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Abstract

Recently, the Knowledge Discovery in Database (KDD) has grown rapidly, as T

and Al technologies have become \{v_id,ély dlscussedand researched. Relevant research,

applications, and tool developmelr.\lt.in buslnaﬁs,smence government, and academia are
becoming increasingly popularPartlclzm?arry_rrT some worldwide enterprises, KDD
systems are applied to discover useful busimesél{r;telligence and customer behavior
patterns using data mining technology. However, since the quantity of data is
continuously and rapidly growing in such enterprises, correctly and efficiently
discovering useful information is becoming a significant issue. In this thesis, we will
propose an efficient indexing technology of knowledge and database systems, called
Bit-wise Indexing Technology. There are three indexing models in this technology,
including Simple Bit-wise Indexing Method, Encapsulated Bit-wise Indexing Method
and Compacted Bit-wise Indexing Method. Also, the corresponding indexing and

matching algorithms for such indexing models are also proposed.



In order to demonstrate the suitability, flexibility and efficiency of the proposed
indexing methods, we will try to apply the proposed method in four kinds of KDD
applications, including reinforcement learning, pattern matching, supervised learning
and unsupervised-learning data mining applications, in this thesis. For enhancing the
system performance, the simple bit-wise indexing method was applied to the
manufacturing defect detection problem, time aspect (MDDP-t) for manufacturing
domains. For improving the flexibility and accuracy, the encapsulated bit-wise
indexing method is applied to the pattern matching module of an Internet intrusion
detection system. To reduce the procng time, the compacted bit-wise indexing
method is applied to the dat&drlven rough set based feature selection. Additionally,

iEls

the proposed feature selection Wl&hod Was adopted in a KA project to discover the
desired feature sets to mnﬁrua-._,:alC;Bé‘syEtem TOr a world-wide financial group
customer relationship management.- é}“s‘térh’é' Ioan promotion function. In the last
application, three proposed methods are hybridly applied to the data mining module of
a defect detection mechanism in a semiconductor manufacturing system to improving
the accuracy and usability. The proposed method was officially employed in the Yield
Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in Taiwan
Semiconductor Manufacturing Corporation (TSMC) for root cause detection of
manufacturing defects and yield enhancement.

Keywords. Knowledge Discovery, Bit-wise Indexing, Data Mining, Pattern Match,

Feature Selection, Knowledge Acquisition, Knowledge Analysis
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Chapter 1
| ntroduction

1.1 Motivation

Recently, the fields of Knowledge System and Data Mining have rapidly grown
years, since IT and Al technologies have become widely discussed and researched.
Related research, applications, and tool development in business, science, government,

and academia are becoming increagi.ngl'); popular Especially in some enterprises, KDD
Ed= 50\
systems are gpplied to discover: useful bqlsi_néss‘ intelligence and customer behavior

patterns via some machine Iearnmg andd_ata Hﬁ'ir.]irjg‘-;[echnologieﬁ. However, since the
amount of data is rapidly increasing i;1 -sucr:.erlnerprises, efficiently discovering the
useful knowledge becomes a significant issue. In database-related fields, indexing is
adopted to provide a global distribution and storage/location information for efficiently
retrieving the individual item (record) within a huge dataset (table). This approach can
clearly help users to quickly search a dedicated record (set) in a database for the given
guery conditions, but may not be appropriate for retrieving huge numbers of records,

such as OLAP queries in data warehousng and knowledge system analysis

requirements, owing to the indexing characteristics. Therefore, the bitmap indexing

16



method [54][74] became popular in data warehousing to obtain the efficient OLAP
guery requirements. In some previous cases [11][13], the bitmap indexing method has
been applied to a case-based knowledge system to accelerate similar-case retrieval and
similarity-based computing procedures, but it is not suitable in this domain due to the
lack of similarity retrieving ability of such method. The major issue in constructing an
effective knowledge system is to propose a flexible and efficient knowledge learning
procedure, which can transform the information in the given data set into a
well-defined knowledge structure in the knowledge base. Obviously, the data
management abilities, including dqtg 'Strﬂu.ct.ur.e':,"'ihdgfing, processing and manipulation

Ele v

ulnderlylng data repositories. Generally, the

abilities, become very important ,jfor t

|

indexing mechanism for a knovﬁ'egjgé.-s";/;te'ﬁif"par.lfj.é:ularly in the learning procedure,
should provide an encoding and repre;entél‘ti:).n‘ method to compare and analyze the
individuals (records) of data set efficiently. Additionally, the knowledge base indexing
method should not only concentrate on the efficient matching query ability, but also
provide the similarity analyzing and calculating abilities. Due to immediacy and
performance issues, choosing an appropriate data indexing method is an important
issue, particularly with large amounts of data. The data representation not only

influences the performance of the knowledge system, but also affects the efficiency

and accuracy of the underlying knowledge base. In this thesis, we will propose an

17



efficient (using all bit operations), extensive (accepting both symbolic and continuous
data formats) and flexible (with similar retrieving ability) indexing technology, called
Bit-wise Indexing Technology. Three indexing methods are proposed, the Simple
Bit-wise Indexing Method and two advanced indexing methods, including the
Encapsulated and Compacted Bit-wise Indexing Methods. Additionally, the
corresponding indexing, matching algorithms for such indexing models are also
proposed. The proposed bit-wise indexing methods not only accelerate the analyzing
performance of knowledge system, but also can be applied in a traditional database
system for efficiently similarity- basedretrlevmg kn order to demonstrate the suitability,
Y =A%

flexibility and efficiency of the."pﬁopdsedl'i‘lné:ie)'(i'h‘g urﬁ&;thods, we will try to apply the

1

proposed method in four knov;/-'i"e..qgé.-'é%/_stéﬁ"'app]ﬁi‘-(::ations, including reinforcement
learning, pattern matching, supervised Iearnlng alnd unsupervised-learning data mining
applications.

At first, we will propose a novel, efficient and parallelized indexing method,
called the Smple Bit-wise Indexing Method, to reduce the data processing and query
overhead of some knowledge discovery systems. Bit-wise indexing is similar to bitmap
indexing method except that the matrix of bit-wise or bitmap indices, which is

generated from the related table of the data resource of KDD systems via bit-wise

indexes creation algorithm, is partitioned horizontally. Additionally, bit-wise indexing

18



has more powerful similarity retrieving and parallelization capabilities than bitmap
indexing. Since the bit length of each attribute in the simple bit-wise indexing or
bitmap indexing method depends on the number of distinct attribute values of it, the
problem of long bit-wise strings arises when the number of distinct values is huge. For
instance), in a huge data warehouse, there may exist millions customer records,
meaning that some attributes may have million of distinct values. When these
attributes are encoded into the bit strings of the bitmap or Simple Bit-wise Indexing
Method, one million bits per record are required, of which only one is set to 1.

Although many compression techn_ol‘déiéé h.'a'\'/:é been proposed for such a problem,

ERE

they still require additional combutationé!l_ ;Ii'mé.“"_"l'uhérefore, this study presents two

advanced bit-wise indexing met:ﬁi;qu,"'jrr"lic-:_Iinng lElrlilc‘-étpsuIation Bit-wise Indexing and
Compacted Bit-wise Indexing methods: ‘Eh‘c;bs‘ulation Bit-wise Indexing Method, is
used to solve the problem of long bit-wise lengths. Encapsulation Bit-wise Indexing
Method partitions the longer bit strings into at least two levels to preserve disk space
and memory. Additionally, the computation time of OLAP queries is reduced since the
bit length of each record is decreased. For example, the dual-level encapsulation

bit-wise indexing method decreases hit length of such attributes from one million to

2,000 hits.

19



Applying the Encapsulation Bit-wise Indexing Method to the data resource of
KDD system can significantly reduce the indexing storage and improve query
performance. However, the total number of bit-wise index string that needs to be
compared via AND hit-wise operation is still reminded. In order to accelerate the
processing time of OLAP queries, another indexing model, called Compacted Bit-wise
Indexing Method, is proposed. As we know, the attribute is the basic information of all
data queries. Additionally, the concept hierarchy of each attribute is an important issue
of roll-up and drill-down operations of the data warehouse. In the Compacted Bit-wise
Indexing Method, the significance g_f:df‘rili)iite.'s';lfi’nci_iﬂiding attribute weight and concept
hierarchy, need to be evaluate(::i j\i,ia sorrli(lstatlsticai methods. Compacted Bit-wise

Indexing Method compacts the bitstrrng; ‘Of;ii’i'g.hgi;.‘ianking attributes by at least two
levels, including high-level concept hiedzrarch;/. aiid the others, the high-level concept
attributes is kept in the first level bit-wise indexes matrix, while the others are stored in
the second levels. Furthermore, the encapsulated bit-wise indexing method can also be
applied to further reduce the bit length. The processing time of queries can be hugely
reduced since the tota bit length can be largely reduced (via encapsulated bit-wise

indexing method) and the irrelevant records can be filtered out (via the higher level

concept hierarchy of compacted bit-wise indexing method).
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The proposed bit-wise indexing methods are suitable for helping many knowledge
discovery systems in order to accelerate the processing performance. In the thesis, the
proposed methods is applied in four knowledge system applications, including
reinforcement  learning,  pattern  matching,  supervised learning and
unsupervised-learning data mining applications, to demonstrate the suitability,
flexibility and efficiency. The first application consisted of a reinforcement-learning
defect detection learning system for the time aspect in manufacturing domains. This
implementation employed the Sample Bit-Wise Indexing Method to encode the defect
status of manufacturing products ar;d: hence accelerate data preprocessing. Additionally,

a bit-based Genetic Algorithm IS uséd t(l)_‘l.léar‘n' ‘Hlsu.i'télble weights for each computed

signature, since the chromosome and ‘the correspondlng GA operators are appropriate

e

for the bit operations of BWI index?ﬁg ‘method. First, the manufacturing defect
detection problem, time aspect, for (MDDP-t) is formally modeled and defined. A
root-cause evaluation function (RCEF), which is a linear combination of three probing
functions defined independently according to the experiences of domain experts, is
proposed to evaluate whether a specific machine is the root cause of a time problem.
The probing function weights are determined separately. Additionally, this study
presents a genetic algorithm (GA) with encoding and GA operations appropriate for

MDDP-t weight-learning problems to obtain suitable weights for the probing functions.
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The training examples include MDDP-t instances with known root causes provided by
the Taiwan Semiconductor Manufacturing Company [TSMC]). Experimental results
show that the proposed method can ensure efficiency and accuracy.

The second application introduces a pattern-learning network intrusion detection
system. This implementation uses the Encapsulated Bit-wise Indexing Method to
encode the networking activity with minimal monitoring time window in order to
accelerate the data preparation procedure. Moreover, a bit-based intrusion Pattern
Matching mechanism is proposed to efficiently learn, roll-up, drill-down and combine
the intrusion pattern with differgm"‘j"t'i‘riﬁe.LV\./'i'Hdoyys/services/ports combinations. In

Y =RA %

general, the user’s pattern can be‘t,rmsformed_:-1 hto a sequence of network activities that

are extracted from the related networkpa_:ketsTh&Se kinds of network packets can be
collected and then be transformed into some ;equence of bit-wise strings showing the
intrusion patterns. The Network Activities Analyzing Phase can first filter out the raw
network packets and log necessary features (Source IP, Destination 1P, Source port,
Destination port) in a small time window to perform data sampling and data cleaning
and to reduce the amount of data. After that, with combined users and services
information, the sufficient service-user activity events are found and used by the

second phase. The Features/Pattern Mining Phase transforms the sufficient service-user

activity events to some bit-wise strings and next merges the bit-wise strings into some
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other bit-wise strings with the same source IP. After gathering those bit-wise strings,
the Pattern Mining Module and Pattern Merging Module can perform some data
mining processes to find possible intrusion patterns that can be the source of the
candidates of intrusion patterns for future intrusion detection systems. Finally, the
pattern with bit-wise indexing representation can be easily transformed into a
corresponding Finite State Machine for efficient real-time tracing and monitoring of
networking activities.

The third application is a supervised-learning data-driven feature selection
method for CBR systems. As we k.now,ﬂt.hé c.'ri"tit':al.;_‘.iswe in case-based reasoning is to
select the correct and enough ;féatur&; tgl._repre;eemT‘:a case. However, this task is

difficult to carry out since such li%nqv\'ille'a;e"i5’%fftgjéxhaustively captured and cannot
be represented successfully. A new, effi;iéhf %JéatLJre selection method is proposed here.
The bit-wise-based feature selection method is proposed for discovering the optimal
feature sets for decision—making problems. And the corresponding indexing and
selecting algorithms for proposed feature selection method are also proposed. This
implementation applies the Feature Selection Method using Rough Set Theory, which
is appropriate for finding the optima solution from a given data set, except for the long

processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to

encode the feature and class relationships to reduce the processing time of feature
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selection procedure. Finally, some experiments and comparisons are given and the
result shows the efficiency and accuracy of our proposed methods.

The last application combines the bit-wise indexing methods (including Sample,
Encapsulated and Compact Bit-wise Indexing Methods), Data Mining Technologies,
and Statistic Methods to construct an unsupervised-learning data-driven data mining
system for an engineering data analysis (EDA) a production-level defect detection
system. With large quantities of semiconductor engineering data stored in databases
and versatile analytical charting and reporting in production and development, IT
systems in most semiconductor manufacturlngCOmpanles permit users to access and
analyze data quickly and con\:rehiemly;:r_l\./l?:agilh‘g the semiconductor process more

sophisticated means that more datamustb_eanalyzedand troubleshooting, especially in
yield enhancement, becomes more diffi::l;ﬂt,. Eurlrently, information summarized from
these systems is too detailed to be easily assimilated by engineers. Engineers need to
daily review thousands of charts and statistical results to undertake trouble shooting
jobs. Using simple statistics, these charts and statistics are listed by these IT systemsin
an order of priority for review. Engineers frequently catch the real root cause of a
problem only after reviewing many charts and statistical results. Those simple statistics

do not show the complicated intersectional effect resulting from nonlinear interaction

among many factors reliably and quickly. This application, describes the experiences

24



that applied such hybrid data mining solutions for low-yield root cause detection
situation in the Taiwan Semiconductor Manufacturing Company Ltd. (TSMC).
Typically, the data mining solutions have high time and space complexities, but failure
to discover the low-yield situation quickly causes significant damage. In this
application, the BWI indexing method was applied to the data mining application to
accelerate the processing time. As expected, the BWI-indexing-based data mining
solution saved over 90% of processing time compared with conventional data mining
solutions. The accuracy and performance evaluations for 42 real cases from TSMC are
made and reviewed herein. Accordjng‘j'té fhé é\}éluagion results, the data mining engine
using bit-wise indexing uses on:lyj\lo% Qf‘._pm(‘:assi‘ng.'-‘:time rather than the in-memory

|

process without the BWI indexi-'hg.,rﬁeflhod.";;&dditiﬁdhally, some critical issues about
using a data mining solution to detect semiconductor manufacturing defects are
discussed and reviewed herein. Finally, the system framework of the next-generation

data mining solution in the future is proposed to provide a knowledgeable, reasonable,

reliable and flexible data mining solution in semiconductor manufacturing.
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1.2 Contributions

1. Three indexing models, called Smple bit-wise indexing method, Encapsulation
bit-wise indexing method and Compacted bit-wise indexing method, are proposed,
along with indexing and matching algorithms corresponding to each proposed
indexing model.

2. A manufacturing defect detection system for the time aspect problem using the
Sample Bit-wise Indexing Method and a Genetic Algorithm are proposed to
improve the encoding and computir]g pe.rfgfrhnance.

3. A network user behavior pattérn malhiFghmodule using Encapsulated Bit-wise

e
. ' -

Indexing Method of an Internet intrquéh detecti‘q'r"\ system is proposed to enhance

L

the usability and flexibility of IDSSystem$

4. A data-driven feature selection method using Compact Bit-wise Indexing Method
and Rough Set Theory for the CBR system is applied to improve the performance
of the feature selection procedure.

5. A data mining module of a defect detection mechanism in a semiconductor
manufacturing system using hybrid bit-wise indexing methods is proposed to
improve the performance of the data mining and defect detection procedure.
Additionally, the system framework of the next-generation data mining solution is

also given.
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1.3 Reader’'sGuide

The remaining parts of this thesis are organized as follows. The reviews of the
relative works are given in Chapter 2. The Smple Bit-wise Indexing Method is
proposed in Chapter 3. The advanced indexing methods, including Encapsulation and
Compacted Bit-wise Indexing Method are introduced in Chapter 4. An Intelligent
Manufacturing Defect Detection Method for the time issue using Sample BWI

indexing method is given in Chaptq-,'S"éﬁd a netWork user pattern matching method of
¥ EHBQ\ ¢
an Internet intrusion detection system usiné Ericapsulated BWI method is discussed in

Chapter 6. In Chapter 7, a dat&drlvenfeatureselectlon method using Compact BWI

2 Bk

indexing method and Rough Set Theory of CBR system is proposed and a data mining
module using hybrid BWI indexing methods for low-yield defect detection in a
semiconductor manufacturing system is briefly reviewed in Chapter 8. The conclusion

and future works are finally given in Chapter 9.
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Chapter 2
Related Review

2.1 DataWarehousing

The concept of data warehousing was first proposed by Inmon in 1993. A data
warehouse contains information collected from individual data source and integrated
into a common repository for effi‘c.:ie'nt qqdrylng ﬁar;a,analysis When the data sources

are distributed over several locations, ‘aidggé'warehousé is responsible for collecting the

% 1B
L

necessary data and saving it in..'é;l)p'rppriatg_ forms The architecture of a typical
data-warehousing system is shown in Figure 2.1.

There are three major components in it: the data collector, the data warehouse,
and the OLAP and query processor. The data collector is responsible for collecting
necessary information and transaction messages from individual data source through
communication networks to meet the requirements of end users and the views defined
in the data warehouse. The data warehouse receives data from the data collector, filters
them, and stores them in its own database. The OLAP and query processor provide all

necessary information for user queries and OLAP requirements. The data collector or
28



OLAP and query processors may also be divided into several subparts, each located

near a data source.

Users
A

A

Q)LAP & Query Procr)

A

A

Data

Warehouse

Data
Collector

-l _ _

Figure 2.1: Architecture of atypical data warehousing system
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Users Users Users
Group 1 Group 1 Group 1

A

A
Y Y
OLAP & Query OLAP & Query
CProcessorl) CProcessorZ)

Data
Warehouse

—_—aa———— S———

Figure 2.2. Architecture of a'data warehousing system with distributed
* components -

A data warehouse usually contains a‘large number of views in order to speed up
query processing and avoid large amounts of network transmission. Views can be
defined by query languages and provide particular formats of query results to users.
Data warehousing systems use two kinds of views. materialized views and virtual
views. A materialized view retrieves all necessary information from data sources
according to the view definition and physically stores the extracted data in a data
warehouse. A virtual view retrieves the information from other materialized views

using the query language whenever the view contents are required. Each kind of view
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has its advantages and disadvantages. One of the primary goals of a data warehousing
system is to support on-line analytical processing, call OLAP, and help in decision
making. For this reason, data warehouses must maintain appropriate views to ensure
that OLAPSs are efficient.

Data warehouses are often built to support on-line analytical processing. On the
other hand, the OLAP is a technology and the DW is an architectural infrastructure.
Typical OLAP operation includes rolling-up (increasing the level of aggregation) and
drilling-down (decreasing the level of aggregation or increasing detail). The star

schema is the most popular data mpdje'lﬂc.)f.'dét"zi'w;a[ehousi ng. The manufacturing star

schema example of a data Wareho"u‘se'is shlown | n F'ig:ure 2.3. In this figure, there are

four dimension tables, incl udinl-'(j_-;.'..I',dcl)l';,i_lf’r"();d'ijc.t,.l']?\-’:ecipe and Time tables, and an
Ordering fact table. The relationships betweenfact table and those dimension tables are
kept thru relation keys.

Since OLAP queries of data warehouse are usually complex, the performance of

OLAP queries is a critical issue in the data warehouse. Therefore, the indexing

technology is often embedded in the data warehouse environment [54][74][75].
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Recipe Dimension Di TOOI-
mension
- Manufacturing _
Recipe_id Fact Tool_1d
. N
Recipe_name T Tool_name
Recipe_Parameters Recipe_id
Tool_id . _ .
_ Time Dimension
Product Product_id
Dimension Date/Time Date/Time
Product_id Wafer Amount Month
Product_name Quarter
Year

Figure 2.3: An example of a manufacturing star schemain a data warehouse.

22  Bitmap Indexing methods of bataWar ehousing
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As mentioned above, the &uef;/-.."procng'“is the critical issue in the data
warehouse environment. In recent years, many indexing technologies, such as B-tree,
k-d tree, R-tree, Value List and Bitmap indexing methods [54][74][75], have been
proposed in data warehouse system. The Bitmap is the most popular indexing method
in OLAP system since it was designed to search and analyze the data for the OLAP
gueries efficiently. The basic idea of Bitmap indexing method is using a string of bits
which is called bitmap vector and formed by 1 or O to indicate whether the some
attributes are equal to a specific value or not [75]. A bit in the bit string maps the

position of a record in the table. If the content of the attribute is associated with a
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specific value, the bit is set as“1”. The Bitmap indexing method is illustrated in Figure
24

In Figure 2.4(a), there are three attributes in the table, including Tool_id, Name
and Location. The attribute values domain of Tool_id, Name and Location are {3210,
2688, 6150, 6210, 8850}, { AWOX01, AWOX02, AWOX03, AWOX04, AWOXO05}
and {FAB 1, FAB 2, FAB 3}, respectively. It can be easily seen that the number of
distinct values of Tool _id, Name and Location are 5, 5 and 3, respectively. Therefore,
thirteen bitmap indexing vectors are generated as shown in Figure 2.4(b). Assume that
a query with conditions ( Name :AWOXOZOr l;f)cation = FAB 3) is required to

GEls

execute, the bitmap indexing vectors Banoxoz“and” Beas 3 are operated with operation
= | Pl -

OR and then the result is{ 0, 1, 0,0, 13 fﬁé};éfpré;.;fhe records 2 and 4 are formed as
the result set of the query. In addition to thé simple bitmap indexing method described
above, there are gill some extension can be found in [74][75]. However, it seems that

Bitmap indexing method is more efficient than other indexing methods since the

method had been widely used in the commercial products of DWs.
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Tool id |Name Location
3210 AWOXO01 FAB 1
3688 AWOX02 FAB 1
6150 AWOXO03 FAB 2
6210 AWOX04 |FAB 2
8850 AWOX05 FAB 3

(a) Tool dimension table

Bs3210(Bssss |Bs150|Be210|Bssso[Bawoxoz |[Bawoxoz| Bawoxos|Bawoxos [Bawoxos Bras 1 |Bras 2 [Bras 3
1 |0 0O |0 |0 1 0 0 0 0 1 0 0
0 1 |0 0 |0 |0 1 0 0 0 1 0 0
0O |0 1 |0 0 |0 0 1 0 0 0 1 0
0O |0 |0 1 |0 0 0 0 1 0 0 1 0
O O 0 |0 1 0 0 0 0 1 0 0 1

Since the bitmap indexing method

(b) Bitmap indexes for (a)
AR e

Figure 2.4: Anexample ofBitmap indexes

18!

seem

ns6'be able to be directly applied to

indexing and retrieval phrases in the data warehousing. However, there are sill some

problems should be solved:

1)

When the number of records in the data warehouse is large, the bits in the bitmap

indexing vectors will be extended hugely. Also, the number of bitmap indexing

vectors is dependent on the summary of distinct value for attributes. If the

number of distinct values for some attributes is large, the number of bitmap

indexing vectors is also large. Although many solutions are proposed to solve

these problems, the extra cost of computing also needs to be spent.
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2) In the data warehousing, the ability of similarity retrieving may need to be
considered. Some extra computation of the similarity between the records is
required.

In other words, it is not quite suitable to straightly apply the bitmap indexing
method to the data warehousing directly. It needs some adaptation. We will discuss the

details of our new indexing technology in following two chapters.

2.3 Feature Selection and Rou'glh.Sg_t

Els

Feature selection is about ‘fmdlng useful (reI€§vant) features to describe an

-—1

application domain [7][11][14.]'[;1551[;53.]'&.24];{?;9][4_,2]:[147] [48][79]. The problem of
feature selection can formally be defidnéda; selecting minimum features M’ from
original M features where M’ = M such that the class distribution of M’ features is as
similar as possible to M features. Generally speaking, the function of feature selection
is divided into three parts: (1) smplifying data description, (2) reducing the task of
data collection, and (3) improving the quality of problem solving. The benefits of
having a simple representation are abundant such as easier understanding of problems,

and better and faster decision making. In the case of data collection, having less

features means that less data should be collected. As we know, collecting data is never
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an easy job in many applications because it could be time-consuming and costly.
Regarding the quality of problem solving, the more complex the problem is if it has
more features to be processed. It can be improved by filtering out the irrelevant
features which may confuse the original problem, and it will win the better
performance. There are many discussions about feature selection, and many existing
methods to assist it, such as GA technology [60], entropy measure[31], and rough set
theory [78].

Next, the rough set theory is briefly reviewed. The rough set theory, proposed by

Pawlak in 1982 [55], can serve asia new mathematlcal tool for dealing with data
Y =EAaA %

classification problems [36][56] .['7;76][77][‘|é] [I:79]". “"I_t .'adlopts the concept of equivalence

classes to partition training lnstances;ccordmgio some criteria. Two kinds of
partitions are formed in the miningd | process lower approximations and upper
approximations. Rough sets can also be used for feature reduction. The features that do
not contribute to the classification of the given training data are removed. The concepts
of equivalence classes and approximations are quite suitable to generate the bit-based
class vectors and record vectors, which can then be directly and efficiently transformed

to the bit-wise indexing matrixes in CBR system. This work thus adopts these concepts

to solve the feature selection problem.
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Chapter 3
Simple Bit-wise Indexing M ethod

In this chapter, the Simple bit-wise indexing methods will be introduced. At first,
the general assumptions and notations for BWI Technology will be given. After that,
the definitions and algorithms of Simple bit-wise indexing method are proposed.

3.1 General Assumptionsand-Nefationsfor Simple BWI M ethod
-‘- ‘.‘ - i b I.I{ i, _:l

|

In the section, the basic assumpﬂo%sand r}é}tzl:ons are illustrated in detail. As
mentioned above, the bit length of eachattrlbute in the bit-wise indexing or bitmap
indexing method depends on the number of its distinct values. This implies that the
problem of long bit-wise string arises when the number of distinct values is large.
Although there are many compression technologies had been proposed to solve such
problem, the extra computational time is usually needed. Therefore, the condensable
bit-wise indexing method is proposed to solve the long bit-wise length problem. Using

this method, only the attributes with longer bit lengths are partitioned into two or more

levels for saving the storage of disk and memory both. Also, computation time of
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OLAP queriesis also reduced since the bit length of each record is shortened.
In order to answer the user’s query statements, we search records in the target
table of data warehousing. In the beginning, we transform the data schema of data

warehousing to a single target table, called flat target table.

Since the data store in data warehouse is updated periodically, maybe a day, a
week, or a longer period, the indexing phase will be executed in initialization and
maintenance stages of data warehousing. The querying phase is called during the

running time of queries for the curr..e,nt"ju'se‘rs e,

Without loss of generality,.f‘i'\f/"ve assurrllethatthe data schema of the warehouse
1 “ ir -; o “ ...‘ll
consists n fact table and m dimension tebles. Definition 3.1 defines a flat target table

2 Bk

that was transformed from the data schema of data warehouse.

DEFINITION 3.1: Flat target table
The flat target table T is created by joining all non-redundancy fields of the fact

tables and all dimension tables via some SQL statements

EXAMPLE 3.1:

The example of data schema is shown in Figure 2.3. There are one fact table,
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Manufacturing fact and four dimension tables, including Tool, Product, Recipe, and
Time dimension tables of a manufacturing company. The attribute set of Tool, Product,
Recipe, and Time dimensions are { Tool _id ,Tool _name}, { Product_id, Product_name},
{Recipe _id, Recipe name, Recipe parameters}, and {Date/Time, Month, Quarter,
Year}, respectively. The attribute set of fact table f is{Tool_id, Product_id, Recipe id,
Date/Time, Wafer amount}. Moreover, the referential relationships between fact table
and the dimensions are { Tool.Tool _id=Manufacturing.Tool _id},
{ Product.Product_id=Manufacturing.Product_id},

Rs={ Recipe.Recipe_id=M anufactutli.ng;'li;ééi'pé:i d}, and

R,={ Time.Date/Ti rne=ManufactL.|'rfr‘ng.DaIe/‘_’Jl'l_‘ ‘ '} . Therefore, the SQL statement of flat

target table T can be generate as fall °Ws .

2 Bk

Select Tool _id, Tool_name, Product_id, Product_name, Recipe_id, Recipe_name,
Suppiler.category, Year, Quarter, Month, Date/Time, Wafer amount

Into TargetTable

From Manufacturing, Tool, Product, Recipe, Time

Where Tool.Tool _id = Manufacturing.Tool _id
and Product.Product_id = Manufacturing.Product_id

and Recipe.Recipe_id = Manufacturing.Recipe id
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and Time.Date/Time = Manufacturing.Date/Time.

After above SQL statement is executed, the flat target table TargetTable is thus

generated and the structure of thistable is shown in Table 3.1.

Table 3.1: An example of aflat target table T in a data warehouse that transforms
from a data schema

Tool_id|Tool_name [Product_id |Product_name|Suppiler_id|Recipe_name

Recipe_parameters| Time/ Daf;e Month Quarter Year|\Wafer Amount

| :
EB

1 --z

— g

ity =1
] "1

[ 8=

e - r =]

. =

- 4 ;I 1896 F
After the flat target tabléa_i_s_g‘enerat.ed,-QL‘Tf indexing technologies will focus

on thistarget table in the following sections.

3.2 Thelndexing Phase of Simple BWI Method

Assume a set of records R is stored in a table T for a specific domain, denoted
DOM. Thei-threcord in Risrepresented by R.. Also assume all the recordsin R can be
abstracted by a set of attributes A, denoted A = <Ay, Ay, ..., A>, wherer isthe number

of attributes. The value of an attribute A, for arecord R; is denoted Vi(j), which can not
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be null. The attribute values of a record R; can then be represented as V(j) = <Vi(j),
Vo()),..., Vi(j)>. The set of possible values for attribute A;, called attribute value
domain, is denoted V, = <Vi1, Viz, ..., Vigi)>, Where ofi) is the number of values for A,
and Vjj isthe j-th possible attribute value of A;.

In a data warehousing system, a set of records is stored in the warehouse for
serving a new coming query. A matching function is used to evaluate records based on
a weighted sum of matched attributes with a new coming query condition. Attribute
value can thus be used for indexing a record. An index of a record using Smple
Bit-wise Indexing Method can beformally deflned asfollows

X

DEFINITION 3.2- Record Indéxs, "

2 Bk

The index INDy of arecord R¢in atabIeT for domain DOM is defined as:

INDy = { A1 = Vi(K), Ao = Va(K), ..., A= Vi(K)}.
A record in table T can be formally defined as follows.

DEFINITION 3.3 —Record :
A record Ry in atable T for domain DOM is a pair (INDy, rv), where rv is the

actual contents of record R, and Ree R.
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In the most indexing methods of data warehousing, the numeric-type data are
usually treated as the computational attributes and thus will not be included in the
indexes. However, in some real applications, the numeric attributes also need to be
indexed for further investigation. For example, in the data warehouse of manufacturing
domain, the numeric recipes are the important factors for processing control and defect
detection. The same situation will happen in the dataltime-type attributes. The basic
operations and notations of future definitions are shown as follows:

e &

OPERATION 3. 1 - Type, “Year, Month; Day; Hour, Minute and Second

Operations:
A is numeric - type, N
Type(A)=1 A isdate/time-type, D
Otherwise, S
Year(V;)=The number of year in x for Type(A))=D; otherwise, return Null.
Month(V;)=The number of month in x for Type(A))=D; otherwise, return Null.
Day(Vi)=The number of day in x for Type(A)=D; otherwise, return Null.
Hour(V;)=The number of hour in x for Type(A))=D; otherwise, return Null.

Minute(V;)=The number of minute in x for Type(Ai)=D; otherwise, return Null.

Second(V;)=The number of second in x for Type(A))=D; otherwise, return Null.
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OPERATION 3.2 - Minima Element (MNE) Operation :
If Type(A)=N, thesmallest number in A

MNE(A)= <If Type(A)=D, theearliest date/timein A
Otherwise, Null

OPERATION 3.3: Maxima Element (M XE) Operations:
If Type(A)=N, thelargest number in A

MXE(A)=<1f Type(A)=D, thelatest date/timein A
Otherwise, Null

A bit-wise indexing vector used in the proposed indexing method is defined as
follows.

J

DEFINITION 3.4 : Bit-wise indeXing vector of an-attribute where Type(A)=S
The bit-wise indexing vector B; of the i-th attribute for record Rg is a bit string

Bi= bilbiz---bia(i), where bij:l if Vi(k):Vij and bij:O otherwise.

EXAMPLE 3.2:

Assume that the domain of attribute Name is <AWOX01, AWOX02, AWOXO03,
AWOX04, AWOX05> and the attribute value of Name in the second record is
AWOXO01. According to the Definition 3.4, bit-wise indexing method uses the 5 bits as

the bit vector of the index in which every bit represents a specific value of the index
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attribute Name.

B,:

AWOX01 | AWOX02 | AWOX03 | AWOX04 | AWOXO05
b1y b2 bis D14 bis

Therefore, we get Bo= bp1h200230240,5="10000"

DEFINITION 3.5 - Bit-wise indexing vector of an attribute where Type(A)#S :
The bit-wise indexing vector B; of the i-th attribute for record R is a bit string
Bi=bi1biz... B (wxe(a ) Where bi=1 if fi(Vi(K))=] and bjj=0 otherwise, where the function

fi isgiven via user for clustering thq.;qufﬁéfié ré't%r:i'buge Aand f(MXE(A))<ali).

Hol i,

y Bt 'e
EXAMPLE 3.3: k. .

Assume that the second attribute Recipe degree is <10, 12, 14, 16, 18, 20, 22>
and the attribute value of Recipe degree in the second record is 16. Also, the given

function f; is given in following.

V (k) <12 =1
|125vi(k) <16 =2
FoVik)= 16<V (k)<18 =3
V. (k) <18 —4

According to the Definition 3.5, bit-wise indexing method uses the 4 bits as the

bit vector of the index in which every bit represents a specific value of the index



attribute Recipe_degree.

B,:

fa(Vi(K)=1 fa(Vi(k)=2 fa(Vi(k)=3 fa(Vi(k)=4
0 0 1 0

Therefore, we get Bo= bpibpohzsho,="0010"

For the datatime type data, assume that the domain of attribute
Manufacturing_Date is <1992/01/02, 1992/10/01, 1993/10/10, 1994/01/22,
1992/06/07> and the attribute value of Manufacturing_Date in the second record is
1992/10/01. Also, the given function f, is given in following.

Year (V. (k) =1092 =" e,
FalVi(K)={ Year (v (k) =1998 = 2 I,

Year (V,(K)) =19947=8 |

N~ -

According to the Def|n|t|on35b|“tW|§e|nde,x|ng method uses the 3 bits as the

bit vector of the index in which every bit represents a specific value of the index

attribute Manufacturing_Date.

B,:

fa(Vi(K)=1 fa(Vi(K))=2 fa(Vi(K))=3

1 0 0

Therefore, we get

B.="100"
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DEFINITION 3.6 - Bit-wise indexing vector of arecord :
The bit-wise indexing vector BWI, of a record Ry is the concatenation of the
bit-wise indexing vectors of all the attributes for record R«. That is, BWM=B1Bs;...B,

wherer isthe number of attributes.

DEFINITION 3.7 - Matrix of bit-wiseindexes for table T :

BW,
. o _ BW,
A matrix Tew of bit-wise indexes for Table T is represented as |. , Where

BW

|R| is the number of records. | , r

The bit-wise indexes for all '&ﬁa\/e'd,re‘cqrds"é'r.e generated by the following two

algorithms:

Algorithm 3.1 - Bit-wise index creation algorithm :

Input: A record R.

Output: A bit-wise index BWM; of R.

Step 1:  Create a bit-wise vector of length r, where r is the number of attributes.

Step 2:  Repeat the following sub-steps for each attribute j until all attributes are

processed.
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Step2.1: If Type(A)#S, go to Step 2.2, else set by=1 if Vj(i)=Vi; set by=0
otherwise.
Step2.2: Set by=1 if £(Vj(i))=k; set by=0 otherwise.

Step 3:  Return the vector BWM;.

Algorithm 3.2 - Bit-wise index matrix creation algorithm :

Input: A set of recordsin T.
Output: A bit-wise index matrix Tgw Of the records.
Step 1. Create an empty matrix Tew o3t M0

Step 2:  Repeat the following substepél, Ifdreach '{lecord R until al records are

processed. | .‘::.-i‘i 1896
Step 2.1:  Use the bit-wise ind&l creatlon éléorithm (Algorithm 3.1) to get the
index BW; of R.
Step 2.2:  Add BW; into Tew.

Step 3: Return Tew.

After a bit-wise index matrix is built, bit-wise operations can easily be used to

retrieve desired record for the new coming queries.
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EXAMPLE 3.4:

Assume that a Target Table T containing five records is shown in Figure 2.4(a),

The bit-wise indexes for the above records are shown in Table 3.2.

Table 3.2: The Tw of fiverecordsin Figure 2.4(a)

BW 10000 10000 |100
BW 01000 01000 (100
BW 3 00100 00100 (010
BW 4 00010 00010 (010
BW s 00001 00001 (001

33 TheMatching Phase of SifipleBWI Method

& g o
] - :

Calculating the similarities baiween & quey and

=y e

saved records is a

time-consuming  task. A twophase- matchlng approach, caled the

Smilar-records-seeking algorithm, is thus proposed here to reduce the matching time.

It includes the relevant-records-retrieving phase and the similarity-computing phase. In

the first phase, all irrelevant records are filtered out to avoid calculation of their

similarities. The time of calculating the similarities of useful saved records can then be

decreased. The similarities of the query with remaining saved records are then

computed in the similarity-computing phase. The algorithm is described as follows.
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Algorithm 3.3 - Similar-records-seeking algorithm :

Input : A bit-wise index matrix Tgw and a new query Ry.
Output : A set of similar record Rc with their similarity degrees with Ry.
Step 1:  Use the bit-wise index creation algorithm (Algorithm 3.2) to get the index
BW of the new query Ry according to the condition part of the query.
Step 2:  Initialize the counter j to 1 and Rc to an empty set.
Step 3:  For each BWI; in Tewi, do the following sub-steps (1<j<|R)):
Step 3.1:  Call the search-relevant-records algorithm (Algorithm 3.4) to compute
the relevance degreg rdJJ betweerrBWI n and BW;.
Step 3.2: I rdi;=0, ignoretk{(%fecorcii'% ahdgotoStep 3.5.
Step 3.3:  Call the smllarltycornrl)uﬁrworlthm (Algorithm 3.6) to compute
the similarity sim bet\;v..e‘edn'RN éihd.lll?,-..
Step 3.4:  Add record R; with its similarity sim; to Rc.
Step 3.5: Add1toj.

Step 4:  Sort the resultsin Rc in descending order of their similarities.

Step 5: Output Re.

A saving record is relevant to a new query that will be transformed to a desired
bit-wise index via bit-wise index creation algorithm. If they have at least one same
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attribute value, the saving record is then similar with the new query in a certain degree.
The hits in the corresponding positions of the matched attributes should be set as"1" in
their bit vectors. This can easily be found by using the ‘AND’ bit-wise operation to
compare the two bit vectors. The following Search-relevant-records algorithm is thus

proposed to achieve this purpose.

Algorithm 3.4 - Search-relevant-records algorithm :

Input:  The bit-wise indexing vector BWly of a new query Ry and the index BW;
of asaved record R inR. a3 diiiiy

Output: The relevant degree rdljbetweelﬁ RNand R,

Step 11 Usethe "AND’ bit-wise.operation:on BWix and BWI;j and store the result as

rdi;, which is also abit string. un

Step 2:  Return rdi;.

Since the ‘AND’ bit-wise operation is fast, the Search-relevant-records algorithm
selects relevant saved records quickly. If rdi is zero, then the saved record is thought of

as irrelevant and will be filtered out.

After all relevant saved records have been retrieved, the similarities between the
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guery condition and them are computed. As mentioned above, a matching function

based on a weighted sum of matched attributes is defined to calculate the similarity

degrees. Each attribute has its own weight. Since a record has only one value for an

atribute, & most one bit in the bit string rdi is set for each attribute after the

Search-relevant-records algorithm is executed. Accordingly, a special bit-wise vector,

called the Mask \ector, is proposed to help compute similarities. Let <1> be the string

of length o with all bits being 1 and <0> be the string of length o with all bits being 0.

The definition of the Mask \ector is shown below.

DEFINITION 3.8- Mask Vectlig = 4~ =
L N .‘{-.‘. o { ..ll

A bit-wise indexing mask vécf‘g‘g,r"'M;ask"i;s-';é setof Mask,, where0<k<r andr is

|

the number of attributes. Each Mask, denbting the mask vector of attribute Ay, is a

k-1
concatenation of r bit stringsas Mask= SS,..S, , Where §=<1>for ) a(j)+1<
i) =

k
i< Y a(j) and §=<0>otherwise.

j=1

By applying the 'AND' operation on Maskx and the bit-wise vectors rdi’s
generated from the search-rel evant-records algorithm, the similarities between a query
and a saved record for atribute A« can easily be found by the following

similarity-measuring function:
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i(PCij xW;)
SM(R) =F———,

2W,
j=1
where SM(R) isthe similarity between the i-th saved record and the new query,
W, is the weight of the j-th attribute, PC; = O if the result of performing the AND
bit-wise operation on rdi; and Mask; is 0, and PC;; = 1 otherwise.
Several saved records may have the same similarity with a new query as long as
they have the same attributes matched. This is especially common when the numbers
of possible values for attributes are large. For this situation, the cost for calculating

similarities of saved relevant recordg’ean be'fégduced if all possible similarities are

1 L - . :
=S

pre-computed and stored into _"tﬁe Sirrilaltri_.ty' 'M_albpiilng List. Each element in the

Smilarity Mapping Ligt is a sirﬁil?lr,it'y'-{/all‘dé-'?'b.r some attributes matched. Thus, the
similarity of a saved record with a new query for known attributes matched can easily

be found from the list, instead of from calculation by the above formula. The Smilarity

Mapping List is formally defined as follows.

DEFINITION 3.9 - Similarity Mapping List:
Let L be a Smilarity Mapping List and L; be an element in L with an index valuei,
which is determined from the attributes matched, 1<i<2-1. Let i be represented as a

binary code biibi,...bi;, with b;=1 if the j-th attribute is matched and b;=0 otherwise,
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Zr: by xW,

1<j<r. Thevalueof L isthus ===

r

2w,
j=1

Algorithm 3.5 - Similarity-mapping-list creation algorithm :

Input:  Weights of attributes Wy, W, ..., W, of R.

Output: A similarity mapping list L.

Step 1:  Initialize the counter i to 1 and the list L to be empty.
Step 2:  For eachi, 1<i<2'-1, do the following sub-steps:

Step2.1: Encodei into abi nary.st-ri‘hg'<bi1bi3.. .. bir>.

Step 2.2:  Calculate the SmllarltydegjlreeL,by fhélformula in Definition 3.9.

Step2.3:  Put L; into the list L with.iddexiis &

2 Bk

Step 3: Return L.

After the Smilarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 3.6 - Similarity-computing algorithm :

Input:  The relevant degree rdi; of record R; with a new query, the Mask \ector, and

the Smilarity Mapping List L.
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Output: The similarity of R; with a new record.

Step 1: Initialize azero binary string of lengthr.

Step2: For eachi, 1<i<r, set thei-th position in the string to 1 if the result of using
the ‘AND’ bit-wise operation on Mask; and rdi; isnot all 0.

Step 3:  Transform the binary string into an integer j.

Step 4: Get L from the Smilarity Mapping List.

Step 5:  Return L.

Since the Smilarity Mappi ng.‘,‘L"i'SE and"t"h:é Mask Vector are constructed in the

Ed=500\
pre-processing step, and since .ori‘ly the AND bit-wise operations are executed on

Mask \ectors and bit-wise vectors ofreievant records in the Similarity-computing

L& e

algorithm, the computational time for findihg the similarities can thus be significantly

reduced.

EXAMPLE 3.5:

Continuing from Example 3.4, the BWIy of a new query Ry, which is
{Toolid=6210, Name=AWOXO01, Location=FAB1}, is <10000 10000 100>. Also
assume that weight Wi, W, and Ws are set to 0.33. Each BWI; in Tew in Table 3.2 is

processed as follows.



e For BW;, The relevant degree rdi; between BWM; and BWly is found as <10000
10000 100> by the Search-relevant-records algorithm. Since more than one bit in
rdi; are "1", Record 4 is a relevant record. Its similarity is found as 1. Record 1 is
then arelevant record.

e For BW 3, BWM 4 and BW5, The relevant degree rdi between these records and BWly
is found as <00000 00000 000>. Since al the bits in these rdis are "0", Records 3, 4
and 5 are thusfiltered out.

After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 3.3.

Table 3.3: Two relevant té&ordé‘and@heir similarities

Relevant Record] Record 1.9_;I5?ecord 2
smilarityy, “| 14 0.333

L& 1Lk

3.4 Analysisand Experiments of Simple BWI M ethod

As mentioned above, the proposed matching algorithms include two phases to
reduce the computational time. At the retrieving-relevant-records phase, irrelevant
prior records are filtered out. Thus, only the similarities between relevant prior records
and the new query are computed at the similarity-computing phase. Assume that the

number of records in the target table is N and the average filtering percentage is M. The
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time needed to retrieve relevant saved records and to calculate their similarities in

STEP 3 of Algorithm 3.5 is analyzed as:

Timeuith fittering = (N Xtgng + N XM X(r Xtyq )+ NXM xt,)
_ 1
=Nx(M xﬁxtand+M X(FXtyg)+Mxt,)

=NxM x((ﬁ+r)xtand+tc),

where t_, is the time needed for an *AND’ bit-wise operation and t_ is the

seek time in the Smilarity Mappi ng-:l‘;‘i"s"t.‘ If no fi Itering is performed, the time needed
to calculate their similarities in STEP 3 of A{Igor‘ithm 3:5 isanalyzed as:

J

-nrre/vithoutf”tering z( N Xtand +N X(rxtand )+ N Xtc)

ENX((1+r)xtyg +t)-
The performance due to the filtering is then:

1
Time,, feing__ N xM ><((M+r)><tand +1t.)

TiMeyithout filtering NX((1+r)Xtyg +1tc)
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The proposed method can indeed improve the performance of query although

some extra storage spaces are required. These storage spaces are used for storing the

bit-wise indexes and the Smilarity Mapping List. The sizes of extra storage spaces

required in our method are analyzed as follows.

® The storage space required for the bit-wise indexes Tew = |Rx Y_ (i), where o)
i=1

is the number of bits used for attribute A, r is the number of attributes, and |C| isthe
number of records in warehouse. For example, assume that there are 100000
records in a warehouse and 16 attributes to describe each record. Also assume each
atribute has 4 possible values ."i*h.e'"":ﬁ'stqflage space required for Tew =

16 A EHIWG R
(100000)x >4 bits = (6400000/8) bytes= 800000 bytes = 0.8 M bytes
i=1 =~ | e -'.;

The storage space of the I\}T@.der"i—;;f'xza(i). For the above example, the
., b o
storage space required for the I\/Iask- \,éctor = (16x §4) bits = (1024/8) bytes =128
=
bytes.
The storage space required for the Smilarity Mapping List L = f x (2" —1), where f
is the storage space required for storing a similarity value. Assume that f is a 4-byte

real number. For the above example, the storage space required for the Smilarity

Mapping List L = 4x(2'°-1) bytes = 262140 bytes = 256 K bytes.

Note that the size of the extra storage space required for the Smilarity Mapping
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List is exponential to r. Therefore, the Smilarity Mapping List is not suitable for

domains with large numbers of attributes.

The result of comparing the Simple BWI indexing method with the Bitmap

indexing method is shown in Figure 3.1.

——BWI-CBR
Bitmap-CBR

retrieval time

500
3500
6500
9500

12500
15500
18500
21500
24500
27500
30500
33500
36500
39500
60500
63500
66500
69500
72500
75500
78500
81500
84500
87500
90500
93500
96500
99500

Figure3.1: SmpleBWI i Bitmap indexing method

We can see that Simple BWI method is faster than Bitmap indexing method, the
reasons are:
® Inretrieving relevant cases phase, the Bitmap indexing technology is not suitable
for retrieving similar cases. For example, when a new case comes, the Bitmap
indexing method needs to check all possible attribute combination vectors in order
to retrieve relevant prior cases. The more attributes check, the more time it needs.

® |In similarity measurement phase, the Bitmap indexing method needs to check the
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all corresponding position in all possible attribute combination vectors, especially
when the number of attribute of query needs or the number of records in the table
T are large. The waste time is lengthy and unbearable. Therefore, the BWI
indexing method is faster than that in Bitmap indexing method when the similarity

computing is needed.

Also, we compare the Simple BWI indexing method with single processor and the
parallel Simple BWI indexing with multiple processors for showing the improvement

of the performance. In Figures 3.23870 3.3%the dual CPUs parallel Simple BWI
¥ EHRQ\ ¢
indexing method can increase thé ,perforrﬁa_r,ace about 1.6 times and the quad CPUs

parallel Simple BWI indexing methodcan_ mcreasethe performance about 3.2 times. It
is obvious that Simple BWI indexing n;ét-hdd'ii.s ‘quite suitable for parallelization since
the bit-wise indexing matrix of the proposed method can be separated into several
independent sub-matrixes and these sub-matrixes is almost balanced. Therefore, when
the Simple BWI indexing method is built in a multiple CPU machine, the workload

can be easily shared into each processor and assure that the workload of each processor

is almost balanced.
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Figure 3.2: Speed-up of parallel BWI indexing on two processor s machine.

Figure 3.3: Speed-up of parallel BWI indexing on four processor machine.
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Chapter 4
Advanced Bit-wise I ndexing M ethod

In the chapter, the advanced bit-wise indexing method, including Encapsulated
bit-wise indexing method and Compacted bit-wise indexing method, are introduced,
including the definitions and algorithms of indexing and matching phases in these two

bit-wise indexing methods are proposed in the following sections.

y

Bl =1~ . '
| B

||I b

=1

"1

1

2 =

| =]

4.1 Encapsulated Bit—wié:'efl‘lﬂhd'é:;i g M ethod

e

4.1.1 Genera Assumptions and Notations for Encapsulated BWI

Technology

As we can see, the hit length of bit-wise indexing vector for some attribute
depends on the number of its distinct values. When the attribute contains a large
amount of distinct values, the size of its corresponding bit-wise indexing vector

becomes hugely large, when the required bit-length is too large to handle, partitioning
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the bit-length to several levels seems helpful for this issue. There is a threshold (Th)
which can be used to determine whether the encapsulated bit-wise indexing technology
is applied or not. That is, when the total length of bit vectors is larger than this
threshold (Th), the algorithm is applied on. The following notations and definitions are

given to describe the encapsulated bit-wise indexing method.

NOTATION 4.1:
eli = the maxima encapsulated level of attribute A

6, = the bit length of j-th encapsuléted 1édiof attribute A
: 5.'!T| ] '--':;f o
eii = the total bit length of BWigsindex for.the given attribute A, eii=> &/

i = the total bit length of BWiindex for thelgiden record R, &= e,
o =

2 Bk

Th= the threshold for separating bit-length to levels boundary

We propose an Encapsulated bit-wise indexing method on data warehouse to
achieve the goal of saving storage and accelerating user query procedure. This method
includes two phases. One is creating indexes phase, and the other is querying phase.
The indexing phase transforms the contents of table into a bit vector matrix (in here,
called amatrix of bit-wise indexes), and the query phase is retrieving recordsto answer

the query statements as soon as possible.
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4.1.2 The Indexing Phase of Encapsulated BWI Method

The indexing phase includes Encapsulated level calculating Algorithm,
Encapsulated BW attributes index creating Algorithm and Encapsulated BW matrix
of bit-wise indexes creating Algorithm. The Encapsulated level calculating Algorithm
calculates an encapsulated level of each attribute for creating the corresponding
bit-wise indexes, the Encapsulated BW Bit-wise indexes creating Algorithm creates
corresponding BWI index of matrix of multi-level bit-wise indexes. The Encapsul ated
BW Matrix of bit-wise indexes creatlng ﬁgonthm greates bit vectors matrix of data

warehouse. These algorithms and examples &ré shownas follows.
== g . | =

T 1HSG
oL

2 Bk

In Encapsulated bit-wise indexing method, there are several methods to decide the
partition size of indexing vector. Here, we use square root to calculate the compact size
of indexing vector. For instance, when n bits are required to represent a specify
attributes in simple bit-wise indexing method, 2 +/n 1 bits are required by two levels
indexing vectors respectively in two-level encapsulated bit-wise indexing method. For
example, assume that attribute A uses 10,000 bits to be the indexing vector when
simple bit-wise indexing method is applied. There are 200 bhits are required in

two-level condensable bit-wise indexing method. As we can see, the used bits can be
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largely reduced to 1/50. When the condensable bit-wise indexing method is used in the
data warehousing, the used bits in much more compact then using bitmap and simple
bit-wise indexing methods. Therefore, we propose the following definitions and

algorithms.

Algorithm 4.1 - Encapsulated level calculating Algorithm — Square Root :

Input:  Table T of data warehouse and threshold Th.

Output: The corresponding el; and i/ for all attribute in A.

GBS k=1 N,

Step1: Letel = 1eit=o(i) and el = JiDlefafor 1<i<r.
Step 2:  If e > Th, do the foIIowi:ln'g wb—sll.jepsothervwse goto Step 3.
Step2.1: I not exist a e|,’wherle:?and_ehJ >2><|_\/e|7,‘ 1 with minima el; and j,
Return false for Th Iir;1i:[;§ti6n a
Sep22: Let di=el; +1, ei=ai-a} +2d ,fei! L&/ = fe! | e = fei! Tand go
to Step 2.

Step 3:  Return the corresponding €l andei for al attribute in A.

EXAMPLE 4.1:
Figure 4.1 shows a flat target table T including attribute set A = < LotID, SteplD,
ToollD, Yield >, four attributes and 23 records. The attribute values domains of Cid,
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Name, Gender, and City are V1=< 0001, 0002, 0003, ..... , 00022, 00023 >, V2=<

PS 1, PS 2, PS 3, PS 4, PS 5 >, V3=< AWOX 11, AWOX12, AWOX 13, AWOX 14,

AWOX21, AWOX3l, AWOX32, AWOX33, AWOX34, AWOX35, AWOXS3G,

AWOX41, AWOX42, AWOX43, AWOX51>, and V4=< 92.1, 92.2, 92.3, 93.1, 93.2,

94.3,94.4, 94.5, 94.6, 95.5, 95.6, 95.7, 95.7, 95.8, 96.1, 96.5, 99.1, 99.3>, respectively.

It can be easily seen that the number of distinct values of LotID, SeplD, ToollD and

Yield are eil= 23, ei2=5, ei3=15 and ei4=18, respectively.

LotID |StepID| ToollD | Xieldifag,jLotID|SteplD| ToollD | Yield
0001 |PS_1 |AWOX 1410215 fe8 0013 | PS_3 |AWOX3493.1
0002 |PS 1 |AWOX11,92.3 |1 14 0014 | PS 3 |AWOX3504.4
0003 |PS 1 |AWOXA2 [92.2. 7| 15 0015 | PS 3 |AWOX3695.8
0004 |PS 1 |AWOX13./99:1 416 0016 | PS 4 JAWOX4193.2
0005 |PS 1 |AWOX14'89:8:. 4«17/ 0017 | PS_4 AWOX4194.5
0006 |PS 2 |AWOX21[93.1 | 18 0018 | PS 4 AWOX4195.6
0007 |PS 2 |AWOX21 (945 | 19 0019 | PS 4 |AWOX4294.6
0008 |PS 2 |AWOX21(95.6 | 200020 | PS 4 |AWOX4294.3
0009 |PS 2 |AWOX21|95.7 | 210021 | PS 4 |AWOX4395.7
0010 |PS 3 |AWOX31|96.1 | 220022 | PS 5 |AWOX5195.5
0011 |PS 3 |AWOX32 (922 | 23 0023 | PS 5 |AWOX5196.5

0012 |PS 3 |AWOX33(92.3
Figure4.1: An example of Flat target table T

© 0 N o6 o1l b W N =

=Y
o

|_\
|_\

=
N

4 1
el =) > eif=23+5+ 15+ 18 = 61 bits be the length of an encoded record.

j=1 k=1

The threshold Th is set to 35 initially. Also, all levels of attributes have initial
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value 1, eg., €l; =1, el, =1, el3 = 1, el; = 1 and the vector length of all attribute are

thus ei;=23, €il=5, eil=15and ei;=18.

Since e > Th, the attribute LotID with the max length of indexing string ei}=23
is chosen for length reducing. Therefore, the encapsulation level of attribute LotID
e=1+1=2, eil=ei?= +/231=5, €i;=10 and the total length of vectors e is reduced to
48 (61-23+10). However, the length is still larger than the threshold Th. The attribute
Yield is then chosen. Therefore, the encapsulation level of attribute Yield el,=1+1=2,
el=e? 18 =5, €i,=10 and the totaI Iength of vectors e is reduced to 40

: iE |

(48-18+10). Since the length is StIII Iarger than the thrwhold Th. The attribute Tool ID

is then chosen. Therefore, the éjqapﬂétibr‘i“lev’ql” of attribute ToolID el3=1+1=2,

eil=ei?= /15 =4, €i,=8 and the total length of vectors ei is reduced to 33 (40-15+8).

Finally, the total length of vector is reduced to 33 and the algorithm stops.

As mentioned in Definition 3.5, the user can provide a suitable transforming
function for the continuously type attributes, including numeric and data-time type. In
the encapsulated BWI method, user can provide an €li-level transforming functions f;
for the attribute A; in order to close for the physical meaning than encapsulated BWI

itself only. fi=<f!, f2,..., f*> where the number of value domain of f* should
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equal to €. The definition is shown below:

DEFINITION 4.1 — Encapsulated BWI bit-wise indexing vector of an attribute
where Type(A)#£S :

The bit-wise indexing vector B; of the i-th attribute for the record R; in T is set of
bit strings. B=<B', B?, ..., B*%>, where fi=<f', f2,..., f%> is the j-level of
function that given by user Blk:bj]_bjz...bje:(, where by=1 if f*(Vi(k))=I and by=0

otherwise.

EXAMPLE 4.2 = =0 43
i P ~ { ..ll

1

Assume that the second attribiite Recipe degreeis <10, 12, 14, 16, 18, 20, 22, 24>,

| &

Also, after the Encapsulated level calcu] étiﬁg Algorithm — Square Root executed, and
the e ,eil and €l areall set to 2. The attribute value of Recipe_degree in the second
record is 16. Also, user gives the following two-level (fl=2) function f, and f? .

f (Vi(k)=LVi(k)/10]

£2(Vi(K)=L(Vi(k) — (£ (Vi(K)x10))/5}+1

According to the Definition 4.1, bit-wise indexing method uses the 4 bits as the
bit vector of the index in which every bit represents a specific value of the index

attribute Recipe_degree.
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£ (Vi(K)=1 £ (Vi(K)=2
1 0
BZ:
£2(Vi(K)=1 12 (Vi(K)=2
0 1

Therefore, we get B,=B; B ="1001"

Algorithm 4.2 - Encapsulated BWI bit-wiseindexes creating Algorithm :

Input: A record R. =t R

Output: A bit-wise index BW; oTR. <=
Step1: Create abit-wise vector BV\/IEi.“‘on} Ier;gth 0
Step 2:  Repeat the following sub-steps for each attribute Ay until all attributes are
processed.
Step 2.1:  If Type(A) # S and fi#J, go to Step 2.2, else let m=n if Vj(i)=Vj,, create

a bit-wise vector B; with 0 and repeat the following sub-steps for each

encapsulated level el until all encapsulated levels are processed
Step2.1.1: Let B'=bib,...b,, toaall-zero string with lengthei

Step2.1.2: If k#el,, goto Step 2.1.3, else if the m=0, set b, =1 and set by=1
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otherwise, go to Step 2.1.5.

g
Step2.1.3: Leto=|nv []&P |, if o=eif, set be=1and set b,,, =1 otherwise.

o+1
p=k+1

el
Step2.1.4: Set m=m-(ox [ ] eiP)

pok1
Step 2.1.5:  Concatenate the bit strings Bj and B into B;.

Step 2.2:  If Type(A) # S and fi#J, for each B}< , do the following sub-steps
Step2.2.2: Setby=Lif £*(Vi(K)=l and by=0 otherwise
Step 2.2.3:  Concatenate the bit strings By and Bf into B;.

Step3:  Concatenate the bit stringsBi; Bz and Br into BW;.

| N S

=1
"1

Step4:  Return the vector W= 1 > ,
=i N~ ~ { | ...ll

T 1HSG
oL

Algorithm 4.3 - Encapsulated BWI M atrix\ of -bi"t;Vvise indexes creating Algorithm :

Input:  Table T of the data warehouse.

Output: The Tgw of the data warehouse.

Step 1.  Create an empty bit-wise indexes matrix Tgw for table T.

Step 2: Call Encapsulated level calculating Algorithm — Square Root (Algorithm 4.1)
to get the corresponding els and eis.

Step 3:  Repeat the following sub-steps for each record R until all records are
processed.
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Step 3.1: Use the Encapsulated BW bit-wise index creation algorithm
(Algorithm 4.2) to get the index BW; of R..
Step 3.22  Add BWI; into Tew.

Step4:  Return Tw.

After a bit-wise index matrix is built, bit-wise operations can easily be used to

retrieve desired record for the new coming queries.

EXAMPLE 4.3:

Assume that a Target TabIeIT"‘opntai ni”ng;-23‘rﬁe.cor2;is is shown in Figure 4.2 and the
- - .

=

user gives the following two-level (fl=2) function fand f2of atribute Yield .

£ (Vi(K)= (Vi(k)-90)/2]
£2(Vi(K)=T (Vi) — (90+( 1} (Vi(K)-1) x2)) /0.4) |

The bit-wise indexes for the above records are shown in Table 4.1.
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Table 4.1: The Tgw of 23 recordsin Figure 4.2

BWI LotID Step!D ToollD Yield
eis 6l i’ il EF 6’ ol 6’
BW, | 10000 | 10000 | 10000 | 1000 | 1000 | 01000 | 10000
BW, | 10000 | 01000 | 10000 | 1000 | 1000 | 01000 | 10000
BWs | 10000 | 00100 | 10000 | 1000 | 0100 | 01000 | 10000
BW, | 10000 | 00010 | 10000 | 1000 | 0010 | 00001 | 00100
BWs | 10000 | 00001 | 10000 | 1000 | 0001 | 00001 | 00010
BWs | 01000 | 10000 | 01000 | 0100 | 1000 | 01000 | 00100
BW; | 01000 | 01000 | 01000 | 0100 | 1000 | 00100 | 01000
BWg | 01000 | 00100 | 01000 | 0100 | 1000 | 00100 | 00010
BWs | 01000 | 00010 | 01000 | 0100 | 1000 | 00100 | 00001
BWj, | 01000 | 00001 | 00100 | 0100 | 0100 | 00010 | 10000
BWj; | 00100 | 10000 | 00100 | 0100 | 0010 | 01000 | 10000
BWj, | 00100 | 01000 | 00100 | 0100 | 0001 | 01000 | 10000
BW; | 00100 | 00100 | 0010044440010 | 1000 | 01000 | 00100
B, | 00100 | 00010 | 00100 45.001074 0100 | 00100 | 01000
BWlis | 00100 | 00001 |=00100 [“0040. [~ 0010 | 00100 | 00001
BWs | 00010 | 10000 |- 00010 50001 | 01000 | 00010
BW, | 00010 | 01000 |<00030¥II601I0 /i 0001 | 00100 | 01000
BWs | 00010 | 00100 | 00010, 0010° | 0001 | 00100 | 00010
BW | 00010 | 00010 | 00010 | 0001 | 1000 | 00100 | 01000
BWy | 00010 | 00001 | 00010 | 0001 | 1000 | 00100 | 10000
BW» | 00001 | 10000 | 00010 | 0001 | 0100 | 00100 | 00001
BWj | 00001 | 01000 | 00001 | 0001 | 0010 | 00100 | 00010
BWj | 00001 | 00100 | 00001 | 0001 | 0010 | 00010 | 01000
4.1.3 The Matching Phase of Encapsulated BWI Method

Calculating the similarities between a query and saved

records is a

time-consuming task. A two-phase matching approach, called the Encapsulated BW

Smilar-records-seeking algorithm, is thus proposed here to reduce the matching time.
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It includes the Encapsulated BW relevant-recordsretrieving phase and the
Encapsulated BW similarity-computing phase. In the first phase, all irrelevant records
are filtered out to avoid calculation of their similarities. The time of calculating the
similarities of useful saved records can then be decreased. The similarities of the query
with remaining saved records are then computed efficiently in the ssimilarity-computing

phase. The algorithm is described as follows.

Algorithm 4.4 - Encapsulated BWI Similar-records-seeking algorithm :

Input : A bit-wise index matrix TB.W' and a.néw::qy‘gry Ru.

Output : A set of similar record R'c..:l.'\'/vith th&r g m| Ilgrit:y_ildegre% with Ry.

Step 1:  Use the Encapsulated &M bltlwl_srndex e(é;tion algorithm (Algorithm 4.2)
to get the index BWy of tH-e..ndev'v qdé'rylllR;N according to the condition part of
the query.

Step 2:  Initialize the counter j to 1 and Rc to an empty set.

Step 3:  For each BWI; in Tewi, do the following sub-steps (1<j<|R)):

Step3.1: Call the Encapsulated BW search-relevant-records algorithm
(Algorithm 4.5) to compute the relevance degree rdi; between BWly
and BWI;.

Step 3.2:  If rdij=0, ignore the record R, and go to Step 3.5.
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Step 3.3:  Call the Encapsulated BW similarity-computing algorithm (Algorithm
4.7) to compute the similarity sim; between Ry and R,
Step 3.4:  Add record R; with its similarity sim; to Rc.
Step3.5: Add1toj.
Step 4:  Sort the resultsin Rc in descending order of their similarities.

Step 5: Output Re.

Even the encoding procedure of BWI index in Encapsulated BWI method is

different than the Simple one, it stillyéh easifybe found by using the *AND? bit-wise

A E ,5;!?| IHL =
operation to compare the tw'oj\ bit \‘/er‘;ltqrs‘ The= following Encapsulated BWM
- 1. =

Search-relevant-records al gorithﬁﬁ.-ijs thus proposed to achieve this purpose.

2 Bk

Algorithm 4.5 - Encapsulated BWI Search-relevant-records algorithm :

Input:  The bit-wise indexing vector BWly of a new query Ry and the index BW;
of asaved record R inR.

Output: The relevant degree rdi; between Ry and R,

Step 1:  Use the ‘AND’ bit-wise operation on BWly and BW; and store the result as
rdij, which is also a bit string.

Step 2:  Return rdi;.
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Since the ‘AND’ hit-wise operation is fast, the Search-relevant-records algorithm
selects relevant saved records quickly. If rdi is zero, then the saved record is thought of
as irrelevant and will be filtered out. Since the properties of Encapsulated BWI mode,
if rdi has some ‘1’ bits, it does not mean that the saved record is relevant. As
mentioned above, a matching function based on a weighted sum of matched attributes
is defined to calculate the similarity degrees. Asthe same with Smple BW method. the
Mask \Vector and the Smilarity Mapping List are used in Encapsulated BWI method
and then be defined at Definition 4.2 and 4.3.

N

DEFINITION 4.2 - Encapsulated BWI Mask Veetor :

A Encapsulated BWI bit-wissifdexinig-mask Vector eMask is a set of eMask,

where 0 < k < Zeli . Each eMask, dendting the mask vector of attribute Ay, is a
i=1

concatenation of r hit dgrings as eMask=SS... Sid , Where § = <1> for

k-1

[
D d <i<) d, and §=<0>otherwise.
: o

DEFINITION 4.3 - Encapsulated BWI Similarity Mapping List :

Let L be an Encapsulated BW Smilarity Mapping List and L; be an element in L

r eli
with an index value i, which is determined from the attributes matched, 1<i< 251 -1.

Let i be represented as a binary code bibi,... b-id . The value of L; is thus
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i ﬁ blk XW]
= k=fe|.+1
2w,
j=1

Algorithm 4.6 - Encapsulated BWI Similarity-mapping-list creation algorithm :

Input:  Weights of attributes Wy, W, ..., W, of R.
Output: A similarity mapping list L.

Step 1:  Initialize the counter i to 1 and the list L to be empty.

Step2: For eachi, 1<i<2™ -1, do théfollowifigsub-steps
Step 2.1: Encodei into abi n'ér'y string !<bi.1ldi‘2, b ty >,
- - Sy,

Step2.2:  Calculate the similarity'degiéa LBy the formula in Definition 4.3,
Step2.3: Put L into the list L with index i.

Step 3: ReturnL.

After the Smilarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 4.7 - Encapsulated BWI Similarity-computing algorithm :
Input:  The relevant degree rdi; of record R; with a new query, the Mask \ector, and
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the Smilarity Mapping List L.
Output: The similarity of R; with a new record.

Step 1: Initialize azero binary string of lengthr.

Step2: For each i, 1 <i < Y.

i
i=1

, Set the i-th position in the string to 1 if
AND(eMask;, rdij) = AND(eMask;, BWy).

Step 3:  Transform the binary string into an integer j.

Step 4: Get L; from the Smilarity Mapping List.

Step 5 Return L.

EXAMPLE 4.4;
Continuing from Example 4.3, dt‘ﬁe‘ | BV\/IN of a new query Ry, which is

{SteplD=PS 1, ToollD=AWOX13, Yield=99.1}, is < eil =00000 ei? =00000

eil=10000 €il=1000 €i2=0010 ei1=00001 €i2=00100>. Also assume that weight

Ws, W5 and W, are set to 0.4, 0.4 and 0.2, respectively. Each BWI; in Tew in Table 4.1

is processed as follows.

e For BWM;, BWM,and BW3, al the relevant degrees rdij, rdi, and rdiz between BWI 4,

BW, BM; and BWIy are found as <00000 00000 10000 1000 0000 00000 00000>

by the Encapsulated BW Search-relevant-records algorithm. Since more than one bit
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in rdiy is "1", Records 1, 2 and 3 are possible relevant records. According to the
Definition 4.2, the eMask, = <00000 00000 11111 0000 0000 00000 00000> and
eMask;=<00000 00000 00000 1111 1111 00000 00000>. Since the result of
AND(eMask;, rdi;) = <00000 00000 10000 0000 0000 00000 00000> is equal to the
result of AND(eMask,, BWIy) = <00000 00000 10000 0000 0000 00000 00000> and
the result of AND(eMasks, rdi;) = <00000 00000 00000 1000 0000 00000 00000> is
not equal to the result of AND(eMasks, BWIy) = <00000 00000 00000 1000 1000
00000 00000>, the similarities of Records 1, 2 and 3 are found as 0.4 via
ALGORITHM 4.7. Record 1, 2, 3 arethen the relevant records.
- iE |

For BWM 4. The relevant degree rd|4 between BWI4 and BWIy is found as <00000

00000 10000 1000 0016'“;;. 969‘6)‘1‘”" 66109",?5’ by the Encapsulated BW
Search-relevant-records algorithm. S| nce ‘rr't(')rethan onebit inrdi; is"1", Record 4 is
a possible relevant record. According to the Definition 4.2, the eMask, = <00000
00000 11111 0000 0000 00000 00000>, eMasks=<00000 00000 00000 1111 1111
00000 00000> and eMasks;=<00000 00000 00000 1111 1111 11111 11111>. Since
the results of AND(eMask,, rdis) is equal to AND(eMask,, BWMy), AND(eMasks,
rdis) is equal to AND(eMasks, BWI\) and AND(eMask,, rdis) is equal to

AND(eMasks, BWM), the similarity of Record 4 is found as 1 via ALGORITHM 4.7.

Record 4 isthen arelevant record.
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After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 4.2.

Table 4.2: Fiverelevant records and their ssimilarities

Relevant Record| Record 4 | Record 1| Record 2 | Record 3| Record 5
Similarity 1 04 04 04 04

4.1.4 Analysis and Experiments of Encapsulated BWI Method

As we can see, the major different between Smilarity-computing algorithm
(Algorithm 3.6) of Smple BW method a:rd EncathUIated BW similarity-computing

algorithm (Algorithm 4.7) of Encapsulated BVVI method isin Step 2. In Smple BWM

1 ."i 1
v i

method, one ‘AND’ bit-wise dpe"r-atign and a-""bit-to-integer operation are used.
However, two ‘AND’ bit-wise operations and a bit-comparing operation are used. In
general, the bit-wise and bit-to-integer operations are quite the efficiency operation,
however, bit-comparing operations are not and thus highly depends on the length of bit
string. The storage saving and computation time of Encapsulated BW method are
tradeoff. The more encapsulated level used, the more storage saving, however, the

more computing time needing.
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4.2 Compacted Bit-wise Indexing M ethod

In the Section, the Encapsulated bit-wise indexing method is introduced, including
the definitions and algorithms of indexing and matching phases in Encapsulated

Bit-wise Indexing Method are proposed.

4.2.1 General Assumptions and Notations for Compacted BWI Method

In Section 4.1, we propose the Encapsulated bit-wise indexing method to a data

warehouse and it can largely reduce the W|dth of the matrix of bit-wise indexes.

4= ;
However, the total number of b|t -wise |naex strmg -that needs to be compared via

“AND” bit-wise operation are stlllreqwredlnorder "to accelerate the processing time
of OLAP queries, we propose a more sc;f;hiéti'ic'afed indexing model, called Compacted
bit-wise indexing method.

As we know, the attributes are the base information of all OLAP queries and the
concept hierarchy of each attribute is beneficial for roll-up and drill-down operations
of the data warehouse. In the Compacted bit-wise indexing method, the importance of
attributes, including attribute and concept hierarchy, is evaluated via encapsulated level

of Encapsulated BWI method. Using this method, the bit strings of attributes are

partitioned into two levels. For al attribute, and the encapsulated level is smaller than
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compact level cl; are kept in the first level bit-wise indexes matrix, called Main Matrix
Taw » and each BW; in T, are linked to a hit-wise indexes matrices, called
Drill-Packet Matrix TB?,;’i , to keep the remain encapsulated levels. According to the
BWI indexing structure, the processing time of OLAP queries can be hugely reduced

since most irrelevant record will be filtered out in the matching procedure using Toy, -

NOTATION 4.2:
cl; = the compacted level of of attribute &

BWM = the bit-wise indexing for Main Matrix Tay, -

BWI® = the bit-wise indexing,foF Drill-Pagket Matrix T2: .
Taw = the Main Matrix of bitswise indexes metrix of T

TS = the Drill-Packet Matfix. T2 bit-wiseindexes matrix of BWI; of T,

rdm = the result vector of matching BWI and BW " , where 1<i<| T, |-

rdd; = the result vector of matching BWI; and BWI.° . where 1<i<r

We propose a Compacted bit-wise indexing method on data warehouse to achieve
the goals of saving storage and accelerating user query procedure. This method
includes two phases. One is creating indexes phase, and the other is querying phase.
The indexing phase transforms the contents of table into a Main Matrix Ta, and

| Taw, | Drill-down Matrix TB?,;’i , and the query phase is retrieving records to answer the
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guery statements as soon as possible.

4.2.2 The Indexing Phase of Compacted BWI Method

The indexing phase includes Compacted BW attributes index creating Algorithm
and Compacted BW matrix of bit-wise indexes creating Algorithm. In this method, the
Encapsulated level calculating Algorithm (Algorithm 4.2.1) is still used to calculate an
encapsulated level of each attribute for creating the corresponding bit-wise indexes, the
Compacted BW Bit-wise indexes creating Algorithm creates corresponding BWI index
of matrix of two-level bit-wise inde.xﬂes‘ The Compacted BWM Matrix of bit-wise
indexes creating Algorithm create%e'u Mal nl-ﬂi/latrlx TB“\’;,, and [TM | Drill-down Matrix

T2™ of Table T in the data war;-ehouse. '[h@e élgoritﬁms and examples are shown as

follows.

Algorithm 4.8 - Compacted BWI bit-wise indexes creating Algorithm :

Input: A record R.

Output: Two bit-wise vectors BWM " and BW ° of R.

Step 1:  Create two bit-wise vectors, including BW ™ and BW°, of length 0.

Step 2:  Repeat the following sub-steps for each attribute Ay until all attributes are
processed.

Step 2.1 If Type(A) # Sand £, go to Step 2.2, else let men if Vi(i)=Vj,. Repeat
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the following sub-steps for each encapsulated level elx until all

encapsulated levels are processed

Step2.1.1: Let B'=bib,...b,, toaall-zero string with lengthei |

i

Step2.1.2: If k#el,, goto Step 2.1.3, else if the m=0, set b, =1 and set by=1

otherwise, go to Step 2.1.5.

el
Step2.1.3: Leto=Lnv []&P ), if o=eif, set by=land set b

o+1

=1 otherwise.
p=k+1

e
Step2.1.4:  Set m=m-(ox [ eiP)

p=k+1

Step2.1.5: If k<cl;, concgtenéfé the it strings BW/" and B toBWI" and

concatenatethenbit strings” BW 2and B toBWI°> otherwise.
= | 4 ;Il

Step2.2: I Type(Ay) # S and i@ foreach BE; do the following sub-steps

Step2.2.2: Setby=Lif £*(Vi(K)=l and by=0 otherwise
Step2.2.3:  If k<cl;, concatenate the bit strings BWM " and B toBW" and

concatenate the bit strings BWI°and B} toBW® otherwise.

Step 3:  Returnthe vectors BW " and BWM .

Algorithm 4.9 - Compacted BWI Matrix of bit-wise indexes creating Algorithm :

Input:  Table T of the data warehouse.

Output: The TM and |TM | TE" of the Table T in data warehouse.
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Step 1:  Create an empty bit-wise indexes matrix Ta, for tableT.
Step 2: Call Encapsulated level calculating Algorithm — Square Root (Algorithm 4.1)
to get the corresponding els and eis.
Step 3:  Repeat the following sub-steps for each record R until all records are
processed.
Step 3.1:  Use the Compacted BW bit-wise index creation algorithm (Algorithm
4.8) to get theindexes BWM ™ and BW ° of R.
Step 3.2 Set k=1 and do the following sub-steps.
Step32.1: If BM! =0, Creete an épty Drill-Packet Matrix Tgy |, set

- = FlS % T
BWI =BWI,"yadd BWIRinto -T2, , and go to Step 3.

| -

Step32.1: If BWIY =BWI™ ‘add BWIRinto Ta and go to Step 3

o ne

Step4: TN and [T | TS

After bit-wise index matrixes, including T, and all related TB'?,s,’i, are built,
bit-wise operations can easily be used to retrieve desired record for the new coming
gueries.

EXAMPLE 4.5:
Continuing Example 4.3, assume that the compacted level cl; of all attributes are

set to 1. According to the Algorithm 4.9, the Main Matrix T3, for the records in
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Figure 4.2 is shown in Table 4.3 and the corresponding Drill-Packet Matrixes are

showninTable4.4t0 4.17.

Table4.3: The Ty, of recordsin Figure4.2

BWI LotID SteplD ToollD Yield
BWI." 10000 10000 1000 01000
BWI 10000 10000 1000 00001
BWI 01000 01000 0100 01000
BWI 01000 01000 0100 00100
BWI 01000 00100 0100 00010
BWI 00100 00100 0100 01000
BWI 00100 00100 0010 01000
BWI 00100 ,00200,, 0010 00100
BWI 00010 |4 00010 4. 0010 01000
BWI 00010 = | 00010, [ 0010 00100
BW 00010 = 10 [ = 0001 00100
BWI Y 00001 7 0001 00100
BWI" 00001 0001 00100
BWI" 00001 0001 00010

Table4.4: The TB'?,'VT of recordswith cli=1in of Ta,

BWI LotD ToolID Yield
BW ° 10000 1000 10000
BW ° 01000 1000 10000
BW 00100 0100 10000

Table 4.5: The TB?,'V"Z of recordswith cli=1in of Ta,

BWI LotID ToollID Yield




BW 00010 0010 00100
BWI? 00010 0001 00010
Table 4.6: The TB?,'V"3 of recordswith cli=1in of Ta,
BWI LotID ToollD Yield
BWI ¢ 10000 1000 00100
Table4.7: The TB'?,'VT of recordswith cli=1in of Ta,
BWI LotID ToollD Yield
BW 01000
BW 00010
BW 00001
Table 4.8: The TB'?,'V"S of recordswith cli=1in of Ta,
BWI LotID ToollD Yield
BW 00001 0100 10000
Table 4.9: The TB'?,'V"G of recordswith cli=1in of Ta,
BWI LotID ToollD Yield
BW 10000 0010 10000
BW 01000 0001 10000
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Table 4.10: The TB?,'VT of recordswith cli=1in of Ta,

BWI

LotID

ToollD

Yield

BW 2

00010

1000

00100

Table4.11: The TB?,Cf of recordswith cli=1in of Ta,

BWI LotiD ToollD Yield
BWID 00010 0010 01000
BWI 2 00001 0010 00001

Table4.12: The Tgy  ofiesords with cli=Lin of Ty,

-
.

=

N

Ay
2

BWI Yield
BW 00010
Table 4.13: The TB'?,'V,DN of recordswith cli=1in of Ta,

BWI LotID ToollD Yield
BW 01000 0001 01000
BW 00100 0001 00010
Table 4.14: The TB?,C,’ll of recordswith cli=1in of Ta,

BWI LotID ToollD Yield
BW 00010 1000 01000
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BW 2

00001

1000

10000

Table 4.15: The TB'?,'V,’H of recordswith cli=1in of Ta,

BWI

LotID

ToollD

Yield

BW S

10000

0100

00001

Table 4.16: The TB'?,'V,”B of recordswith cli=1in of Tau,

BWI

LotID

ToollD

Yield

BW 2

01000

0010

00010

Table 4.17: The Ty | of réco

BWI £0tI Dy Yield

BWI2 00100 T 0010 01000

4.2.3 The Matching Phase of Compacted BWI Method

Calculating the similarities between a query and saved records is a
time-consuming task. A two-phase matching approach, called the Compacted BWM
Smilar-records-seeking algorithm, is thus proposed here to reduce the matching time.
It includes the Compacted BWI relevant-records-retrieving phase and the Compacted

BW similarity-computing phase. In the first phase, al irrelevant records are filtered
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out to avoid calculation of their similarities. The time of calculating the similarities of
useful saved records can then be decreased. The similarities of the query with
remaining saved records are then computed efficiently in the similarity-computing

phase. The algorithm is described as follows.

Algorithm 4.10 - Compacted BWI Similar-records-seeking algorithm:

Input: A bit-wise index matrixes TM  |TM | T2"  Table T and anew query Ry.
Output: A set of similar record Rc with their similarity degrees with Ry.
Step 1:  Use the Compacted BW bjt-wiseliridex, creation algorithm (Algorithm 4.8)

to get the indexes BVVI}Q’l and lBW o and of the new query Ry according to

the condition part of thequery‘—
Step 2: Initialize the counter j to 1 andRc tO'én-lélinpty Set.
Step3:  For each BW }" inTgy, , do the following sub-steps (1<j<|Tqy, |):

Step3.1: Cal the Compacted BW  Search-relevant-records-main-matrix
algorithm (Algorithm 4.11) to compute the relevance degree rdm,
between BWM{ and BWM ",

Step 3.2:  If al bitsin rdm; are 0, go to Step 3.5.

Step3.3; Foreach BW P in TE"' do the following sub-steps:

Step 3.3.1:  Call the Compacted BW search-relevant-records-drill-packet
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algorithm (Algorithm 4.12) to compute the matrix of relevance
degree rddy between BWM and BWI .

Step 3.3.2. Call the Compacted BW Concatenate-rdi-result algorithm
(Algorithm 4.13) to concatenate the bit strings rdm and rddy to
rdiy.

Step 3.3.3: Call the Compacted BW similarity-computing algorithm
(Algorithm 4.15) to compute the similarity sim; between Ry and
Rqusing rdi.

Step3.3.4: I simy # 0, ad#860rd Reddiith its similarity sim to Re.

a2
Step35. Add1toj. = 43

Step4:  Sort the resuilts in Rc in descendling order,of their similarities.

2 Bk

Step 5: Output Re.

Even the encoding procedure of BWI index in Encapsulated BWI method is
different than the Simple one, it still can easily be found by using the ‘AND’ bit-wise
operation to compare the two bit vectors. The following Compacted BW
Search-relevant-records-main-matrix algorithm, is thus proposed to achieve this

purpose.
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Algorithm 4.11 - Compacted BWI Search-relevant-records-main-matrix algorithm :

Input:  The bit-wise indexing vector BWI of a new query Ry and the index
BWMY in T, .

Output: The relevant degree rdm between BWI and BWM .

Step1: Use the ‘AND’ hit-wise operation on BWM and BWM ' and store the

result as rdmy, which isalso abit string.

Step2:  Return rdm,.

Since the ‘AND’ bit-wise ,operation, is fast, the Compacted BW

Search-rel evant-records-main-matrix ano'rilth Selects relevant saved records quickly.

If rdmy is zero, then the saved reét)[ds:i.n.-ﬂ:t'ﬁe.-’rgw“-" | _are thought of as irrelevant and will

be filtered out. Since the properties of ..C.fo'mpa&t'ec“j .BWI mode, if rdm has some ‘1’ bits,
it means that some saved records indexed in the TB?,'V,’i are relevant. However, the
similarities between query and these records should be calculated based on the
matching result of BWI; and all contains indexes in TB?,'V,’i. The following
Compacted BW Search-relevant-records-main-matrix-drill-packet algorithm and
Compacted BWI Concatenate-rdi-result algorithm are thus proposed to achieve this

purpose.
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Algorithm 4.12 - Compacted BWI search-relevant-records-drill-packet algorithm :

Input:  The bit-wise indexing vector BWM Y of a new query Ry and the index

BWI2 in T2,

Output: The relevant degree rddq between BWI; and BWI .

Step1: Use the ‘AND’ bit-wise operaion on BWIy and BW_ and store the

result as rddy, which is also a bit string.

Step 2:  Return rddk.

Algorithm 4.13 - Compacted BW ‘.,Conqeiténat':e;-r.‘diﬂ}rwlt algorithm:

Input:  Therelevant degree bit"-§.t"ri ngé rdm—mmddk

Output: The relevant degree rdix. TR

Step 1:  Initialize the counter m,nto 1 and rdiy to an empty bit string.

Step 2:  For m<r, do the following sub-steps:

Step 2.1:

Step 2.2

Step 2.3:

m-1 ¢ m d;
Add the bits between position > > e +1 to D> > ei; of rdmy to
n=1 =1 n=1 =1
rdik.
m-1 € m [=h
Add the bits between position > > ei| +1 to > e, of rdd; to
n=1 I=(cl;+1) n=1 I=(cl;+1)
rdik.
Add 1tom.
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Step 3:  Return rdi.

EXAMPLE 4.6:
Continuing from Example 4.5, assume that rdm; = <00000 10000 1000 00000>

and rdm; = <00000 1000 00000>. For the first attribute, the sub-string of rdm; at

1-1 1 1 1
position 1 ()Y e, +1=0+1=1) to 5 (D> ei, =5) will be appended to rdi first.
n=1 1=1 n=1 1=1

1-1 2
rdiiy is set to <00000>. The sub-string of rdd; at position 1 (D > ei; +1=0+1=1)to5

n=1|=(1+1)

1 2
(D. D i, =5) will then be appended to rdix. rdix is then set to <00000 00000>.

n=1 |=(1+1)

Finally, the rdiy is set to <00000 09900 100001000 1000 00000 00000> after the
A= W\

Compacted BW Concatenaterdi-—f&wlt allgbri:ithm"_is'ei‘gecuted.
= P % L ‘ .-'.'

| &

As mentioned above, a matching 1:1‘J.nct‘ion based on a weighted sum of matched
attributes is defined to calculate the similarity degrees. As the same with Smple and
Encapsulated BW methods, the Compacted BWM Mask \ector and the Compacted
Smilarity Mapping List are used in Compacted BW method then be defined at

Definition 4.4 and 4.5.

DEFINITION 4.4 - Compacted BWI Mask Vector :

A Encapsulated BWI bit-wise indexing mask vector cMask is a set of cMask,
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where 0 < k < Zeli . Each cMask, denoting the mask vector of attribute Ay, is a
i=1

concatenation of r hit grings as cMask=SS... Siel , Where § = <1> for

i=1

k-1

D d <i<) d, and §=<0>otherwise.

k
i= i=1

DEFINITION 4.5 - Compacted BWI Similarity Mapping List :

Let L be an Compacted BW Smilarity Mapping List and L; be an element in L

r eli
with an index value i, which is determined from the attributes matched, 1<i<( 251 -1).

Let i be represented as a binary code biibi...b, . The value of L; is thus

i>e
i=1
j+1 4 Ll - '
Qe A
r =1 ‘ i -
Z( I Ihk)X\/\/] !—I a2
e L : S e
1= k:('Zel,)Jrl - i 7 Al
1=1 E ’

r . :'. A | ___ : 1 i =
=1

Algorithm 4.14 - Compacted BWI Similarity-mapping-list creation algorithm:

Input:  Weights of attributes Wy, W, ..., W, of R.
Output: A similarity mapping list L.

Step 1:  Initialize the counter i to 1 and the list L to be empty.

r o,
Step2:  For eachi, 1<i<27 -1, do the following sub-steps:

Step 2.1:  Encodei into abinary string <bi1biz...b, >.

iYe
i=1

Step 2.2:  Calculate the similarity degree L; by the formula in Definition 4.5.
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Step 2.3 Put L intothelist L with index i.

Step 3:

Return L.

After the Smilarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 4.15 - Compacted BWI Similarity-computing algorithm:

I nput:

Output:

Step 1:

Step 2:

Step 3:

Step 4.

Step 5:

The relevant degree rdi; of record R; with a new query, the Compacted Mask
\ector, and the Smilarity Mapping'liist L .

The similarity of R withianew reord. % =

Initialize a zero binary é:(i*ng":gf35'@ngmv.r.

For each i, 1 <i < Ye . & the i-th position in the string to 1 if

i=1 I
AND(cMask;, rdij) = AND(cMask;, BM ).
Transform the binary string into an integer j.

Get L; from the Smilarity Mapping List.

Return L;.
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EXAMPLE 4.7:

Continuing from Example 4.6, the BM and BW ] of a new query Ry,
which is <StepID=PS 1, ToolI D=AWOX13, Yield=99.1>, is <ei11=00000 ei%leOOO
6il=1000 &l=00001 > and <ei2=00000 €i2=0010 €&i2=00100>. Also assume that
weight Wa, Ws and W; are set to 0.4, 0.4 and 0.2 correspondingly. Each BWM |" in Taw
in Table 4.3 is processed as follows.

e For BWM," therelevant degree rdm; = <00000 10000 1000 00000> since:

<00000 10000 1000 00001> (BW M)

AND  <00000 10000,1000 00000>  (BWI}")

<oooo(_)'"'1'oloqq,—1009;09690> (rdmy)

Since more than one hit in E_éiml _i.é ‘1_,_aIJ_BWI,D in Drill-Packet Matrix TB?,'V,’I are
retrieved to further investigati..().:h." e Jt-hree BWMP in T2F  including
BWI, BW ;) and BW] ; the relevant degree rdd; = <00000 0000 00000> since:

<00000 0010 00100> (BWMY)

AND <00000 1000 10000> (BWM))

<00000 0000 00000> (rddy)

The relevant degree rdd, = <00000 0000 00000> since:

<00000 0010 00100> (BWM)

AND <00000 1000 10000> (BWI2)

<00000 0000 10000> (rddy)
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The relevant degree rdd; = <00000 0000 00000> since:

<00000 0010 00100> (BWM)

AND <00000 0100 10000> (BWM?)

<00000 0000 00000> (rdds)

After the Compacted BW Concatenate-rdi-result algorithm executed, the rdis,

rdi, and rdiz are thus generated as following:

rdi;=" <00000 00000 10000 1000 0000 00000 00000>
rdi.= <00000 00000 10000 1000 0000 00000 00000>

rdis=<00000 00000 10000 1000 0000 00000 00000>

According to the Definition 5.4y3fke cMaskz: <00000 00000 11111 0000 0000
00000 00000> and cM ask3:<0.(:):lQ.OO ooo'tx!)oooooml 1111 00000 00000>. Since the
result of AND(cMask,, rdiy) =<00006Woo %ggoo 0000 0000 00000 00000> s
equal to the result of AN D(clVIask;, ..I?:V\./I N) = ééoooo 00000 10000 0000 0000 00000
00000> and the result of AND(cMasks, rdi;) = <00000 00000 00000 1000 0000
00000 00000> is not equal to the result of AND(cMasks, BWIy) = <00000 00000
00000 1000 1000 00000 00000>, the similarities of record 1, 2 and 3 are found as 0.4.

Record 1, 2, 3 are then the relevant records.

e For BWM)" therelevant degree rdm, = <00000 10000 1000 00001> since:

<00000 10000 1000 00001> (BW M)

AND  <00000 10000 1000 00001> (BW.")
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<00000 10000 1000 00001>  (rdmy)

Since more than one bit inrdmp is"1", all BWI° in Drill-Packet Matrix TB?,'V,’Z are
retrieved to further investigation. There is only one BWI,; in TBD\,GI, sthe relevant

degree rdd; = <00000 0000 00000> since:

<00000 0010 00100> (BWMY)

AND <00000 0010 00100> (BWM})

<00000 0010 00100> (rdd.)

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdig, is

thus generated as following:

rdi,=  <00000 OOOOO 10000 1000 0010 00001 00100>

SEls

- == J kT
According to the Deflnltlon 51, the cMaskz <OOOOO 00000 11111 0000 0000

00000 00000>, cIVIask3=<OOé)GO.H- QQboo ooqqg.-”1111 1111 00000 00000> and
cMask,=<00000 00000 00000 oooc;‘ oc‘)‘o:)' 11111 11111>. Since the results of
AND(cMask;, rdis) is equal to AND(cMaskp, BW\), AND(cMasks, rdis) is equal to
AND(cMasks, BWMy) and AND(cMasks, rdis) is equal to AND(cMasks, BWIY), the

similarity of Record 4 is found as 1. Record 4 isthen arelevant record.

e For BWM," therelevant degree rdms = <00000 10000 1000 00001> since:

<00000 10000 1000 00001> (BW M)

AND  <00000 10000 1000 00001> (BW}')

<00000 10000 1000 00001>  (rdms)
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Since more than one bit in rdmg is"1", all BWI° in Drill-Packet Matrix TBDVf are
retrieved to further investigation. There only one BW in TB?,'V,’I, the relevant

degree rdds = <00000 0000 00000> since:

<00000 0010 00100> (BWMY)

AND <00000 1000 00010> (BWM;)

<00000 0000 00000> (rdds)

After the Compacted BW Concatenate-rdi-result algorithm executed, the rdis is

thus generated as following:

rdis= <00000 00000 10000 1000 0000 00001 00000>

According to the Definition; 51 the Fmaégzl'ff#..<00000 00000 11111 0000 0000

00000 00000>, cMasks=<00900 0POO0" 00000 ‘4111 1111 00000 00000> and

. |
ok

cMask;=<00000 00000 ooood"':'obo'(;)_ooqgl)_” {1111 11111>. Since the result of
AND(cMask,, rdi;) is equal to the result of AND(cMask,, BWy), however, result of
AND(cMasks, rdiy) is not equal to the result of AND(cMasks, BWly), the similarities
of record 5 are found as 0.4. Record 5 is then arelevant record.

e For the other BWM™ the relevant degree rdm are al equal to <00000 00000 0000
00000> , where 6< i <14, since no “1” bit in rdm, all other records are filtered out
using the Main Matrix only.

After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 4.18.
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Table 4.18: Two relevant records and their similarities

Relevant Record| Record 1| Record 2| Record 3| Record 4| Record 5

Similarity 04 04 04 1 04

4.2.4 Analysis and Experiments of Compacted BWI Method

As we can see the major. .di_f.ferent between Encapsulated BW
Smilar-records-seeking algorithm (AlgorILtlhm44)of Encapsulated BW method and
Compacted BW Smilar-records-ééeki nq:é@hfn (-llklgorithm 4.10) of Compacted
BW method isin Step 3, the com;;l:ﬁét?i;n ti meanaly5|s (worse case analysis) is shown

below

In Encapsulated BW method, the “AND” operations should be taken

¢
lLﬂ_[eiij times.

i=l j=1

In Compacted BW method, the “AND” operations should be taken

l li €l l; e
TT1Te + QTTTe/ <IT TTe) =T1[ e @+ [Tei/) times
i1 j=1 i=1 j=1 i=1 j=cl,+1 i=1 j=1 i<l j=ol, +1

The number of extra“AND” operationsis.

99



r r

Hﬁeiijx(1+ﬂ ﬁdij)_ﬂﬁdij =l—[l(i[eiij times

i=l j=1 i=1 j=c +1 i=l j=1 i=l j=1

r )
In the worst case analysis, the Compacted BW method uses extra JT[ e

i=l j=1

time “AND” operations than the Encapsulated BW method. However, the

rd r =h r )
Encapsulated BW method should process extra [T[Je! <] []e! x> &
i=1 j=1 i=1 j=c,+1 i=1 j=1
bits than the Compacted BW method.
In Encapsulated BW method, the total bit should be processed
r e ) r € i
[T e/ x> Y6 bis
i=1 j=1 i=1 j=1
In Compacted BW methodthetotal bit should he processed
r ¢ r r - r € ) r e, _
HHdin(szij)+HHdiJXH Heii’x(z Zeii‘) bits.
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=cl+1 i=1 j=cli+1
The saving hits are:
r 6 ) r € ) r d ) r c ) r c ) r el; ) r e; )
l—[l—[eiiJ X(ZZdij)—[HHeiij X(ZZdiJ )]+(HHeiiJ)X[H l—[eiiJ X(Z zeiij )]
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1 i=l j=1 i=1 j=cl+1 i=1 j=cl;+1
r e _ rc ) roc ) rood _
= (R 2 e -[[T1]e/x Q2 e)+(Rx2 > &/
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=cl;+1
r c ) r cl )
=(R-TTITe)xQ.2 8/)
i=1 j=1 i=1 j=1
r € ) r ) r c )
= TITe! -TTT e )
i=1 j=1 i=1 j=1 i=1 j=1
r ¢ ) r el; ) r ) r c )
:(l—[l—[eiiJ XH l—[eiiJ _HHdiJ)X(szij)
i=1 j=1 i=1 j=cl+1 i=1 j=1 i=1 j=1
r c ) r el ) r c )
=T 1e/ <] [Te/ -D=x.2 &)
i=1 j=1 i=1 j=c+1 i=1 j=1
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When the record size (|R]) of T is quite large, the Compacted BW method can

be applied since the disk storage will be largely reduced. Once the record size is

r e ) r d )
smaller then ([T J e’ -Dx(Q.> i), the Encapsulated BWI method should be

i=1 j=cl;+1 i=1 j=1

used since the extra processing time will be used by Compacted BW method
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Chapter 5

Using BWI indexing in an Intelligent
Manufacturing Defect Detection
Method for the Time I ssue

In this chapter, an implementation that consisted of a reinforcement-learning defect

detection root-cause learning systqm"fbr the tiftie aspect in manufacturing domains is

|
- - : -
HE S

introduced. This implementatioh ,émployed the éafhﬁle Bit-Wise Indexing Method to

encode the defect status of manufacturlng prddhcts and hence accelerate data
preprocessing. Additionally, a bit-based Genetic Algorithm is used to learn suitable

weights for each computed signature, since the chromosome and the corresponding GA

operators are appropriate for the bit operations of BWI indexing method.

5.1 Problem Description

In recent years, the problem of detecting defects in the workshop has become
increasingly important for manufacturers. In order to raise the quality of products, the

root causes of low-quality situations must be found as soon as possible. Thus, process
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control, statistical analysis, and cause-methodology-analysis techniques have all been
widely applied in addressing the problem [10][18][22][27][53][62][70]. However, it is
very difficult to identify the root causes of defects due to a wide variety in the types of
causes of defects. For example, in the semiconductor manufacturing industry there are
many causes of low yields, among them: machine failures, improper operation,
improper parameters, manufacturing time problems, and scheduling and material
problems. Many studies have been devoted to investigating these issues. The advent of
advanced manufacturing technologies has led to overlong queues and increased
manufacturing times in Workshops-:thét.'rﬁay'jc'aul_sﬂe oxidation problems, which are
becoming more critical, but the dlagnossgflsuch ﬁréﬁ:ems isusually very difficult and

time-consuming. In this chapterwewrll_proposeda manufacturing defect detection
problem, time aspect, for manufacturi ngdomal hs (MDDP-t) is formally modeled and
defined. In this section, the manufacturing defect detection problem, time aspect, for
manufacturing domains (MDDP-t) is formally modeled and defined. A root-cause
evaluation function (RCEF), which is a linear combination of three probing functions
defined independently according to the experiences of domain experts, is proposed to
evaluate whether a specific machine is the root cause of a time problem. Determining

the weights for these probing functions is considered a separae issue here, and a

genetic algorithm (GA) with encoding and GA operations suitable for MDDP-t
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weight-learning problems is given to find appropriate weights for the probing functions.
Several instances of MDDP-t with known root causes, some provided by the Taiwan
Semiconductor Manufacturing Company [TSMC]), are given as training examples.
Experimental results show the proposed approaches can ensure efficiency and
accuracy.

Many technologies or methods are employed to identify the causative factors of
manufacturing defects, including Statistical Process Control (SPC), Advanced Process
Control (APC) [18][53], and Machine Learning (ML) approaches. However, the real
problems are sometimes chaotic,‘ Ilttieunderstood and may be caused by complex
interactions among multiple fac:tq'rs Therl;,!fore rooteause sorting becomes a critical

issue for all manufacturing enterpns&‘_%pemallysome high technology ones like
semiconductor manufacturing corporatic;hs“ -

SPC and APC [10][53] are widely used in the semiconductor industry to monitor
manufacturing behavior in workshops via motion and condition sensors. SPC monitors
manufacturing by analyzing the statistical results of procedures, generating lists of
meaningful results, and warning if the results are outside predefined control boundaries
based on machine behaviors and expert experience. However, they sometimes issue

warnings for good products (type-two error) and may not always warn of defective

products (type-one error). APC, an advanced revision of SPC, not only monitors the
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statistical results of machines behaviors [18][53], but also takes predefined actions to
adjust machine behaviors when machines become unstable. Although APC seems more
advanced than SPC, the resulting action-selection problem raises a separate issue that
must be resolved.

Certain intelligent methods with self-learning abilities are employed to provide
fault analysis and suggest solutions. In [53], a combination of self-organizing neural
networks and rule induction was used to identify critical poor-yield factors from
normally collected wafer manufacturing data, and the corresponding behavior model
thus learned to predict possible behavtors A .d"e:éisi.gn-tree approach used to locate the

Y =RA %

root cause of yield loss in intég]}ated cilr_(I;l,_[i'ts' Was keported in [59]. The utility of

1

decision trees for yield analysié:".{:igé"‘i‘ﬁ pdi;r-ft"ir)g 10 process steps that may not be

2 Bk

captured by analyses of parametric data.

5.2 Problem Definition of MDDP-t

As mentioned above, we are concerned with the time aspects of detecting which
machines make product defects. In this section, we first define various parameters used
in this chapter, and then propose a formal definition of “Manufacturing Defect
Detection Problem, time aspects’ (MDDP-t). Generally, quality baselines must exist

for all products in order to ensure good manufacturing procedures. Taking an example
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from semiconductor manufacturing, the quality baseline for 150-nanometer yields is
usually set to 90% or above in a well-tuned manufacturing fab. When yields become
unstable and drop below the quality baseline, product engineers (“lot owners’ in
semiconductor manufacturing fabs) investigate to find the major reason (called the
“root cause”) for the low-yield situation. For example, a product engineer may collect
dataon al low and normal product yields and identify suspect factors, e.g., abnormal
machine behaviors, in-line metrologies, processing and queuing times, which are the
most likely root causes according to statistical- or data-analysis results. In this chapter,
MDDP-t is considered a quad“r.u‘pl'é," .irﬁclfj'c'llniﬁhg\c}product manufacturing machine
information (PM), product manufact!;!rlngtlme information (PT), product

manufacturing yield informatiorf:"(-‘F?Y)‘,-‘f-';: i(ﬂ"‘aﬁél.itj;.ﬁaseline(yg). The Notation 5.1 is

TERRANE"

defined as following:

NOTATION 5.1:

M the set of machines,

Co number of products,

Cm number of machines;

Cs number of machine clusters,

s i-th machine cluster such that § = {m 1, mp, ..., M}, where1<i<c,

and «(i) is the number of machinesin s and m; is the j-th machine in s, 1<
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Pi

Yi

Yo

pm

pti

pyi

PM

PT

PY

MDDP-t

j <a(i);

product p;, 1 <i < Cy;

product quality pi, 1 <i < Cp;

acceptable product quality baseline;

product p; manufacturing information vector

pm = < pm', pny, ..., pm*=>, where p is processed by the pm-th
machineind and 1 <i <c;

target manufacturing time vector for product p;

pt = < pt', pt? t,cs > \'/\;ﬁereﬂ pt' is the processing time for

TS

machine pm’ and ;-‘g.“‘isrcp; v

N S

P . a
., 1H9EG6

p product yield; 3
manufacturing procedure for~ products in P, where PM is a cyxcs matrix and
PMi;= pny';

product manufacturing time, where PT is a cpxcs matrix and PT, = pt/ ;
product quality yield, where PY is a column matrix and PY; = py, ;

a given quadruple manufacturing defect detection problem involving time,

where MDDP-t=(PM, PT, PY, yy).

107



Table 5.1: An example of products passing through two machine clusters

s pt* & pt Y
P1 My 10 Mpa 23 0.85
P2 My 10 Mpa 23 0.86
Ps My1 11 N2 23 0.80
P4 M2 13 Mp3 60 0.60
Ps M2 12 Mp3 25 0.90
Ps My 2 12 Np3 66 0.60
p7 M3 10 Np3 27 0.83
Ps M3 11 Np3 25 0.65
Po M3 11 Mp2 25 0.88
P1o My 3 10 M2 23 0.85

EXAMPLE 5.1.
As shown in Table 5.1, there are 10 products in this example (c,=10) and each

product is processed by two machme cl ust\é*s,(c;Z)where s'={my1, M2, M3} (a(1)=3)

and S"={Mp31, Mz, My} (a(2)=:i§_'_:épd product pi is processed by machine
pm in target time ptj. Assume that.:;i:e"'t;:.}ivéri-yielal;i[':lr@old Yo is 0.7. According to the
definitions given above, the manufacturing information vector pmy and corresponding
manufacturing target time vector pt; are, respectively, <1,1,1,2,2,2,3,3,3,3> and

<10,10,11,13,12,12,10,11,11,10>. Therefore, the manufacturing procedure, target time,

and product yield matrixes are
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pm, 11 pt, | [10 23] py, | [0.85]
pm, | [1 1 pt,| |10 23 py, | |0.86
pm, | |1 2 pt, | [11 23 py, | |0.80
pm, | [2 3 pt,| |13 35 py, | |0.60
om <] P _[2 3| pp_| Pl |12 28] o | e |_[090)
pm, | |2 3 pt, | |12 66 py, | |0.60
pm, | [3 3 pt, | |10 27 py, | |0.83
pm, | |3 3 pt, | |11 25 by, | |0.65
pm, | |3 2 pt, | (11 25 py, | |0.88
pmy | |3 2] pto| [10 23] Py | |085]

Finally, the production for the MDDP-t instance in Table 7.1 is set to (PM, PT, PY,
0.7).

Three probing functions, including I"‘r]d‘ividual Machine, Intra-cluster, and
Machine Behavior, are proposed“t(‘) fingi poéa;'blxé"root causes for given MDDP-t
instances. The three probing func":fions ared&}erﬂ:rni bed in‘;detail below:

1. Individual-Machine probing ;‘uhction (f2): Tﬁis criterion considers individual
machine behaviors in given datasets. If the low-product-yield percentage of one
machine, especially one with an abnormal target time, is higher than that of other
machines, it may be considered a root-cause candidate. For example, Figure 5.1,

shows that machine my , produces low yields of products ps and ps, 66%, obviously

higher than that of machine my 1 with a low-yield percentage of 0%.
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PY

1 EZ@Ps'
y FoNormal Area O Processed products of m, ;
0
e P+@® @ Processed products of m;,
Low-Yield
Area
0 (my)-o(m) Z(my) Z(my)+amy)  pT

Figure5.1: Products processed by machines my; and m; »

Certain notation must be defined in order to calculate the parameters of this

function:

NOTATION 5.2: 3

mvi the set of products processed:by machine m;

my the set of low-yield products processed by machine mj;

mty: ; the set of low-yield products with abnormal target time processed by

machine m;.

The Individual-machine probing function for machine m; is the multiplication of

nmv. .
the ratio of processed product (u) by the ratio of low-yield product processed
n

mty. .
with abnormal target time (M),—. As mentioned above, a higher result from this
ij
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function means a higher possibility of being aroot cause.

Since applying conventional comparison and computation operators to generate

mvij, my;;, and, mty;; may be time-consuming, we use the BWI indexing method to

reduce the time required to compute this decision variable. The detailed notation and

functions resulting from use of the BWI indexing method are defined as follows:

NOTATION 5.3:

MV

rnVLY

i,

the machine-bit vector of maghine miwhere mvij=<bibbs... b, >, mvi(K) is

the k-bit (by) of mvi;, and bg=1 if.'_ pm'( =j&forl<i<cs,1<j<q(i),andl

. b =]
. 1B55

< k< cy; otherwise, by = O3 “ %

| B B ‘

the machine-bit vector of Iow-;i.eld products for the given MDDP-t instance,
where mv-'=< bybobs... bcp > and by = 1if pyk<yy for 1 < k < c,; otherwise, by
=0;

the abnormal target time machine-bit vector of machine mj; where
mvij=<bibsbs... b, > ad b = 1 fif pt, >u(m;)+o(m;) or
pt, < u(m ;) —o(m;); otherwise, by = 0;

the machine vector for low-yield products from machine mv;j, where my;

=AND(mv;; mv-");



mty;;  the machine vector for outlier products of machine mvi;, where mty;;
=AND(myij, mv7);
count_one(x) 1-bit count in bit-vector x;

count_zero(x) O-bit count in bit-vector x;
Cp

> (pti xmv, ; (k)

u(mj)  the average manufacturing time for machine my;, =L ,
count _one(mv, ;)

o(m;) the standard deviation for machine m j, manufacturing time

{kz_:\/(ptik —(m )f x| (k)j

count _one(mv, ;) o

(ESHr N
Obviously, the time requif-,ed tQ /con "Q" ute rrwi,,-,’n'rrm,j and mty;; is thus largely

reduced since all comparison and éo'mputatipn '"o"perations use the bit-wise indexing

method. The formulation of the Individual Machine probing function (f;) isthus:

Individual Machine probing function f1(m;) for an MDDP-t

f(m )= count_one(m\/i,j)>< count _one(mty; ;)
M) = count _one(my; ;)

2. Intracluster probing function (f;): The second criterion considers the slopes of

machine behavior regression lines within machine clusters. Intra-cluster machine
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behavior is represented as a regression line of data points on a two-dimensional
plane where the x and y axes are, respectively, the target time and yield of each
product processed by the machine. A higher absolute slope value for the
regression line means higher time-issue sensitivity for the corresponding machine.
In other words, it may be a root-cause candidate in the time-issue problem. As
shown in Figures. 5.2(a) and 5.2(b), the absolute value of the machine-curve
slope of my is higher than that of m. Therefore, machine m; has a higher
possibility of being a root-cause candidate. The following definitions and

functions are needed to calcullattéj'the‘paraﬁ:iétqs of this function:

E|T'| %0 b R =

o ] s .
L= -
A .

Machine m Machine m x
=< =<
[0} [0}
o o
o] 00
0 O
Target time Target time
(a) (b)

Figure5.2: Theregression linesfor (a) m;; and (b) mx

Certain notation must be defined in order to calculate the parameters of this

function:
offset(x,i) i-th 1-bit offset (I. tor.) in bit-vector x;
evs the set of data points for products processed by machine pm':
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E'\/S,j:{ (le yl), (X21 y2)1 AR (Xcount_one(mvili )? ycount_one(mvili) )1 } where
X Dottty 4o » k= Pliss(mi, 1 fOr 1= K< count_one(mw)) ;
regress(evs )) theevs; regression ling;

dope(regress(evs)) the slope of regress(evs ).

For the example shown in Table 5.1, the bit operation is mv;1(3)=1,

count _one(mv, ;) =3, count _ zero(mv,,) =7 and offset(m,,3) =3, and we have the

evaluation vector set for machine pn, evs; ;={<0.85, 10>, <0.86, 10>, <0.80, 11>}.

|
E

:'_! IHL =
Intra-machine-center probing furiction f( _,‘,-).“:fo'r the MDDP-t problem:

s " -]

f,(m ;) =|slope(regress(evs ))L % AEIEEE 17 —— (52)
3. Machine Behavior probing function (f3): The third criterion considers similarities
among machine behaviors in given datasets with respect to the time issue. The
behavior of an arbitrary machine can be represented as a machine-behavior vector
with count _one(mty, ;) and count_one(mv") the respective x and y axes. The
sum of the degrees of included angle between the machine-behavior vector of a
machine in a machine cluster and all the other machine-behavior vectors is

calculated. The machine with the highest sum has the highest possibility of being
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the root cause in that machine cluster. As shown in Figure 5.3, of the four machines

in machine cluster s, the computed sum for machine m 4 is obviously much higher

than the others. Thus, machine m 4 has higher possibility of being the root cause in

this example. The following definitions and functions must be defined in order to

calculate the parameters for this function.

:)ONJ"I

M achine Cluster ¢
\(9, 5)m4

(9,2 my
(10, 2) m»
(101 2) M3

mty

Figure 5.3: The machifie-behaior-viectofs of machine cluster s

inner_product(x, y) theinner product of machine-behavior vector (X, y);

o(x,y)

o inc(my, my.)

the included angle of machine-behavior vector (x, y), where

0(x,y) = cos™ inner _ product(x,y) .
X1y

the included angle between the machine-behavior vectors of

machines m ; and m x, where mx_inc(m j, mx)=

6((count_one(m\°),count_ong(mty, ;)),(count_oneg(mV5’),count_ong(mty,, ))).
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Therefore, formulation of Machine Behavior probing function fs(mj) is as
follows:

Machine-behavior probing function f3(m;) of MDDP-t is:

a(i)
> mx_inc(m ;,m,)

T 5.3
fm ) =S (53)

EXAMPLE 5.2

Continuing from Example 5.1, the following machine bit-vectors were obtained:
mv;,1=<1110000000>, nN1,2=.<.‘O.C‘)Ql_1I%(:)OOO>, mv; 3=<0000001111>,
MV21=<1100000000>, I’T1\/2,2:<OO.1.650.(.)0;]‘.?:1>,:Ia..lll’:l:q..r;i\lgg:<0001111100>; the low-yield

machine bit-vector of product P is <Q(DQ_1;010100> and the out-of-control machine-bit

. |
ok

vectors of machines my; and n{lf‘gf-age, ‘r&”spécfi\'/ely, mbv;; =<0010000000> and
rrbvfzC =<0001000000>. And my;1=<1110000000> AND <0001010100> =
<0000000000>, my; ,=<0001110000> AND <0001010100> = <0001010000> and the

corresponding mty; 1 and mty; » are thus ANDed to <0000000000> and <0001000000>.

As mentioned above, we use these probing functions as major criteria in
evaluating MDDP-t according to experts experience in the semiconductor
manufacturing domain. We then define a Root Cause Evaluation Function RCEF(m)),

which is a linear combination of the three probing functions along with their
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corresponding weights w; used to identify the importance of each probing function in

the RCEF, to compute the root-cause possibility of machine m;.

Root Cause Evaluation Function RCEF(m ;) of MDDP-t

3
RCEF(”],,-) =ZW|<X fk(m,j)
k=1

However, the corresponding weights W={wi, w,, ws} of these three RCEF
probing functions require further investigation. A genetic algorithm is thus used to

solve the weight-learning problem.of: thethree given probing functions in order to

determine suitable weights for the'M DDP—t;l- o =

|

5.3 Genetic Algorithm for MDDP-t

The search space in a GA (Genetic Algorithm) consists of possible solutions to a
problem [15]. A solution in the search space is called an individual and its genotype
consists of a set of chromosomes represented by sequences of Os and 1s. These
chromosomes can dominate individual phenotypes. Each individual has an associated

objective function called its fitness. A good individual is one that has a high/low fitness
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value depending on whether the problem involves maximization or minimization. The
strength of a chromosome in an individual is represented by its fitness value and the
chromosomes of individuals are carried to the next generation. The set of individuals
with associated fitness values is called the population. The population at a given stage
in the GA isreferred to as a generation. The best individual in each generation is the

individual with the best discovered fithess value.

There are three main components in the GA while loop:

(1) selection/reproduction, the process ofselectlng good individuals from the current

A=l

. . = > Al s e
generation to be carried to the next generation; -
= Pl ~

(2) crossover, the process of shuf-'f"‘l_i;‘.‘n.gﬂ't\lilyzo randomly Selected strings (chromosomes) in
two parent individuals to generate new offspring;

(3) replacement, the replacing of the worst-performing individuals in a generation

based on fitness value.

Sometimes one or more bits of a chromosome are complemented to generate a
new offspring. This process is called mutation. The population size is finite in each GA
generation, which implies that only relatively fit individuals in generation j will be

carried to the next generation j+1. The power of GA is that the algorithm terminates
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rapidly to an optimal or near optimal solution. The iterative process is terminated when

the solution reaches the optimum value [ 16].

Details of the GA developed to solve MDDP-t are described in this section. As

mentioned above, the weight set W is quite important in solving MDDP-t. Since the

weights are domain-dependent, we propose a GA-based weight-learning function for

MDDP-t to find weights w for each probing function according to MDDP-t instances

with known root causes. The weight-learning function is described in detail below.

NOTATION 5.4
Y = |
M; machine set for thel th le) =t mstahce
g . | b '1
rm root-cause machlne al'r-eady knoyvnﬁto cause the i-th MDDP-t instance
defect.

rank(M;, rm) Kk, where rm isthe k-th largest RCEF value in set M;.
Weight-learning Problem: Given k MDDP-t instances, find weights wi, w, and ws to

minimize:

Zk:rank(Mi,rm) ............................................................................ (5.9
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EXAMPLE 5.3:

Assume three MDDP-t instances with three weight sets. According to the rankings

of actual root causes in the three datasets evaluated using these three functions shown

in Table 5.2, wy isthe best choice.

Table 5.2: Weight-learning function example for three MDDP-t instances

&
rank(M,,rm) rank(M,,rm,) | rank(Mg,rm,) | > rank(M;,rm)
i=1

W, 1 1 2 4
W, 2 3 4 9
W, 1 2 . 4 7

F = \e
iz J.‘ J I.I I ; B
There are five parts tozour QA.;‘:ébproéch:,li encoding, crossover/mutation,

« % 1BHBSG
g

selection/terminal conditions, and'fit_h& determjnéfion. In general, the chromosomes

in the first generation are created randomly and succeeding generations are generated

by crossover and mutation. Details of these four parts are given below.

Encoding

The proposed probing functions are based on expert experiences, and each
chromosome is the concatenation of the bit-strings represented by wi, we and ws. Since
not al probing functions are used in every domain, the n-bit flags e, & and e; are used

to help the GA efficiently determine which probing functions to use in the RCEF
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function. When the one-bit g is set to zero, the weight w; of that probing function is set
to zero in the chromosome. Obviously, the n-bit g is used to set the probing function
probability determination to 1/n. Assume the probing function determination
probability is 25% and the number of bits for g is set to 4. The corresponding essential
flag @ also uses n bits in the tall of its weight string, the initial values of which are
randomly set. According to the above definitions, assume that w;=00011=3, $,=01,
W,=00101=5, $=10, ws=00100=4, and s3=10. The chromosome thus generated is

000110100101100010010.

Crossover/Mutation Procedures,"“ , s " 3 -

Many methods can be employedmtﬂecrossover process, thus, suitable operation
should be selected according to the (:\b.p)liégt.ion domain. For example, the strings
001111001011001001 and 010011011001001011 could be crossed over after the
second locus in each to produce 000011011001001011 and 011111001011001001. Our
experience indicates the random one-point crossover method is suitable for solving
MDDP-t learning problems.

The conventional bit-inversion method can be used in the mutation process. For

example, the second position in the string 001111001011001001 might be mutated to

yield 011111001011001001 by changing the 0 to 1 in bit 2. Our experience indicates
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the inversion probability should be set to 0.05.

Selection/Terminal Conditions

The population size in each generation and terminal conditions can be determined
according to the application domain. Our experience indicates the initial chromosome
number in the population should be set to 300 and the terminal conditions set to 500

generations.

Fitness Function

B |

Many chromosomes are produced |n emh generatlon and weights W must be

evaluated. In order to identify sm;i’fébl,é‘ﬁieibfi’t"%e;s, all machine information is input to

the RCEF, which then computes the actual root-cause rankings. An MDDP-t GA

fitness function and MDDP-t GA algorithm are shown below.

MDDP-t GA fitness function
For n given MDDP-t instances MDDP-t;, MDDP-t 5, ..., MDDP-t, let rm bethe
actual root-cause of the MDDP-t; instance. Weight set W is better than weight set W if

Z rank(M,,rm,) using weight set W is smaller than the same function using W.
k=1
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Algorithm 5.1 - MDDP-t GA algorithm

Input: Training datasets

Output:  Theweight set W for the RCEF

Stepl: Initialize population (bit-strings combining wi, €1, W, €, Ws, €3)
Step2: Choose parents

Step3: Construct offspring using one-point crossover

Step4: Call mutation procedure

Steps: For dl flags e, if g isall 0, set wi=0; otherwise wi=w;

Step6: Evaluate offspring and repla:e IeaStiﬁ-t,‘.i {ldividual with better offspring

Step7:  Go to Step? until aterr"}hi“nal corlmlltionlsreached

Training will generate severa V\;e..i'gdh'tset”s; \):;).rfich can then be applied to detecting
root causes in future datasets. When a new dataset with an unknown root cause is input
into the manufacturing defect detection system for root cause discovery, it must first be
translated into MDDP-t terms. After that, the top combination is used to generate a
possible root-cause ranking list. Engineers can use these ranking lists to check
machines one by one and filter out possible killer machines. Finally, engineers can then
record the real root cause and may re-compute the MDDP-t learning procedure if the

weights resulting from training fail to identify the correct root cause.
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54 Experimentsfor MDDP-t

There were 21 data datasets in our experiments, some of them are provided by the

Taiwan Semiconductor Manufacturing Company (TSMC). We divided these into 12

training datasets, shown in Table 5.3, and 9 test datasets, shown in Table 5.4, each with

areal root cause. We used the training datasets to find the top 5 weight combinations

for the RCEF, and used the test dataﬂstoievaluatathe accuracy of the weight sets.

Table5.3: Training Datasets

Fo

or the GA approach

T Number (r)'f‘.':nachi ne

Size of dataset .

PEESE: (Lots* Attributes) clusters NUTILEE? @ TS
Dataset1 300*4211 2314 4456
Dataset 2 302* 3345 1842 4235
Dataset 3 255* 6625 2356 6822
Dataset 4 187* 2568 1108 3684
Dataset 5 4271548 1001 2265
Dataset 6 392* 3954 2304 5262
Dataset 7 265* 2879 1105 4552
Dataset 8 267* 2265 1096 3665
Dataset 9 321*2451 1664 4556
Dataset 10 367*4325 2025 4456
Dataset 11 357*2848 1456 3698
Dataset 12 285* 2525 1875 3308
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Table 5.4; Test Datasets

365* 2234

752* 3365 1245 3688
654* 3364 2856 4652
586* 3324 1846 4875
564*1239 823 2234
452* 2235 1134 3048
165* 3321 1652 3698
2151254 656 2043
346* 2236 1134 2365

IThe initial mutation probability was set to 0.05, and the maximum number of

generations to 3000. The CPU tiimes 0 lation sizes for the RCEF weight
combinations are shown in Figure'! he €EPU usage is marginally near the

polynomial time cost.

Different values of Population Size

2500

2000

1500

CPU time

1000

500

1] Bl 4 il i i 105 120

Population Size

Figure 5.4: Experimental Resultsfor Various Population Sizes
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The average root-cause rankings for the training datasets from the top 5 weight

sets for various standard deviation values of probing functions are shown in Figure 5.5.

When the standard deviation was between 1 and 1.5, the genetic algorithm found the

best solutions, but hit errors increased when the time standard deviation was greater

than 2 and less than 0.75 since too much information was pruned and computational

noise was included.

contradiction similarity = 30%

50

o |
0 \\’\./’//

025 05 075 1 125 15 175 2

Avg. Rank

Standard deviation(times)

Figure 5.5: Average root-cause rankings from the training datasets by the top 5
functionsfor various standard deviation values

We chose top 5 chromosomes when the GA training process finished. The results

for the a, 8,y combinations are shown in Table 5.5. Clearly, the actua root-cause

rankings for the test datasets are quite high and the hit-error averages are all in a

tolerable range.
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Table 5.5: Actual root-cause rankingsfor the test datasets

wé& e D1 | D, | D3 | Dg | Ds | Dg | D7 | Dg | Dg | Summary
‘Ae’:c{{lfff’l?} >l 8| 1|2 1l9|7]2]-2 34
W;i{lfll"i}z} 3|53 | 2|2|13]9]|6]s 51
‘Ae’:c{{lff’l?} 1 32| 6|8 1625|136/ 3] 10
! fff”ll}o} x5 |12 7 | 12|18 6|3 |13|16] 12
‘Ae’:c{{izll:})’} 46 | 18|10 9 | 11| 2|4]2]19] 120
Average | 154 | 83 | 54 | 66 | 96 | 11 | 72 | 57 | 96 | 95

As mentioned above, the proposed met_hqd is quite useful for finding actual root
causes in actual manufacturing dal;asets u%ibg"ﬁ'igviéights discovered by the proposed

GA learning approach.

k o)
Fo

Quickly solving product-yiel.g::{"a\‘hd.quali.ty':ﬁlf(.)blems in complex manufacturing
processes is becoming increasingly difficult. Although the “manufacturing time
problem” may be avoided via process control, statistical analyses, and experimental
design, it is still very difficult to resolve once it happens. In this section, the
manufacturing time problem for the manufacturing domain (MDDP-t) has been
formally modeled and defined. Accordingly, a root-cause evaluation function (RCEF)
has been proposed to evaluate whether a specific machine is the root cause of atime

problem. The RCEF uses three probing functions independently defined according to
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the experiences of domain experts. Moreover, a genetic algorithm (GA) has been
designed to find suitable weights for the proposed probing functions. Experiments
were also performed and the results show the proposed approaches can ensure
efficiency and accuracy.

In the future, we will continue focusing our research on this topic. We will keep
challenging the correctness of the proposed MDDP-t by seeking useful probing
functions from different perspectives and different application domains. We will also
try to apply similar learning models to other MDDP problems in the semiconductor
manufacturing  domain,  such as . th wafer in-process  (MDDP-wip),
Y =115¢

wafer-acceptance-test (MDDP- wat) éhd m—hne met’rologleﬁ (MDDP-im) issues, in

order to discover the root causesof 'M‘bD‘P;b;‘Fqu@fﬁs as correctly and efficiently as

2 Bk

possible.
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Chapter 6
Using BWI indexing in Intrusion
Detection System

In this chapter, a pattern-learning network intrusion detection system is described.

This implementation uses the Encapajllét‘ed B'it:%“wilge Indexing Method to encode the
networking activity with minimal,”nnnitoring time window in order to accelerate the

data preparation procedure. Moreover abltbased intrusion Pattern Matching

mechanism is proposed to efficiently Ieérn, roll-up, drill-down and combine the

intrusion pattern with different time-windows/services/ports combinations.

6.1 Problem Description

Due to the rapid growth of networked computer resources and the increasing

importance of the related applications, intrusions that threaten the infrastructure of
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these network applications become critical problems today.
[35][37][38][40][46][57][66][ 72] Network intrusion detection (NID) is the process of
identifying possible intrusion behaviors from the network that provides information to
the security administrators. Although many intrusion detection systems had been
proposed and some possible intrusion behaviors had been identified and detected
[1][20][21][26][49][57][69], no optimal solution had been found due to the variances
of the intrusion patterns. In this work, we are concerned about how to identify possible
intrusion behaviors that can help users to build an intrusion detection system through
data mining processes to secure t..he"j-iﬁfr‘éstr.ﬂéturg of the network. In the intrusion
detection domain, five issues need to be c?gnsiﬂer_ed, including Pattern representation,

18!

Computability, Performance, Malntenan;:e and .II:.'_Ji‘:tendibiIity. In this chapter, we
propose a new, efficient and servdi;e‘c‘)r'iiéhted intrusion pattern mining and
representation method, called Bit-wise-based Intrusion Pattern Mining Method
(BIPAM), which can provide higher performance, better maintenance and expressive
abilities. In our model, BIPAM consists of two phases, Network Activities Analyzing

Phase and Features/Pattern Mining Phase, and a database that contains the information

about the users and the mined intrusion patterns is used in these two phases.

In general, almost all intrusion patterns can be transformed into a sequence of
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network activities that are extracted from the related network packets. These kinds of
network packets can be collected and then be transformed into some sequence of
bit-wise strings showing the intrusion patterns. The Network Activities Analyzing
Phase of BIPAM can first filter the raw network packets and log necessary features
(Source IP, Destination IP, Source port, Destination port) in a small time window to
perform data sampling and data cleaning and to reduce the amount of data. After that,
with combined users and services information, the sufficient service-user activity
events are found and used by the second phase. The Features/Pattern Mining Phase
transforms the sufficient service-user "éé"[i'\‘/i'ty.'é\:/lént§ to some bit-wise strings and next
FLE 5\
merges the bit-wise strings into:'s,bme othq hit-wise strings with the same source IP.

After gathering those bit-wise str-i:'r_\g.sg,"'th'é Pattern Mmlng Module and Pattern Merging
Module can perform some data mining prbceﬁses to find possible intrusion patterns

that can be the source of the candidates of intrusion patterns for future intrusion

detection systems.

Since the expression of intrusion pattern is one of the most important things in an
intrusion detection system, the expressions of intrusion pattern in current intrusion
detection systems will be firstly introduced and the representation of the bit-wise

indexing method will be next introduced in this section.
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6.2 The Representation of I ntrusion Behavior

According to the results of previous researches, the representation of intrusion
behavior can be categorized as follows:

Implicit representation of intrusions. Some intrusion detection systems use
their own models for detecting some specific intrusion behaviors. For example, the
detection system for DDoS (Distributed DoS), which intrudes the system by
coordinating hosts, analyzes the r;e,th?k ini"c'ir:ﬁma.t?.ion with the known properties of

JaaA%
DDoS intrusion. These kinds pf\ intrusion’detection systems may not provide an

understandable representation for :‘1if1t.r,l'iéi'6n‘ behawoc,s nce the knowledge for intrusion

L& 1Lk

detection is imbedded in the system.

Rule oriented intrusion representation: Thisisthe most common representation
for intrusion detection knowledge. In an if...then formatted rule, the condition of the
rule records the matching criteria for the intrusion, and the action of rule records the
reaction for the intrusion. For example, arule for BO (Back Orifice) intrusion, which is
a back door intrusion by using specific program, may check every packet information
whether the connection is through port 31337 or not. Once the rule is triggered, the

action defined in the action part of the rule, e.g., alert the administrator, is then
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performed.

Pattern oriented intrusion representation: Many intrusions may not be
accomplished by a single step, so does the intrusion detection. Using a single rule can
only represent intrusions with single step or intrusions with a significant feature, e.g.,
BO intrusion, some application vulnerabilities. However, for intrusions with several
steps to execute, a pattern oriented intrusion representation for intrusion behavior will
be needed. A pattern oriented intrusion representation will represent intrusion in a
sequence of states; for example, a sequence of states in a state machine or a state

diagram. ey,
Specific intrusion repr%htj‘ation: M'myffre@e_earé@hes are trying to define specific

model together with correﬁporfdihg""'éilﬁer‘:‘ifi;é;"‘intfygion representation to represent

L& e

intrusion. For example, goal tree, which haé good performance on some specific target
intrusions, had been used to represent intrusion pattern in some previous researches.
However, the specific representations will sometimes lack the extendibility since the
specific representation may be not suitable for all kinds of intrusions.

Each kind of intrusion behavior expression has advantages and disadvantages, but
different intrusion detection systems usually require different intrusion behavior
expressions. Thus, it is difficult to integrate the intrusion behavior knowledge by these

intrusion behavior expressions. In this chapter, we will propose an efficient mining
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method BIPAM to explore the possible intrusion patterns via monitoring and analyzing
the users' behaviors.

As mentioned above, the bit-wise indexing method can be easily indexed and
parallelized, the bit-wise indexing method is quite suitable to solve the performance

and scalability issues of areal-time IDS.

6.3 Architecture of BIPAM

As we know, building an int..ry,rs'i'oh ‘detéc":fibnp_lsystem becomes one of the most

H0

popular solutions to secure the network inffastructure in recent years. Since the
' N =

expression of intrusion patterns 18 yérgi"ihﬁ'ﬁéﬁantj;,iﬁ building an intrusion detection

L& e

system. The architecture of BIPAM consisting of three main components for quickly
mining possible intrusion patterns is proposed as shown in Figure 6.1. The database in
Figure 6.1 stores the users information, some users historical mined data and the

possible intrusion patterns gathered in the past.
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Phase 1 Phase 2

Internet Network Activities Feature.s'
. /Pattern Mining
Events Analyzing Phase
Phase

Network User Featlljnrter:fFthr:erns

Information

>

—_————

Figure 6.1: The architecture of the BIPAM

Figure 6.2 shows the detailed architecture of the Network Activities Analyzing
Phase. In this phase, the Netwgrk" Activities, Filtering Module, Network Services
Analyzing Module and Service‘to User-Merging Module are proposed to provide

sufficient service-user activity eventsto.the next-phase.

—_——_—— e ——— e —— e —— e — — — — —

| Phase 1 |

| |

| |
Internet | [Network Activities Network Services Service to User l Sufficient
Events 7| Filtering Module Analyzing Module Merging Module Service-User

Candidate Activity Events

Packets |

7

Network User
Information

Network User
Information

Figure 6.2: The detailed process of Phase 1
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Before the whole mining procedure is proceed, the IP address of target machines
that may be intruded, called victim IP, should be defined. These target machines
usually provide some important services and thus easy to be treated as the victims by
the intruders. The victim IPs are the primary parameters of BIPAM. The network
packets, including TCP, UDP and ICMP packets, are checked by Network Activities
Filtering Module and all unrelated packets of the victim IPs are filtered out via
checking the dumped packet logs. Also, the corresponding I P address for each related
packets, called possible inflictor IP, isto compare the IP information in the database in
order to check the historical status ofsuchIPlf the IP is dangerous, the system alert
will be trigged. Also, al the pgckas froln!wsuchIP .i‘(vill be restricted. For example,

15

assume that there are twenty packetspass t;h;r'bugb“-"‘the Network Activities Filtering

| &

Module. The detailed log about these packets is shown in Table 6.1. Also, the victim IP
is 140.113.167.100. In Table 6.1, the packet 2 and 4 are filtered out since they are not
related packet of victim IP. Also, four possible inflictor IPs, including 140.113.167.122,
140.127.12.113 and 115, denote them as piiy, pii; and piiz respectively. Assume that
140.127.12.115 is the known dangerous I P. The system will notify the administrator via
sending some warning messages and then all requirements from this IP are denied.
After executing the Network Activities Filtering Module, the amount of network

packets needed to be logged will be reduced and all connected between the source I1Ps
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will be collected. Also, al possible inflictor IPs can be found for further investigation.

Table 6.1: The packet log of Network Activities Filtering M odule

# |SourcelP Destination [P |Pt |Packet (Serv |Prot. |Time Etc
Type  |Type

1 [140.113.167.122 [140.113.167.100 [80 |TCP  |web |hitp [12:01:11 |......
2 [140.113.167.122 |140.113.167.121 |21 [TCP  |web [ftp  [12:01:11 |......
3 |140.113.167.122 [140.113.167.100 |80 [TCP  |web |nttp [12:01:12 |......
4 [140.113.167.122 |140.113.167.121 [21|TCP  |web |ftp  [12:01:13 |......
5 |140.113.167.122 [140.113.167.100 |80 [TCP  |web |nttp [12:01:14 |......
6 [140.113.167.122 |140.113.167.100 |80 [TCP  |web |http [12:01:15 |......
7 140.127.12.113 |140.113.167.100 |1 |[TCP  [wk |wk [|12:01:16 |......
8 |140.127.12.113 [140.113.167.100 |1 |[TCP  |uk |wk [12:01:16 |......
9 |140.113.167.122 [140.113.167.100 |80 [TCP  |web |nttp [12:01:17 |......
10[140.127.12.113 [140.113.167.100 [2 |TCP  |wk |wk [12:01:18 |......
11 [140.127.12.115 [140.113.167.101 [80 |TCP  |web |hitp [12:01:19

12 140.113.167.122 |140.113.167.100 ,804TCP  |web |http |12:01:19 |......
13[140.127.12.113 |140.113.167400 |3 |TCP._ |uwk |uk |12:01:20 |......
14 |140.113.167.122 |140.113.167.100-480|TCP +jweb |http [12:01:20 |......
15(140.127.12.113 [140.113.167,100 |4 TCP, "fuk |wk [12:01:21 |......
16 [140.113.167.122 [140.113.167.100 |804TCP  _web |hitp [12:01:22 |......
17[140.127.12.113 [140.113.167.100" (5GP /fuk |wk [12:01:23 |......
18]140.127.12.113 [140.113.167.400"[6 |TCP.*|wk |wk [12:01:24 |......
19 |140.113.167.122 [140.113.167.10071804TCP" |web |http |12:01:25 |......
20[140.127.12.113 |140.113.167.100 [7 |[TCP  |wk |wk [|12:01:27 |......

After filtering the network packets, the Network Service Analyzing Module

transfers the packet information into packet log table shown in Table 6.2, which

contains the attributes about the network activities including Source IP, Destination IR,

Destination port, trigger time, and service type. Those packet log table can then be

classified according to the source IP, destination IP and service type in order to show

the relationships between services and servers.
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Table 6.2: The packet log table

# |SourcelP Destination |P Dest. Service |Time
Port Type

1 [140.113.167.122 [140.113.167.100 (80 Web 12:01:11
3 [140.113.167.122 [140.113.167.100 (80 Web 12:01:12
5 [140.113.167.122 [140.113.167.100 (80 Web 12:01:14
6 |140.113.167.122 [140.113.167.100 (80 Web 12:01:15
7 |140.127.12.113 [140.113.167.100 |1 u/k 12:01:16
8 [140.127.12.113 |140.113.167.100 |1 u/k 12:01:16
9 [140.113.167.122 [140.113.167.100 (80 Web 12:01:17
10 [140.127.12.113 [140.113.167.100 |2 u/k 12:01:18
12 [140.113.167.122 [140.113.167.100 (80 Web 12:01:19
13 [140.127.12.113 [140.113.167.100 |3 u/k 12:01:20
14 [140.113.167.122 [140.113.167.100 (80 Web 12:01:20
15 [140.127.12.113 [140.113.167.100 |4 u/k 12:01:21
16 [140.113.167.122 [140.113.167.100 (80 web 12:01:22
17 |140.127.12.113 |140.113.167,100 |5 u/k 12:01:23
18 [140.127.12.113 [140.118.467.100 162,  |u/k 12:01:24
19 [140.113.167.122 |140:113.167:1007|80 "+  |web 12:01:25
20 |140.127.12.113 3 u/k 12:01:27

14013167100, 17", =

e

The third module in this phaselsthé‘Serwce to User Merging Module. In this
module, the packet log table has been sorted in ascending order according to the
attribute source IP and destination I P, service type and trigger time sequentially. After
sorting the packet log table sorted, for each segment with the same Soruce IR,
Destination IP and service type will be partitioned into several small tables, called
service-user activity events tables. These tables can be easily extracted and analyzed.
Continuing the example in the above, two segments in Table 6.2 with the same Soruce

IP, Degtination IP and service type are found. The server-user activity events tables of
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Table 6.3 of web and unknown service are shown in Table 6.3(a) and Table 6.3(b),

respectively. After the service-user activity events had been generated, this information

will be delivered to Phase Two for further processing.

Table 6.3: The service-user activity event tables

(a) Service-user activity event of pii, for web service

# Source IP Destination IP Dest.|Service Time
Port| Type

1 140.113.167.122/140.113.167.10080 |web [12:01:11
3 [140.113.167.122/140.113.167.100[80 |web  |12:01:12
5 |140.113.167.122/140.113.167.100|80 |web [12:01:14
6 [140.113.167.122/140.113.167.10080 |web [12:01:15
9 |140.113.167.122140:113'167.10080 |web  [12:01:17
12|140.113.167.122{140.113:67:40080 |web |12:01:19
14|140.113.167.122|140.113:167.10080. |web [12:01:20
16|140.113.167.122|140.113.167.10080- |web [12:01:22
19 web [12:01:25

140.113.167.122/140,113.167.100,80°

(b) Service-user activity event of pii, for unknow service

#| SourcelP Destination IP %gftt S%)gge Time

7 1140.127.12.113|140.113.167.100|1 uk 12:01:16
8 1140.127.12.113|140.113.167.100|1 uk 12:01:16
10/140.127.12.113|140.113.167.100(2 uk 12:01:18
13/140.127.12.113|140.113.167.100(3 uk 12:01:20
15/140.127.12.113(140.113.167.100/4 uk 12:01:21
17/140.127.12.113|140.113.167.100/5 uk 12:01:23
18/140.127.12.113|140.113.167.100(6 uk 12:01:24
20/140.127.12.113|140.113.167.100|7 uk 12:01:27

In the Feature/Pattern Mining Phase, there are three modules, including Bit-wise

Transforming Module, Pattern Mining Module and Pattern Merging Module. The goals
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in this phase are transforming the network events to some corresponding bit-wise

strings and performing data mining processes in order to find possible intrusion

patterns. The detailed architecture of this phase is shown in Figure 6.3,

Possible
Bit-wised
Attack
Patterns

Pattern
Merging
Module

Sufficient Bit-wise
Service-User Transforming
Activity Events Module

Pattern Mining
Module

Attack
Patterns

N————

Figure 6.3: Théraetailﬂed process of phase 2
HEA e

Efa

When the sufficient servicé-uiser activity eventsare collected, the activity events

are transformed into some singler:sehnli-;es Eit:-nwise'“'strings according to a small time
window, which is defined to be the basic time slice of IDS, for every service-user
activity event via Bit-wise Transforming Module. These bit-wise strings can then be
stored in the database. For further data mining and storage saving, each single-services
bit-wise string can be transformed into a new single-services bit-wise string with a
larger time slice. Moreover, some single-service bit-wise strings with the same
destination and source IPs may be merged into a new multi-services bit-wise string
since the most networking intrusion behaviors from several different services in order

to setup an proper atack environment. So the final products of this module are these
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bit-wise strings that not merely contain single-service user behaviors but also contain
single-service user behaviors. For example, assume the basic time dlice of BIPAM is
one second. The bit-wise string of pii, for service type m using time slice k is denoted
as ppin.bs™, shown as following.

Service-user activity event of pii; for web service using time slice one and five
seconds

ppi1.bs"® = 0000000000110110101101001000

ppi1.bss*= 001110

Service-user activity event of piis for ‘uhﬁﬁbwn service using time slice one and

N S

, !"! 3 ,

five seconds - i : .
- N -

ppiz.bs ™™= 0000000600000001010110101001

L& 1Lk

ppiz.bss ™™= 000111

In the Pattern Mining Module, with the help of the pattern database, these bit-wise
strings of each user are first compared with the existing intrusion patterns stored in the
database using bit-wise indexing method for similarity search. If there is an existing
intrusion pattern is compared with one of these bit-wise strings and the similarity
degree is higher than the given threshold (e.g., 0.9), the IDS will announce a warning

message and take some appropriate actions. For instance, if there is an existing port
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scan intrusion pattern, bp-""""=1111111111111111111, the similarity between

bp-""""" and ppi.bss"™ ™" is 1 (if leading O is avoided), Although there is no such
kind of intrusion patterns in the database, the security administrators or expertise may
still consider these packet logs as some kinds of intrusions and possible intrusion
patterns might be found and then be stored in the database for further evaluations.
After finishing the works in this module, the bit-wise strings with possible intrusion
patterns of one user will be sent to the next module to find more complex intrusion
patterns. These bit-wise strings can be merged and then compared with existing

intrusion patterns to find the int[usi‘bh battéh’s- of multiple services using Pettern

Merging Module. For example, the ppllblsllwebmd ‘fjp'r:l.bslwm can be merged and thus

the bit string ppix ».bs """ =1p00B00000TT01A1111111101001 i formed. The bit

L& i

webunknow -an then be compared with the existing DDOS patterns for

string ppiy2.bs
finding some possible intrusion behavior. At last, the possible bit-wise intrusion
patterns are mined for further worksin building an intrusion detection system.

In this chapter, we have proposed a new, efficient and service-oriented intrusion
pattern mining and representation method that provides more expressivities, higher
performance. The intrusion patterns are extracted from the some sample packets that
can be expressed in sequence of packets and thus are represented by some bit-wise

strings for each network service. These bit-wise intrusion patterns can be easily rolled
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up and drilled down into the intrusion pattern of variant time window efficiently. Also,
the bit-wise intrusion patterns of each service can be easily merged with the others.
Using this method, the Internet intrusion patterns can be automatically mined from the
basic Internet activity logs efficiently and some interesting and unknown patterns may
be discovered. Now, we are trying to build an online intrusion detection system using

BIPAM for building a high confidence network system.
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Chapter 7

Using BWI indexing in Feature
Selection Method for Knowledge
Acquisition

In this chapter, an application that is a supervised-learning data-driven feature

selection method for CBR systems {81711 231{B) 28] [311[67][73]is introduced. This

F EHiEHHW\ %
implementation applies the Featuré Sel i_I n-Method-using Rough Set Theory, which

is appropriate for finding the optﬁ'r-xﬁ ,éOh':J:tior'i :ffbm é.éiven data set, except for the long
processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to
encode the feature and class relationships to reduce the processing time of feature

selection procedure. Finally, some experiments and comparisons are given and the

result shows the efficiency and accuracy of our proposed methods.

7.1 Problem Description

Feature selection is about finding useful (relevant) features to describe an

application domain. Selecting relevant and enough features to effectively represent and
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index the given dataset is an important task to solve the classification and clustering
problems intelligently. Thistask is, however, quite difficult to carry out since it usually
needs an exhaustive search to get the features desired. In the past, some approaches
have been proposed to solve the feature selection problem [11][19]
[24][30][43][47][48][60][78]. These approaches can roughly be classified into the
following two strategies:

1. Optimal strategy: This kind of approaches considers all the subsets of a given
feature set [2][63][76]. Some searching techniques, such as branch and bound, may be
adopted to reduce the search spacq._Fbrﬂ example, Liu et al. proposed a special feature

Y =A%

selector [47], which randomly producedfeaturewb&;ets according to the Las Vegas

algorithm [7]. It thus searched l-"t'hq,'e'ﬁt':i-r_é'§6'|‘Dt.ic.)l'r',].‘-:spaces and guaranteed to get an
optimal feature set. o

Heuristic strategy: This kind of approaches prunes search spaces according to
some heuristics. The results obtained by these approaches are usually not optimal, but
within a short time [79]. There are three typical heuristic approaches for feature
selection, including forward selection, backward selection and bi-directional selection.
The forward-selection approach initializes the desired feature set as null and then adds

features into it until the results are satisfactory [50][64][78]. The backward-selection

approach initializes the desired feature set as all the given features and then removes
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unnecessary features from it [19][78]. The bi-directional selection approach initializes
the desired feature set as a partial feature set, and then either puts good features into it
or eliminates bad features from it [24]. In the past, we proposed a bit-wise indexing
method based on a given feature set to accelerate case matching in CBR [11][13]. In
this section, we further investigate the determination of the appropriate feature set. We
propose a two-phase feature selection approach to discover significant feature sets
from a given database table, and use them to further investigation. The proposed
feature selection approach originates from the bitmap indexing and rough set
techniques. Naturally, it is deﬂgned to dlscover optlmal feature sets for the given
: iE |

dataset since the proposed method is orlgmated from the rough set theory. The

Experimental results also show tﬁéjgffi'ci'énby'aﬁd aéc‘ﬁracy of the proposed approach.

2 Bk

7.2 The proposed bitmap-based featur e selection method

As we mentioned above, we proposed a heuristic feature-selection approach,
called the bitmap-based feature selection method with discernibility matrix [14], to
find a nearly optimal feature set. However, finding the optimal solutions of feature
selection is still needed in some applications. Although some exhaustive search
methods can guarantee the optimality of selected feature sets, the computation cost

may be very high.
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In this section, we thus consider finding an optimal solution via the rough set

techniques and the bhit-based indexing method for the feature selection. The proposed

approach encodes a given data set into a bit vector matrix and uses bit-processing

operations on them to reduce the computation time. The proposed approach consists of

several main steps, as shown in Figure 7.1.
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Bitmap Indexing

Bitmap Indexing
FindClassVector Algorithm Phase

Data Cleansing

FindSpanOrder Algorithm

CreateCleansingTree Algorithm

CleanFeatureMatrix Algorithm

}

Feature Selecting
SelectingFeatureSet Algorithm i Feature Selection
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Output FS N
Y
Feature Combining

CalculatingNextMatrix Algorithm

Figure 7.1: Theflowchart of the proposed feature selection approach

There are two phases in the proposed algorithm - bitmap-indexing phase and

feature selection phase. In the bitmap-indexing phase, the given dataset is transformed

into a bitmap indexing matrix with some additional data information. In the feature

selection phase, a set of relevant and enough features are selected and used to represent

the dataset. The details of the two phases are described in following sub-sections.
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7.2.1 Problem Definitions

Let T denote atarget table in a database, R denote the set of nrecordsin T, and C
denote the set of m features in T. R can then be represented as { Ry, Ry, ..., R}, where
R is the i-th record. C can be represented as {Cy, C,, ..., Cy}, where G is the j-th
feature. The first m-1 elements in C are condition features and the last one, Cy,, is a

decision feature. Let V; denote the domain of Cj. V; can then be represented as {Vji,

Vi2, ..., Vi }, where each element is a possible value of C; and ¢; is the number of

possible values of C;. Let V(i) denotetheyqll_J__e of CJ- inrecord R;, Vj(i) # null. Table 7.1

shows an example of a target table T wnt,a]ten ecords R={Ry, R, ..., Rig} and five

features C = {Cy, Cy, Cs, Cy, C5} C5|$a'deusmn feaﬁure and the others are condition

features. Vet

Table 7.1: An example of a target table

=
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The purpose of this method is to find the one of the smallest feature set to
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effectively index the given table. The definitions and algorithms used in the bitmap

indexing phase and in the feature selection phase are described below.

7.2.2 Indexing Phase

In this phase, the target table is first transformed into a bitmap indexing matrix
with some additional classification information. Let by; is a bit of the bit vector. Let
ONEy denote the bit string of length k, with all the bits set to 1, ZEROx denote the one
with all the bits set to 0, and UNIQUIEIK"dgno;? }he one, with only one bit set to 1 and

the others set to 0. A record vector, Which/ usedtokeep the information of the records

i
e
. ' -

with a specific value of a feature;ii defined below. | =

DEFINITION 7.1- record vector :
A record vector RVj is a bit string bib,.. b, with by set to 1 for V(i) = Vjx and set

to O otherwise, where 1<j<m, 1<k<g;, and 1<i<n

RVj« thus keeps the information of the records with the k-th possible value of the
feature C;. For example in Table 7.1, C; has three possible values {M, L, H}. The
record vector for C; = M is 1100100000 since the first, second and fifth records have

this feature value. Similarly, the record vector for C; = L is 0011010000 and for C; = H
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is 0000001111. All the record vectors are shown in the third column of Table 7.2.

Table 7.2: Therecord vectors and class vectors from Table 7.1

Feature|Feature-value|Record Class
Vector Vector

Vi 1100100000|110
C1 Vio 0011010000(111
Vis 0000001111 (111
Vo 1110000000|100
C Voo 0001111000|011
Vs 0000000111|111
Va 1001011100|111
Cs 0110000000|100
413344410000100011(110
41011100000/ 110
Ca ol ~ | 10100000011(110
Y- | “1000001£100|001
Void) ~1110060001/100
Cs Vsz  TFprri0001100010|010
Vs3 0000011100|001

A class vector, which is used to keep the information of the classes (values of the

decision feature) with a specific value of a feature, is defined below.

DEFINITION 7.2 - class vector:
A class vector CVj is a bit string biby...bs,, with b set to 1 if RVix N RVy #

ZERO;, and set to 0 otherwise, where o, is the number of possible values of Cand n
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is the number of recordsin R.

Here, the "AND" bit-wise operator is used for the intersection in definition 2. CVjx
thus keeps the information of the classes related to the k-th possible value of the
feature C. For example in Table 7.2, the record vector (RVi1) for C; = M is
1100100000 and the one (RVs) for Cs = 1 is 1110000001. Since the bit-wise
intersection of 1100100000 and 1110000001 is 1100000000, not equal to ZERO;j, the
first bit in RVy isthus 1. Similarly, the second and third bits in RVy; are 1 and O from

the intersection results of RV with.;‘Rvs',z, ‘and "W:"it-h? RVs3. the class vector CVyis thus

110. All the class vectors are shdwn in thle_;fc)ur‘th ¢élumn of Table 7.2. Formally, a
: N -

class vector CViy can be obtained by .thé‘f':c)li‘d/;\}fhg Fmd class vector algorithm.

L& 1Lk

Algorithm 7.1 — Find class vector algorithm :

Input:  Record vector RVi.

Output: Class vector CVix.

Step 1. Set CVjk to ZEROom,

Step2: For each i, 1 <i < om, Set the i-th bit of CVjc to 1 if RVik N RV # ZERO,;
otherwise, set it to O.

Step 31 Return CVj.
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DEFINITION 7.3 - Feature-value vector :

A feature-value vector Fj is concatenated of RVjx and CVj.

For example, the feature-value vector Fy; in Table 7.2 is 1100100000110, which is
RV1: concatenated with CV4y. All the feature-value vectors for a feature are then

collected together as afeature matrix. This is defined below.

DEFINITION 7.4 - A feature matrjxfor a featdire :
'.‘: Fj]_
i3

A feature matrix M; for the'téemut_é.i?(:;jﬁsq@oted‘ , Where g; is the number

[ 2§ it io;

of possible valuesin C;.

For example, the feature matrix My in Table 7.2 is show as follows:

1100100000110
M, =| 0011010000111
0000001111111

The bits with underlines are class vectors. From the definition of the feature
153



matrix, it is easily derived that applying the bit-wise operator "OR" on all the record

vectors in a feature matrix will get the ONE, vector, and applying the bit-wise operator

"AND" on any two record vectors in a feature matrix will get the ZERO, vector. Note

that, the “OR” and “AND” operators are defined to result for executing “OR” and

“AND” operation on all respective bits for the given two bit vectors. Thus, if we apply

the bit-wise operator "XOR" on all the record vectors in a feature matrix, we will also

get the ZERO, vector. Take M; as an example. The result for 1100100000 OR

0011010000 OR 0000001111 is 1111111111. The result for 1100100000 AND

0011010000 is 0000000000. The résiit for 44400100000 XOR 0011010000 XOR

el

=1
"1

0000001111 is 0000000000.

N X =
A

L& i

DEFINITION 7.5 - A feature matrix for atableT :

M,

M
A feature matrix M for atable T is denoted | 2 |, where m is the number of

featuresin T.

For example, the matrix composed of the bit strings from columns 3 and 4 of
Table 7.2 is the feature matrix for the data given in Table 7.1. The feature matrix for a

table isthen input to the feature selection phase to find relevant and enough features.
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7.2.3 Feature Selection Phase

In this phase, we want to find a set of relevant and enough features to represent
the given dataset. It is further divided into several stages. First, a feature-based
spanning tree is built for cleansing the bitmap indexing matrix. The dataset with noisy
information is thus judged and filtered out according to the spanning tree. The cleansed,
noisy-free bitmap indexing matrix is then used to determine the optimal feature set for
some classification and clustering prob!qrns .

Before the feature selection.-pHésé ls#xecutedthe correctness of the target table
needs to be verified. If there aresome rego@thetarget table with the same values
of all condition features, but with dlfferent ones df' "t';w-e decision feature, they are treated
as noise records and are filtered out from the target table. Intuitively, every two records
can be compared to find out the inconsistent records in the target table. Its time
complexity is O(n’m), where n is the number of records and m is the number of
features. Below, we propose the concept of a cleansing tree to decrease the time
complexity to O(nmj), where j is the maximum number of possible feature values of a
feature and n is usually much larger than j in the general classification and clustering

problems. The formation of a cleaning tree depends on the given feature order. We thus

have the following definition.
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DEFINITION 7.6 - spanned feature order :

A spanned feature order O is a permutation consisting of all the condition features

inatarget table T.

For example in Table 7.1, <C,, C,, C3, C4> can be a spanned feature order. When

a spanned feature order is given, a cleansing tree can then be built according to it. The

definition of a cleansing treeis first given below.

DEFINITION 5-7 - cleansing tFeeg :

A cleansing tree Ctree is a tfee with a root denoted root[Ctree]. Every node x in

L& TN E"

the tree corresponds to a feature value. A node y is the parent of a node x if the feature

of y precedes the feature of x in the given spanned feature order. A node z is the sibling

of anode x if they have the same feature, but different values.

A dtructure of a cleansing tree is shown in Figure 7.2. Its maximum height is m-1,
where misthe number of features in adecision table T. Each node x has three pointers,
which are p[x], left-child[x] and right-sibling[X], respectively pointing to its parent

node, its leftmost child node and its first right sibling node. It aso contains two
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additional information, record[x] and clasy[x], which indicate the associated record and

class vectors of x. If node x has no child, then left-child[x] = NIL; if node x is the

rightmost child of its parent, then right-sibling[x] = NIL.

root{Tree] \

record class

record class record class record class

\ 4

i £y . /

record class | | record class record class

|

A\ 4

Figure7.2: T.hesff'hctljré of acleansing tree

As mentioned above, records may have the same values of all condition features,
but different value of the decision feature. These records are called inconsistent.
Inconsistent records can also be found out when the cleansing tree is built. The
building algorithm uses the valid mask vector to find the consistent records. The valid

mask vector is defined as follows.
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DEFINITION 7.8 - valid mask vector :
A valid mask vector ValidMask for atarget table T a bit string b;bs.. by, with b; set

to 1if thei-th record R is not inconsistent with other records, and set to 0 otherwise.

The cleansing tree for a given spanned feature order can be built by the following
Create cleansing tree algorithm. The ValidMask is initially set to ONE,., and will be

modified along with the execution of the Create cleansing tree algorithm.

Algorithm 7.2 — Create cleansing tree algorithm :

Input : A feature matrix M, the va Id mesk I"\/Ead]dMask and a spanned feature order O.

Output : The valid mask \/alidM;isij.(:. ‘—

Step 1: Create an empty node x and set irf asthe rt-;gt node.

Step 2:  Initialize record[X] = ONE,, clasgx] = ONEo, and depth = 0, where the
variable depth is used to represent the depth of the node x in the cleansing
tree.

Step 3. Set px = X, where px is used to keep the current parent node.

Step 4 If class]¥] isnot equal to UNIQUE,  and depth is not equal to m-1, do Step
5 to build the child nodes of node x; otherwise, goto Step 7.

Step 5:  Let C; be the current feature in the spanned feature order to be considered.

158



For each feature-value vector Fj in a feature matrix M;for C;, if (record[px]

AND RVj) # ZERO,, do the following sub-steps:

Step 5.1:

Step 5.2

Step 5.3:

Step 5.4

Step 5.5:

Sep6:  If left

Create an empty nodey.

If left_child[x] = NIL, consider y as a child node of x and set p[y] = X
and left_child[x] = y; otherwise, consider y as a sibling node of x and
set p[y] = p[x] and right_sibiling[x] =Y.

Set record[y] = (record[p[y]] AND RVj) and classy] = (class[p[y]]
AND CVjJ).

If depth=m-1 and class[y] ;é UNIQUE , Set ValidMask = (record[y]
XOR \/alidMasl:'ol.;'. . ! ; ?3' 3

setx=y. . .""-‘.“-‘:i‘:

_child[px] # NIL, st x = Ieft chlld[px] depth = depth + 1 and go to

Step 3. Otherwise, do the next step.

Step 7:  If right_sibiling[x] # NIL, x = right_sibiling[x] and go to Step 3; otherwise,

set x = p[X] and do the next step.

Step 8: If x # Tregroot], go to Sep 7; otherwise, return ValidMask and stop the

algorithm.

For example, the cleansing tree for the datain Table 7.1 with the spanned feature
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order <C,, C,, Cs, Cs> will be built as shown in Figure 7.3. At first, the root node is
generated and all the bits in record[root] and clasgroot] are set to 1. Since clas[root]
is not equal to UNIQUEs3;, and the current depth is 0, not equal to m-1, the next step is
executed to build the child nodes of the root. The first feature C; in the spanned feature
order is considered. Since it has three possible values and (record[root] AND RVy), k
= 1to 3, is not equal to ZERO,, three nodes, represented as nodes 1, 2 and 3, are
created as the children of the root. Since node 1, the left child node of the root, is not
NIL, it isthen processed to generate its child nodes in the same way. Nodes 4 and 5 are
then created for the second featureﬂC:z"i-n‘t.né spanned feature order. Since clasy node 4]
has been equal to ONE;, the si:blj'ing ofr|1—o!de4 wh|Ch is node 5, is then considered.

Since clasgnode 5] has also been equaltoONElo the sibling of node 5, is then

| B B ‘

considered. But since node 5 has no sibldi‘ng; its parent node, node 1 is considered. The
sibling of node 1, which is node 2 is then processed. The same procedure is then
executed until the whole cleansing tree is generated.

The numbers at the left of the nodes in Figure 7.3 indicate the order built. In node
15, the second and third bits of the class vector are both "1". It means that the
corresponding record vectors will have more than one "1". The corresponding records
with bit "1" are then inconsistent since their values of all condition features are the

same, but their values of the decision feature are different. In this example, the ninth
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and tenth records are inconsistent. The ValidMask are thus modified from

"1111111111" to "1111111100".

rool | 111111111L | 111

[ 1 [ 00100000 | 110 | 2 [ootiot0000 | 111 ('3 oooomotitt [t |

|

o L4 [noomoouo [ 10 | | 5 Joomoouoo oo | [ 6 oo [ 0] [ 7 [ototooo [on | [ 11 oomooiooo [ 100 | - 2 [oowmmort [ 11
2

| ('8 [ oootoroooo [ 1t | [ 13 [ oooooootoo [ oot | | 14 ] oo | 110

| 9 oootooooon [ o10 | [ 10 oooootoono | ot | 15 | oo0o0got | 110

Figure7.3: Cleansing tree with feature s8anned order <Cy, Cy, Cs, Cs>

In the above example, the: ;spanngd era‘tuﬂre ordé O is st as <Cy, Gy, Cg, Cp>.
Different orders will apparently affect tﬁe performance of the cleansing spanning trees
built. A cleansing spanning tree with a better spanned feature order can reduce the
space and time complexities. In the past, there were some famous tree structures for
classification, such as the decision-tree approach[58], which was based on the entropy
theory to select the next best feature. In order to reduce the computational complexity
for evaluating the spanning order of features, the following heuristics are thus

proposed.
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H1: The more ‘1l bits arecord vector for a feature value has, the more weight the
feature value has.
H2: The more ‘1 bit the class vector for a feature value has, the less weight the

feature value has.

These two heuristics show the relationship between feature values and classes. If
a feature value appears in most records with a single class, the weight of this feature
value is relatively high. These heuristics can be used to save the computation time

when compared to using the entropy'thédfy. fﬁé’ following Find span order algorithm
A=\

is thus proposed to determine th;é spann 'I'f.eiétUr'é"séqunce O of all condition features

by evaluating the feature wei ghts-'écl‘.‘:(.:,oﬂ'rd'i hd‘t"c;)"t;he. a[ﬁ/e heuristics.

L& 1Lk

Algorithm 7.3 — Find span order algorithm :

Input: A feature matrix M for atable T

Output: A spanned feature order O.

Step 1:  Initialize weight; =0, where 1 <j <m-1.
Step2: For each M in M, set:

. Zi, Count(RVy )
ht. —J'
et < g’l[Count(Cij )] 2

where the function Count(x) is used to count the number of ‘1’ bitsin x.
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Step 3:  Order the featuresin O in the descendent order of the weight values.

Step 4. Return O.

For example, according to the feature matrix in Table 7.2, the weight of each

featureis calculated as shown in Table 7.3.

Table 7.3: Calculating the weight of each feature

Feature Weight Old New
Order | Order
C 3/4+3/9+4/9=1,53 1 4
C 3/1+4J4+3/9=4.330, 2 2
Cs 5/9+2/1+3/4=331, - 3 3
Cs A4-+BI4+311=4 75~ = 4 1

] |

Ty

e el
TEREENT®

The new spanned feature sequence O determined by the above algorithm is thus

<C4, C,, Cs, C;>, instead of the original order <C,;, C,, Cs, Cs>. The cleansing tree

generated on the new order is shown in Figure 7.4.
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Figure 7.4: The cleansing tree generated on thenew order <C,, C,, Cs, C;>
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As we can see, the cleansi ngtree WIHL t‘lewfeature order O=<Cy, C,, Cs, C1> in

Figure 7.4 is much smaller than that inFigure-z.3. The number of nodes has decreased

from 15 to 9. Therefore, the compu‘t‘é‘t'i'ohél"'t‘i‘me of generating and traversing the
spanning tree can be greatly reduced.
After the cleansing tree is built, the ValidMask may not be ONE, since

inconsistent records may exist. The ValidMask is then used by the following Cleansing

feature matrix algorithm to remove the inconsistent records from the feature matrix.

Algorithm 7.4 — Cleansing feature matrix algorithm :
Input: A feature matrix M for atable T and a valid mask vector ValidMask.
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Output: A cleansed feature matrix M,

Step 11 For each feature-value vector Fijin M, do following sub-steps:
Step 1.1: RV, = RV;; AND ValidMask.
Step 1.2:  CV;; = Find class vector algorithm(RVj;).

Step 2:  Return M.

For example, the ValidMask is set to "1111111100" after the cleansing tree for
Table 7.1 is built. Since the ninth and tenth bits of the ValidMask are 0, the Cleansing

feature matrix algorithm will set theséWwo bitsGf-all the record vectors in Table 7.2 to

0. The class vector of each featurewalue |s!then recalculated by the Find class vector

. b '

algorithm according to its new rzéﬁf,;pr,a"lﬁ'edde:';The revlsed feature matrix is shown in

Table 7.4.

Table 7.4: The cleansed feature matrix of Table 7.2

Feature|Feature-value|Record Class
Vector Vector
Vi 1100100000(110
C Vio 0011010000{111
Vi3 0000001100/001
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Vai 1110000000[100

C: |Va 0001111000 011
Vs 0000000100001

Vai 1001011100|111

C: |V 0110000000]100
Vas 0000100000010

Var 1011100000|110

C. Vo 0100000000100
Via 0000011100]001

Vi 1110000000/ 100

G5 |V |0001100000/010
> !_] Qéi);glloo 001

% o’ i
For effectively distinguishing the?pl‘m“s,ffprﬁ the feature values, we must extend
the concepts related to a single feature to a feature sets. The following definitions are

thus needed.

DEFINITION 7.9 - power of afeature set :
C® is called the s-power of a feature set C, if each element in C° is composed of s

distinct condition featuresfromC, 1 <s<m-1.

Thus, we have C'= C. For example, the power set C'for the datain Table 7.1 is
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{{Ci}, {C3}, {Cs}, {C4}}. The power set C?is {{C1,Cs}, {C1,C3}, {C1.Ca}, {C2,C3},

{C,,C4}, {C5,C4}}. Let |C?| denote the cardinality of C°. Then:

|CS|=[m;1J.

Let C denote the j-th element in C°, 1 <j < |C%. C¥isthen a feature set. Also let
\f denote the domain of C¥, ¢% denote the number of possible values in V5, and Vo
denote the k-th feature value of C%. Each feature set can be represented by a name

vector, defined below.

DEFINITION 7.10-nemevesgf o a s

Ity =1
1 -

The name vector NV of a;fe‘ature,sgbs-, iéa bit_"étring b1bs...bm1, with by set to 1

if feature G; is included in CSand set 100otherdise.

For the above example, C'; denotes the first element in C', which is {C;}. The
name vector NV'; is then 1000 since only C; is included in C*;. For another example,
C*= {{C1,C2}, {C1,C3}, {C1,Ca}, {Cr,C3}, {CaCa}, {Cs,Ca}}. C*1 denotes the first
element in C?, which is {Cy, C;}. The name vector NV?; is then 1100 since C;and C,
are included in C?.. Similar to a single feature, some terms related to a feature set is

defined below.
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DEFINITION 7.11 - record vector of afeature set :
A record vector RV of a feature set value C’k is a bit string bibs. . by, with b; set

to 1 for V(i) = V°k and set to 0 otherwise, where 1 <j <|C%and 1 <k <.

RV thus keeps the information of the records with the k-th possible value of the
feature set C. A class vector, which is used to keep the information of the classes

(values of the decision feature) with a specific value of afeature set, is defined below.

DEFINITION 7.12 - classvector of afeature%t

iEls

A class vector of CV of a: feature set value Cs,k s abit string bibs...bs , with by

set to 1 if RV N RV # ZEROnandset ‘t'b;-'ﬁ' c.)th'.,eﬁ/vise, where ar, is the number of

L& 1Lk

possible values of C,and n is the number of recordsin R.

CVii thus keeps the information of the classes related to the k-th possible value of

the feature set C5. A feature-value vector of a feature set is defined below.

DEFINITION 7.13 - Feature-value vector of a feature set :

A feature-value vector FS is composed of RV and CV¥.
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DEFINITION 7.14 - A feature matrix for afeature set :

Fi
F
A feature matrix MS, for the feature set C5 is denoted | '? |, where 1 <j < |CY

[N

L Joi ]

and ¢ is the number of possible valuesin C¥.

DEFINITION 7.15 - sfeature matrix for atableT :

An s-feature matrix M® for atable T is denoted ,Wherel<s<ml.

Hereafter, two algorithms arepropog;ed&‘mdthe desired feature set. The first
algorithm, named the Selecting featureget algpri;th'r;, is used to find a feature set from
a given s-feature matrix. If there exists a feature set which is sufficient to decide all the
records in the given dataset, the feature set will be returned and the feature selection
procedure stops. Otherwise, s is incremented and the Selecting feature set algorithmis
executed again. The second algorithm, named the Calculating next matrix algorithm,

derives the new feature matrix from the previous feature matrix. The Selecting feature

set algorithm is described as follows.
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Algorithm 7.5 — Selecting feature set algorithm :

I nput:

Output:

Step 1.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

An s-feature matrix M* for atable T.

A selected feature set FS

Initialize FS=9, ] = 1.

If j <|C, do the next step; otherwise go to Step 7.

Set k=1, wherek is used to keep the number of the value currently processed
in afeature set C5.

If k< 6%, do the next step; otherwise go to Step 6.

If CV5 # UNIQUE, , set j=Jji+liand go to Step 2; otherwise setk =k + 1

N S

and go to Step 4.

=1
"1

Els

Set FS= C%; That is, for eadh 1 fiomto i¥1, set FS= FS U {G} if the i-th
bit of the name vector NV#, for feature set Cisequal to 1.

Return FS.

Take the data in Table 7.1 as an example to illustrate the above algorithm. s is set

at 1 a the beginning. The 1-feature matrix M* for the data is the same as the feature

matrix M found before. The Selecting feature set algorithm will examine the 1-feature

sets one by one. The first element M*;, which is {Cy}, is then processed. The class

vector CV'y; for the first feature value C'y; is 110, which is not equal to UNIQUEs.
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Using the feature set {C;} can thus not completely distinguish the classes. The other
elements in the 1-feature matrix M* are then processed in a similar way. In this
example, no element is chosen. Thus & is returned. It means no single feature can
completely distinguish the classes. s is then incremented, and the Selecting feature set
algorithm is then executed from the new s-feature matrix. The new feature matrix can
be easily derived from the previous feature matrix by the following Calculating next

matrix algorithm.

Algorithm 7.6 - Calculating next mattix-algorlij;hm :

Y =Hik
Input:  An s-feature matrix M® for altablé 15

Output: An (s+1)-feature matri>"<-:lj\/:'ls+li.,t.6r_ .m T.‘-;‘I‘_:F“
Step1: Foreachj,j=1to|CY -1, do ‘théfoll'BV\;i.nlg steps.
Step2: For eachl, | = (j mod m) + 1 to m, do the following sub-steps.

Step2.1:  Set NV*™ = NV ORNVA,.

Step 2.2:  Set the temporary counter k to 1.

Step 2.3 For each feature-value vector FSx in M%, 1 < x < |Cf|, do the following

sub-steps:
Step 2.3.1:  For each feature-value vector F'yy, in MY, 1 <y <|CY|, do the
following sub-steps:
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Step 2.3.1.1: Set RV = RVixAND RVY,.

Step 2.3.1.2: Set CV**% = CV5xAND CV,.

Step 2.3.1.3: IF CV¥"™ # UNIQUE, , set CV*"Yj = Find class
vector algorithm(RV®"%).

Step 2.3.1.4: Set k = k+1.

Step 3:  Return the (s+1)-feature matrix M2,

For example, the 2-feature matrix M? for the data in Table 7.1 is generated from
the 1-feature matrix M* as follows. .Ihé"némé Q/:éotc.g.r for festure C* is first calculated.
Thus: =i 7> X4

NVZ; = NV ORNV, kN

= 1000 OR 0100

= 1100.

The feature-value vector F2;in M2, is then calculated. The record vector is found

as follows:

RV2;; = RVA; AND RV,

= 1100100000 AND 1110000000
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= 1100000000.

The class vector is found as follows;
CV?y; = CVY AND CV4yy

=110 AND 100

= 100.

R LR & . .
In asimilar way, all the featqyg;j’&laIUE'v'eé’fg[i in the 2-feature matrix M? can be

=

.

found. The results are shown in Tﬁbl}e““/. ok

Feature | Feature Set | Name | Record Class
Set Value Vector | Vector Vector
VP 1100 | 1100000000 | 100
VP, 1100 | 0000100000 | 010
C% VP13 1100 | 0010000000 | 100
VP, 1100 | 0001010000 | 011
VP35 1100 | 0000001000 | 001
Va6 1100 | 0000000100 | 001
V2, 1010 | 1000000000 | 100
V2, 1010 | 0100000000 | 100
C?% Vs 1010 | 0000100000 | 010
V2o, 1010 | 0001010000 | 011
Vo5 1010 | 0010000000 | 100
Vs 1010 | 0000001100 | 001
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1000100000 | 110
0100000000 | 100
0011000000 | 110
0000010000 | 001
0000001100 | 001
1000000000 | 100
0110000000 | 100
0001011000 | 011
0000100000 | 010
0000000100 | 001
1010000000 | 100
0100000000 | 100
0001100000 | 010
0000011000 | 001
0000000100 | 001
1001000000 | 110
0114, 0000011100 | 001
/0020000000 | 100
0117 | 0100000000 | 100
110011 | 0000100000 | 010

Cc%

C%

Notethat in Step 2.3.1.2, the class vector derived by the bit-wise "AND" operator
denotes only the "possible" class distribution. For example, the feature-value vector
F%,; consists of RVZ,; = "1000000000" and CV?; = "110" after Step 2.3.1.2. Since each

record belongs to only one class, the above results are not correct. In fact, the class

vector CV2%; = "100". Step 2.3.1.2 is used as a quick check. If CV*™ # UNIQUE, ,

then the Find class vector algorithm is run in Step 2.3.1.3 to find the correct class

Vector.
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After the new feature matrix is derived, the Selecting feature set algorithm is then
executed again to find an appropriate feature set. For the above example, the 2-feature
matrix M? is then input to the Selecting feature set algorithm and the feature set FS =

{Cy,, C4} arefound and returned as the solution.

After the above method is executed, the feature set FSto classify the given data
set T is generated. FS may be over-fitting or under-fitting for the problem since they
are derived only according to the current data set. These features are then evaluated

and modified by domain experts. They thus éér:'Ve as the candidates for the experts to

N\

=1
"1

have a good initial standpoint.

7.3 Complexity Analysis and Experiments

The time and space complexities of the proposed algorithms are analyzed in this
section. Let n be the number of records, m be the number of features and c be the
number of classes. Also define i as the maximum possible number of features in a
feature set, | as the maximum number of possible values of a feature, and s as the
number of iterations. The time complexity and space complexity of each step in the

Find class vector algorithmis shown in Table 7.6.
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Table 7.6: Thetime and space complexities of the Find class vector algorithm

Step No Time Complexity Space Complexity
Stepl 0(1) O(c)
Step 2 O(jc) O(jc)
Step 3 0(1) O(c)
Total O(jc) O(jc)

The time and space complexities of each step in the Create cleansing tree

algorithm is shown in Table 7.7. Note that the maximum amount of nodes within a

Ctreeisn.

Table 7.7: Thetime and spacec{ém

|.

pIexmdethe!éreate cleansing tree algorithm

= f&‘ Lf’wf;h '»‘a

Step No Time Coﬁ@lé)«’tyiu‘“ & Space Complexity
Step 1 o) “"Prrppee o(1)

Step 2 0(1) o(1)

Sep 3 0(1) o(1)

Step 4 O(nmj) O(n)

Step 5 O(mj) O(n)

Sep 6 0(1) o()
Step7 o(1) o(1)

Total Oo(nmj) o(n)’

The time and space complexities of each step in the Find span order algorithm is

shownin Table 7.8:
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Table 7.8: Thetime and space complexities of the Find span order algorithm

Step No Time Complexity Space Complexity
Step 1 O(m) O(m)

Step 2 O(cm) O(cm)

Step 3 O(clge) O(c)

Step 4 0(1) o(1)

Total O(Max(cm, clgc)) O(cm)

The time and space complexities of each step in the Cleansing feature matrix

algorithmis shown in Table 7.9:

jorithm

r"»w

"'t@p‘i i—he Cleansing feature matrix

a BOAl > 1
f'a —L—“'k E
Step No Time Corep!em;_y LI | S Space Complexity
Step 1 el O(mj)
Step 2 o(1) O(1)
Total o(mj) o(mj)

The time and space complexities of each step in the Selecting feature set

algorithm is shown in Table 7.10.

Table 7.10: Thetime and space complexities of the Selecting feature set algorithm

Step No Time Complexity Space Complexity
Stepl 0(1) o(1)
Step 2 o(m3) O(1)
Step 3 0(1) o(1)
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Step 4 O(°) o(1)
Step 5 o(1) O(1)
Step 6 O(c) O(c)
Step 7 o(1) O(1)
Total o(mj®) O(c)

The time and space complexities of each step in the Calculating next matrix

algorithm is shown in Table 7.11:

Table 7.11: Thetime and space complexities of the Calculating next matrix

algorithm
Step No Time Complexity Space Complexity
Step 1 omi g, O(m7’)
Step 2 ol =R\ e O(mj)
Step 3 offye = o)
Total o(m¥’) om3°)

To evaluate the performance of the proposed method, we compare it with other
feature selection methods. Our target machine is a Pentium 111 1G Mhz processor
system, running on the Microsoft Windows 2000 multithreaded OS. The system
includes 512K L2 cache and 256 MB shared-memory.

Several datasets from the UCI Repository [60] are used for the experiments.
These datasets have different characteristics. Some have known relevant features (such
as Monks), some have many classes (such as SoybeanL), and some have many

instances (such Mushroom). In addition, a large real data set about endowment
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insurances from a world-wide financial group is used to examine the usability of the
proposed method. Experimental results show the proposed method can discover the
desired feature sets and can thus help the enterprise to build a CBR system for their
loan promotion function of customer relationship management system. The data set of
insurance data uses 27 condition features to describe the states of 3 different insurance
types. Different types of attribute values including date/time, numeric and symbolic
dataexist. They are all transformed into the symbolic type by some clustering methods.

Six of them have missing values.

.

The characteristics of the aboVe datax

¥ 3

Table 7.12: The datasetilisad in the experiments

Database Name | Class No. | Condition Record No. | Missing
Feature No. Features
Monk1 2 6 124 no
Monk2 2 6 169 no
Monk3 2 6 122 no
Vote 2 16 300 no
Mushroom 2 22 8124 Yes
SoybeanL 19 35 683 Yes
Insurance 3 27 35000 Yes

In the experiments, the accuracy, the number of selected features, and the time

will be compared between our method and the traditional rough set method. The
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accuracy is measured by the classification results of the target table. If the selected
feature set can solve the problem without any error, 100% accuracy is reached,
otherwise the accuracy is calculated by the number of correctly classified records over
the total number of records. Experimental results show both methods can reach 100%
accuracy. We then compare the feature sets found by these two approaches. The results
are shown in Table 7.13. Obviously, the accuracy of all datasets is 100% since both of
these two method discover the minimal feature sets.

Table 7.13: The selected feafgtdl:eisetls:jgund by the two approaches.

T

Traditional Rouﬁﬁ"Setﬁ;g? IBltmapubased Approach | Accuracy
Approach |
Datasst | FeatureSet =\ 47 | Feature'Set 100%
Monkl | C1,C2, C5 W C [ CcLee cs5 100%
Monk2 | C1-C6 cLce 100%
Monk3 C1,C2,C4,C5 C1,C2,C4,C5 100%
Vote C1-C4, C9, C11, C13,Cl16 | C1-C4, C9, C11, C13, C16 | 100%
Mushroom | C3, C4, C11, C20 C3, C4, C11, C20 100%
SoybeanL | Need too much C14, C20, C26, C27, C29, | 100%
computation time. C30, C31, C32, C33, C34,
C35
Insurance | C4, C15, C17, C20, C22, | C4, C15, C17, C20, C22, | 100%
C25 C25

Note that there may be more then one solution for the selected features. In Table

7.13, only the first selected feature set (in the alphabetical order) is listed. It is easily

seen that the selected feature sets of our proposed approach and the traditional rough
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set approach are the same except for the SoybeanL problem. The SoybeanL problem

needs too much computation time by the traditional rough set approach.

The numbers of the selected features by the two approaches are shown in Table

7.14. Both methods get the same numbers for all problems except for SoybeanL.

Table 7.14: Thenumber of the selected features found by the two approaches.

Dataset Traditional RS Bitmap-based
Monk1
Monk2
Monk3
Vote
Mushroom
SoybeanL
I nsurance

L . ¥ ] I'lnﬁl' "

At last, the computation time is compared. The data sets are first loaded into the
memory from the hard disk and the processing times are measured. The time is
rounded to O if the real time is less than 0.001 seconds. The results are shown in Table

7.15.

Table 7.15: The CPU times needed by the two approaches

Dataset Traditional RS | Bitmap-based
Monk1 0.07 0

Monk?2 0.351 0.01

Monk3 0.141 0

Vote 428.19 1.923
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Mushroom | 4911.32 27.91
SoybeanL >1000000 247805
Insurance 468656 2435.66

Consistent with our expectation, the proposed approach is much faster than the
traditional rough set approach. Especially for the Insurance data, our approach needs
only about 40 minutes, but the traditional rough set approach needs much more
computation time.

In this chapter, we have proposed a hit-based feature selection approach to
discover optimal feature sets for the given table(dataset). In this approach, the feature
values are first encoded into b!:t-rﬁé%""jn_c{iqejs:::.fldr-f_lmching the optimal solutions

=iF|§ .
efficiently. Also, the correspondjhg““inqexip'g':"éﬁd "séleﬁting algorithms are described in

o ok
¥ Ul 1

1896

details for implementing the propﬁégq_.'ébbroagh. Experl mental results on different data

sets have also shown the efficiency and accuracy of the proposed approach.

The traditional rough-set approach has two very time-consuming parts,
combination of features and comparison of upper/lower approximations. In this
method, we use the single-time-clock bit-wise operations to shorten the computation
time of the comparison part. Moreover, the workload in the combination part is highly
reduced since the new levels of combination can be generated via the pervious ones.
The bit-wise operations are also used to speed up the combination generation. The

proposed feature-selection approach also adopts appropriate meta-data structures to
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take advantages of the computational power of the bit-wise operations.

The feature selection problem is generally an NP-complete problem. Although the
proposed approach can process a larger amount of features than the traditional
rough-set approach, it still becomes unmanageable especially when the number of
features is huge or when the number of possible values of features is large. In the
future, we will continuously investigate and design efficient heuristic approaches to
manage huge amounts of features and possible values. We will also attempt to integrate
different feature selection approaches to automatically select an appropriate one for

optimal or near-optimal solutions aggoﬁdi ng‘to {ﬁét-qbaracteristics of given data sets.

: Ei= e 5
=l 2 =
- -

;s

183



Chapter 8

Using BWI Indexingin
Semiconductor M anufacturing Defect
Detection Systems

In this chapter, an unsupervised-learning data-driven data mining system of a

production-level defect detection systemm an intelligent engineering data analysis

|
H- T
- J B

(iIEDA) system in Taiwan Sem_i‘cbnduct(')'r_l.l\_/}amfaétalring Company Ltd. (TSMC) is

introduced. The bit-wise index.li'f.)gﬂ,'r'rjé{r;od:s";'(inc.:.[y_czjing Sample, Encapsulated and
Compact Bit-wise Indexing Methodsi,‘. D‘a;é Mining Technologies, and Statistic
Methods are hybridly used in this application in order to generate the possible
root-cause candidate list for the given manufacturing details of an individual low-yield
situation event. Also, some critical issues about of applying a data mining solution for
manufacturing defects detection system in semiconductor manufacturing domain will

be discussed and reviewed. Finally, we will propose the system framework of the

next-generation data mining solution in the future for providing a more knowledgeable,
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reasonable, reliable and flexible solution for data mining solution in the semiconductor

manufacturing domain.

8.1 Problem Description

In recent years, the procedures of manufacturing have become increasingly
complex [16][17][18]. To meet high expectations regarding yield targets, rapidly

identifying the root causes of defect5|s eﬁentlal for meeting high expectations
¥ EHR0\ ¢
regarding yield targets. Therefqﬁe, the t_'e,r_;hnolc_)giét; of process control, statistical

analysis and experiment desigr.lf:'jf;\(e,"'u@s-e_d"fé;"'espéﬁl:ish a solid base for well tuned
manufacturing processes. However, ide;hiifyir'iwé ‘root cause remains extremely difficult
due to multi-factor and nonlinear interactions in this intermittent problem. Traditionally,
the process of identifying root cause of defects is costly. The semiconductor
manufacturing industry provides an example. With a huge amount of semiconductor
engineering data stored in the database and versatile analytical charting and reporting in
production and development, the CIM/MES/EDA systems in most semiconductor

manufacturing companies help users analyze the collected data to achieve the goal of

yield enhancement. However, semiconductor manufacturing procedures are
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sophisticated, and thus multi-dimensional and large volumes of data are required to be
collected for these procedures. Data mining technologies [4][3][9][33] are employed to
deal with such large amounts of high-dimensional data [6][16][17][29][41][51][52][59].
In this chapter, we propose a data mining system and describe the experience of
applying such systems for discovering the root causes of low-yield situations in TSMC
[16][17]. Additionally, the evaluation of applying such a mining system for
manufacturing defect detection in the semiconductor manufacturing domain is discussed
and reviewed. Finally, a new architecture for a reasonable, reliable and flexible defect

detection platform based on the dataiFing appibech is briefly described.

HTQ\ &
8.2 DM Project for Yieléj‘E”:haH@n;[

| B B ‘

In June 2002, a research project odh-déta mining techniques was triggered by the
Manufacturing Information Technology Division of Taiwan Semiconductor
Manufacturing Company. Five test cases were conducted, including partial lot-based
information, WIP information, CP information, In-line metrology results, WAT results
and some manufacturing parameters. Each case represents a low-yield situation with an
already discovered root cause related to some manufacturing procedure; however, al of
the cases require extensive trouble-shooting time. Based on the given cases, a prototype

of the data-driven data mining system is required to discover the possible root causes
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for the subject cases. Since a large amount of data on this company exists, the data
mining system only discovers the killer machines for the cases that were prepared by
product engineers in the event of an abnormal manufacturing situation. Additionally, the
attribute weights in the given cases are initially treated as equal because of the lack of
previous built-in knowledge. Also, this engine is required to be noise-insensitive since

noise is difficult to filter in semiconductor yield enhancement applications.

After discussing this project, the data mining system should be designed

according to the following criteria: 3% phst e,
1. Platform criterion: The data mihi‘ng systemneeds té be executed in both server-end

and client-end applications accordmg tid";tH’é.fubE‘tional specification of an iEDA

| &

(Intelligent Engineering DaIaAnalysidsj.syétem in TSMC.

2. Development environment criterion: The data mining system should be developed as
some independent functional modules due to the system integration and platform
issue; and a prototype system integrating all proposed modules should be provided
for testing and evaluation viaTSMC.

3. Given data set criterion: Since the EDA system involves a vast and still growing
guantity of data, it seems impossible to analyze al manufacturing data in the EDA

system via the data mining system. The data mining system is designed for
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analyzing a pre-generated data set in the event of a low-yield situation. Restated, the
input data for the data mining system should be generated as a low-yield situation
case. Some lot-based manufacturing information is involved in this low-yield
situation case, and each case comprises a maximum of six segments, including basic
lot information, WIP information, CP information, in-line metrology results, WAT
results and other manufacturing parameter segments, and a unique decision feature
used to classify the high and low yield group of given lots. As mentioned above, the
data mining system is designed as a data-driven solution, and no previous

knowledge is built to recognize thesitribitéatalog and type, with the attributes of

GEls

all given cases that are proc@d by thé'datammlng system being named according

to the pre-defined naming rﬁléﬁ ""Fﬂrthé;r";rﬁqre,ﬁ;.‘-t"he user-prepared data files are

| B B ‘

acceptable only if the naming rules ofdéttfibutes are followed.

4. Accuracy criterion: In this data mining project, the accuracy rate should exceed 80%
in all cases. The percentage of hit cases thus should exceed 80%, where a hit case
means that the real root cause ranks within the top five rankings on the possible root
cause ranking list.

5. Efficiency criterion: The procedure of the mining engine should be completed
within one minute using the benchmark case involving 300 lots and 13000 attributes

for each lot.

188



The above criteria are incorporated into a data mining system scenario through the
following procedures:

1. Data preparation procedure: The raw data of cases are first retrieved from the EDA
database and then transformed into Bit-wise Indexing (BWI) matrixes [10] to
accelerate the subsequent mining procedure. Figure 8.1 illustrates three major
functional modules, including the Data Quality Analysis, Cutting- Point Calculating
and Data Dispatcher modules, in this processing phase. Since semiconductor

manufacturing processes have beoome 'in.(':'r'éasi.;r_]gly sophisticated, data collection

problems also have become .i‘néreaé,ing Iserrous, bérticularly when using advanced

technologies. Generally, in a it ot éit’ﬁ&‘iqn,';lébarse and null data issues may

seriously impact the accuracy of the data ‘rr'lii'ni‘ng results. The Data Quality Analysis
module is then employed to check quality of a given data set based upon our
proposed quality indicators. This function also provides lot and atribute merging
mechanisms in order to help users for combining the spit lot or procedure step in the
given data set. When the quality of the given data set is confirmed by the user, a
decision feature is required for judging the lot information within the whole data set.

The decision feature of this data set is used to separate all given lots into two

independent groups, called normal and abnormal lot group. After the decision
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feature is selected, the Cutting-Point Calculating module is executed to determine
whether the normal lot group is located at the right-hand (larger than) or left-hand
(smaller than) side of the given critical point. Certainly, users can define these two
parameters by themselves based on different situations. Since decision feature and
cutting-point are selected, the Data Dispatcher module has been used to dispatch
some individual data segments for data mining according to the naming rules, and

the corresponding BWI matrixes thus are generated.

Raw
Data

Naming I~ :
Columns/Lots = pM } R
- /| Model == | Data Dispatcher
1 Decision’
Data Quali P —— \
Anz‘:l?ysisty B R ecll 8% Data S(igments
‘ ) . Cutting-Point
QC OK Calculating
Data Set
i Analysis
Result

Cutting-Point
Calculating

Cutting Point &
Decision Direct

Figure 8.1: the flowchart of data preparation procedure
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Figure 8.2: the flowchart of data mining procedure
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2. Data mining procedure: Oncéﬁhe t:;\rgét BWI matrixes are fully prepared and the
data quality is verified, the data rﬁi ning prodedﬁre istriggered to analyze the content
of cases and discover the root causes for the target cases. Figure 8.2 briefly describes
four major data mining modules, including the Transaction-based, L earning-based,
Feature-based and Statistical-base modules, as presented below:

1) Transaction-based module: Generally, over 80% of low-yield situations in the
semiconductor manufacturing result from machine failure, and it is extremely
difficult to determine the degree to which each machines contributes to failure
during the manufacturing procedure. The root causes for production of low-yield
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wafers are hard to determine, since yield can not be qualified during the
manufacturing process. Generally, product engineers require some data analysis
methods for identifying evidence regarding possible root cause. According to the
experience of domain experts, methods based on single variable analysis usually
have seldom null-value tolerant ability. Therefore, these methods are not quite
suitable for seeking the root cause machine for the semiconductor manufacturing
domain. To solve the above problem, the Transaction-based module, including
equipment and multiple factor mining function, is applied to analyze the WIP
data segment to discover eachklller machlne through a hybrid data mining
method. The equipment fining fl;rlctlon Ji_s"lﬁsed to rank all possible Killer

machines in a given WIP datasegmentbasedon the confidence of mining result
[16][17]. That is, this function is usedto diécover abnormal machine behavior by
analyzing the manufacturing and machine logs. Moreover, semiconductor wafers
usually have one silicon subtract and several metal and dielectric layers. This
arrangement implies that some steps may be repeatedly executed by a killer
machine which influences the yield of all bypass wafers. Therefore, the multiple
factor mining function is proposed to handle the case of equipment failure related

to the descending yield for repeated manufacturing using a single machine. Since

the mining method used in this module integrates some data mining methods of
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transaction analysis, it is named the Transaction-based module.

Learning-based module: This module is used to process all of the numerical data
except the in-line metrology measurement part in the given data set to identify
the abnormal behavior of all numeric data in the given data segment. Initially,
each attribute in the give data segment is separated into normal/abnormal groups
according to the decision feature. A learning procedure then is triggered for
identifying the behavior pattern for each attribute based on the distribution and
trend of the normal group for this attribute. Once the attribute behavior pattern is
learned, the degree of abnormallty of the correspondlng abnormal lots group is

: iE |

judged and highlighted. F1na||y, the p0$|ble ranklng list and corresponding

mining result charts are obt'éi..‘r.‘]ed‘j-f-"Si nce the (é;sburce of learning procedure only
includes the given data segmentd,‘.thé 'gvér or under fitting problems remain
unsolved.

Feature-based module: this module is used to process the symbolic and dataltime
data in the given data set to determine the root cause of some recipes, programs
and tester changes. All attribute values of a given attribute in the given segments
are partitioned into normal/abnormal groups according to the distribution of

corresponding groups of decision features. Since the corresponding groups are

separated, the similarity degree can be calculated with the proposed feature
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similarity calculation method and the ranking list is thus proposed to users.

iv) Statistical-base module: This module is used to process the in-line metrology
measurement segment of the given data set. Since the measurement results of
in-line metrology are randomly sampled and only three or five wafers are
measured in each metrology, the existing lots of null values may influence the
accuracy of the data mining results. Therefore, satistical correlation analysis is
used to process the data in the sparse data set, and may reduce the impact of
guality issues on the given data. The list of attributes in this data set is proposed
and ranked based on the reﬂjlltedjbf)r.réia.t'i"(l):h degrees.

GEls

3. Possible root cause ranking IrSt génér.é‘tlidn-*br‘("_)cédyre: After the execution of the
- (. -

appropriate data mining modul'"ésj,. tﬁé';pdééi; Bl'é.ro;;)t-"‘cause ranking lists are generated

| B B ‘

and the corresponding evaluation indexés obtained. Furthermore, the corresponding
charts of the result of each module are provided to help product engineers realize the

results of the data mining system.

8.3 Evaluation Result for the Yield Enhancement DM Project

From June to September 2002, the proposed data mining system had successfully
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highlighted the root causes within top five ranking in the generated ranking list for 15
of the 19 real cases evaluated by proposed data mining system within a maximum of
40 seconds. Two cases were useless due to the data preparation (Case 10 - too few lots
available for mining) and multiple/combination killer machines (Case 12 — a combined
machine issue) issues. The accuracy rate is approximately 88%. According to these
excellent results, TSMC decided that the data mining module should be embedded into
a new function, called Yield Explorer, of the iEDA system in TSMC. After the new
function was released in September 2002, five of the newly received 23 cases could
not be processed due to the om-of;mi‘hilhé-.scéhia'riq‘ problem (Case 20 — queuing-time
Y =A%

issue) and multiple/combinatiort killer machines issies (Case 20, 21, 22 and 23 —

1

multiple machines/steps issue), t\;vq f:é's@é;ré;ét;illl q@dérgoing further investigation, and
ten hit cases were obtained from the remalnlng 16 cases, as listed in Table 8.1. The
performance evaluation about using BWI Indexing is listed in Table 8.2. The accuracy
rate decreases from 88% to 63%, and the reasons for this lower accuracy rate are
briefly described below:
1. Data Preparation Problem : Before the announcement of the data mining
solution at TSMC, all testing cases were carefully reviewed from the

perspectives of both data preparation and quality. The hit rate of all testing

cases in this stage is extremely high. After the Yield Explorer function of
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IEDA system was released, the data preparation and quality tasks for data
mining system can be executed by all product engineers in TSMC. Even with
enough training of this function, the concept of data mining remains difficult
for all users to understand so quickly. From our observation, 70% of failure
cases result from inappropriate data preparation procedures, which raise the
problem of data preparation. The following interesting problems should be
discussed.
a. What is acase? - The input of the proposed data mining is a lot data set
with a single root causeand 'th.ilé :'datg st is judged by a single decision

feature to distingu.:rs,'h the n Irmedand abnormal lot groups for further

mining. Product erf@ihgéré"aftéfﬁﬁt.tq;,i‘-dentify the reasons for low-yield

| B B ‘

situations by examining t;lé §tua1ion itself or analyzing the appropriate
data set. In this situation, the task of generating a suitable data set
becomes important for low-yield situation analysis through data mining
systems. (For example, in response to a low-yield situation that occurred
on October 15, product engineers prepared all lot-based data between
October 1 and October 30). It implies that the low yield lots in the
prepared data set may comprise not only the root cause affected lots, but

also the regular low yield lots, since the duration of the given data set is
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not evaluated carefully, and it is extremely difficult to differentiate
between the above two varieties lot without any meta-knowledge.
Consequently, the result of data mining systems may be incorrect. On the
other hand, the product engineer can prepare a suitable data set only
when the root cause of low yield situation is most likely discovered.
However, discovering the root cause through data mining becomes
unimportant in this situation.

. What is a root cause? - The root cause of a low-yield situation is the
major reason for thg-'l'dw;yi'ela" Situation in a regular manufacturing
procedure, for exar:npl,e, the rggt-'Cause iS:first defined as the machine that

affects more than 50% ,6f-'-i:-r1_é I'6WLyi91d:Iots in the given data set. In our
experience, it seems not posa bleto prepare such “perfect” data set before
the root cause still unknown. Therefore, the definition of root cause is
further modified to be the machine that affects the most low-yield lot in
the given data set. Even that, the root cause machine involved root of
Case 12 and 33 are only 15% and 20%, respectively, in the prepared data
sets from the corresponding product engineers. Moreover, it is very

difficult to prepare a suitable data containing just one root cause from the

perspective of the product engineers, and thus the real root cause may not
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be highlighted correctly.

What is the time duration? — When a low-yield situation occurs, the

product engineer must determine the most likely time duration required

to generate a suitable data set for the data mining system. Generally, the

time duration of a low-yield situation is defined by the product engineer

according to their personal experience. Since data mining system is

highly sensitive for prepared data set, time duration becomes a problem.

Table 8.1: The evaluation casesin TSM C data mining project

No NuLn?I)er Iialrl:]?ern Root Cause Rank
1 |77 1397 ) - |Tool Issue 1
2 |51 3402 |CP BmWaferﬁdg&Eall 1tn|ine Metrology 2
3 154  [3953 |CPLow Yteld. <0+ [Tool Issue 1
i3 32 |CPBnFal  |CPTes Progam ]
5 |277 3356  |FT Bin Fail Tool Issue 3
6 (272 2491 |CPLow Yield Tool Issue X
7 (146 3183 |CPLow Yield Tool Issue 1
8 [141 3135 |CPLow Yield Tool Issue 3
9 %4 3149 |CPLow Yield Tool Issue 2
10 |4 2719  |CP Wafer-Ring Fail Tool Issue X
11 |8 1653 |CPBin Falil Tool Issue 4
12 |54 2376  |CPLow Yield Tool Issue X
13 116 2884 |CPBinFail Tool Issue 1
14 (313 3369 |WAT Fall Tool Issue 1
15 |53 2462  |CPBin Fail Tool Issue 5
16 484 2903 |CPBinFail Tool Issue 2
17 (189 2809 |CPBinFail Tool Issue X
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18 {106 2616 |CPBinFail Tool Issue 2
19 |13 2071 |CPLow Yield Tool Issue 4
20 (168 1797  |WAT fail Tool Issue 10
21 (371 1983 |CPBin Falil Tool Issue 15
22 |72 2469 |CPBinFail Tool Issue 16
23 60 2183 |CPLow Yield Tool Issue 19
24 91 2511  |WAT Fall Unknown Unknown
25 |77 2447  |CPBin Fail Tool Issue 1
26 40 1659 |CPLow Yield Tool Issue 3
27 |72 2137 |CPBinFail Tool Issue 2
28 |23 3500 |CPBinFail Queue-time Issue X
29 (59 1259 |CPBin Falil Testing-tool Issue 1
30 133 1389 |CPBin Falil Tool Issue 3
31|74 1239 |CPBin Falil Tool Issue 1
32 168 4172  |CPBinFail Unknown Unknown
33 102 2744  |CPBIin Fa|l T Tool Issue 11
34 /102 2744 |CP BII’]J*—ﬂ’I f— ""f-'--if;,TooI Issue 3
35 136 1197 |CP B|,[1<Fajll"' E[: '"_{_ ¥ 'wAT Parameter 5
3633|3877 |CP Bw]! FANpZaR : WAT Perameter 1
37 |167 1642 |CP BwF@k JUEEETWAT Parameter X
38 |65 1189 |CPBin Wafef-ajgeF‘@xl' Tool Issue 1
39 |50 1095 |CPBin Wafer- ‘celnter Fail|Tool Issue 27
40 |48 1200 |CPLow Yield Tool Issue 1
41 |92 1198 |CPLow Yield Tool Issue X
42 |68 1203 |CPBin Falil Tool Issue 17
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Table 8.2: The performance evaluation of all TSMC casesin thisdata mining

proj ect
Storage/Query Solution Processng Time (Seconds) Time Saving
In-Memory V.S V.S
Iggltﬁgiie Computing BWI Indexing Structure
Solution DB Solution Memory Solution

Total
NO [ cels
Storage Qu Storage Qu Storage Qu Bl‘JSil\gl-lu
Access T &Y | Access Ti &Y | Access Ti ey Time P | secs | Percent | Secs | Percent
Time IMe 1 Time IMe | Time ime (Sample)
1 107569 107 663 45 104 2 4 19 745| 96.75% 124 83.22%
2 173502 173| 1222 67 152 3 6 24| 1362| 97.63% 186 84.93%
3 608762 482] 3150 190 419 10 19 35| 3568| 98.24% 545| 89.49%
4 114308 102 706 32 70 2 4 19 783] 96.91% 77| 75.49%
5 929612 759| 3939 247 529 15 28 171| 4484 95.44% 562| 72.42%

6 677552  724| 4230 4896 98.83%| 434 88.21%

7 464718|  482| 4184 4590 98.37%| 257| 77.18%

8 442035 552| 5913 6388 98.81%| 190 71.16%

9 170046 181| 1642 1793| 98.35% 78| 72.22%

10 10876 111 106 112| 95.73% 1| 16.67%
11 13224 131 122 130 96.30% 3| 37.50%
12 | 128304 131 1194 23 44 2 3 41| 1279] 96.53% 21| 31.34%
13 | 334544 399 2183 52 98 5 8 32| 2537 98.26%| 105 70.00%
14 | 1054497 1368| 6596 1491 278 15 25 115 7809 98.05%| 272| 63.70%
15 | 130486 151 834 17 32 2 3 20| 960 97.46% 24| 48.98%
16 | 1405052 1628| 11035 196 362 20 33 380| 12230 96.58%| 125 22.40%
17 | 530901 843| 5440 81 151 8 13 64 6198 98.65%| 147 63.36%
18 | 277296 387 4099 38 69 4 6 35 4441 99.00% 62| 57.94%
19 26923 38| 367 3 6 0 1 7| 397 98.02% 1l 11.11%
20 | 301896 481 4519 36 63 4 7 7| 4982 99.64% 81| 81.82%
21 | 735693 1400| 10106 88| 154 11 17 18| 11460 99.60%| 196] 80.99%
22 | 177768 323 3041 21 36 3 4 5 3352 99.64% 45| 78.95%
23 | 130980 191 2952 14 23 2 3 2| 3136 99.78% 30| 81.08%
24 | 228501 255 5435 28 49 3 5 10| 5672| 99.68% 59 76.62%
25 | 188419 244 4609 20 35 3 4 4| 4842] 99.77% 44| 80.00%
26 66360 78| 1598 7 11 1 1 1| 1673 99.82% 15| 83.33%
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27 | 153864 158 2558 15 24 2 3 4] 2707] 99.67% 30| 76.92%
28 80500 66| 1791 8 13 1 2 1| 1853| 99.78% 171 80.95%
29 74281 52| 1367 7 11 1 2 1| 14151 99.72% 141 77.78%
30 | 184737 153| 3604 19 32 3 4 3| 3747 99.73% 41| 80.39%
31 91686 91| 1707 9 14 1 2 2| 1793 99.72% 18| 78.26%
32 | 700896 660| 10767 791 133 11 17 18| 11381 99.60%| 166| 78.30%
33 | 279888 318 4815 28 46 4 6 8| 5115 99.65% 56| 75.68%
34 | 279888 381 3604 27 44 4 6 7| 3968 99.57% 54| 76.06%
35 | 162792 249 2719 17 28 2 4 4] 2958| 99.66% 35 77.78%
36 | 127941 215 1799 12 19 2 3 3| 2006 99.60% 23| 74.19%
37 | 274214 416 2947 23 37 4 6 7| 3346 99.49% 43| 71.67%
38 77285 95| 682 6 10 1 2 2| 772[ 99.36% 11| 68.75%
39 54750 771 409 5 8 1 1 1| 483| 99.38% 10| 76.92%
40 61920 76| 406 5 8 1 1 1| 479 99.38% 10| 76.92%
41 | 110216 159 798 8 13 2 2 2| 951 99.37% 151 71.43%
42 81804 125 379 6 10 1 2 2| 499 99.01% 11| 68.75%
Avg|291107] 352( 3101 3412|98.68% | 101{69.31%

As we can see, the processi ri‘g"r‘fiﬁe',"":iinbl uding storage access time and query
time, of BWI indexing solution using 1/12 time to compete the data mining

procedure of the proposed data mining engine rather then In-memory computing

solution, the time cost of three storage/query solutions are shown in Figure 8.3.
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Figure 8.3: The Processing Time of all computing solutions

2. Null value issue: Among the ots involved in case 22, only 21 contain
values in the decision feature(yield attribute), while four are abnormal. Since
null-value situation is frequent, the proposed data mining system is best
designed for null-value tolerance. Based on the experience of the TSMC
project, the null value issue should be handled for the next-generation data
mining system.

3. Spit lot/step issue: It is known that the spit lot/step issue causes numerous null

values, the data mining system will produce unacceptable results. Essentially,
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each record in the lot-based data set represents all wafers within a lot. On
occurrence of the spit lot/step issue, some lots are separated into several
sub-lots, and the lot-based data set are no longer qualified to represent the real
status accordingly. Since the spit lot/step issue becomes more important for
the 130 and 90 nm manufacturing procedures, the lot-based information
should be drilled down to the wafer-based record; however, it is difficult to
retrieve the wafer-based data using the EDA system.

. Ratio of the Antithesis-group: As mentioned above, the behavior patterns
discovered by the Iearnir]g-:pr'c}c':edu”r%:ﬁ'bf\?t"he learning-based module in the

B

normal lot group are used to chal I

iengé‘ fhé‘ébr:lormal lot group. Idedlly, aratio

of these two antithesis groupsof_’m%to 80% lots in the normal lot group is
recommended for data mining.dHowg/er, it is extremely difficult for product
engineers to maintain this ratio for all given data sets by retrieving suitable
data in every low-yield situation. For example, the root cause machines in

Cases 21 and 22 are ranked 1 and 3, respectively, if the ratio of antithesis

group is set as 80%.
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8.4 Intelligent Yield Enhancement System for Semiconductor

M anufacturing

Future research will focus mining engine enhancement, mining platform
construction and knowledge engineering consultation issues.
1. Data mining system enhancement issues.
i)  Multiple tools/factors mining scenario — In this scenario, we would like to
develop a new scenario that can lqli.scp}/-.er not only a single, but also a set of

killer machines. In the last'Veer, i tcause of one collected cases is issued
by this situation. Since tﬁe:faiI‘ure._"cdmributiqn'n'degree of each tool is hard to be

. |
ok

determined, it is difficult to fifid out the :'si’r'ngle machine failure only using the
manufacturing data much less the combination problem of multiple killer
machines, however, such problems become increasingly frequent in advanced
manufacturing procedures implies that developing an efficient and faithful
mining scenario for discovery of multiple tools/factorsis also important.

i)  Queue-time mining scenario —This scenario would like to develop a new
scenario for identifying the low-yield situation for workflow resulting from
abnormal waiting time. It means, the wafers becomes low-yield due to the

material oxygenized by the delay during some critical stages. In 2002, some
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cases are affected by this situation were treated as numeric data segments and
thus processed via the Learning-based module. Since the results were
inadequate, a new scenario is developing to handle this situation.

iil)  Secondary root cause scenario — In this scenario, we will develop a new
scenario for discovering the second root cause. According to our pervious
experience, several root causes are found to be involved in a single case, and
some case preparation guidelines are proposed to avoid such problems.
Therefore, a new scenario is required to handle such situations.

iv)  The cross-scenario eﬂimatiﬂorjt’rﬁébhaﬁfs:fn — As mentioned above, the results
generated by the propose:édj rmdul\&s_\qe"‘ranked.’-‘:independently. A cross-scenario

estimation mechanism to. evaluate all ranking lists based on an overall

weighting mechanism will be proposed and the combination issues for the

secondary root causes scenario will be solved accordingly.

2. Mining platform construction issue: Accordingly, a knowledge platform, called
MDDS (Manufacturing Defect Detection System) platform, is proposed to integrate
all developed engines with considering all above enhancement issues in order to
construct a complete yield enhancement platform. Three major parts of the proposed

platform are described as follows:
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Information Collection part: Regular meetings are recommended to discuss
domain knowledge about semiconductor manufacturing and the related
concepts and information properties of EDA, CIM and MES systems, including
the data format, data amount, and data requirements of data mining solutions
for yield enhancement purposes, which then can be formally and clearly
described. Subsequently, a functional specification with a given dataflow
scenario for the suitable preprocessing and data mining requirements should be
proposed for each type of low-yield situation. Consequently, the Wrapper

System and Wafermap A.nal*yz"iﬁg].‘ &/Stem are used to gather all related
¥ E0\%
information, such as thedataloaSt-:-I resources and other data files. For the

architecture of Informéf‘i_cfj)n, """C-'bli“e'b;t'i;(‘in part shown in Figure 8.4, the

2 Bk

corresponding algorithm Information_Collection Algorithm is presented below.

Algorithm 8.1 - Information_Collection algorithm

I nput:

a set of solved low-yield cases C={cy, Cy, ..., o} and &={lka, Iz, oos lije
rcg } such that ly; is the i-th covered lot of case ¢« and rci is the known root

cause of case e for 1<k<n,l1<i<|gJandn>1.

Output: 1. The corresponding data set DS={ds,, ds,, ..., ds;} and wafermap set

WE={Wf1, W, ..., Wi} Of C.
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2. A set of BWI matrixes BWM={ bwis, bwiy, ..., bwin}, where bwi={ bwi.”,
bwi,'} such that bwi® and bwi)' are the corresponding BWI matrixes
of dsc and wfy, respectively, for caseckinCand 1 <k<n.

Step 1. For each case ¢ in C, do the following sub-steps:
Step 1.1. For all covered lots {liy, liz, ..., |} inci, retrieve data set ds from all
underlying databases, including CIM, MES and EDA databases, via
Wrapper System.

Step 1.2. For case ¢, retrieve wafermaps Wl from the storage of corresponding

wafermaps for all cq\(ened 'Ib'ts'{'liﬁi,:.l{,‘lg, o i} NG
Step 2. For each data set in DSahd WF, d_qthé following sub-steps:

1E

Step 2.1. For data set ds |n I.Z,)S-f-';'tranél'”(;‘)"rm ds to corresponding BWI matrix
bwi° via Wrapper System. |
Step 2.2. For wafermaps wf; in WF, transform wf; to corresponding BWI matrix

bwi) viaWafer Analysis System.

Step 3. Return BW and then store it in BWI Indexing Server.
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Figure 8.4: The architecture of information collection part in MDDS K nowledge

Platform

The function of all wbsysteméih’Fi gure84 is summarized below:

1. Wrapper System : This-system is in charge d)f information collection for all
- rdi K

analysis and mining requwements_'ll'hreemformatlon resources, CIM, MES
and EDA databases, must be accessed For each database resource, the product
engineers can retrieve the related information via a data query function, and
these query results are then transformed into a BWI matrix based on the data
format requirements of the proposed dataflow scenario. Moreover, the
corresponding text files, such as the WAT and CP testing resulting, are also

retrieved via some text file processing ability of the database and the

corresponding BWI matrixes then are obtained.

2. Wafermap Analyzing System : This system is in charge of information
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collection for all related wafermaps in the Wrapper System. After wafermap

retrieved, each wafermap is transformed to a corresponding BWI matrix for

further analysis.

. Bit-Wise Indexing Server : This server is used for storing all transformed BWI

matrixes. For all stored BWI Matrixes, this server can provide OLAP and
indexing similarity computing to support parallelized, scalable, high

performance data query for all stored BWI Matrixes.

Learning and analyzing part: 'Aﬁér ‘eﬁéééUtigg the data collection procedure, a

Rule-Learning System |susedforI mmmg "aZg,sociation rules from the BWI

matrix server based on predehn ”d;ét;é.re[ﬁionships, and a Model-Learning

| B B ‘

System is used to model IeZﬁrnihg among al manufacturing machines.
Furthermore, the corresponding BWI matrixes of wafermaps are classified and
analyzed using the Wafermap Analysis System to extract some of the wafermap
patterns among them. Finally, all wafermap patterns, learned rules and machine
models are judged by the domain experts. After the verification procedure, the
suitable wafermap patterns, learned rules and machine models are stored in the
Wafermap Gallery, Knowledge Base and Machine Model Base, respectively.

For the architecture of Learning and analyzing part shown in Figure 8.5, the
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corresponding algorithm Learning_and_Analysis Algorithm is presented below.

Algorithm 8.2 - Learning_and_Analysisalgorithm

Input: a set of solved low-yield cases C and a set of BWI matrixes BW={bwi,,
bwi, ..., bwin} and bwi={ bwi>, bwi,'}, for caseckinCand 1 <k<n.
Output: 1. The verified wafermap patterns WP={ps, p2, ..., pi} of C.
2. The verified association rules AR={r1, ro, ..., rj} of C.
3. The verified neural-network machine models NM={nny, nny, ..., nn} of
C.
Stepl.  For each BWI matrix.i;ly\'/ik in C*rddt.hefol iltlglvving sub-steps:
Step 1.1 For wafermaps BWInllatFm Wand the corresponding rc-, analyze
the wafermap patter..n;\d/\/'P:{ PL, pg ..., pi} viaWafer Analysis System.
Step 1.2.  For data set BWI matrixesbwi® and the corresponding rc-, where rc-
is the root cause rcs in C, mining the association rules AR={r, ro, ...,
ri} viaRule-Learning System.
Step 1.3.  For data set BWI matrixesbwi ® and the corresponding rc-, where rc-
is the root cause rcs in C, learning the corresponding neural-network
machine models { nny, nny, ..., Nn} viaModel-Learning System.

Step2.  For WP, AR and MN, do the following sub-steps:
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Step 2.1.  Require the domain experts for results verification.

Step 2.2.  Remove the unqualified patterns, rules and machine models from WP,

AR and MN, respectively.

Step3. Return WP, AR and MN and then store them in Wafermap Gallery,

Knowledge Base and Machine Model Base, respectively.

BWI Indexjng Server

BWI Indexing Matrixes ' -

Verified = -= ' Verified
Wafermap T % — Association
Patterns - #~ Rules [/

Wafermap Model-Learning

Analysis System
System

Machine
Model
Base
Figure 8.5: The architecture of Learning and Analyzing part in MDDS
Knowledge Platform

Knowledge

The functions of the sub-systems in Figure 8.5 are described below:

1. Wafermap Analyzing System : This system analyzes al of the related

wafermaps and identifies useful wafermap patterns. All input wafermaps are
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first classified into systematic and randomized categories. For wafermaps in
the systematic category, the system identifies possible wafermap patterns and
delivers the discovered patterns to the domain experts for verification.
Subsequently, all verified patterns and their indicated root cause are stored in
the Wafermap Gallery for further investigation.

. Rule-Learning System : This system is applied to analyze all related
information for each solved low-yield situation to discover the correlation
among attributes via the Transaction-based module. Initially, the correlation
between the decision feature and other attnbuteﬁ in the given data is calculated

A=

via the Learning-based module Subsequently, the highly related features are

treated as the new decisé’d};p features, 'aﬁd.tue"'l'ransection-based Module is thus
triggered for mining the possidtﬁl.e ‘r‘o”o.t ‘causeﬁ After completing the mining
procedure, possible root cause lists of both the original root cause and highly
related features are transformed to the transaction log and processed through
an association rule mining procedure. Finally, the discovered association rules
are delivered to the domain experts for verification and all verified association
rules are stored in the Knowledge Base for further investigation.

. Model-Learning System : This system manages individual machine behavior

learning based on predefined data relationships. Initially, a predefined
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iD)

perceptron neural networking should be defined for each individual machine
in the semiconductor manufacturing fab. The input nodes of this perception
consist of manufacturing parameters, temperature, air pressure and sensor
information for the target machine. A half WIP (wafer-in-process) data related
to this machine is used as a training instance to learn the machine model using
neural network technologies, and the other half is used to verify the
perceptron. If the result is satisfied, the machine model is stored in the
Machine Model base; otherwise, the unqualified machine model is verified by

some domain experts for furthér examifétion.

Ele v

. Wafermap Gallery, KnoWiedgé Baéeand Méchine Module Base: These are the

storage of wafermap péd;tfl‘erﬁ‘s,‘-';'vér'i‘i‘i'éd. manufacturing rules and individual

2 Bk

machine modules, respectively.

Application part: The learning results obtained through the incremental learning

procedures in the Learning and Analysis part are used to examine and monitor

the in-line and off-line procedures for yield enhancement. The Model

Monitoring System, like an advanced APC system, is responsible for in-line

monitoring and delivering alarm messages to both in-line monitoring

workstations and mining engines in the event of abnormal behavior, based on
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Algorit

I nput:

Output:

Step 1.

the related machine information from the manufacturing and measuring tools.
Additionally, the verified mining rules can be applied to examine the in-line
information and identify abnormal situations using the Intelligent Reasoning
System. Once the low-yield situation happens, the related wafermaps are
matched and some suspected machine IDs are thus delivered to the Mining
System for recommendation. The data mining results then are evaluated and
ranked via the cross-scenario estimation mechanism according to the
recommendations from the Wafermap Analysis, Intelligent Reasoning and
Model systems. Finally, a dataml n| ngreport for the given low-yield situation is

delivered to the corr&pbﬁding plr(_‘)l.diuc't" engmeers for further study. For the

architecture of Applicaﬁ'bh_bai;:t iSIﬁ;ciWn m Figure 8.6, the corresponding

|

algorithm Application Algorithm is preﬁented below.

hm 8.3 - Application algorithm

anewly arrived low-yield cases N"C={lnc 1, Inc2, .-, Incjnc} Where Iy isthei-th
covered lot of casencand 1 <i <|nc|.

The ranked possible root causes list rcl of nc.

For newly arrived low-yield cases, call Information-Collection Algorithm and
the corresponding dsnc, Wne, bwi > and bwi)¥ are thus returned.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

For wafermap set Wi, and BWI matrix bwi¥¥ | match the existing wafermap

nc’

patterns WP in Wafermap Gallery via Wafermap Analyzing System and the
root cause set rcwe is thus returned, where rcys is the root causes of all
matched patternsin WP.

For data set ds,. and BWI matrix bwi° , trigger inference procedure for all

nc’

mined rules AR in Knowledge Base via Intelligent Reasoning System and the
root cause set rcar is thus returned, where rcar is the root causes of all trigger
rulesin AR.

For data set ds,c and BWI matnx bvvlD ‘..t_‘.rigger computing procedure for all

built neural-network-based machi_‘lne model NM in Machine Model Base via

Model Monitoring System H"aﬁd“‘tﬁé""a.bdgffmal machine set abyw is thus

|

returned, where abyy 1S the set of machines that return all abnormal alerts.

o

For data set ds,. and BWI matrix bwi>, trigger the Mining System for
discovering the possible root causes and the ranked list of root cause rcl is
thus found.

For root cause in rcwe, rcap and abww, if the root cause exists in rcl, enhance

the ranking weight via the cross-scenario estimation mechanism.

Rank the rcl according to the new ranking weight.
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Figure 8.6: The architecture of Application part in MDDS K nowledge Platform

From Figure 8.6, all sub-systems are described in the following:

1. Wafermap Analyzing System : For each new wafer map, the Wafermap
Analyzing System identifies the matching patterns within the Wafermap
Gallery. Once similar patterns are discovered, the corresponding root causes
are delivered to the Mining System for re-weighting recommendation

2. Intelligent Reasoning System : Following verification by the Learning
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System, mining rules can be applied to identify abnormal situations and
pre-examine the given parameters. Once the new case is entered into the
Intelligent Reasoning System, all possible facts obtained are forwarded to the
Mining System for further examination. Similar the Model System, reasoning
results or the confidence and support for triggered rules can be provided
through the explanation function of the Intelligent Reasoning and Learning
Systems.

. Model Monitoring System :  After all machine models are tuned or optimized
by the Learning Systemi th@e models can be used to monitor the in-line
manufacturing and mea:su'ri ng tooI;LAfter éfﬁaring anew case into the Model

1

Monitoring System, the-':"_\?\(r,épﬁer alstemls triggered to collect all related

| B B ‘

information of this case. Sinée t‘hen, the machine related parameters are
calculated using the corresponding neural-network machine model. For
abnormal computational results, the corresponding machine 1D and some
alarm messages are sent to the Mining System and the users, respectively. If
required, the Model Monitoring System can provide the related evidence
supported by the Model Analyzing System for further explanation.

. Mining Monitoring System: This system is in charge of data mining procedure.

Once the low-yield situation happens, the related information is delivered to
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the Wafermap Analysis, Model Monitoring and Intelligent Reasoning Systems
for re-weighting recommendations. Simultaneously, the corresponding mining
scenarios are triggered. After the results of Wafermap Analyzing, Model
Monitoring, Intelligent Reasoning and Mining Systems are generated, they are
overall evaluated and ranked via the cross-scenario estimation mechanism.
Finally, the data mining report for the given low-yield situation is delivered to
the users for further investigation, and explanations and evidence for each
corresponding result are also provided.

5. Wafermap Gallery, Knov.\./.!edgﬂe.;Bé”sé:ﬁf'ang Machine Module Base: These

B

systems are used for thetrétorargé‘ .<'3'f.’|.\1i\j;aférfnéqo'-‘:patterns, verified manufacturing

rules and individual machife modutes, Tesectively.

2 Bk

3. Knowledge engineering consultation task: In our data mining project, since domain
experts and IT persons in semiconductor manufacturing domain are usually not
familiar with data mining concept, we will continually help them realize the concept
of data mining correctly, Also, we will take the opportunity of deploying the MDDS
platform to help the semiconductor manufacturing people understand the esprit of

data mining systems.
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Currently, the semiconductor manufacturing is becoming increasingly complex as
market demand drives higher circuit density. This trend requires new and more
sophisticated processing tools, longer process flows, and more detailed sampling of
metrology data to verify process controls. Moreover, this trend also implies large
amounts and high complexity of manufacturing data, and tight time-to-market for
advanced devices. Therefore, an intelligent and efficient yield enhancement system is
desired to dea with the low-yield situation and efficiently increase the yield trend. In
this section, we have proposed a data mining system which had been successfully
applied in Taiwan Semiconductor Manufacturmg \%ompany (TSMC) for discovering
the root causes of low-yield situ:a,t'ions A!I—s!otheevaluatlon of our mining system for

1

manufacturing defects detection-':"ih. ,éérﬁicdﬁaﬁqtoﬁ,.;hanufacturing domain has been

| B B ‘

done and several important issues havé been fully discussed. Finaly, a new
architecture of a reasonable, reliable and flexible defect detection platform using data

mining approach has been described.
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Chapter 9
Conclusions and Future Work

The Fields of knowledge Discovery Systems and Data Mining have rapidly grown
in the past 10 years. Research, applications, and tool development in business, science,
government, and academia are becoming increasingly popular. Since the amount of
data is continuously and rapidly grp\l\'/i-'rl‘g"ih r.ﬁ'ifslt'-kzlowledge systems, discovering the
useful information correctly ang eff|C|en|t—I!y|sbecom|ng a significant issue. In this

thesis, an efficient indexing technology called BltW|se Indexing Technology, and
three indexing methods for different ;\flplll:;lidns were proposed. Furthermore, the
corresponding indexing and matching algorithms for each indexing model were
described in detail. To demonstrate the suitability, flexibility and efficiency of the
proposed indexing methods, they were applied in four knowledge system applications,
including reinforcement learning, pattern matching, supervised learning and
unsupervised-learning data mining applications. In the first application, the Sample

Bit-Wise Indexing Method was used to encode the defect status of manufacturing

product in order to accelerate the data preprocessing procedure. In the second
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application, the Encapsulated Bit-wise Indexing Method was used to encode the
networking activity to accelerate the data preparation procedure. The third application
used Compact Bit-wise Indexing method in a Rough-set-based Feature Selection
Method to encode the feature and class relationships efficiently for reducing the
processing time of the feature selection procedure. The proposed feature selection
method had been used in a KA project to discover the desired feature sets to help an
endowment insurance department of a world-wide financial group builds a CBR
system for their loan promotion function of a customer relationship management
system. In the last application,ﬂ._-th'eﬂ blthse .indexing methods, Data Mining

Technologies, and Statistic Meﬁhods W&e-"f hs}_bfid!y combined to construct an

unsupervised-learning datardrivéhf: qété: rﬁiﬁi'ﬁ‘g. sﬂ{éfem for production-level defect

| &

detection in a engineering data analysisds;;/sfém. This application was officially applied
in Yield Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in
Taiwan Semiconductor Manufacturing Corporation (TSMC) for root cause detection
and yield enhancement.

In the future, a product-level bit-wise indexing server will be constructed and the
maintenance issue, such as record/table/relation insertion/deletion/modification, will be
further investigated. Also, the suitable indexing models will be proposed for various

knowledge systems, such as a rule-based expert system, case-based reasoning system
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or neural net system. Moreover, the system platform of the next-generation data
mining solution that proposed at the end of Chapter 8 will be further investigated and
constructed and to provide a knowledgeable, reasonable, reliable and flexible data
mining solution in semiconductor manufacturing domain. Additionally, the proposed
bit-wise indexing method will be applied to different application domains. For
instances, the proposed method is currently being applied to an intelligent clinical trial
management system (iICTMS), to enhance the accuracy and performance of the

knowledge acquisition and validation procedures.
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