellipse obtained from the linear  

                                                 

5
 It is assumed in the rest of the chapter that two cross-ratios involved in the computation use p1 and p4 as origins, 

respectively. 

Figure 4.4 (Left) Extracted feature points in an input image. p1 … p4 are identified as 

images of reference points, and r is identified as the robot. Image extraction noises within a 

range of ± 2 pixels along x-direction are added to p4. (Right) Trajectory of reconstructed 

robot locations: blue and magenta points are obtained by (27) while red and green lines are 

obtained by (31). The former are hardly visible since they are almost entirely covered by the 

latter. R is the robot location in 3-D space resulted from the noise-free extraction of image 

points. 
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transformation 
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
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 



, (32) 

which is derived from ( , ) (2,0)x y    and ( , ) (0, 2)x y     (corresponding to reconstructed robot 

locations R1 and R2, respectively)
6
. It can be shown that the orientation of such an ellipse is 

 

2 2 2 2

2( )1
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(33) 

while its semimajor axis and semiminor axis are 

2
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( )sin(2 ) 2( )

ellipse
ellipse

ellipse

ad bc
a

a b c d abcd








   
 (34) 

                                                 

6
 Eq. (32) can be used to derive the approximate error ellipse only if there is a linear relationship between image and 

reconstruction errors Various ways of inspecting such a relationship exist, but is not discussed here for brevity. 

Figure 4.5 (Left) Extracted feature points in the input image. p1 … p4 are identified as images 

of reference points, and r is identified as the robot. Image extraction noises within a range of 

± 2 pixels along y-direction are added to p4. (Right) Trajectory of reconstructed robot 

locations: blue and magenta points are obtained by (27) while red and green lines are obtained 

by (31). R is the robot location in 3-D space resulted from noise-free extraction of image 

points. 
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and 

 

2
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ellipse
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a b c d abcd


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, (35) 

respectively. 

One can easily see that the above elliptical trajectory can be used to appropriately express the 

spatial characteristics of the localization error without the computation of a lot of reconstructed robot 

locations using the expensive high-order equation (27). For the application of a general 

cross-ratio-based localization algorithm to a scene where many image features (points) can be 

extracted, multiple choices of reference points, as well as the origins for the computation of 

cross-ratios, are possible. Figure 4.7 shows simulation results similar to that given in Figure 4.6 but 

using reference point p5 in place of p2. According to the results obtained with either (27) or (32), 

localization results in Figure 4.7 give similar worst-case error (4.2cm), but with approximately twice 

the ellipse area, compared to that in Figure 4.6.  

Figure 4.6 (Left) Extracted feature points in the input image. p1 … p4 are identified as 

images of reference points, and r is identified as robot image. Circularly distributed 

image extraction noises of 2  pixels are added to p4. (Right) Trajectory of 

reconstructed robot locations: blue points are obtained by (8), while the approximate 

error ellipse is obtained using (13). The reconstructed locations of robot due to image 

errors ( , ) (2,0)x y    and ( , ) (0, 2)x y    on p4 are at R1 and R2, respectively. 
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The above results suggest that when there are multiple choices of reference points or cross-ratio 

origins, one can perform the proposed analysis to predict possible localization errors for each choice 

and select the optimal one accordingly. For each choice, one needs to ensure first that the noises are 

restricted to a reasonable range that (32) obtained using two noisy samples of the reference point of 

interest can appropriately describe the localization error. Subsequently, an optimal choice can be 

determined by using (33), (34) and (35) to compare the direction of error, worst-case error, average 

error magnitude, or other metrics suggested by specific applications. 

 

 

 

4.4 Summary 
 

As a geometric invariant under projective transformations, cross-ratio is the basis of many 

recognition and reconstruction algorithms which are based on projective geometry. We propose an 

efficient way to approximately analyze localization error for systems, which use cross-ratio for 

planar localization, by establishing a linear relationship between the error and small inaccuracy in 

measurements of image features due to 1-D and 2-D noises in the image space. Such an analysis will 

be useful for one to choose among point features, as well as cross-ratio origins, in an  image to 

establish the probabilistically most accurate planar location system. The proposed approach is 

Figure 4.7 (Left) Extracted feature points in the input image. p1 … p5 are 

identified as images of reference points, and r is identified as robot image. 

Circularly distributed image extraction noises of 2 pixels are added to p4. p1, 

p5, p3, p4 are selected to compute cross-ratios to locate the robot R in the scene. 

(Right) Trajectory of reconstructed robot locations. Blue points are obtained 

by (27), while the approximate error ellipse is obtained using (32). 
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applicable whenever multiple choices of image features are available, which happens frequently in 

various computer vision applications, e.g., in robot navigation systems. 
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5. Finding Point Correspondence Using Local 

Similarity and Global Constraint Under 

Insignificant Scaling and Roll 
 

5.1 Overview 
 

Regarding the state of the art in research works related to extraction and correspondence 

establishment for image features, as partly discussed in Section 1.4, it seems that no general solution 

to the correspondence problem exists, due to ambiguous matches. In this chapter we propose a novel 

approach to feature extraction and correspondence establishment for images of indoor scenes. We 

assume the scaling and roll are insignificant (less than ±5° of roll angle) since image transforms 

include mainly pan and tilt in common reconstruction scenarios, especially those associated with 

video data. The proposed algorithm first extracts corner points from the images as feature points by 

the Harris corner detector. The image gradients obtained as by-products from the corner detector are 

then classified into nine groups (represented by nine colors) according to their directions and 

magnitudes. Thus, local gradient directions in the vicinity of each feature point form a color code. 

As a non-parametric local transform, the color code summarizes local structure of image features. 

Finally, the point correspondences are obtained by comparing the color codes, and by utilizing some 

global relationships among feature points. The developed method not only achieves satisfactory 

efficiency but also resolves the ambiguous problems effectively.  

The reminder of this chapter is structured as follows: in Section 5.2, related works are briefly 

reviewed, as an extension of Section 1.4. The extraction of feature points based on Harris corner 

detector is discussed in Section 5.3. The color code transform and its properties are also described. 

The correspondence determination algorithm using the color code is presented Section 5.4. Finally, 

experiments are presented in Section 5.5 and a summary is given in Section 5.6. 

 

5.2 Related works 
 

In general, feature extraction methods can be categorized into two classes: surrounding 

pixel-based and edge structure-based methods. The surrounding pixel-based approaches extract 

feature points by analyzing local gradients or curvatures with the colors and grey levels surrounding 

the pixel of interest [65][66][67][68]. The edge structure-based approaches obtain feature points 

using geometrical features such as edges, followed by finding specific geometric structures like 

maximum curvatures and/or intersections of edges [69][70][71]. The edge structure-based 

approaches generally have the disadvantages of high computational cost. In the rest of this section, 
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discussions are mainly given for surrounding pixel-based approaches which motivates the corner 

detector-based algorithm presented in the next section. 

Many works have been carried out on corner detection. As indicated in [60], corner detection 

should satisfy a number of important criteria, such as all the true corners should be detected and no 

false corners should be detected, etc. Brady et al. [67] proposed an approach known as SUSAN 

which uses a circular mask scanning the entire image. The basis for SUSAN is the concept that each 

image point is associated with it a local area of similar brightness, which contains much information 

about the geometric structure among surrounding image pixels. For each point in the image, a 

circular region centered at that point is considered. The number of pixels within the circular region 

having similar brightness to the center point then provides specific information to produce an edge 

strength image. Finally, moment calculations are applied to find edge directions followed by corner 

feature derivation.  

In [66], Harris et al. extended Moravec‟s approach [65] and proposed a combined corner and 

edge detector based on a local auto-correlation function. The approach defines a measure of corner 

and edge quality or response, which is then used to select isolated corner pixels and to thin the edge 

pixels. The feature extraction algorithm of the proposed approach is based on Harris corner detector 

because of its efficiency and the consistency with the criteria stated in [60]. 

 

5.3 Extraction of corner features and color codes 
 

We start this section by a review of Harris corner detector. Then, we continue with the 

development of the feature extraction algorithm based on the gradients computed by such a detector. 

As an improvement of Moravec‟s corner detector, Harris corner detector functions by considering a 

local window in the image, and determines the average changes of local image intensity due to small 

shifts of the window in various directions. Denoting the image intensities as I, the change E 

produced by a shift (x,y) is given by 

 

2
,,

,

,, vuvyux

vu

vuyx IIwE    
(36) 

 

where w specifies the weighted image window. To reduce the sensitivity of image noise, Harris and 

Stephens define w as a Gaussian function, i.e.,
222 2/)(

,

vu

vu ew  . According to some 

mathematical manipulations given in [65], the response in (36) can be approximately expressed in 

the following matrix form  
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TyxMyxyxE ),(),(),(   (37) 

 

where M is a symmetric matrix 
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The gradients are computed using a convolution window. Figure 5.1 shows an image of indoor scene 

I, and gradient images /I x   and /I y  , respectively. 

 

 

Figure 5.1 (a) An image of indoor scene I. (b) The image of /I x  , and (c) the image of /I y  . 

 

With some analysis for the two eigenvalues, 𝛼 and 𝛽, of M, Harris derived the following 

formulation for the corner response 

 

2
( ) [ ( )]R Det M k Tr M   (38) 

 

with 

 

2
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( )

Det M AB C

Tr M A B



 

  

   
. 

In particular, when k=0.04, (38) can be rewritten as 

 

2 2 2
0.92 0.04( )R AB C A B     (39) 
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Often, it is very likely that corresponding pixels in two images taken from two closely located 

viewpoints will have very similar local gradients. The calculations of the image gradients in (37) 

motivate the idea in this chapter of using them as additional support in the correspondence 

determination of corner points. Note that no extra effort is needed in obtaining the gradients, which 

often requires the most time-consuming process. For each pixel of the image, we can form its 

gradient vector directly from (37) as 

 

( , ) ( , )
I I

I X Y
x y

 
  

 
, 

 

and obtain its cotangent magnitude /cot x yI I   . To obtain a reliable subset of the image 

pixels whose gradient is obvious and less noisy, the image pixels can be thresholded by 

 

I T   (40) 

 

where T is a predefined threshold. In our experiments, T is defined as 10. Figure 5.2(a) shows an 

image of an indoor scene overlaid with the detected corners. The thresholded gradient image is 

shown in Figure 5.2(b). 

 

  

(a) (b) 

Figure 5.2 (a) Stereo images of an indoor scene overlaid with the detected corners, and 

(b) the thresholded gradient image of the image. 

 

In this chapter, we make use of non-parametric local transforms as the addition support for 

finding correspondence of image features. Instead of exploiting local intensity values as [72], we use 

gradient directions in the transforms, which relay on the quantization of local gradient directions, 

rather than on the gradients themselves. Specifically, Figure 5.3 shows a quantization of the 

cotangent magnitudes of the gradient direction into eight sections, each covers 45 . For instances, 
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the white cluster corresponds to 10xI   and 3.2x
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 with 0xI  . 

 

 

Figure 5.3 The color code representing eight clusters of directions. 

 

With the quantized gradient directions, e.g., the representation using different colors, we now 

develop a way to determine the correspondence of feature points. The idea is to establish a word of 

color code by identifying local gradient directions for pixels surrounding each feature point obtained 

from Harris corner detector. As illustrated in Figure 5.4, a window containing nine 3 3  cells is 

defined with the feature point located at the center of the central cell. The representative color of 

each 3 3  cell is defined as the majority of the associated 3 3  colors of gradient directions. For 

the example shown in Figure 5.4, the resultant 8-color codeword for this particular feature (corner) 

point consists of blue, blue, grey, red, red, red, magenta and blue, clockwise starting from the upper 

right cell. 

 

Figure 5.4 The color code transform of a detected corner point. (a) The nine 3 3  

windows defined for the corner point, and (b) the colors which form a color code of 

the corner point. 

 

An indoor scene, as shown in Figure 5.5, is used as an example for the above transform. First, 

corner points of the scene are obtained by Harris corner detector. The intensity gradients produced 
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by the corner detector are then used to calculate the color code for each corner point. For the upper 

right corner of the door window in the left image, the associated color code is exactly the same as 

that in the right image, as shown in the two close-up 9 9  windows in Figure 5.5(a). For the lower 

right corner of the door window, on the other hand, there is a difference between a pair of the 

corresponding colors as shown in Figure 5.5(b). Under stable lighting conditions, the probability of 

having such differences is relatively low. However, the differences may still occur due to 

quantization noises associated with image acquisition, etc. Fortunately, the corner point shown in 

Figure 5.5(b) is likely to be matched correctly since there are only few unmatched colors. To 

improve the robustness of correspondence determination, consistency check and additional global 

constraints are also considered in the proposed approach, as discussed in the next section. 

 

 

Figure 5.5 The color codes of corner points. (a) The two color codes are the 

same. (b) The two color codes are not the same. 

 

5.4 Correspondence establishment using color code 

 

In the paradigm of establishing correspondence of feature points in different images, several 

local methods as well as global methods are proposed, as summarized in [62]. Local methods are 

efficient but sensitive to locally ambiguous regions while global methods are less sensitive but 

computationally expensive. Therefore, it is plausible to exploit local and global constraints 

simultaneously when computing the correspondence for feature points of images. Figure 5.6 shows 

the block-diagram of the proposed correspondence determination approach which combines local 

matching, a consistency check, and iterative global matching. The basic idea of the approach to local 
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matching is similar to that of the rank transform and the census transform proposed in [72]. The 

proposed color code transform is gradient-based, which captures the spatial structure of the region 

surrounding a corner point without additional cost. Moreover, a consistency check mechanism is 

adopted to remove incorrect local matching results, which are mostly introduced at object edges due 

to occlusions. The global matching uses constraints of distances and relative angular positions 

among feature points to establish additional correspondences. With the already matched feature 

point pairs utilized as geometrical references during each iteration, the correspondences of remaining 

feature points are established incrementally. 

 

 

Color words 

calculation 

Local matching 

Consistency 

check 

Correspondence 

establishment 

Global 

matching 

 

Figure 5.6 The proposed approach to correspondence 

establishment of corner points using color code. 

 

Similar to the rank and census transforms, color code transform does not allow pixels from a 

small faction to contribute in a manner proportional to their intensity. However, the approach differs 

from rank and census transforms in that it does not rely heavily upon the intensity of the center pixel. 

Besides, it does not perform autocorrelation thus can achieve higher efficiency. To develop the 

approach to local matching using color codes, we first define two quantitative measurements.  Let 

Cdiff be the number of different color pairs between two color codes associated with two corner 

points, each in one of the two images under investigation, and let Cdist be the relative distance 

between a pair of colors. Define k as the quantized angular distance between the two non-gray colors. 
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For the i-th pair of colors, 1 8i  , we have
7
 

 

,  if 2.

0,  if  2 , or  if at least one of the colors is gray.
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 (41) 

 

For example, if the j-th pair of colors are black and green, respectively, then 3
j

distC  . (Note that  

4distC   is always true.) Thus, we obtain Cdiff  between two color codes as 
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where 

 

1, if 2
i i

diff dist
C C  . 

With the two quantitative measures defined above, we now describe the local matching 

algorithm to determine the correspondence of two corner points. Given two color codes associated 

with two corner points, each of them consists of 8 colors, if the two words are exactly the same (Cdiff 

= 0), the two corner points are matched perfectly. Otherwise, the words are further investigated by 

thresholding Cdiff to see whether the corner points match to each other. Figure 5.7 shows an example 

where one corner point is zoomed-in in two images to illustrate the two somewhat different color 

codes. One can see that there are only two pairs of different colors between the two color codes, i.e., 

cyan-white ( 3 0distC  ) and gray-cyan ( 5 0distC  ). Hence Cdiff = 0 and the correspondence between 

the two corner points can be established. 

 

 

Figure 5.7 A pair of stereo images of an indoor scene overlaid with 

color codes of corner feature points. 

                                                 

7
   To improve the robustness of the computation a threshold of unity is chosen to suppress the noise in the calculation 

of gradient direction. 
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To further enhance the robustness of feature point correspondence, the proposed approach also 

addresses the problem of ambiguity due to occlusion and noise through a consistency check after the 

local matching of color codes. In Figure 5.8, the corner point A in the left image is matched with the 

corner point A’ in the right image, and vise versa. This pair of feature points thus passes the check 

and satisfies the principle of symmetric correspondence [73]. On the other hand, corner point B in 

the left image matches to the corner point C’ in the right image while C’ matches to C in the left 

image. Hence, the correspondence between B and C’ cannot be established since the symmetric 

correspondence property is violated. Nonetheless, C and C’ do match to each other, so the 

correspondence is established. More results of performance improvement of feature point matching 

with the consistency check will be shown in the next section. 

 

 

Figure 5.8 An example of consistency check. 

 

 

Figure 5.9 Determining the correspondence of point A using global 

constraints. 

 

After performing the consistency check, some global constraints are used to further resolve the 

problem of ambiguity in the matching of feature points, e.g., due to similar local intensity gradients. 

The global constraints are based on geometrical relationships among corner points, which are 

assumed to change little between two images. The correspondences based on global constraints are 

established in an order such that correspondences with less ambiguity are determined first. The 

B’ 
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already established correspondences are thus used as geometrical references in subsequent processes. 

The global constraints utilized in the proposed approach include distances and relative angular 

positions among feature points. Figure 5.9 shows an example of stereo images where the two 

windows of a house have very similar local intensity gradients. In particular, it is easy to see that 

point A can be matched to both A’ and B’ in the right image if only local matching and the 

consistency check are performed. However, if C and C’ are corner points whose correspondences 

have been established already, they can be used as the geometrical references to resolve the 

ambiguity. Consider vector AC


 and its length AC  in the left image, and the same for vectors 

' 'A C


, ' 'B C


 in the right image. It can be seen that ' 'A C AC  is much less than ' 'B C AC

and the angle between vectors AC


 and ' 'A C


 is much less than that between AC


 and ' 'B C


. 

These relative geometric relationships suggest the following formulation of global constraints for the 

proposed approach. 

Assume that we want to determine the correspondence for a feature point A. Given a set of I 

already matched feature points,  1 1( , '),..., ( , ')I IP P P P , and a set of J candidate points, 

 1 2', ',..., 'JA A A , for A to match. Let 

 

 
1

' '
I

j i i j

i

D P A P A



   (42) 

 

be the total length difference between iP A  and ' 'i jP A , 1 i I  . In addition, we compute the sum 

of error in the cosine of relative angular positions, 

 

 
1 1

' '
1 cos 1

' '

I I
i i j

j i
i i i i j

P A P A
C

P A P A


 


   

  
    
 

   

 

. (43) 

 

Besides such global geometrical information, we also incorporate the differences in color codes 

between A and Aj, 

 

j j

j diff distCG C C  . (44) 

 

Finally, the overall score of matching can be calculated as 

 

minmax

min

minmax

min

minmax

min

CGCG

CGCG
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CC

DD

DD
G

jjj

j













 . (45) 
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for each A’j, where Dmax, Dmin, Cmax, Cmin, CGmax and CGmin are maximum and minimum values of Dj, 

Cj, CGj, respectively. It is easy to see that if a candidate for correspondence is similar to A in their 

color code patterns and also in their locations (and angular positions) relative to the earlier matched 

feature points, (45) will have a small value.  

Based on the approach described above, comprehensive experiments for correspondence 

establishment can be carried out, as presented in the next section. 

 

5.5 Experimental results 
 

This section gives experimental results of the proposed approach. The algorithms are 

implemented with Matlab 6.5 running on a Pentium III 800Mhz machine under Microsoft Windows 

XP. The correspondence establishment results are presented first for some test images with readily 

observable ambiguities, and then for stereo images of real scenes. Some of the images used in the 

experiments are obtained from the CMU VASC image database [74]. 

 

5.5.1 Correspondences for images with readily observable 

ambiguities 
 

We first performed the experiments for stereo images with readily observable ambiguities. The 

synthesized images used in the first experiment, as shown in Figure 5.10, are the „house1‟ images 

from the CMU VASC image database. The images are of size 250 250  and there is only 

horizontal translation of the camera.  Figure 5.10(a) illustrates the global constraints used to 

determine the correspondence for point #5 whose vicinity has almost identical local intensity 

variation as point #1. Figure 5.10(b) presents the final result of the determined correspondences with 

that ambiguity resolved. In this experiment, all of the 19 correspondences are determined correctly. 

Figure 5.11 presents another experiment. There are many ambiguities since, as illustrated in Figure 

5.11(a), many color codes are very similar. With the proposed approach, we obtain the final results 

presented in Figure 5.11(b) wherein only 2 of the 156 correspondences are determined incorrectly. 
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(a) (b) 

Figure 5.10 Two synthesized images used in an experiment. (a) The 

global constraints used to assist the determination of the correspondence 

of a feature point. (b) The final result of the established correspondences. 

 

  

(a) (b) 

Figure 5.11 Two test images used in another experiment. (a) The color codes of 

the corner points. (b) The final result of the established correspondences. 

 

5.5.2 Correspondences for stereo images of real scenes 
 

Figure 5.12 shows a sample image obtained from a sequence of images of an indoor scene. The 

images was taken with Canon PowerShot G1 and the size was 640 450 . A total of 36 

correspondences are determined among 59 corner features in the left image and 53 corner features in 

the right image. Among the obtained results, only one correspondence is incorrect and the execution 

time is 3.23 seconds. 
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Figure 5.12 A sample image obtained from a sequence of images of an 

indoor scene. A total of 36 correspondences are determined, with only 

one of them being incorrect, with the proposed approach. 

 

The next two experimental results are performed for images obtained from the VASC image 

database. Figure 5.13(a) shows a 512 400  image of a laboratory. A total of 90 correspondences 

are determined among 142 corner features in the left image and 156 corner features in the right 

image. Among the obtained correspondence, only four of them are incorrect. The execution time is 

12.33 seconds. Figure 5.13(b) uses the „cart-alt‟ images from the same image database where far-off 

objects as well as near-by objects are present. A total of 42 correspondences are determined among 

83 corner features in the left image and 42 corner features in the right image. The obtained 

correspondences are all correct and the execution time is 12.5 seconds. 

 

  

(a) (b) 

Figure 5.13 Two samples of Image sequences used in two experiments both 

overlaid with the established point correspondences. 

 

5.6 Summary 

 

In this chapter, we propose an algorithm using local similarity and global constraint to obtain 

point correspondence. Image gradients obtained as by-product from corner detector are classified 

into nine groups, represented by nine distinct colors, according to their directions and magnitudes. 
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Local gradients in the vicinity of each feature point thus form a color code. The proposed approach 

obtains point correspondences by comparing these color codes followed by consistency check, and 

iteratively global matching using some spatial relationships among feature points. Experiments show 

that the proposed algorithm is not only efficient but also very robust for finding point 

correspondence among multiple images. 
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6.  Conclusions 
 

As a geometric invariant under projective transformations, cross-ratio is the basis of many 

recognition and reconstruction algorithms. In fact, cross-ratio-based approaches have major 

contributions to many important techniques which address various computer vision issues. In this 

dissertation, some applications of view-invariant cross-ratio are investigated. The common idea of 

these algorithms is to use cross-ratio to determine object structure without tedious and expensive 

computation to infer 3-D information, including object model and camera parameters. Meanwhile, 

for error analysis of cross-ratio, we derive efficient means to predict and to describe the 

characteristic of localization error. The approach enables one to select appropriate reference image 

points by efficiently providing approximate regions of localization error in advance, with no need to 

generate similar results for each configuration of reference points by using a large amount of data 

with synthetic noise. 

In this dissertation, an efficient approach for finding correspondences between image features 

based on local similarity and global constraints is conducted as an applicable stage of image analysis, 

which is suitable for real-time applications. Several computer vision applications based on 1-D 

projective coordinates (cross-ratios) are proposed, which include (i) shadow generation of linear 

light source, and (ii) identity verification using facial images. According to simulation results, 

satisfactory results can be obtained for both applications. As for robot localization using 2-D 

projective coordinates, if multiple choices of reference points exist, the proposed error analysis 

technique can readily be applied to improve the localization accuracy. 
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