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摘要                         

近年來，知識發現系統(System for Knowledge Discovery in Database)隨著資訊

技術的進步與普及，愈來愈受重視，相關的應用技術及研究也相繼被提出，目的

是希望使用資料庫知識發現(Knowledge Discovery from Database)的技術，將企業

所累積的交易及製造的資料，透過資料探勘(Data Mining)的方法，找出企業知識

(Business Intelligent)與各種行為模式(Behavior Patterns)，進而達到累積企業知識的

目的。由於企業在營運的過程中所累積下來的資料量十分可觀，如何即時達成資

料挖掘的功能並提出有效的知識則成為一個重要的課題。在此篇論文中，我們將

提出一個適用於知識系統及資料庫之資料索引技術-位元組索引技術(Bit-wise 

Indexing Technology)。在這個技術中，我們總共提出了三個不同的索引方法，包

含簡單位元組索引方法(Simple Bit-wise Indexing Method)、概括式位元組索引方法

(Encapsulated Bit-wise Indexing Method)及精簡式位元組索引方法(Compacted 

Bit-wise Indexing Method)，可針對連續性及非連續性型態的資料進行處理，我們
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亦也提出了二元化索引編碼及資料搜尋演算法，用以節省搜尋大量資料的處理時

間。 

為了驗證我們所提出技術的效率、彈性及實際可用性，我們將這個技術分別

應用於四個不同的知識系統領域, 包含回饋式學習(Reinforcement Learning)，模式

學習 (Pattern Learning), 監督式學習 (Supervised Learning) 及非監督式資料

(Unsupervised Learning)挖掘知識系統等。而這四個實際系統包含應用在製造過程

中由於製程時間的問題所產生的產品缺陷之以遺傳演算法之製造缺陷偵測系統、

應用在網路入侵偵測系統中的入侵模式的挖掘與比對以提昇系統彈性及效率、應

用在以資料為導向之約略集合論特徵選取技術並使用於知識擷取系統上以節省執

行時間及應用在半導體製造過程中用於缺陷偵測的資料挖掘系統以提昇系統效

能。其中用於半導體製造過程中用於缺陷偵測的資料挖掘系統己被台灣積體電路

公司正式納入該公司之智慧型電子資料分析系統中的良率改善子系統，用以提高

良率改善的效率，而以資料為導向之約略集合論特徵選取技術已被實際應用於某

國際壽險的客戶關係管理系統專案中之擷取壽險保單回流貸款客戶特徵候選名單

用以提昇企業收益。 

 

關鍵詞：知識發現、位元組索引、資料挖掘、模式比對、特徵選取、知識萃取、

知識分析 
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A Study of an Efficient Indexing Technology for 

Knowledge Systems 

Student: Wei-Chou Chen                    Advisor: Dr. Shian-Shyong Tseng 

 

Department of Computer and Information Science 

National Chiao Tung University 

Abstract  

Recently, the Knowledge Discovery in Database (KDD) has grown rapidly, as IT 

and AI technologies have become widely discussed and researched. Relevant research, 

applications, and tool development in business, science, government, and academia are 

becoming increasingly popular. Particularly in some worldwide enterprises, KDD 

systems are applied to discover useful business intelligence and customer behavior 

patterns using data mining technology. However, since the quantity of data is 

continuously and rapidly growing in such enterprises, correctly and efficiently 

discovering useful information is becoming a significant issue. In this thesis, we will 

propose an efficient indexing technology of knowledge and database systems, called 

Bit-wise Indexing Technology. There are three indexing models in this technology, 

including Simple Bit-wise Indexing Method, Encapsulated Bit-wise Indexing Method 

and Compacted Bit-wise Indexing Method. Also, the corresponding indexing and 

matching algorithms for such indexing models are also proposed. 
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In order to demonstrate the suitability, flexibility and efficiency of the proposed 

indexing methods, we will try to apply the proposed method in four kinds of KDD 

applications, including reinforcement learning, pattern matching, supervised learning 

and unsupervised-learning data mining applications, in this thesis. For enhancing the 

system performance, the simple bit-wise indexing method was applied to the 

manufacturing defect detection problem, time aspect (MDDP-t) for manufacturing 

domains. For improving the flexibility and accuracy, the encapsulated bit-wise 

indexing method is applied to the pattern matching module of an Internet intrusion 

detection system. To reduce the processing time, the compacted bit-wise indexing 

method is applied to the data-driven rough-set based feature selection. Additionally, 

the proposed feature selection method was adopted in a KA project to discover the 

desired feature sets to construct a CBR system for a world-wide financial group 

customer relationship management system’s loan promotion function. In the last 

application, three proposed methods are hybridly applied to the data mining module of 

a defect detection mechanism in a semiconductor manufacturing system to improving 

the accuracy and usability. The proposed method was officially employed in the Yield 

Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in Taiwan 

Semiconductor Manufacturing Corporation (TSMC) for root cause detection of 

manufacturing defects and yield enhancement.  

Keywords: Knowledge Discovery, Bit-wise Indexing, Data Mining, Pattern Match, 

Feature Selection, Knowledge Acquisition, Knowledge Analysis 
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Chapter 1  
Introduction 

1.1 Motivation 

Recently, the fields of Knowledge System and Data Mining have rapidly grown 

years, since IT and AI technologies have become widely discussed and researched. 

Related research, applications, and tool development in business, science, government, 

and academia are becoming increasingly popular. Especially in some enterprises, KDD 

systems are applied to discover useful business intelligence and customer behavior 

patterns via some machine learning and data mining technologies. However, since the 

amount of data is rapidly increasing in such enterprises, efficiently discovering the 

useful knowledge becomes a significant issue. In database-related fields, indexing is 

adopted to provide a global distribution and storage/location information for efficiently 

retrieving the individual item (record) within a huge dataset (table). This approach can 

clearly help users to quickly search a dedicated record (set) in a database for the given 

query conditions, but may not be appropriate for retrieving huge numbers of records, 

such as OLAP queries in data warehousing and knowledge system analysis 

requirements, owing to the indexing characteristics. Therefore, the bitmap indexing 
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method [54][74] became popular in data warehousing to obtain the efficient OLAP 

query requirements. In some previous cases [11][13], the bitmap indexing method has 

been applied to a case-based knowledge system to accelerate similar-case retrieval and 

similarity-based computing procedures, but it is not suitable in this domain due to the 

lack of similarity retrieving ability of such method. The major issue in constructing an 

effective knowledge system is to propose a flexible and efficient knowledge learning 

procedure, which can transform the information in the given data set into a 

well-defined knowledge structure in the knowledge base. Obviously, the data 

management abilities, including data structure, indexing, processing and manipulation 

abilities, become very important for the underlying data repositories. Generally, the 

indexing mechanism for a knowledge system, particularly in the learning procedure, 

should provide an encoding and representation method to compare and analyze the 

individuals (records) of data set efficiently. Additionally, the knowledge base indexing 

method should not only concentrate on the efficient matching query ability, but also 

provide the similarity analyzing and calculating abilities. Due to immediacy and 

performance issues, choosing an appropriate data indexing method is an important 

issue, particularly with large amounts of data. The data representation not only 

influences the performance of the knowledge system, but also affects the efficiency 

and accuracy of the underlying knowledge base. In this thesis, we will propose an 



 

 18 

efficient (using all bit operations), extensive (accepting both symbolic and continuous 

data formats) and flexible (with similar retrieving ability) indexing technology, called 

Bit-wise Indexing Technology. Three indexing methods are proposed, the Simple 

Bit-wise Indexing Method and two advanced indexing methods, including the 

Encapsulated and Compacted Bit-wise Indexing Methods. Additionally, the 

corresponding indexing, matching algorithms for such indexing models are also 

proposed. The proposed bit-wise indexing methods not only accelerate the analyzing 

performance of knowledge system, but also can be applied in a traditional database 

system for efficiently similarity-based retrieving. In order to demonstrate the suitability, 

flexibility and efficiency of the proposed indexing methods, we will try to apply the 

proposed method in four knowledge system applications, including reinforcement 

learning, pattern matching, supervised learning and unsupervised-learning data mining 

applications.  

At first, we will propose a novel, efficient and parallelized indexing method, 

called the Simple Bit-wise Indexing Method, to reduce the data processing and query 

overhead of some knowledge discovery systems. Bit-wise indexing is similar to bitmap 

indexing method except that the matrix of bit-wise or bitmap indices, which is 

generated from the related table of the data resource of KDD systems via bit-wise 

indexes creation algorithm, is partitioned horizontally. Additionally, bit-wise indexing 
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has more powerful similarity retrieving and parallelization capabilities than bitmap 

indexing. Since the bit length of each attribute in the simple bit-wise indexing or 

bitmap indexing method depends on the number of distinct attribute values of it, the 

problem of long bit-wise strings arises when the number of distinct values is huge. For 

instance), in a huge data warehouse, there may exist millions customer records, 

meaning that some attributes may have million of distinct values. When these 

attributes are encoded into the bit strings of the bitmap or Simple Bit-wise Indexing 

Method, one million bits per record are required, of which only one is set to 1. 

Although many compression technologies have been proposed for such a problem, 

they still require additional computational time. Therefore, this study presents two 

advanced bit-wise indexing methods, including Encapsulation Bit-wise Indexing and 

Compacted Bit-wise Indexing methods. Encapsulation Bit-wise Indexing Method, is 

used to solve the problem of long bit-wise lengths. Encapsulation Bit-wise Indexing 

Method partitions the longer bit strings into at least two levels to preserve disk space 

and memory. Additionally, the computation time of OLAP queries is reduced since the 

bit length of each record is decreased. For example, the dual-level encapsulation 

bit-wise indexing method decreases bit length of such attributes from one million to 

2,000 bits. 
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Applying the Encapsulation Bit-wise Indexing Method to the data resource of 

KDD system can significantly reduce the indexing storage and improve query 

performance. However, the total number of bit-wise index string that needs to be 

compared via AND bit-wise operation is still reminded. In order to accelerate the 

processing time of OLAP queries, another indexing model, called Compacted Bit-wise 

Indexing Method, is proposed. As we know, the attribute is the basic information of all 

data queries. Additionally, the concept hierarchy of each attribute is an important issue 

of roll-up and drill-down operations of the data warehouse. In the Compacted Bit-wise 

Indexing Method, the significance of attributes, including attribute weight and concept 

hierarchy, need to be evaluated via some statistical methods. Compacted Bit-wise 

Indexing Method compacts the bit strings of higher ranking attributes by at least two 

levels, including high-level concept hierarchy and the others, the high-level concept 

attributes is kept in the first level bit-wise indexes matrix, while the others are stored in 

the second levels. Furthermore, the encapsulated bit-wise indexing method can also be 

applied to further reduce the bit length. The processing time of queries can be hugely 

reduced since the total bit length can be largely reduced (via encapsulated bit-wise 

indexing method) and the irrelevant records can be filtered out (via the higher level 

concept hierarchy of compacted bit-wise indexing method). 
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The proposed bit-wise indexing methods are suitable for helping many knowledge 

discovery systems in order to accelerate the processing performance. In the thesis, the 

proposed methods is applied in four knowledge system applications, including 

reinforcement learning, pattern matching, supervised learning and 

unsupervised-learning data mining applications, to demonstrate the suitability, 

flexibility and efficiency. The first application consisted of a reinforcement-learning 

defect detection learning system for the time aspect in manufacturing domains. This 

implementation employed the Sample Bit-Wise Indexing Method to encode the defect 

status of manufacturing products and hence accelerate data preprocessing. Additionally, 

a bit-based Genetic Algorithm is used to learn suitable weights for each computed 

signature, since the chromosome and the corresponding GA operators are appropriate 

for the bit operations of BWI indexing method. First, the manufacturing defect 

detection problem, time aspect, for (MDDP-t) is formally modeled and defined. A 

root-cause evaluation function (RCEF), which is a linear combination of three probing 

functions defined independently according to the experiences of domain experts, is 

proposed to evaluate whether a specific machine is the root cause of a time problem. 

The probing function weights are determined separately. Additionally, this study 

presents a genetic algorithm (GA) with encoding and GA operations appropriate for 

MDDP-t weight-learning problems to obtain suitable weights for the probing functions. 



 

 22 

The training examples include MDDP-t instances with known root causes provided by 

the Taiwan Semiconductor Manufacturing Company [TSMC]). Experimental results 

show that the proposed method can ensure efficiency and accuracy. 

The second application introduces a pattern-learning network intrusion detection 

system. This implementation uses the Encapsulated Bit-wise Indexing Method to 

encode the networking activity with minimal monitoring time window in order to 

accelerate the data preparation procedure. Moreover, a bit-based intrusion Pattern 

Matching mechanism is proposed to efficiently learn, roll-up, drill-down and combine 

the intrusion pattern with different time-windows/services/ports combinations. In 

general, the user’s pattern can be transformed into a sequence of network activities that 

are extracted from the related network packets. These kinds of network packets can be 

collected and then be transformed into some sequence of bit-wise strings showing the 

intrusion patterns. The Network Activities Analyzing Phase can first filter out the raw 

network packets and log necessary features (Source IP, Destination IP, Source port, 

Destination port) in a small time window to perform data sampling and data cleaning 

and to reduce the amount of data. After that, with combined users and services 

information, the sufficient service-user activity events are found and used by the 

second phase. The Features/Pattern Mining Phase transforms the sufficient service-user 

activity events to some bit-wise strings and next merges the bit-wise strings into some 
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other bit-wise strings with the same source IP. After gathering those bit-wise strings, 

the Pattern Mining Module and Pattern Merging Module can perform some data 

mining processes to find possible intrusion patterns that can be the source of the 

candidates of intrusion patterns for future intrusion detection systems. Finally, the 

pattern with bit-wise indexing representation can be easily transformed into a 

corresponding Finite State Machine for efficient real-time tracing and monitoring of 

networking activities. 

The third application is a supervised-learning data-driven feature selection 

method for CBR systems. As we know, the critical issue in case-based reasoning is to 

select the correct and enough features to represent a case. However, this task is 

difficult to carry out since such knowledge is often exhaustively captured and cannot 

be represented successfully. A new, efficient feature selection method is proposed here. 

The bit-wise-based feature selection method is proposed for discovering the optimal 

feature sets for decision–making problems. And the corresponding indexing and 

selecting algorithms for proposed feature selection method are also proposed. This 

implementation applies the Feature Selection Method using Rough Set Theory, which 

is appropriate for finding the optima solution from a given data set, except for the long 

processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to 

encode the feature and class relationships to reduce the processing time of feature 
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selection procedure. Finally, some experiments and comparisons are given and the 

result shows the efficiency and accuracy of our proposed methods. 

The last application combines the bit-wise indexing methods (including Sample, 

Encapsulated and Compact Bit-wise Indexing Methods), Data Mining Technologies, 

and Statistic Methods to construct an unsupervised-learning data-driven data mining 

system for an engineering data analysis (EDA) a production-level defect detection 

system. With large quantities of semiconductor engineering data stored in databases 

and versatile analytical charting and reporting in production and development, IT 

systems in most semiconductor manufacturing companies permit users to access and 

analyze data quickly and conveniently. Making the semiconductor process more 

sophisticated means that more data must be analyzed and troubleshooting, especially in 

yield enhancement, becomes more difficult,. Currently, information summarized from 

these systems is too detailed to be easily assimilated by engineers. Engineers need to 

daily review thousands of charts and statistical results to undertake trouble shooting 

jobs. Using simple statistics, these charts and statistics are listed by these IT systems in 

an order of priority for review. Engineers frequently catch the real root cause of a 

problem only after reviewing many charts and statistical results. Those simple statistics 

do not show the complicated intersectional effect resulting from nonlinear interaction 

among many factors reliably and quickly. This application, describes the experiences 
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that applied such hybrid data mining solutions for low-yield root cause detection 

situation in the Taiwan Semiconductor Manufacturing Company Ltd. (TSMC). 

Typically, the data mining solutions have high time and space complexities, but failure 

to discover the low-yield situation quickly causes significant damage. In this 

application, the BWI indexing method was applied to the data mining application to 

accelerate the processing time. As expected, the BWI-indexing-based data mining 

solution saved over 90% of processing time compared with conventional data mining 

solutions. The accuracy and performance evaluations for 42 real cases from TSMC are 

made and reviewed herein. According to the evaluation results, the data mining engine 

using bit-wise indexing uses only 10% of processing time rather than the in-memory 

process without the BWI indexing method. Additionally, some critical issues about 

using a data mining solution to detect semiconductor manufacturing defects are 

discussed and reviewed herein. Finally, the system framework of the next-generation 

data mining solution in the future is proposed to provide a knowledgeable, reasonable, 

reliable and flexible data mining solution in semiconductor manufacturing. 
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1.2 Contributions 

1. Three indexing models, called Simple bit-wise indexing method, Encapsulation 

bit-wise indexing method and Compacted bit-wise indexing method, are proposed, 

along with indexing and matching algorithms corresponding to each proposed 

indexing model. 

2. A manufacturing defect detection system for the time aspect problem using the 

Sample Bit-wise Indexing Method and a Genetic Algorithm are proposed to 

improve the encoding and computing performance. 

3. A network user behavior pattern matching module using Encapsulated Bit-wise 

Indexing Method of an Internet intrusion detection system is proposed to enhance 

the usability and flexibility of IDS systems. 

4. A data-driven feature selection method using Compact Bit-wise Indexing Method 

and Rough Set Theory for the CBR system is applied to improve the performance 

of the feature selection procedure. 

5. A data mining module of a defect detection mechanism in a semiconductor 

manufacturing system using hybrid bit-wise indexing methods is proposed to 

improve the performance of the data mining and defect detection procedure. 

Additionally, the system framework of the next-generation data mining solution is 

also given. 
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1.3 Reader’s Guide 

The remaining parts of this thesis are organized as follows. The reviews of the 

relative works are given in Chapter 2. The Simple Bit-wise Indexing Method is 

proposed in Chapter 3. The advanced indexing methods, including Encapsulation and 

Compacted Bit-wise Indexing Method are introduced in Chapter 4. An Intelligent 

Manufacturing Defect Detection Method for the time issue using Sample BWI 

indexing method is given in Chapter 5 and a network user pattern matching method of 

an Internet intrusion detection system using Encapsulated BWI method is discussed in 

Chapter 6. In Chapter 7, a data-driven feature selection method using Compact BWI 

indexing method and Rough Set Theory of CBR system is proposed and a data mining 

module using hybrid BWI indexing methods for low-yield defect detection in a 

semiconductor manufacturing system is briefly reviewed in Chapter 8. The conclusion 

and future works are finally given in Chapter 9. 
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Chapter 2  
Related Review 

2.1 Data Warehousing 

The concept of data warehousing was first proposed by Inmon in 1993. A data 

warehouse contains information collected from individual data source and integrated 

into a common repository for efficient querying and analysis. When the data sources 

are distributed over several locations, a data warehouse is responsible for collecting the 

necessary data and saving it in appropriate forms. The architecture of a typical 

data-warehousing system is shown in Figure 2.1. 

There are three major components in it: the data collector, the data warehouse, 

and the OLAP and query processor. The data collector is responsible for collecting 

necessary information and transaction messages from individual data source through 

communication networks to meet the requirements of end users and the views defined 

in the data warehouse. The data warehouse receives data from the data collector, filters 

them, and stores them in its own database. The OLAP and query processor provide all 

necessary information for user queries and OLAP requirements. The data collector or 
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OLAP and query processors may also be divided into several subparts, each located 

near a data source. 

 

Figure 2.1: Architecture of a typical data warehousing system 
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Figure 2.2. Architecture of a data warehousing system with distributed 
components 

 

A data warehouse usually contains a large number of views in order to speed up 

query processing and avoid large amounts of network transmission. Views can be 

defined by query languages and provide particular formats of query results to users. 

Data warehousing systems use two kinds of views: materialized views and virtual 

views. A materialized view retrieves all necessary information from data sources 

according to the view definition and physically stores the extracted data in a data 

warehouse. A virtual view retrieves the information from other materialized views 

using the query language whenever the view contents are required. Each kind of view 
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has its advantages and disadvantages. One of the primary goals of a data warehousing 

system is to support on-line analytical processing, call OLAP, and help in decision 

making. For this reason, data warehouses must maintain appropriate views to ensure 

that OLAPs are efficient. 

Data warehouses are often built to support on-line analytical processing. On the 

other hand, the OLAP is a technology and the DW is an architectural infrastructure. 

Typical OLAP operation includes rolling-up (increasing the level of aggregation) and 

drilling-down (decreasing the level of aggregation or increasing detail). The star 

schema is the most popular data model of data warehousing. The manufacturing star 

schema example of a data warehouse is shown in Figure 2.3. In this figure, there are 

four dimension tables, including Tool, Product, Recipe and Time tables, and an 

Ordering fact table. The relationships between fact table and those dimension tables are 

kept thru relation keys.  

Since OLAP queries of data warehouse are usually complex, the performance of 

OLAP queries is a critical issue in the data warehouse. Therefore, the indexing 

technology is often embedded in the data warehouse environment [54][74][75].  
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Figure 2.3: An example of a manufacturing star schema in a data warehouse. 

 

2.2 Bitmap Indexing methods of Data Warehousing 

As mentioned above, the query processing is the critical issue in the data 

warehouse environment. In recent years, many indexing technologies, such as B-tree, 

k-d tree, R-tree, Value List and Bitmap indexing methods [54][74][75], have been 

proposed in data warehouse system. The Bitmap is the most popular indexing method 

in OLAP system since it was designed to search and analyze the data for the OLAP 

queries efficiently. The basic idea of Bitmap indexing method is using a string of bits 

which is called bitmap vector and formed by 1 or 0 to indicate whether the some 

attributes are equal to a specific value or not [75]. A bit in the bit string maps the 

position of a record in the table. If the content of the attribute is associated with a 
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specific value, the bit is set as “1”. The Bitmap indexing method is illustrated in Figure 

2.4 

In Figure 2.4(a), there are three attributes in the table, including Tool_id, Name 

and Location. The attribute values domain of Tool_id, Name and Location are {3210, 

2688, 6150, 6210, 8850}, {AWOX01, AWOX02, AWOX03, AWOX04, AWOX05} 

and {FAB 1, FAB 2, FAB 3}, respectively. It can be easily seen that the number of 

distinct values of Tool_id, Name and Location are 5, 5 and 3, respectively. Therefore, 

thirteen bitmap indexing vectors are generated as shown in Figure 2.4(b). Assume that 

a query with conditions ( Name = AWOX02 or Location = FAB 3 ) is required to 

execute, the bitmap indexing vectors BAWOX02 and BFAB 3 are operated with operation 

OR and then the result is { 0, 1, 0, 0, 1 }. Therefore, the records 2 and 4 are formed as 

the result set of the query. In addition to the simple bitmap indexing method described 

above, there are still some extension can be found in [74][75]. However, it seems that 

Bitmap indexing method is more efficient than other indexing methods since the 

method had been widely used in the commercial products of DWs. 
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 Tool id Name Location 

1 3210 AWOX01 FAB 1 

2 3688 AWOX02 FAB 1 

3 6150 AWOX03 FAB 2 

4 6210 AWOX04 FAB 2 

5 8850 AWOX05 FAB 3 

(a) Tool dimension table 

B3210 B3688 B6150 B6210 B8850 BAWOX01 BAWOX02 BAWOX03 BAWOX04 BAWOX05 BFAB 1 BFAB 2 BFAB 3

1  0  0  0 0  1  0  0  0  0  1  0  0  

0  1  0  0 0  0  1  0  0  0  1  0  0  

0  0  1  0 0  0  0  1  0  0  0  1  0  

0  0  0  1 0  0  0  0  1  0  0  1  0  

0  0  0  0 1  0  0  0  0  1  0  0  1  

(b) Bitmap indexes for (a) 

Figure 2.4: An example of Bitmap indexes 

 

Since the bitmap indexing method seems to be able to be directly applied to 

indexing and retrieval phrases in the data warehousing. However, there are still some 

problems should be solved:  

1) When the number of records in the data warehouse is large, the bits in the bitmap 

indexing vectors will be extended hugely. Also, the number of bitmap indexing 

vectors is dependent on the summary of distinct value for attributes. If the 

number of distinct values for some attributes is large, the number of bitmap 

indexing vectors is also large. Although many solutions are proposed to solve 

these problems, the extra cost of computing also needs to be spent.  
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2) In the data warehousing, the ability of similarity retrieving may need to be 

considered. Some extra computation of the similarity between the records is 

required.  

In other words, it is not quite suitable to straightly apply the bitmap indexing 

method to the data warehousing directly. It needs some adaptation. We will discuss the 

details of our new indexing technology in following two chapters. 

 

2.3 Feature Selection and Rough Set 

Feature selection is about finding useful (relevant) features to describe an 

application domain [7][11][14][15][19][24][39][42][47][48][79]. The problem of 

feature selection can formally be defined as selecting minimum features M’ from 

original M features where M’≦ M such that the class distribution of M’ features is as 

similar as possible to M features. Generally speaking, the function of feature selection 

is divided into three parts: (1) simplifying data description, (2) reducing the task of 

data collection, and (3) improving the quality of problem solving. The benefits of 

having a simple representation are abundant such as easier understanding of problems, 

and better and faster decision making. In the case of data collection, having less 

features means that less data should be collected. As we know, collecting data is never 
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an easy job in many applications because it could be time-consuming and costly. 

Regarding the quality of problem solving, the more complex the problem is if it has 

more features to be processed. It can be improved by filtering out the irrelevant 

features which may confuse the original problem, and it will win the better 

performance. There are many discussions about feature selection, and many existing 

methods to assist it, such as GA technology [60], entropy measure[31], and rough set 

theory [78]. 

Next, the rough set theory is briefly reviewed. The rough set theory, proposed by 

Pawlak in 1982 [55], can serve as a new mathematical tool for dealing with data 

classification problems [36][56][76][77][78][79]. It adopts the concept of equivalence 

classes to partition training instances according to some criteria. Two kinds of 

partitions are formed in the mining process: lower approximations and upper 

approximations. Rough sets can also be used for feature reduction. The features that do 

not contribute to the classification of the given training data are removed. The concepts 

of equivalence classes and approximations are quite suitable to generate the bit-based 

class vectors and record vectors, which can then be directly and efficiently transformed 

to the bit-wise indexing matrixes in CBR system. This work thus adopts these concepts 

to solve the feature selection problem. 

 



 

 37 

Chapter 3  
Simple Bit-wise Indexing Method 

In this chapter, the Simple bit-wise indexing methods will be introduced. At first, 

the general assumptions and notations for BWI Technology will be given. After that, 

the definitions and algorithms of Simple bit-wise indexing method are proposed. 

3.1 General Assumptions and Notations for Simple BWI Method 

In the section, the basic assumptions and nations are illustrated in detail. As 

mentioned above, the bit length of each attribute in the bit-wise indexing or bitmap 

indexing method depends on the number of its distinct values. This implies that the 

problem of long bit-wise string arises when the number of distinct values is large. 

Although there are many compression technologies had been proposed to solve such 

problem, the extra computational time is usually needed. Therefore, the condensable 

bit-wise indexing method is proposed to solve the long bit-wise length problem. Using 

this method, only the attributes with longer bit lengths are partitioned into two or more 

levels for saving the storage of disk and memory both. Also, computation time of 
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OLAP queries is also reduced since the bit length of each record is shortened.  

In order to answer the user’s query statements, we search records in the target 

table of data warehousing. In the beginning, we transform the data schema of data 

warehousing to a single target table, called flat target table. 

 

Since the data store in data warehouse is updated periodically, maybe a day, a 

week, or a longer period, the indexing phase will be executed in initialization and 

maintenance stages of data warehousing. The querying phase is called during the 

running time of queries for the current users.  

Without loss of generality, we assume that the data schema of the warehouse 

consists n fact table and m dimension tables. Definition 3.1 defines a flat target table 

that was transformed from the data schema of data warehouse. 

 

DEFINITION 3.1 : Flat target table 

The flat target table T is created by joining all non-redundancy fields of the fact 

tables and all dimension tables via some SQL statements 

 

EXAMPLE 3.1： 

The example of data schema is shown in Figure 2.3. There are one fact table, 



 

 39 

Manufacturing fact and four dimension tables, including Tool, Product, Recipe, and 

Time dimension tables of a manufacturing company. The attribute set of Tool, Product, 

Recipe, and Time dimensions are {Tool_id ,Tool_name}, {Product_id, Product_name}, 

{Recipe_id, Recipe_name, Recipe_parameters}, and {Date/Time, Month, Quarter, 

Year}, respectively. The attribute set of fact table f is {Tool_id, Product_id, Recipe_id, 

Date/Time, Wafer amount}. Moreover, the referential relationships between fact table 

and the dimensions are {Tool.Tool_id=Manufacturing.Tool_id}, 

{Product.Product_id=Manufacturing.Product_id}, 

R3={Recipe.Recipe_id=Manufacturing.Recipe_id}, and  

R4={Time.Date/Time=Manufacturing.Date/Time}. Therefore, the SQL statement of flat 

target table T can be generate as follows: 

 

Select Tool_id, Tool_name, Product_id, Product_name, Recipe_id, Recipe_name, 

Suppiler.category, Year, Quarter, Month, Date/Time, Wafer amount 

Into  TargetTable 

From  Manufacturing, Tool, Product, Recipe, Time 

Where Tool.Tool_id = Manufacturing.Tool_id  

 and Product.Product_id = Manufacturing.Product_id  

  and Recipe.Recipe_id = Manufacturing.Recipe_id  
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  and Time.Date/Time = Manufacturing.Date/Time. 

 

After above SQL statement is executed, the flat target table TargetTable is thus 

generated and the structure of this table is shown in Table 3.1. 

 

 

Table 3.1: An example of a flat target table T in a data warehouse that transforms 
from a data schema 

Tool_id Tool_name Product_id Product_name Suppiler_id Recipe_name 

Recipe_parameters Time/Date Month Quarter Year Wafer Amount 

 

 After the flat target table is generated, our indexing technologies will focus 

on this target table in the following sections.  

 

3.2 The Indexing Phase of Simple BWI Method 

Assume a set of records R is stored in a table T for a specific domain, denoted 

DOM. The i-th record in R is represented by Ri. Also assume all the records in R can be 

abstracted by a set of attributes A, denoted A = <A1, A2, …, Ar>, where r is the number 

of attributes. The value of an attribute Ak for a record Rj is denoted Vk(j), which can not 



 

 41 

be null. The attribute values of a record Rj can then be represented as V(j) = <V1(j), 

V2(j),…, Vr(j)>. The set of possible values for attribute Ai, called attribute value 

domain, is denoted Vi = <Vi1, Vi2, …, Viα(i)>, where α(i) is the number of values for Ai, 

and Vij is the j-th possible attribute value of Ai. 

In a data warehousing system, a set of records is stored in the warehouse for 

serving a new coming query. A matching function is used to evaluate records based on 

a weighted sum of matched attributes with a new coming query condition. Attribute 

value can thus be used for indexing a record. An index of a record using Simple 

Bit-wise Indexing Method can be formally defined as follows. 

 

DEFINITION 3.2 - Record Index : 

The index INDk of a record Rk in a table T for domain DOM is defined as: 

INDk = {A1 = V1(k), A2 = V2(k), …, Ar = Vr(k)}. 

 

A record in table T can be formally defined as follows. 

 

DEFINITION 3.3 – Record : 

A record Rk in a table T for domain DOM is a pair (INDk, rvk), where rvk is the 

actual contents of record Rk and Rk∈R. 
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In the most indexing methods of data warehousing, the numeric-type data are 

usually treated as the computational attributes and thus will not be included in the 

indexes. However, in some real applications, the numeric attributes also need to be 

indexed for further investigation. For example, in the data warehouse of manufacturing 

domain, the numeric recipes are the important factors for processing control and defect 

detection. The same situation will happen in the data/time-type attributes. The basic 

operations and notations of future definitions are shown as follows: 

 

OPERATION 3. 1 - Type, Year, Month, Day, Hour, Minute and Second 

Operations : 

 Type(Ai)=
⎪
⎩

⎪
⎨

⎧

S

D

N

A

A

i

i

Otherwise,

type,-date/time is 

,type-numeric is 

 

 Year(Vi)=The number of year in x for Type(Ai)=D; otherwise, return Null. 

 Month(Vi)=The number of month in x for Type(Ai)=D; otherwise, return Null. 

 Day(Vi)=The number of day in x for Type(Ai)=D; otherwise, return Null. 

 Hour(Vi)=The number of hour in x for Type(Ai)=D; otherwise, return Null. 

 Minute(Vi)=The number of minute in x for Type(Ai)=D; otherwise, return Null. 

 Second(Vi)=The number of second in x for Type(Ai)=D; otherwise, return Null. 
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OPERATION 3.2 - Minima Element (MNE) Operation : 

 MNE(Ai)= 
⎪
⎩

⎪
⎨

⎧
=
=

Null

A

A

DA

NA

i

i

i

i

in  date/timeearliest  the

in number smallest  the

Otherwise,

,)Type( If

,)Type( If

 

OPERATION 3.3 : Maxima Element (MXE) Operations : 

 MXE(Ai)=
⎪
⎩

⎪
⎨

⎧
=
=

Null

A

A

DA

NA

i

i

i

i

in  date/timelatest  the

in number largest  the

Otherwise,

,)Type( If

,)Type( If

 

 

A bit-wise indexing vector used in the proposed indexing method is defined as 

follows. 

 

DEFINITION 3.4 : Bit-wise indexing vector of an attribute where Type(Ai)=S : 

The bit-wise indexing vector Bi of the i-th attribute for record Rk is a bit string 

Bi=bi1bi2…biα(i), where bij=1 if Vi(k)=Vij and bij=0 otherwise. 

 

EXAMPLE 3.2 : 

Assume that the domain of attribute Name is <AWOX01, AWOX02, AWOX03, 

AWOX04, AWOX05> and the attribute value of Name in the second record is 

AWOX01. According to the Definition 3.4, bit-wise indexing method uses the 5 bits as 

the bit vector of the index in which every bit represents a specific value of the index 
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attribute Name. 

B2: 

AWOX01 AWOX02 AWOX03 AWOX04 AWOX05 

b11 b12 b13 b14 b15 

Therefore, we get B2= b21b22b23b24b25="10000" 

 

DEFINITION 3.5 - Bit-wise indexing vector of an attribute where Type(Ai)≠S : 

The bit-wise indexing vector Bi of the i-th attribute for record Rk is a bit string 

Bi=bi1bi2… ))(( ii AMXEifb , where bij=1 if fi(Vi(k))=j and bij=0 otherwise, where the function 

fi is given via user for clustering the numeric attribute Ai and )())(( iAMXEf ii α≤ . 

 

EXAMPLE 3.3 : 

Assume that the second attribute Recipe_degree is <10, 12, 14, 16, 18, 20, 22> 

and the attribute value of Recipe_degree in the second record is 16. Also, the given 

function f2 is given in following.  

F2(Vi(k))=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=≤
=<≤
=<≤
=<

418)(

318)(16

216)(12

112)(

kV

kV

kV

kV

i

i

i

i

 

According to the Definition 3.5, bit-wise indexing method uses the 4 bits as the 

bit vector of the index in which every bit represents a specific value of the index 
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attribute Recipe_degree. 

B2: 

f2(Vi(k))=1 f 2(Vi(k))=2 f 2(Vi(k))=3 f 2(Vi(k))=4 

0 0 1 0 

Therefore, we get B2= b21b22b23b24="0010" 

For the data-time type data, assume that the domain of attribute 

Manufacturing_Date is <1992/01/02, 1992/10/01, 1993/10/10, 1994/01/22, 

1992/06/07> and the attribute value of Manufacturing_Date in the second record is 

1992/10/01. Also, the given function f2 is given in following.  

F2(Vi(k))=
⎪
⎩

⎪
⎨

⎧

=
=
=

=
=
=

3

2

1

1994))((

1993))((

1992))((

kVYear

kVYear

kVYear

i

i

i

 

According to the Definition 3.5, bit-wise indexing method uses the 3 bits as the 

bit vector of the index in which every bit represents a specific value of the index 

attribute Manufacturing_Date. 

 

B2: 

f2(Vi(k))=1 f2(Vi(k))=2 f2(Vi(k))=3 

1 0 0 

Therefore, we get  

B2= "100" 
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DEFINITION 3.6 - Bit-wise indexing vector of a record : 

The bit-wise indexing vector BWIk of a record Rk is the concatenation of the 

bit-wise indexing vectors of all the attributes for record Rk. That is, BWIk=B1B2…Br, 

where r is the number of attributes. 

 

DEFINITION 3.7 - Matrix of bit-wise indexes for table T : 

A matrix TBWI of bit-wise indexes for Table T is represented as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

||

2

1

RBWI

BWI

BWI

M
, where 

|R| is the number of records. 

 

The bit-wise indexes for all saved records are generated by the following two 

algorithms: 

 

Algorithm 3.1 - Bit-wise index creation algorithm : 

Input:  A record Ri. 

Output: A bit-wise index BWIi of Ri. 

Step 1: Create a bit-wise vector of length r, where r is the number of attributes. 

Step 2: Repeat the following sub-steps for each attribute j until all attributes are 

processed. 
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Step 2.1: If Type(Aj)≠S, go to Step 2.2, else set bjk=1 if Vj(i)=Vjk; set bjk=0 

otherwise. 

Step 2.2: Set bjk=1 if fj(Vj(i))=k; set bjk=0 otherwise. 

Step 3: Return the vector BWIi. 

 

Algorithm 3.2 - Bit-wise index matrix creation algorithm : 

Input:  A set of records in T. 

Output: A bit-wise index matrix TBWI of the records. 

Step 1: Create an empty matrix TBWI. 

Step 2: Repeat the following sub-steps for each record Ri until all records are 

processed. 

Step 2.1: Use the bit-wise index creation algorithm (Algorithm 3.1) to get the 

index BWIi of Ri. 

Step 2.2: Add BWIi into TBWI. 

Step 3: Return TBWI. 

 

After a bit-wise index matrix is built, bit-wise operations can easily be used to 

retrieve desired record for the new coming queries. 
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EXAMPLE 3.4: 

Assume that a Target Table T containing five records is shown in Figure 2.4(a), 

The bit-wise indexes for the above records are shown in Table 3.2. 

Table 3.2: The TBWI of five records in Figure 2.4(a) 

   BWI1 10000 10000 100 

   BWI2 01000 01000 100 

   BWI3 00100 00100 010 

   BWI4 00010 00010 010 

   BWI5 00001 00001 001 

 

3.3 The Matching Phase of Simple BWI Method 

Calculating the similarities between a query and saved records is a 

time-consuming task. A two-phase matching approach, called the 

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time. 

It includes the relevant-records-retrieving phase and the similarity-computing phase. In 

the first phase, all irrelevant records are filtered out to avoid calculation of their 

similarities. The time of calculating the similarities of useful saved records can then be 

decreased. The similarities of the query with remaining saved records are then 

computed in the similarity-computing phase. The algorithm is described as follows. 
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Algorithm 3.3 - Similar-records-seeking algorithm : 

Input  : A bit-wise index matrix TBWI and a new query RN. 

Output : A set of similar record Rc with their similarity degrees with RN. 

Step 1: Use the bit-wise index creation algorithm (Algorithm 3.2) to get the index 

BWIN of the new query RN according to the condition part of the query. 

Step 2: Initialize the counter j to 1 and Rc to an empty set. 

Step 3: For each BWIj in TBWI, do the following sub-steps (1<j≤|R|): 

Step 3.1: Call the search-relevant-records algorithm (Algorithm 3.4) to compute 

the relevance degree rdij between BWIN and BWIj. 

Step 3.2: If rdij=0, ignore the record Rj and go to Step 3.5. 

Step 3.3: Call the similarity-computing algorithm (Algorithm 3.6) to compute 

the similarity simj between RN and Rj. 

Step 3.4: Add record Rj with its similarity simj to Rc. 

Step 3.5:  Add 1 to j. 

Step 4: Sort the results in Rc in descending order of their similarities. 

Step 5: Output Rc. 

 

A saving record is relevant to a new query that will be transformed to a desired 

bit-wise index via bit-wise index creation algorithm. If they have at least one same 
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attribute value, the saving record is then similar with the new query in a certain degree. 

The bits in the corresponding positions of the matched attributes should be set as "1" in 

their bit vectors. This can easily be found by using the ‘AND’ bit-wise operation to 

compare the two bit vectors. The following Search-relevant-records algorithm is thus 

proposed to achieve this purpose. 

 

Algorithm 3.4 - Search-relevant-records algorithm : 

Input: The bit-wise indexing vector BWIN of a new query R N and the index BWIj 

of a saved record Rj in R. 

Output: The relevant degree rdij between RN and Rj. 

Step 1:  Use the ‘AND’ bit-wise operation on BWIN and BWIj and store the result as 

rdij, which is also a bit string. 

Step 2:  Return rdij. 

 

Since the ‘AND’ bit-wise operation is fast, the Search-relevant-records algorithm 

selects relevant saved records quickly. If rdi is zero, then the saved record is thought of 

as irrelevant and will be filtered out. 

 

After all relevant saved records have been retrieved, the similarities between the 
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query condition and them are computed. As mentioned above, a matching function 

based on a weighted sum of matched attributes is defined to calculate the similarity 

degrees. Each attribute has its own weight. Since a record has only one value for an 

attribute, at most one bit in the bit string rdi is set for each attribute after the 

Search-relevant-records algorithm is executed. Accordingly, a special bit-wise vector, 

called the Mask Vector, is proposed to help compute similarities. Let <1> be the string 

of length α with all bits being 1 and <0> be the string of length α with all bits being 0. 

The definition of the Mask Vector is shown below.  

 

DEFINITION 3.8 - Mask Vector: 

A bit-wise indexing mask vector Mask is a set of Maskk, where 0 < k ≤ r and r is 

the number of attributes. Each Maskk, denoting the mask vector of attribute Ak, is a 

concatenation of r bit strings as Maskk= 
∑
=

r

j
j

SSS
1

)(
21 ...

α
, where Si = <1> for ∑

−

=

1

1

)(
k

j

jα +1 ≤ 

i ≤ ∑
=

k

j

j
1

)(α  and Si = <0> otherwise. 

 

By applying the 'AND' operation on Maskk and the bit-wise vectors rdi’s 

generated from the search-relevant-records algorithm, the similarities between a query 

and a saved record for attribute Ak can easily be found by the following 

similarity-measuring function: 



 

 52 

∑

∑

=

=
×

= r

j
j

r

j
jij

i

W

WPC

RSIM

1

1

)(

)( , 

where )( iRSIM  is the similarity between the i-th saved record and the new query, 

jW  is the weight of the j-th attribute, ijPC = 0 if the result of performing the AND 

bit-wise operation on rdii and Maskj is 0, and ijPC = 1 otherwise. 

Several saved records may have the same similarity with a new query as long as 

they have the same attributes matched. This is especially common when the numbers 

of possible values for attributes are large. For this situation, the cost for calculating 

similarities of saved relevant records can be reduced if all possible similarities are 

pre-computed and stored into the Similarity Mapping List. Each element in the 

Similarity Mapping List is a similarity value for some attributes matched. Thus, the 

similarity of a saved record with a new query for known attributes matched can easily 

be found from the list, instead of from calculation by the above formula. The Similarity 

Mapping List is formally defined as follows. 

 

DEFINITION 3.9 - Similarity Mapping List: 

Let L be a Similarity Mapping List and Li be an element in L with an index value i, 

which is determined from the attributes matched, 1≤i≤2|r|-1. Let i be represented as a 

binary code bi1bi2…bir, with bij=1 if the j-th attribute is matched and bij=0 otherwise, 
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1≤j≤r. The value of Li is thus 

∑

∑

=

=

×

r

j
j

r

j
jij

W

Wb

1

1 . 

 

Algorithm 3.5 - Similarity-mapping-list creation algorithm : 

Input: Weights of attributes W1, W2, …, Wr of R. 

Output: A similarity mapping list L. 

Step 1: Initialize the counter i to 1 and the list L to be empty. 

Step 2: For each i, 1≤i≤2|r|-1, do the following sub-steps: 

Step 2.1: Encode i into a binary string <bi1bi2…bir>. 

Step 2.2: Calculate the similarity degree Li by the formula in Definition 3.9. 

Step 2.3: Put Li into the list L with index i. 

Step 3: Return L. 

 

After the Similarity Mapping List has been built, the similarity of each saved 

record and a new query can be quickly found by the following algorithm. 

 

Algorithm 3.6 - Similarity-computing algorithm : 

Input: The relevant degree rdij of record Rj with a new query, the Mask Vector, and 

the Similarity Mapping List L. 
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Output: The similarity of Rj with a new record. 

Step 1: Initialize a zero binary string of length r. 

Step 2: For each i, 1 ≤ i ≤ r, set the i-th position in the string to 1 if the result of using 

the ‘AND’ bit-wise operation on Maski and rdij is not all 0. 

Step 3: Transform the binary string into an integer j. 

Step 4: Get Lj from the Similarity Mapping List. 

Step 5: Return Lj. 

 

Since the Similarity Mapping List and the Mask Vector are constructed in the 

pre-processing step, and since only the ‘AND’ bit-wise operations are executed on 

Mask Vectors and bit-wise vectors of relevant records in the Similarity-computing 

algorithm, the computational time for finding the similarities can thus be significantly 

reduced. 

 

EXAMPLE 3.5:  

Continuing from Example 3.4, the BWIN of a new query RN, which is 

{Toolid=6210, Name=AWOX01, Location=FAB1}, is <10000 10000 100>. Also 

assume that weight W1, W2 and W3 are set to 0.33. Each BWIj in TBWI in Table 3.2 is 

processed as follows. 
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• For BWI1, The relevant degree rdi1 between BWI1 and BWIN is found as <10000 

10000 100> by the Search-relevant-records algorithm. Since more than one bit in 

rdi1 are "1", Record 4 is a relevant record. Its similarity is found as 1. Record 1 is 

then a relevant record. 

• For BWI3, BWI4 and BWI5, The relevant degree rdi between these records and BWIN 

is found as <00000 00000 000>. Since all the bits in these rdis are "0", Records 3, 4 

and 5 are thus filtered out. 

After the relevant records are sorted in decreasing order of similarities, the results 

are shown is Table 3.3. 

Table 3.3: Two relevant records and their similarities 

Relevant Record Record 1 Record 2 

Similarity 1 0.333 

 

3.4 Analysis and Experiments of Simple BWI Method 

As mentioned above, the proposed matching algorithms include two phases to 

reduce the computational time. At the retrieving-relevant-records phase, irrelevant 

prior records are filtered out. Thus, only the similarities between relevant prior records 

and the new query are computed at the similarity-computing phase. Assume that the 

number of records in the target table is N and the average filtering percentage is M. The 
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time needed to retrieve relevant saved records and to calculate their similarities in 

STEP 3 of Algorithm 3.5 is analyzed as:  

 

Timewith filtering ≈ )tMN)tr(MNtN( candand ××+×××+×  

= )tM)tr(Mt
M

1
M(N candand ×+××+×××  

= )tt)r
M

1
((MN cand +×+×× , 

 

where andt  is the time needed for an ‘AND’ bit-wise operation and ct  is the 

seek time in the Similarity Mapping List. If no filtering is performed, the time needed 

to calculate their similarities in STEP 3 of Algorithm 3.5 is analyzed as: 

 

Timewithout filtering ≈ )tN)tr(NtN( candand ×+××+×  

             = )tt)r1((N cand +×+× . 

 

The performance due to the filtering is then: 

 

)tt)r1((N

)tt)r
M

1
((MN

Time

Time

cand

cand

filtering without

filtering with

+×+×

+×+××
≈  

 ≈ M.  
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The proposed method can indeed improve the performance of query although 

some extra storage spaces are required. These storage spaces are used for storing the 

bit-wise indexes and the Similarity Mapping List. The sizes of extra storage spaces 

required in our method are analyzed as follows. 

 The storage space required for the bit-wise indexes TBWI = ∑
=

×
r

i

iR
1

)(α , where α(i) 

is the number of bits used for attribute Ai, r is the number of attributes, and |C| is the 

number of records in warehouse. For example, assume that there are 100000 

records in a warehouse and 16 attributes to describe each record. Also assume each 

attribute has 4 possible values. The storage space required for TBWI = 

∑
=

×
16

1

4)100000(
i

 bits = (6400000/8) bytes = 800000 bytes ≅ 0.8 M bytes. 

 The storage space of the Mask Vector = ∑
=

×
r

i

ir
1

)(α . For the above example, the 

storage space required for the Mask Vector = ( ∑
=

×
16

1

416
i

) bits = (1024/8) bytes =128 

bytes. 

 The storage space required for the Similarity Mapping List L = )12( −× rf , where f 

is the storage space required for storing a similarity value. Assume that f is a 4-byte 

real number. For the above example, the storage space required for the Similarity 

Mapping List L = 4×(216-1) bytes = 262140 bytes ≅ 256 K bytes. 

 

Note that the size of the extra storage space required for the Similarity Mapping 
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List is exponential to r. Therefore, the Similarity Mapping List is not suitable for 

domains with large numbers of attributes. 

 

The result of comparing the Simple BWI indexing method with the Bitmap 

indexing method is shown in Figure 3.1. 

Figure 3.1: Simple BWI indexing method v. s. Bitmap indexing method 

 

We can see that Simple BWI method is faster than Bitmap indexing method, the 

reasons are: 

 In retrieving relevant cases phase, the Bitmap indexing technology is not suitable 

for retrieving similar cases. For example, when a new case comes, the Bitmap 

indexing method needs to check all possible attribute combination vectors in order 

to retrieve relevant prior cases. The more attributes check, the more time it needs. 

 In similarity measurement phase, the Bitmap indexing method needs to check the 
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all corresponding position in all possible attribute combination vectors, especially 

when the number of attribute of query needs or the number of records in the table 

T are large. The waste time is lengthy and unbearable. Therefore, the BWI 

indexing method is faster than that in Bitmap indexing method when the similarity 

computing is needed. 

 

Also, we compare the Simple BWI indexing method with single processor and the 

parallel Simple BWI indexing with multiple processors for showing the improvement 

of the performance. In Figures 3.2 and 3.3, the dual CPUs parallel Simple BWI 

indexing method can increase the performance about 1.6 times and the quad CPUs 

parallel Simple BWI indexing method can increase the performance about 3.2 times. It 

is obvious that Simple BWI indexing method is quite suitable for parallelization since 

the bit-wise indexing matrix of the proposed method can be separated into several 

independent sub-matrixes and these sub-matrixes is almost balanced. Therefore, when 

the Simple BWI indexing method is built in a multiple CPU machine, the workload 

can be easily shared into each processor and assure that the workload of each processor 

is almost balanced. 
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Figure 3.2: Speed-up of parallel BWI indexing on two processors machine. 
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Figure 3.3: Speed-up of parallel BWI indexing on four processor machine.  
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Chapter 4  
Advanced Bit-wise Indexing Method 

In the chapter, the advanced bit-wise indexing method, including Encapsulated 

bit-wise indexing method and Compacted bit-wise indexing method, are introduced, 

including the definitions and algorithms of indexing and matching phases in these two 

bit-wise indexing methods are proposed in the following sections. 

 

4.1 Encapsulated Bit-wise Indexing Method  

4.1.1 General Assumptions and Notations for Encapsulated BWI 

Technology 

 

As we can see, the bit length of bit-wise indexing vector for some attribute 

depends on the number of its distinct values. When the attribute contains a large 

amount of distinct values, the size of its corresponding bit-wise indexing vector 

becomes hugely large, when the required bit-length is too large to handle, partitioning 



 

 62 

the bit-length to several levels seems helpful for this issue. There is a threshold (Th) 

which can be used to determine whether the encapsulated bit-wise indexing technology 

is applied or not. That is, when the total length of bit vectors is larger than this 

threshold (Th), the algorithm is applied on. The following notations and definitions are 

given to describe the encapsulated bit-wise indexing method. 

 

NOTATION 4.1 : 

eli = the maxima encapsulated level of attribute Ai 

j
iei = the bit length of j-th encapsulated level of attribute Ai 

eii = the total bit length of BWI index for the given attribute Ai, eii=∑
=

iel

j

j
iei

1

 

ei = the total bit length of BWI index for the given record Ri, ei=∑
=

r

j
jei

1

 

Th= the threshold for separating bit-length to levels boundary 

 

We propose an Encapsulated bit-wise indexing method on data warehouse to 

achieve the goal of saving storage and accelerating user query procedure. This method 

includes two phases. One is creating indexes phase, and the other is querying phase. 

The indexing phase transforms the contents of table into a bit vector matrix (in here, 

called a matrix of bit-wise indexes), and the query phase is retrieving records to answer 

the query statements as soon as possible.  
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4.1.2 The Indexing Phase of Encapsulated BWI Method 

The indexing phase includes Encapsulated level calculating Algorithm, 

Encapsulated BWI attributes index creating Algorithm and Encapsulated BWI matrix 

of bit-wise indexes creating Algorithm. The Encapsulated level calculating Algorithm 

calculates an encapsulated level of each attribute for creating the corresponding 

bit-wise indexes, the Encapsulated BWI Bit-wise indexes creating Algorithm creates 

corresponding BWI index of matrix of multi-level bit-wise indexes. The Encapsulated 

BWI Matrix of bit-wise indexes creating Algorithm creates bit vectors matrix of data 

warehouse. These algorithms and examples are shown as follows.  

 

In Encapsulated bit-wise indexing method, there are several methods to decide the 

partition size of indexing vector. Here, we use square root to calculate the compact size 

of indexing vector. For instance, when n bits are required to represent a specify 

attributes in simple bit-wise indexing method, 2⎡ n ⎤ bits are required by two levels 

indexing vectors respectively in two-level encapsulated bit-wise indexing method. For 

example, assume that attribute A uses 10,000 bits to be the indexing vector when 

simple bit-wise indexing method is applied. There are 200 bits are required in 

two-level condensable bit-wise indexing method. As we can see, the used bits can be 
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largely reduced to 1/50. When the condensable bit-wise indexing method is used in the 

data warehousing, the used bits in much more compact then using bitmap and simple 

bit-wise indexing methods. Therefore, we propose the following definitions and 

algorithms. 

 

Algorithm 4.1 - Encapsulated level calculating Algorithm – Square Root : 

Input: Table T of data warehouse and threshold Th. 

Output: The corresponding eli and j
iei for all attribute in A. 

Step 1 : Let eli = 1, 1
iei =α(i) and ei = ∑∑

= =

r

j

el

k

k
j

i

ei
1 1

,for 1 ≤ i ≤ r. 

Step 2:  If ei > Th, do the following sub-steps; otherwise go to Step 3. 

Step 2.1: If not exist a j
iei  where and j

iei > 2×⎡ j
iei ⎤ with minima eli and j, 

Return false for Th limitation 

Step 2.2: Let eli=eli +1, ei=ei- j
iei +2×⎡ j

iei ⎤, j
iei =⎡ j

iei ⎤, iel
iei =⎡ j

iei ⎤ and go 

to Step 2. 

Step 3: Return the corresponding eli and j
iei for all attribute in A. 

 

EXAMPLE 4.1:  

Figure 4.1 shows a flat target table T including attribute set A = < LotID, StepID, 

ToolID, Yield >, four attributes and 23 records. The attribute values domains of Cid, 
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Name, Gender, and City are V1=< 0001, 0002, 0003, ….., 00022, 00023 >, V2=< 

PS_1, PS_2, PS_3, PS_4, PS_5 >, V3=< AWOX11, AWOX12, AWOX13, AWOX14, 

AWOX21, AWOX31, AWOX32, AWOX33, AWOX34, AWOX35, AWOX36, 

AWOX41, AWOX42, AWOX43, AWOX51>, and V4=< 92.1, 92.2, 92.3, 93.1, 93.2, 

94.3, 94.4, 94.5, 94.6, 95.5, 95.6, 95.7, 95.7, 95.8, 96.1, 96.5, 99.1, 99.3>, respectively. 

It can be easily seen that the number of distinct values of LotID, StepID, ToolID and 

Yield are ei1= 23, ei2=5, ei3=15 and ei4=18, respectively. 

 

 LotID StepID ToolID Yield  LotID StepID ToolID Yield 

1 0001 PS_1 AWOX11 92.1 13 0013 PS_3 AWOX34 93.1 

2 0002 PS_1 AWOX11 92.3 14 0014 PS_3 AWOX35 94.4 

3 0003 PS_1 AWOX12 92.2 15 0015 PS_3 AWOX36 95.8 

4 0004 PS_1 AWOX13 99.1 16 0016 PS_4 AWOX41 93.2 

5 0005 PS_1 AWOX14 99.3 17 0017 PS_4 AWOX41 94.5 

6 0006 PS_2 AWOX21 93.1 18 0018 PS_4 AWOX41 95.6 

7 0007 PS_2 AWOX21 94.5 19 0019 PS_4 AWOX42 94.6 

8 0008 PS_2 AWOX21 95.6 20 0020 PS_4 AWOX42 94.3 

9 0009 PS_2 AWOX21 95.7 21 0021 PS_4 AWOX43 95.7 

10 0010 PS_3 AWOX31 96.1 22 0022 PS_5 AWOX51 95.5 

11 0011 PS_3 AWOX32 92.2 23 0023 PS_5 AWOX51 96.5 

12 0012 PS_3 AWOX33 92.3      
Figure 4.1: An example of Flat target table T 

 

ei =∑∑
= =

4

1

1

1j k

k
jei = 23 + 5 + 15 + 18 = 61 bits be the length of an encoded record. 

The threshold Th is set to 35 initially. Also, all levels of attributes have initial 
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value 1, e.g., el1 = 1, el2 = 1, el3 = 1, el1 = 1 and the vector length of all attribute are 

thus 1
1ei =23, 1

2ei =5, 1
3ei =15 and 1

4ei =18.  

 

Since ei > Th, the attribute LotID with the max length of indexing string 1
1ei =23 

is chosen for length reducing. Therefore, the encapsulation level of attribute LotID 

el1=1+1=2, 1
1ei = 2

1ei =⎡ 23 ⎤=5, ei1=10 and the total length of vectors ei is reduced to 

48 (61-23+10). However, the length is still larger than the threshold Th. The attribute 

Yield is then chosen. Therefore, the encapsulation level of attribute Yield el4=1+1=2, 

1
4ei = 2

4ei =⎡ 18 ⎤=5, ei4=10 and the total length of vectors ei is reduced to 40 

(48-18+10). Since the length is still larger than the threshold Th. The attribute ToolID 

is then chosen. Therefore, the encapsulation level of attribute ToolID el3=1+1=2, 

1
3ei = 2

3ei =⎡ 15 ⎤=4, ei4=8 and the total length of vectors ei is reduced to 33 (40-15+8). 

Finally, the total length of vector is reduced to 33 and the algorithm stops. 

 

As mentioned in Definition 3.5, the user can provide a suitable transforming 

function for the continuously type attributes, including numeric and data-time type. In 

the encapsulated BWI method, user can provide an eli-level transforming functions fi 

for the attribute Ai in order to close for the physical meaning than encapsulated BWI 

itself only. fi=< 1
if , 2

if ,…, iel
if > where the number of value domain of k

if  should 
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equal to k
iei . The definition is shown below: 

 

DEFINITION 4.1 – Encapsulated BWI bit-wise indexing vector of an attribute 

where Type(Ai)≠S : 

The bit-wise indexing vector Bi of the i-th attribute for the record Rj in T is set of 

bit strings. Bi=< 1
iB , 2

iB , …, iel
iB >, where fi=< 1

if , 2
if ,…, iel

if > is the eli-level of 

function that given by user k
iB =bj1bj2… k

i
je

b , where bjl=1 if k
if (Vi(k))=l and bjl=0 

otherwise. 

 

EXAMPLE 4.2 : 

Assume that the second attribute Recipe_degree is <10, 12, 14, 16, 18, 20, 22, 24>. 

Also, after the Encapsulated level calculating Algorithm – Square Root executed, and 

the 1
2ei  , 1

2ei  and eli are all set to 2. The attribute value of Recipe_degree in the second 

record is 16. Also, user gives the following two-level (fl=2) function 1
2f and 2

2f  .  

1
2f (Vi(k))= ⎣Vi(k)/10⎦ 

2
2f (Vi(k))= ⎣(Vi(k) – ( 1

2f (Vi(k))×10))/5⎦+1 

According to the Definition 4.1, bit-wise indexing method uses the 4 bits as the 

bit vector of the index in which every bit represents a specific value of the index 

attribute Recipe_degree. 
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1
2B : 

1
2f (Vi(k))=1 1

2f (Vi(k))=2 

1 0 

2
2B : 

2
2f (Vi(k))=1 2

2f (Vi(k))=2 

0 1 

Therefore, we get B2=
1
2B 2

2B ="1001" 

 

Algorithm 4.2 - Encapsulated BWI bit-wise indexes creating Algorithm : 

Input:  A record Ri. 

Output: A bit-wise index BWIi of Ri. 

Step 1: Create a bit-wise vector BWIi of length 0. 

Step 2: Repeat the following sub-steps for each attribute Aj until all attributes are 

processed. 

Step 2.1: If Type(Aj) ≠ S and fi≠∅, go to Step 2.2, else let m=n if Vj(i)=Vjn, create 

a bit-wise vector Bi with 0 and repeat the following sub-steps for each 

encapsulated level elk until all encapsulated levels are processed 

Step 2.1.1: Let B’=b1b2… k
jei

b  to a all-zero string with length k
jei  

Step 2.1.2: If k≠ kel , go to Step 2.1.3, else if the m=0, set k
jei

b =1 and set bm=1 
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otherwise, go to Step 2.1.5. 

Step 2.1.3: Let o = ⎣m/ ∏
+=

jel

kp

p
iei

1

⎦, if o= k
jei , set bo=1 and set 1+ob =1 otherwise. 

Step 2.1.4: Set m=m-(o× ∏
+=

jel

kp

p
iei

1

) 

Step 2.1.5: Concatenate the bit strings Bj and B’ into Bj. 

Step 2.2: If Type(Aj) ≠ S and fi≠∅, for each k
jB , do the following sub-steps 

Step 2.2.2: Set bjl=1 if k
if (Vi(k))=l and bjl=0 otherwise. 

Step 2.2.3: Concatenate the bit strings Bj and k
jB  into Bj. 

Step 3: Concatenate the bit strings B1, B2,…, and Br into BWIi. 

Step 4: Return the vector BWIi. 

 

Algorithm 4.3 - Encapsulated BWI Matrix of bit-wise indexes creating Algorithm : 

Input: Table T of the data warehouse. 

Output: The TBWI of the data warehouse. 

Step 1: Create an empty bit-wise indexes matrix TBWI for table T.  

Step 2: Call Encapsulated level calculating Algorithm – Square Root (Algorithm 4.1) 

to get the corresponding els and eis. 

Step 3: Repeat the following sub-steps for each record Ri until all records are 

processed. 
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Step 3.1: Use the Encapsulated BWI bit-wise index creation algorithm 

(Algorithm 4.2) to get the index BWIi of Ri. 

Step 3.2: Add BWIi into TBWI. 

Step 4: Return TBWI. 

 

After a bit-wise index matrix is built, bit-wise operations can easily be used to 

retrieve desired record for the new coming queries. 

 

EXAMPLE 4.3: 

Assume that a Target Table T containing 23 records is shown in Figure 4.2 and the 

user gives the following two-level (fl=2) function 1
2f and 2

2f of attribute Yield .  

1
2f (Vi(k))=⎡(Vi(k)-90)/2⎤ 

2
2f (Vi(k))= ⎡((Vi(k) – (90+( 1

2f (Vi(k))-1) ×2)) /0.4) ⎤ 

The bit-wise indexes for the above records are shown in Table 4.1. 
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Table 4.1: The TBWI of 23 records in Figure 4.2 

BWI LotID StepID ToolID Yield 

eis 1
1ei  2

1ei  1
2ei  1

3ei  2
3ei  1

4ei  2
4ei  

BWI1 10000 10000 10000 1000 1000 01000 10000 

BWI2 10000 01000 10000 1000 1000 01000 10000 

BWI3 10000 00100 10000 1000 0100 01000 10000 

BWI4 10000 00010 10000 1000 0010 00001 00100 

BWI5 10000 00001 10000 1000 0001 00001 00010 

BWI6 01000 10000 01000 0100 1000 01000 00100 

BWI7 01000 01000 01000 0100 1000 00100 01000 

BWI8 01000 00100 01000 0100 1000 00100 00010 

BWI9 01000 00010 01000 0100 1000 00100 00001 

BWI10 01000 00001 00100 0100 0100 00010 10000 

BWI11 00100 10000 00100 0100 0010 01000 10000 

BWI12 00100 01000 00100 0100 0001 01000 10000 

BWI13 00100 00100 00100 0010 1000 01000 00100 

BWI14 00100 00010 00100 0010 0100 00100 01000 

BWI15 00100 00001 00100 0010 0010 00100 00001 

BWI16 00010 10000 00010 0010 0001 01000 00010 

BWI17 00010 01000 00010 0010 0001 00100 01000 

BWI18 00010 00100 00010 0010 0001 00100 00010 

BWI19 00010 00010 00010 0001 1000 00100 01000 

BWI20 00010 00001 00010 0001 1000 00100 10000 

BWI21 00001 10000 00010 0001 0100 00100 00001 

BWI22 00001 01000 00001 0001 0010 00100 00010 

BWI23 00001 00100 00001 0001 0010 00010 01000 

 

4.1.3 The Matching Phase of Encapsulated BWI Method 

Calculating the similarities between a query and saved records is a 

time-consuming task. A two-phase matching approach, called the Encapsulated BWI 

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time. 
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It includes the Encapsulated BWI relevant-records-retrieving phase and the 

Encapsulated BWI similarity-computing phase. In the first phase, all irrelevant records 

are filtered out to avoid calculation of their similarities. The time of calculating the 

similarities of useful saved records can then be decreased. The similarities of the query 

with remaining saved records are then computed efficiently in the similarity-computing 

phase. The algorithm is described as follows. 

 

Algorithm 4.4 - Encapsulated BWI Similar-records-seeking algorithm : 

Input  : A bit-wise index matrix TBWI and a new query RN. 

Output : A set of similar record Rc with their similarity degrees with RN. 

Step 1: Use the Encapsulated BWI bit-wise index creation algorithm (Algorithm 4.2) 

to get the index BWIN of the new query RN according to the condition part of 

the query. 

Step 2: Initialize the counter j to 1 and Rc to an empty set. 

Step 3: For each BWIj in TBWI, do the following sub-steps (1<j≤|R|): 

Step 3.1: Call the Encapsulated BWI search-relevant-records algorithm 

(Algorithm 4.5) to compute the relevance degree rdij between BWIN 

and BWIj. 

Step 3.2: If rdij=0, ignore the record Rj and go to Step 3.5. 
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Step 3.3: Call the Encapsulated BWI similarity-computing algorithm (Algorithm 

4.7) to compute the similarity simj between RN and Rj. 

Step 3.4: Add record Rj with its similarity simj to Rc. 

Step 3.5:  Add 1 to j. 

Step 4: Sort the results in Rc in descending order of their similarities. 

Step 5: Output Rc. 

 

Even the encoding procedure of BWI index in Encapsulated BWI method is 

different than the Simple one, it still can easily be found by using the ‘AND’ bit-wise 

operation to compare the two bit vectors. The following Encapsulated BWI 

Search-relevant-records algorithm is thus proposed to achieve this purpose. 

 

Algorithm 4.5 - Encapsulated BWI Search-relevant-records algorithm : 

Input: The bit-wise indexing vector BWIN of a new query R N and the index BWIj 

of a saved record Rj in R. 

Output: The relevant degree rdij between RN and Rj. 

Step 1:  Use the ‘AND’ bit-wise operation on BWIN and BWIj and store the result as 

rdij, which is also a bit string. 

Step 2:  Return rdij. 
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Since the ‘AND’ bit-wise operation is fast, the Search-relevant-records algorithm 

selects relevant saved records quickly. If rdi is zero, then the saved record is thought of 

as irrelevant and will be filtered out. Since the properties of Encapsulated BWI mode, 

if rdi has some ‘1’ bits, it does not mean that the saved record is relevant. As 

mentioned above, a matching function based on a weighted sum of matched attributes 

is defined to calculate the similarity degrees. As the same with Simple BWI method. the 

Mask Vector and the Similarity Mapping List are used in Encapsulated BWI method 

and then be defined at Definition 4.2 and 4.3. 

 

DEFINITION 4.2 - Encapsulated BWI Mask Vector : 

A Encapsulated BWI bit-wise indexing mask vector eMask is a set of eMaskk, 

where 0 < k ≤ ∑
=

r

i
iel

1

. Each eMaskk, denoting the mask vector of attribute Ak, is a 

concatenation of r bit strings as eMaskk=S1S2…
∑
=

r

i
iel

S
1

, where Si = <1> for 

∑
−

=

1

1

k

i
iel ≤i≤∑

=

k

i
iel

1

 and Si = <0> otherwise. 

 

DEFINITION 4.3 - Encapsulated BWI Similarity Mapping List : 

Let L be an Encapsulated BWI Similarity Mapping List and Li be an element in L 

with an index value i, which is determined from the attributes matched, 1≤i≤
∑
=

r

i
iel

12 -1. 

Let i be represented as a binary code bi1bi2…
∑
=

r

i
ieli

b
1

. The value of Li is thus 
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1

1 . 

 

Algorithm 4.6 - Encapsulated BWI Similarity-mapping-list creation algorithm : 

Input: Weights of attributes W1, W2, …, Wr of R. 

Output: A similarity mapping list L. 

Step 1: Initialize the counter i to 1 and the list L to be empty. 

Step 2: For each i, 1≤i≤
∑
=

r

i
iel

12 -1, do the following sub-steps: 

Step 2.1: Encode i into a binary string <bi1bi2…
∑
=

r

i
ieli

b
1

>. 

Step 2.2: Calculate the similarity degree Li by the formula in Definition 4.3. 

Step 2.3: Put Li into the list L with index i. 

Step 3: Return L. 

 

After the Similarity Mapping List has been built, the similarity of each saved 

record and a new query can be quickly found by the following algorithm. 

 

Algorithm 4.7 - Encapsulated BWI Similarity-computing algorithm : 

Input: The relevant degree rdij of record Rj with a new query, the Mask Vector, and 
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the Similarity Mapping List L. 

Output: The similarity of Rj with a new record. 

Step 1: Initialize a zero binary string of length r. 

Step 2: For each i, 1 ≤ i ≤ ∑
=

r

i
iel

1
, set the i-th position in the string to 1 if 

AND(eMaski, rdij) = AND(eMaski, BWIN). 

Step 3: Transform the binary string into an integer j. 

Step 4: Get Lj from the Similarity Mapping List. 

Step 5: Return Lj. 

 

 

EXAMPLE 4.4:  

Continuing from Example 4.3, the BWIN of a new query RN, which is 

{StepID=PS_1, ToolID=AWOX13, Yield=99.1}, is < 1
1ei =00000 2

1ei =00000 

1
2ei =10000 1

3ei =1000 2
3ei =0010 1

4ei =00001 2
4ei =00100>. Also assume that weight 

W2, W3 and W4 are set to 0.4, 0.4 and 0.2, respectively. Each BWIj in TBWI in Table 4.1 

is processed as follows. 

• For BWI1, BWI2 and BWI3, all the relevant degrees rdi1, rdi2 and rdi3 between BWI1, 

BWI1, BWI1 and BWIN are found as <00000 00000 10000 1000 0000 00000 00000> 

by the Encapsulated BWI Search-relevant-records algorithm. Since more than one bit 
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in rdi1 is "1", Records 1, 2 and 3 are possible relevant records. According to the 

Definition 4.2, the eMask2 = <00000 00000 11111 0000 0000 00000 00000> and 

eMask3=<00000 00000 00000 1111 1111 00000 00000>. Since the result of 

AND(eMask2, rdi1) = <00000 00000 10000 0000 0000 00000 00000> is equal to the 

result of AND(eMask2, BWIN) = <00000 00000 10000 0000 0000 00000 00000> and 

the result of AND(eMask3, rdi1) = <00000 00000 00000 1000 0000 00000 00000> is 

not equal to the result of AND(eMask3, BWIN) = <00000 00000 00000 1000 1000 

00000 00000>, the similarities of Records 1, 2 and 3 are found as 0.4 via 

ALGORITHM 4.7. Record 1, 2, 3 are then the relevant records. 

• For BWI4: The relevant degree rdi4 between BWI4 and BWIN is found as <00000 

00000 10000 1000 0010 00001 00100> by the Encapsulated BWI 

Search-relevant-records algorithm. Since more than one bit in rdi1 is "1", Record 4 is 

a possible relevant record. According to the Definition 4.2, the eMask2 = <00000 

00000 11111 0000 0000 00000 00000>, eMask3=<00000 00000 00000 1111 1111 

00000 00000> and eMask3=<00000 00000 00000 1111 1111 11111 11111>. Since 

the results of AND(eMask2, rdi4) is equal to AND(eMask2, BWIN), AND(eMask3, 

rdi4) is equal to AND(eMask3, BWIN) and AND(eMask4, rdi4) is equal to 

AND(eMask4, BWIN), the similarity of Record 4 is found as 1 via ALGORITHM 4.7. 

Record 4 is then a relevant record. 
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After the relevant records are sorted in decreasing order of similarities, the results 

are shown is Table 4.2. 

 

Table 4.2: Five relevant records and their similarities 

Relevant Record Record 4 Record 1 Record 2 Record 3 Record 5 

Similarity 1 0.4 0.4 0.4 0.4 

 

4.1.4 Analysis and Experiments of Encapsulated BWI Method 

As we can see, the major different between Similarity-computing algorithm 

(Algorithm 3.6) of Simple BWI method and Encapsulated BWI similarity-computing 

algorithm (Algorithm 4.7) of Encapsulated BWI method is in Step 2. In Simple BWI 

method, one ‘AND’ bit-wise operation and a bit-to-integer operation are used. 

However, two ‘AND’ bit-wise operations and a bit-comparing operation are used. In 

general, the bit-wise and bit-to-integer operations are quite the efficiency operation, 

however, bit-comparing operations are not and thus highly depends on the length of bit 

string. The storage saving and computation time of Encapsulated BWI method are 

tradeoff. The more encapsulated level used, the more storage saving, however, the 

more computing time needing. 
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4.2 Compacted Bit-wise Indexing Method 

In the Section, the Encapsulated bit-wise indexing method is introduced, including 

the definitions and algorithms of indexing and matching phases in Encapsulated 

Bit-wise Indexing Method are proposed. 

 

4.2.1 General Assumptions and Notations for Compacted BWI Method 

In Section 4.1, we propose the Encapsulated bit-wise indexing method to a data 

warehouse and it can largely reduce the width of the matrix of bit-wise indexes. 

However, the total number of bit-wise index string that needs to be compared via 

“AND” bit-wise operation are still required. In order to accelerate the processing time 

of OLAP queries, we propose a more sophisticated indexing model, called Compacted 

bit-wise indexing method.  

As we know, the attributes are the base information of all OLAP queries and the 

concept hierarchy of each attribute is beneficial for roll-up and drill-down operations 

of the data warehouse. In the Compacted bit-wise indexing method, the importance of 

attributes, including attribute and concept hierarchy, is evaluated via encapsulated level 

of Encapsulated BWI method. Using this method, the bit strings of attributes are 

partitioned into two levels. For all attribute, and the encapsulated level is smaller than 
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compact level cli are kept in the first level bit-wise indexes matrix, called Main Matrix 

M
BWIT , and each BWIi in M

BWIT  are linked to a bit-wise indexes matrices, called 

Drill-Packet Matrix 
iDP

BWIT , to keep the remain encapsulated levels. According to the 

BWI indexing structure, the processing time of OLAP queries can be hugely reduced 

since most irrelevant record will be filtered out in the matching procedure using M
BWIT . 

NOTATION 4.2: 

cli = the compacted level of of attribute aj. 

M
iBWI  = the bit-wise indexing for Main Matrix M

BWIT .  

D
iBWI  = the bit-wise indexing for Drill-Packet Matrix 

kDP
BWIT .  

M
BWIT  = the Main Matrix of bit-wise indexes matrix of T 

iDP
BWIT  = the Drill-Packet Matrix 

iDP
BWIT  bit-wise indexes matrix of BWIi of M

BWIT  

rdmi = the result vector of matching M
NBWI and M

iBWI , where 1≤i≤| M
BWIT |.  

rddi = the result vector of matching D
NBWI and D

iBWI . where 1≤i≤r 

 

We propose a Compacted bit-wise indexing method on data warehouse to achieve 

the goals of saving storage and accelerating user query procedure. This method 

includes two phases. One is creating indexes phase, and the other is querying phase. 

The indexing phase transforms the contents of table into a Main Matrix M
BWIT  and 

| M
BWIT | Drill-down Matrix 

iDP
BWIT , and the query phase is retrieving records to answer the 
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query statements as soon as possible.  

4.2.2 The Indexing Phase of Compacted BWI Method 

The indexing phase includes Compacted BWI attributes index creating Algorithm 

and Compacted BWI matrix of bit-wise indexes creating Algorithm. In this method, the 

Encapsulated level calculating Algorithm (Algorithm 4.2.1) is still used to calculate an 

encapsulated level of each attribute for creating the corresponding bit-wise indexes, the 

Compacted BWI Bit-wise indexes creating Algorithm creates corresponding BWI index 

of matrix of two-level bit-wise indexes. The Compacted BWI Matrix of bit-wise 

indexes creating Algorithm creates Main Matrix M
BWIT  and | M

BWIT | Drill-down Matrix 

iDP
BWIT  of Table T in the data warehouse. These algorithms and examples are shown as 

follows.  

 

Algorithm 4.8 - Compacted BWI bit-wise indexes creating Algorithm : 

Input:  A record Ri. 

Output: Two bit-wise vectors M
iBWI and D

iBWI of Ri. 

Step 1: Create two bit-wise vectors, including M
iBWI and D

iBWI , of length 0. 

Step 2: Repeat the following sub-steps for each attribute Aj until all attributes are 

processed. 

Step 2.1: If Type(Aj) ≠ S and fi≠∅, go to Step 2.2, else let m=n if Vj(i)=Vjn. Repeat 
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the following sub-steps for each encapsulated level elk until all 

encapsulated levels are processed 

Step 2.1.1: Let B’=b1b2… k
jei

b  to a all-zero string with length k
jei  

Step 2.1.2: If k≠ kel , go to Step 2.1.3, else if the m=0, set k
jei

b =1 and set bm=1 

otherwise, go to Step 2.1.5. 

Step 2.1.3: Let o = ⎣m/ ∏
+=

jel

kp

p
iei

1

⎦, if o= k
jei , set bo=1 and set 1+ob =1 otherwise. 

Step 2.1.4: Set m=m-(o× ∏
+=

jel

kp

p
iei

1

) 

Step 2.1.5: If k≤cli, concatenate the bit strings M
iBWI and B’ to M

iBWI and 

concatenate the bit strings D
iBWI and B’ to D

iBWI  otherwise.  

Step 2.2: If Type(Aj) ≠ S and fi≠∅, for each k
jB , do the following sub-steps 

Step 2.2.2: Set bjl=1 if k
if (Vi(k))=l and bjl=0 otherwise. 

Step 2.2.3: If k≤cli, concatenate the bit strings M
iBWI and k

jB  to M
iBWI and 

concatenate the bit strings D
iBWI and k

jB  to D
iBWI  otherwise.  

Step 3: Return the vectors M
iBWI and D

iBWI . 

 

Algorithm 4.9 - Compacted BWI Matrix of bit-wise indexes creating Algorithm : 

Input: Table T of the data warehouse. 

Output: The M
BWIT  and | M

BWIT | 
iDP

BWIT  of the Table T in data warehouse. 
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Step 1: Create an empty bit-wise indexes matrix M
BWIT  for table T.  

Step 2: Call Encapsulated level calculating Algorithm – Square Root (Algorithm 4.1) 

to get the corresponding els and eis. 

Step 3: Repeat the following sub-steps for each record Ri until all records are 

processed. 

Step 3.1: Use the Compacted BWI bit-wise index creation algorithm (Algorithm 

4.8) to get the indexes M
iBWI and D

iBWI of Ri. 

Step 3.2: Set k=1 and do the following sub-steps.  

Step 3.2.1: If M
kBWI =∅, Create an empty Drill-Packet Matrix 

kDP
BWIT  , set 

M
kBWI = M

iBWI , add D
iBWI into 

kDP
BWIT , and go to Step 3.  

Step 3.2.1: If M
kBWI = M

iBWI , add D
iBWI into 

kDP
BWIT and go to Step 3.  

Step 4: M
BWIT  and | M

BWIT | 
iDP

BWIT . 

 

After bit-wise index matrixes, including M
BWIT  and all related 

iDP
BWIT , are built, 

bit-wise operations can easily be used to retrieve desired record for the new coming 

queries. 

EXAMPLE 4.5: 

Continuing Example 4.3, assume that the compacted level cli of all attributes are 

set to 1. According to the Algorithm 4.9, the Main Matrix M
BWIT  for the records in 
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Figure 4.2 is shown in Table 4.3 and the corresponding Drill-Packet Matrixes are 

shown in Table 4.4 to 4.17. 

 

Table 4.3: The M
BWIT  of records in Figure 4.2 

BWI LotID StepID ToolID Yield 
MBWI1  10000 10000 1000 01000 
MBWI2  10000 10000 1000 00001 
MBWI3  01000 01000 0100 01000 
MBWI4  01000 01000 0100 00100 
MBWI5  01000 00100 0100 00010 
MBWI6  00100 00100 0100 01000 
MBWI7  00100 00100 0010 01000 
MBWI8  00100 00100 0010 00100 
MBWI9  00010 00010 0010 01000 
MBWI10  00010 00010 0010 00100 
MBWI11  00010 00010 0001 00100 
MBWI12  00001 00010 0001 00100 
MBWI13  00001 00001 0001 00100 
MBWI14  00001 00001 0001 00010 

 
Table 4.4: The 

1DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI1  10000 1000 10000 

DBWI2  01000 1000 10000 

DBWI3  00100 0100 10000 

 

 
Table 4.5: The 

2DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 
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DBWI4  00010 0010 00100 

DBWI5  00010 0001 00010 

 

 
Table 4.6: The 

3DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI6  10000 1000 00100 

 

 
Table 4.7: The 

4DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI7  01000 1000 01000 

DBWI8  00100 1000 00010 

DBWI9  00010 1000 00001 

 

 
Table 4.8: The 

5DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI10  00001 0100 10000 

 

 
Table 4.9: The 

6DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI11  10000 0010 10000 

DBWI12  01000 0001 10000 
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Table 4.10: The 
7DP

BWIT  of records with cli=1 in of M
BWIT  

BWI LotID ToolID Yield 

DBWI13  00010 1000 00100 

 

 
Table 4.11: The 

8DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI14  00010 0010 01000 

DBWI15  00001 0010 00001 

 

 
Table 4.12: The 

9DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI16  10000 0001 00010 

 

 
Table 4.13: The 

10DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI17  01000 0001 01000 

DBWI18  00100 0001 00010 

 

 
Table 4.14: The 

11DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI19  00010 1000 01000 
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DBWI20  00001 1000 10000 

 

 
Table 4.15: The 

12DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI21  10000 0100 00001 

 

 
Table 4.16: The 

13DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI22  01000 0010 00010 

 

 
Table 4.17: The 

14DP
BWIT  of records with cli=1 in of M

BWIT  

BWI LotID ToolID Yield 

DBWI23  00100 0010 01000 

 

4.2.3 The Matching Phase of Compacted BWI Method 

Calculating the similarities between a query and saved records is a 

time-consuming task. A two-phase matching approach, called the Compacted BWI 

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time. 

It includes the Compacted BWI relevant-records-retrieving phase and the Compacted 

BWI similarity-computing phase. In the first phase, all irrelevant records are filtered 
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out to avoid calculation of their similarities. The time of calculating the similarities of 

useful saved records can then be decreased. The similarities of the query with 

remaining saved records are then computed efficiently in the similarity-computing 

phase. The algorithm is described as follows. 

 

Algorithm 4.10 - Compacted BWI Similar-records-seeking algorithm : 

Input: A bit-wise index matrixes M
BWIT  , | M

BWIT | 
iDP

BWIT  , Table T and a new query RN. 

Output: A set of similar record Rc with their similarity degrees with RN. 

Step 1: Use the Compacted BWI bit-wise index creation algorithm (Algorithm 4.8) 

to get the indexes M
NBWI  and D

NBWI  and of the new query RN according to 

the condition part of the query. 

Step 2: Initialize the counter j to 1 and Rc to an empty set. 

Step 3: For each M
jBWI in M

BWIT , do the following sub-steps (1<j≤| M
BWIT |): 

Step 3.1: Call the Compacted BWI Search-relevant-records-main-matrix 

algorithm (Algorithm 4.11) to compute the relevance degree rdmj 

between M
NBWI  and M

jBWI . 

Step 3.2: If all bits in rdmj are 0, go to Step 3.5. 

Step 3.3: For each D
kBWI  in 

jDP
BWIT , do the following sub-steps: 

Step 3.3.1: Call the Compacted BWI search-relevant-records-drill-packet 
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algorithm (Algorithm 4.12) to compute the matrix of relevance 

degree rddk between D
NBWI  and D

kBWI . 

Step 3.3.2: Call the Compacted BWI Concatenate-rdi-result algorithm 

(Algorithm 4.13) to concatenate the bit strings rdmj and rddk to 

rdik. 

Step 3.3.3: Call the Compacted BWI similarity-computing algorithm 

(Algorithm 4.15) to compute the similarity simj between RN and 

Rk using rdik. 

Step 3.3.4: If simk ≠ 0, add record Rk with its similarity simk to Rc. 

Step 3.5:  Add 1 to j. 

Step 4: Sort the results in Rc in descending order of their similarities. 

Step 5: Output Rc. 

 

Even the encoding procedure of BWI index in Encapsulated BWI method is 

different than the Simple one, it still can easily be found by using the ‘AND’ bit-wise 

operation to compare the two bit vectors. The following Compacted BWI 

Search-relevant-records-main-matrix algorithm, is thus proposed to achieve this 

purpose. 
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Algorithm 4.11 - Compacted BWI Search-relevant-records-main-matrix algorithm : 

Input: The bit-wise indexing vector M
NBWI  of a new query R N and the index 

M
jBWI  in M

BWIT . 

Output: The relevant degree rdmj between M
NBWI  and M

jBWI . 

Step 1:  Use the ‘AND’ bit-wise operation on M
NBWI  and M

jBWI  and store the 

result as rdmj, which is also a bit string. 

Step 2:  Return rdmj. 

 

Since the ‘AND’ bit-wise operation is fast, the Compacted BWI 

Search-relevant-records-main-matrix algorithm selects relevant saved records quickly. 

If rdmi is zero, then the saved records in the 
iDP

BWIT  are thought of as irrelevant and will 

be filtered out. Since the properties of Compacted BWI mode, if rdm has some ‘1’ bits, 

it means that some saved records indexed in the 
iDP

BWIT  are relevant. However, the 

similarities between query and these records should be calculated based on the 

matching result of D
NBWI  and all contains indexes in 

iDP
BWIT . The following 

Compacted BWI Search-relevant-records-main-matrix-drill-packet algorithm and 

Compacted BWI Concatenate-rdi-result algorithm are thus proposed to achieve this 

purpose. 
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Algorithm 4.12 - Compacted BWI search-relevant-records-drill-packet algorithm : 

Input: The bit-wise indexing vector D
NBWI  of a new query R N and the index 

D
kBWI  in 

jDP
BWIT . 

Output: The relevant degree rddk between D
NBWI  and D

kBWI . 

Step 1:  Use the ‘AND’ bit-wise operation on D
NBWI  and D

kBWI  and store the 

result as rddk, which is also a bit string. 

Step 2:  Return rddk. 

 

Algorithm 4.13 - Compacted BWI Concatenate-rdi-result algorithm : 

Input: The relevant degree bit strings rdmj and rddk. 

Output: The relevant degree rdik. 

Step 1: Initialize the counter m,n to 1 and rdik to an empty bit string. 

Step 2: For m≤r, do the following sub-steps: 

Step 2.1: Add the bits between position ∑∑
−

= =

1

1 1

m

n

cl

l

l
n

i

ei +1 to ∑∑
= =

m

n

cl

l

l
n

i

ei
1 1

of rdmj to 

rdik. 

Step 2.2: Add the bits between position ∑ ∑
−

= +=

1

1 )1(

m

n

el

cll

l
n

i

i

ei +1 to ∑ ∑
= +=

m

n

el

cll

l
n

i

i

ei
1 )1(

of rddj to 

rdik. 

Step 2.3: Add 1 to m. 
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Step 3:  Return rdik. 

 

EXAMPLE 4.6:  

Continuing from Example 4.5, assume that rdmj = <00000 10000 1000 00000> 

and rdmj = <00000 1000 00000>. For the first attribute, the sub-string of rdmj at 

position 1 ( 1101
11

1

1

1

=+=+∑∑
−

= =n l

l
nei ) to 5 ( 5

1

1

1

1

=∑∑
= =n l

l
nei ) will be appended to rdik first. 

rdik is set to <00000>. The sub-string of rddj at position 1 ( 1101
11

1

2

)11(

=+=+∑ ∑
−

= +=n l

l
nei ) to 5 

( 5
1

1

2

)11(

=∑ ∑
= +=n l

l
nei ) will then be appended to rdik. rdik is then set to <00000 00000>. 

Finally, the rdik is set to <00000 00000 10000 1000 1000 00000 00000> after the 

Compacted BWI Concatenate-rdi-result algorithm is executed. 

 

As mentioned above, a matching function based on a weighted sum of matched 

attributes is defined to calculate the similarity degrees. As the same with Simple and 

Encapsulated BWI methods, the Compacted BWI Mask Vector and the Compacted 

Similarity Mapping List are used in Compacted BWI method then be defined at 

Definition 4.4 and 4.5. 

 

DEFINITION 4.4 - Compacted BWI Mask Vector : 

A Encapsulated BWI bit-wise indexing mask vector cMask is a set of cMaskk, 
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where 0 < k ≤ ∑
=

r

i
iel

1

. Each cMaskk, denoting the mask vector of attribute Ak, is a 

concatenation of r bit strings as cMaskk=S1S2…
∑
=

r

i
iel

S
1

, where Si = <1> for 

∑
−

=

1

1

k

i
iel ≤i≤∑

=

k

i
iel

1

 and Si = <0> otherwise. 

 

DEFINITION 4.5 - Compacted BWI Similarity Mapping List : 

Let L be an Compacted BWI Similarity Mapping List and Li be an element in L 

with an index value i, which is determined from the attributes matched, 1≤i≤(
∑
=

r

i
iel

12 -1). 

Let i be represented as a binary code bi1bi2…
∑
=

r

i
ieli

b
1

. The value of Li is thus 

∑

∑ ∏

=

=
+=

×
∑

∑

+

=

−

=
r

j
j

r

j
j

el

elk

ik

W

Wb

j

l
l

j

l
l

1

1

)(

1)(

)(

1

1

1

1 . 

 

Algorithm 4.14 - Compacted BWI Similarity-mapping-list creation algorithm: 

Input: Weights of attributes W1, W2, …, Wr of R. 

Output: A similarity mapping list L. 

Step 1: Initialize the counter i to 1 and the list L to be empty. 

Step 2: For each i, 1≤i≤
∑
=

r

i
iel

12 -1, do the following sub-steps: 

Step 2.1: Encode i into a binary string <bi1bi2…
∑
=

r

i
ieli

b
1

>. 

Step 2.2: Calculate the similarity degree Li by the formula in Definition 4.5. 
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Step 2.3: Put Li into the list L with index i. 

Step 3: Return L. 

 

After the Similarity Mapping List has been built, the similarity of each saved 

record and a new query can be quickly found by the following algorithm. 

 

Algorithm 4.15 - Compacted BWI Similarity-computing algorithm: 

Input: The relevant degree rdij of record Rj with a new query, the Compacted Mask 

Vector, and the Similarity Mapping List L. 

Output: The similarity of Rj with a new record. 

Step 1: Initialize a zero binary string of length r. 

Step 2: For each i, 1 ≤ i ≤ ∑
=

r

i
iel

1
, set the i-th position in the string to 1 if 

AND(cMaski, rdij) = AND(cMaski, BWIN). 

Step 3: Transform the binary string into an integer j. 

Step 4: Get Lj from the Similarity Mapping List. 

Step 5: Return Lj. 
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EXAMPLE 4.7:  

Continuing from Example 4.6, the M
NBWI  and D

NBWI  of a new query RN, 

which is <StepID=PS_1, ToolID=AWOX13, Yield=99.1>, is < 1
1ei =00000 1

2ei =10000 

1
3ei =1000 1

4ei =00001 > and < 2
1ei =00000 2

3ei =0010 2
4ei =00100>. Also assume that 

weight W2, W3 and W4 are set to 0.4, 0.4 and 0.2 correspondingly. Each M
jBWI in TBWI 

in Table 4.3 is processed as follows. 

• For MBWI1 , the relevant degree rdm1 = <00000 10000 1000 00000> since: 

 <00000 10000 1000 00001> ( M
NBWI ) 

AND <00000 10000 1000 00000> ( MBWI1 ) 

 <00000 10000 1000 00000> (rdm1) 

Since more than one bit in rdm1 is "1", all D
iBWI  in Drill-Packet Matrix 

1DP
BWIT are 

retrieved to further investigation. There are three D
iBWI  in 

1DP
BWIT , including 

DBWI1 , DBWI2 and DBWI3 ,the relevant degree rdd1 = <00000 0000 00000> since: 

 <00000 0010 00100> ( D
NBWI ) 

AND <00000 1000 10000> ( DBWI1 ) 

 <00000 0000 00000> (rdd1) 

 The relevant degree rdd2 = <00000 0000 00000> since: 

 <00000 0010 00100> ( D
NBWI ) 

AND <00000 1000 10000> ( DBWI2 ) 

 <00000 0000 10000> (rdd2) 
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The relevant degree rdd3 = <00000 0000 00000> since: 

 <00000 0010 00100> ( D
NBWI ) 

AND <00000 0100 10000> ( DBWI3 ) 

 <00000 0000 00000> (rdd3) 

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi1, 

rdi2 and rdi3 are thus generated as following: 

rdi1= <00000 00000 10000 1000 0000 00000 00000> 

rdi2= <00000 00000 10000 1000 0000 00000 00000> 

rdi3= <00000 00000 10000 1000 0000 00000 00000> 

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000 

00000 00000> and cMask3=<00000 00000 00000 1111 1111 00000 00000>. Since the 

result of AND(cMask2, rdi1) = <00000 00000 10000 0000 0000 00000 00000> is 

equal to the result of AND(cMask2, BWIN) = <00000 00000 10000 0000 0000 00000 

00000> and the result of AND(cMask3, rdi1) = <00000 00000 00000 1000 0000 

00000 00000> is not equal to the result of AND(cMask3, BWIN) = <00000 00000 

00000 1000 1000 00000 00000>, the similarities of record 1, 2 and 3 are found as 0.4. 

Record 1, 2, 3 are then the relevant records. 

• For MBWI2 , the relevant degree rdm2 = <00000 10000 1000 00001> since: 

 <00000 10000 1000 00001> ( M
NBWI ) 

AND <00000 10000 1000 00001> ( MBWI2 ) 
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 <00000 10000 1000 00001> (rdm2) 

Since more than one bit in rdm2 is "1", all D
iBWI  in Drill-Packet Matrix 

2DP
BWIT are 

retrieved to further investigation. There is only one DBWI4  in 
1DP

BWIT , ,the relevant 

degree rdd1 = <00000 0000 00000> since: 

 <00000 0010 00100> ( D
NBWI ) 

AND <00000 0010 00100> ( DBWI4 ) 

 <00000 0010 00100> (rdd4) 

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi4, is 

thus generated as following: 

rdi4= <00000 00000 10000 1000 0010 00001 00100> 

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000 

00000 00000>, cMask3=<00000 00000 00000 1111 1111 00000 00000> and 

cMask4=<00000 00000 00000 0000 0000 11111 11111>. Since the results of 

AND(cMask2, rdi4) is equal to AND(cMask2, BWIN), AND(cMask3, rdi4) is equal to 

AND(cMask3, BWIN) and AND(cMask4, rdi4) is equal to AND(cMask4, BWIN), the 

similarity of Record 4 is found as 1. Record 4 is then a relevant record. 

• For MBWI1 , the relevant degree rdm3 = <00000 10000 1000 00001> since: 

 <00000 10000 1000 00001> ( M
NBWI ) 

AND <00000 10000 1000 00001> ( MBWI3 ) 

 <00000 10000 1000 00001> (rdm3) 
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Since more than one bit in rdm3 is "1", all D
iBWI  in Drill-Packet Matrix 

3DP
BWIT are 

retrieved to further investigation. There only one DBWI5  in 
1DP

BWIT , ,the relevant 

degree rdd5 = <00000 0000 00000> since: 

 <00000 0010 00100> ( D
NBWI ) 

AND <00000 1000 00010> ( DBWI5 ) 

 <00000 0000 00000> (rdd5) 

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi5 is 

thus generated as following: 

rdi5= <00000 00000 10000 1000 0000 00001 00000> 

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000 

00000 00000>, cMask3=<00000 00000 00000 1111 1111 00000 00000> and 

cMask4=<00000 00000 00000 0000 0000 11111 11111>. Since the result of 

AND(cMask2, rdi1) is equal to the result of AND(cMask2, BWIN), however, result of 

AND(cMask3, rdi1) is not equal to the result of AND(cMask3, BWIN), the similarities 

of record 5 are found as 0.4. Record 5 is then a relevant record. 

• For the other M
iBWI , the relevant degree rdmi are all equal to <00000 00000 0000 

00000> , where 6≤ i ≤14, since no “1” bit in rdm, all other records are filtered out 

using the Main Matrix only. 

After the relevant records are sorted in decreasing order of similarities, the results 

are shown is Table 4.18. 
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Table 4.18: Two relevant records and their similarities 

Relevant Record Record 1 Record 2 Record 3 Record 4 Record 5 

Similarity 0.4 0.4 0.4 1 0.4 

 

4.2.4 Analysis and Experiments of Compacted BWI Method 

 

As we can see, the major different between Encapsulated BWI 

Similar-records-seeking algorithm (Algorithm 4.4) of Encapsulated BWI method and 

Compacted BWI Similar-records-seeking algorithm (Algorithm 4.10) of Compacted 

BWI method is in Step 3, the computation time analysis (worse case analysis) is shown 

below 

In Encapsulated BWI method, the “AND” operations should be taken  

∏∏
= =

r

i

el

j

j
i

i

ei
1 1

 times. 

In Compacted BWI method, the “AND” operations should be taken  
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r
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el

clj
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el
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The number of extra “AND” operations is: 
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∏∏∏∏∏ ∏∏∏
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In the worst case analysis, the Compacted BWI method uses extra ∏∏
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1 1

 

time “AND” operations than the Encapsulated BWI method. However, the 

Encapsulated BWI method should process extra ∑∑∏ ∏∏∏
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bits than the Compacted BWI method.  

In Encapsulated BWI method, the total bit should be processed  
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In Compacted BWI method, the total bit should be processed  
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When the record size (|R|) of T is quite large, the Compacted BWI method can 

be applied since the disk storage will be largely reduced. Once the record size is 

smaller then )()1(
1 11 1
∑∑∏ ∏

= == +=

×−
r

i

cl

j

j
i

r

i

el

clj

j
i

ii

i

eiei , the Encapsulated BWI method should be 

used since the extra processing time will be used by Compacted BWI method  
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Chapter 5  
Using BWI indexing in an Intelligent 
Manufacturing Defect Detection 
Method for the Time Issue 

In this chapter, an implementation that consisted of a reinforcement-learning defect 

detection root-cause learning system for the time aspect in manufacturing domains is 

introduced. This implementation employed the Sample Bit-Wise Indexing Method to 

encode the defect status of manufacturing products and hence accelerate data 

preprocessing. Additionally, a bit-based Genetic Algorithm is used to learn suitable 

weights for each computed signature, since the chromosome and the corresponding GA 

operators are appropriate for the bit operations of BWI indexing method. 

5.1 Problem Description 

In recent years, the problem of detecting defects in the workshop has become 

increasingly important for manufacturers. In order to raise the quality of products, the 

root causes of low-quality situations must be found as soon as possible. Thus, process 
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control, statistical analysis, and cause-methodology-analysis techniques have all been 

widely applied in addressing the problem [10][18][22][27][53][62][70]. However, it is 

very difficult to identify the root causes of defects due to a wide variety in the types of 

causes of defects. For example, in the semiconductor manufacturing industry there are 

many causes of low yields, among them: machine failures, improper operation, 

improper parameters, manufacturing time problems, and scheduling and material 

problems. Many studies have been devoted to investigating these issues. The advent of 

advanced manufacturing technologies has led to overlong queues and increased 

manufacturing times in workshops that may cause oxidation problems, which are 

becoming more critical, but the diagnosis of such problems is usually very difficult and 

time-consuming. In this chapter, we will proposed a manufacturing defect detection 

problem, time aspect, for manufacturing domains (MDDP-t) is formally modeled and 

defined. In this section, the manufacturing defect detection problem, time aspect, for 

manufacturing domains (MDDP-t) is formally modeled and defined. A root-cause 

evaluation function (RCEF), which is a linear combination of three probing functions 

defined independently according to the experiences of domain experts, is proposed to 

evaluate whether a specific machine is the root cause of a time problem. Determining 

the weights for these probing functions is considered a separate issue here, and a 

genetic algorithm (GA) with encoding and GA operations suitable for MDDP-t 
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weight-learning problems is given to find appropriate weights for the probing functions. 

Several instances of MDDP-t with known root causes, some provided by the Taiwan 

Semiconductor Manufacturing Company [TSMC]), are given as training examples. 

Experimental results show the proposed approaches can ensure efficiency and 

accuracy. 

Many technologies or methods are employed to identify the causative factors of 

manufacturing defects, including Statistical Process Control (SPC), Advanced Process 

Control (APC) [18][53], and Machine Learning (ML) approaches. However, the real 

problems are sometimes chaotic, little-understood, and may be caused by complex 

interactions among multiple factors. Therefore, root-cause sorting becomes a critical 

issue for all manufacturing enterprises, especially some high technology ones like 

semiconductor manufacturing corporations. 

SPC and APC [10][53] are widely used in the semiconductor industry to monitor 

manufacturing behavior in workshops via motion and condition sensors. SPC monitors 

manufacturing by analyzing the statistical results of procedures, generating lists of 

meaningful results, and warning if the results are outside predefined control boundaries 

based on machine behaviors and expert experience. However, they sometimes issue 

warnings for good products (type-two error) and may not always warn of defective 

products (type-one error). APC, an advanced revision of SPC, not only monitors the 
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statistical results of machines behaviors [18][53], but also takes predefined actions to 

adjust machine behaviors when machines become unstable. Although APC seems more 

advanced than SPC, the resulting action-selection problem raises a separate issue that 

must be resolved. 

Certain intelligent methods with self-learning abilities are employed to provide 

fault analysis and suggest solutions. In [53], a combination of self-organizing neural 

networks and rule induction was used to identify critical poor-yield factors from 

normally collected wafer manufacturing data, and the corresponding behavior model 

thus learned to predict possible behaviors. A decision-tree approach used to locate the 

root cause of yield loss in integrated circuits was reported in [59]. The utility of 

decision trees for yield analysis lies in pointing to process steps that may not be 

captured by analyses of parametric data. 

5.2 Problem Definition of MDDP-t 

As mentioned above, we are concerned with the time aspects of detecting which 

machines make product defects. In this section, we first define various parameters used 

in this chapter, and then propose a formal definition of “Manufacturing Defect 

Detection Problem, time aspects” (MDDP-t). Generally, quality baselines must exist 

for all products in order to ensure good manufacturing procedures. Taking an example 
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from semiconductor manufacturing, the quality baseline for 150-nanometer yields is 

usually set to 90% or above in a well-tuned manufacturing fab. When yields become 

unstable and drop below the quality baseline, product engineers (“lot owners” in 

semiconductor manufacturing fabs) investigate to find the major reason (called the 

“root cause”) for the low-yield situation. For example, a product engineer may collect 

data on all low and normal product yields and identify suspect factors, e.g., abnormal 

machine behaviors, in-line metrologies, processing and queuing times, which are the 

most likely root causes according to statistical- or data-analysis results. In this chapter, 

MDDP-t is considered a quadruple, including product manufacturing machine 

information (PM), product manufacturing time information (PT), product 

manufacturing yield information (PY), and quality baseline(yθ). The Notation 5.1 is 

defined as following: 

NOTATION 5.1: 

M the set of machines; 

cp number of products; 

cm number of machines; 

cs number of machine clusters; 

si
 i-th machine cluster such that si = {mi,1, mi,2, …, )(, iim α }, where 1 ≤ i ≤ cs, 

and α(i) is the number of machines in si and mi,j is the j-th machine in si, 1 ≤ 
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j ≤ α(i); 

pi product pi, 1 ≤ i ≤ cp; 

yi product quality pi, 1 ≤ i ≤ cp; 

yθ acceptable product quality baseline; 

pmi product pi manufacturing information vector  

 pmi = < 1
ipm , ,2

ipm  …, sc
ipm >, where pi is processed by the j

ipm -th 

machine in sj and 1 ≤ i ≤ cp; 

pti target manufacturing time vector for product pi 

 pti = < 1
ipt , ,2

ipt  …, sc
ipt >, where j

ipt  is the processing time for 

machine j
ipm  and 1 ≤ i ≤ cp; 

pyi pi product yield;  

PM manufacturing procedure for products in P, where PM is a cp×cs matrix and 

PMi,j=
j

ipm ; 

PT product manufacturing time, where PT is a cp×cs matrix and PTi,j=
j

ipt ; 

PY product quality yield, where PY is a column matrix and PYi = ipy ; 

MDDP-t a given quadruple manufacturing defect detection problem involving time, 

where MDDP-t=(PM, PT, PY, yθ). 
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Table 5.1: An example of products passing through two machine clusters  

 s1 pt1 s2 pt2 Y 

p1 m1,1 10 m2,1 23 0.85 
p2 m1,1 10 m2,1 23 0.86 
p3 m1,1 11 m2,2 23 0.80 
p4 m1,2 13 m2,3 60 0.60 
p5 m1,2 12 m2,3 25 0.90 
p6 m1,2 12 m2,3 66 0.60 
p7 m1,3 10 m2,3 27 0.83 
p8 m1,3 11 m2,3 25 0.65 
p9 m1,3 11 m2,2 25 0.88 
p10 m1,3 10 m2,2 23 0.85 

 

EXAMPLE 5.1. 

As shown in Table 5.1, there are 10 products in this example (cp=10) and each 

product is processed by two machine clusters (cs=2), where s1={m1,1, m1,2, m1,3}(α(1)=3) 

and s2={m2,1, m2,2, m2,3} (α(2)=3 and cm=6). Each product pi is processed by machine 

pmi in target time pti. Assume that the given yield threshold yθ is 0.7. According to the 

definitions given above, the manufacturing information vector pm1 and corresponding 

manufacturing target time vector pt1 are, respectively, <1,1,1,2,2,2,3,3,3,3> and 

<10,10,11,13,12,12,10,11,11,10>. Therefore, the manufacturing procedure, target time, 

and product yield matrixes are  
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Finally, the production for the MDDP-t instance in Table 7.1 is set to (PM, PT, PY, 

0.7). 

Three probing functions, including Individual Machine, Intra-cluster, and 

Machine Behavior, are proposed to find possible root causes for given MDDP-t 

instances. The three probing functions are described in detail below: 

1. Individual-Machine probing function (f1): This criterion considers individual 

machine behaviors in given datasets. If the low-product-yield percentage of one 

machine, especially one with an abnormal target time, is higher than that of other 

machines, it may be considered a root-cause candidate. For example, Figure 5.1, 

shows that machine m1,2 produces low yields of products p4 and p6, 66%, obviously 

higher than that of machine m1,1 with a low-yield percentage of 0%. 
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Figure 5.1: Products processed by machines m1,1 and m1,2 

 

Certain notation must be defined in order to calculate the parameters of this 

function: 

 

NOTATION 5.2: 

mvi,j the set of products processed by machine mi,j; 

myi,j the set of low-yield products processed by machine mi,j; 

mtyi,j the set of low-yield products with abnormal target time processed by 

machine mi,j. 

 

The Individual-machine probing function for machine mi,j is the multiplication of 

the ratio of processed product (
n

mv ji || , ) by the ratio of low-yield product processed 

with abnormal target time (
||

||

,

,

ji

ji

my

mty
)j. As mentioned above, a higher result from this 
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function means a higher possibility of being a root cause. 

 

Since applying conventional comparison and computation operators to generate 

mvi,j, myi,j, and, mtyi,j may be time-consuming, we use the BWI indexing method to 

reduce the time required to compute this decision variable. The detailed notation and 

functions resulting from use of the BWI indexing method are defined as follows: 

 

NOTATION 5.3: 

mvi,j the machine-bit vector of machine mi,j, where mvi,j=<b1b2b3…
pcb >, mvi,j(k) is 

the k-bit (bk) of mvi,j, and bk = 1 if jpmi
k =  for 1 ≤ i ≤ cs , 1 ≤ j ≤ α(i), and 1 

≤ k ≤ cp; otherwise, bk = 0; 

mvLY the machine-bit vector of low-yield products for the given MDDP-t instance, 

where mvLY=< b1b2b3…
pcb > and bk = 1 if pyk<yθ for 1 ≤ k ≤ cp; otherwise, bk 

= 0; 

OC
jimv ,  the abnormal target time machine-bit vector of machine mi,j, where 

mvi,j=<b1b2b3…
pcb > and bk = 1 if )()( ,, jiji

i
k mmpt σμ +>  or 

)()( ,, jiji
i
k mmpt σμ −< ; otherwise, bk = 0; 

myi,j the machine vector for low-yield products from machine mvi,j, where myi,j 

=AND(mvi,j, mvLY); 
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mtyi,j the machine vector for outlier products of machine mvi,j, where mtyi,j 

=AND(myi,j, 
OC

jimv , ); 

count_one(x) 1-bit count in bit-vector x; 

count_zero(x) 0-bit count in bit-vector x; 

μ(mi,j) the average manufacturing time for machine mi,j, 
( )

)(_

)(

,

1
,

ji

c

k
ji

i
k

mvonecount

kmvpt
p

∑
=

×
; 

σ(mi,j) the standard deviation for machine mi,j, manufacturing time   

 

( )
)(_

)()(

,

,
1

2

,

ji

ji

c

k
ji

i
k

mvonecount

kmvmpt
p

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−∑

=

μ
. 

  

Obviously, the time required to compute mvi,j, myi,j and mtyi,j is thus largely 

reduced since all comparison and computation operations use the bit-wise indexing 

method. The formulation of the Individual Machine probing function (f1) is thus: 

 

Individual Machine probing function f1(mi,j) for an MDDP-t 

)(_

)(_)(_
)(

,

,,
,1

ji

jiji
ji myonecount

mtyonecount

n

mvonecount
mf ×= ………………………...……(5.1). 

   

2. Intra-cluster probing function (f2): The second criterion considers the slopes of 

machine behavior regression lines within machine clusters. Intra-cluster machine 
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behavior is represented as a regression line of data points on a two-dimensional 

plane where the x and y axes are, respectively, the target time and yield of each 

product processed by the machine. A higher absolute slope value for the 

regression line means higher time-issue sensitivity for the corresponding machine. 

In other words, it may be a root-cause candidate in the time-issue problem. As 

shown in Figures. 5.2(a) and 5.2(b), the absolute value of the machine-curve 

slope of mi,j is higher than that of mi,k. Therefore, machine mi,j has a higher 

possibility of being a root-cause candidate. The following definitions and 

functions are needed to calculate the parameters of this function: 

 

 
Figure 5.2: The regression lines for (a) mi,j and (b) mi,k 

Certain notation must be defined in order to calculate the parameters of this 

function: 

),( ixoffset  i-th 1-bit offset (l. to r.) in bit-vector x; 

evsi,j the set of data points for products processed by machine j
ipm : 

Machine mi,j Machine mi,k 

Yield 

Yield 

Target time Target time 
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 evsi,j={(x1, y1), (x2, y2), …, ( )(_)(_ ,,
,

jiji mvonecountmvonecount yx ), } where 

xk= ),( , kmvoffset ji
py , yk=

j
kmvoffset ji

pt ),( ,
 for 1 ≤ k ≤ count_one(mvi,j) ; 

regress(evsi,j) the evsi,j  regression line; 

slope(regress(evsi,j)) the slope of regress(evsi,j). 

 

For the example shown in Table 5.1, the bit operation is mv1,1(3)=1, 

)(_ 1,1mvonecount =3, )(_ 1,1mvzerocount =7 and )3,( 1.1moffset =3, and we have the 

evaluation vector set for machine 1
1pm , evs1,1={<0.85, 10>, <0.86, 10>, <0.80, 11>}. 

 

Intra-machine-center probing function f2(mi,j) for the MDDP-t problem: 

))(()( ,,2 jiji evsregressslopemf = …………………………………………………(5.2) 

 

3. Machine Behavior probing function (f3): The third criterion considers similarities 

among machine behaviors in given datasets with respect to the time issue. The 

behavior of an arbitrary machine can be represented as a machine-behavior vector 

with )(_ , jimtyonecount  and )(_ ,
OC

jimvonecount  the respective x and y axes. The 

sum of the degrees of included angle between the machine-behavior vector of a 

machine in a machine cluster and all the other machine-behavior vectors is 

calculated. The machine with the highest sum has the highest possibility of being 
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the root cause in that machine cluster. As shown in Figure 5.3, of the four machines 

in machine cluster si, the computed sum for machine mi,4 is obviously much higher 

than the others. Thus, machine mi,4 has higher possibility of being the root cause in 

this example. The following definitions and functions must be defined in order to 

calculate the parameters for this function. 

 
Figure 5.3: The machine-behavior vectors of machine cluster si 

 

inner_product(x, y) the inner product of machine-behavior vector (x, y); 

),( yxθ  the included angle of machine-behavior vector (x, y), where   

yx

yxproductinner
yx

⋅
= − ),(_

cos),( 1θ ; 

mx_inc(mi,j, mi,k) the included angle between the machine-behavior vectors of 

machines mi,j and mi,k, where mx_inc(mi,j, mi,k)= 

)))(_),(_()),(_),(_(( ,,,, ki
OC

kiji
OC

ji mtyonecountmvonecountmtyonecountmvonecountθ . 
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Therefore, formulation of Machine Behavior probing function f3(mi,j) is as 

follows: 

Machine-behavior probing function f3(mi,j) of MDDP-t is: 

1)(

),(_
)(

)(

1
,,

,3 −
=
∑

=

i

mmincmx
mf

i

k
kiji

ji α

α

………………………………………….………..…(5.3) 

 

EXAMPLE 5.2 

Continuing from Example 5.1, the following machine bit-vectors were obtained: 

mv1,1=<1110000000>, mv1,2=<0001110000>, mv1,3=<0000001111>, 

mv2,1=<1100000000>, mv2,2=<0010000011>, and mv2,3=<0001111100>; the low-yield 

machine bit-vector of product P is <0001010100> and the out-of-control machine-bit 

vectors of machines m1,1 and m1,2 are, respectively, OCmbv 1,1 =<0010000000> and 

OCmbv 2,1 =<0001000000>. And my1,1=<1110000000> AND <0001010100> = 

<0000000000>, my1,2=<0001110000> AND <0001010100> = <0001010000> and the 

corresponding mty1,1 and mty1,2 are thus ANDed to <0000000000> and <0001000000>.  

 

As mentioned above, we use these probing functions as major criteria in 

evaluating MDDP-t according to experts’ experience in the semiconductor 

manufacturing domain. We then define a Root Cause Evaluation Function RCEF(mi,j), 

which is a linear combination of the three probing functions along with their 
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corresponding weights wi used to identify the importance of each probing function in 

the RCEF, to compute the root-cause possibility of machine mi,j. 

 

Root Cause Evaluation Function RCEF(mi,j) of MDDP-t 

∑
=

×=
3

1
,, )()(

k
jikkji mfwmRCEF  

 

However, the corresponding weights W={w1, w2, w3} of these three RCEF 

probing functions require further investigation. A genetic algorithm is thus used to 

solve the weight-learning problem of the three given probing functions in order to 

determine suitable weights for the MDDP-t. 

 

5.3 Genetic Algorithm for MDDP-t 

 

The search space in a GA (Genetic Algorithm) consists of possible solutions to a 

problem [15]. A solution in the search space is called an individual and its genotype 

consists of a set of chromosomes represented by sequences of 0s and 1s. These 

chromosomes can dominate individual phenotypes. Each individual has an associated 

objective function called its fitness. A good individual is one that has a high/low fitness 
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value depending on whether the problem involves maximization or minimization. The 

strength of a chromosome in an individual is represented by its fitness value and the 

chromosomes of individuals are carried to the next generation. The set of individuals 

with associated fitness values is called the population. The population at a given stage 

in the GA is referred to as a generation. The best individual in each generation is the 

individual with the best discovered fitness value.  

 

There are three main components in the GA while loop: 

(1) selection/reproduction, the process of selecting good individuals from the current 

generation to be carried to the next generation; 

(2) crossover, the process of shuffling two randomly selected strings (chromosomes) in 

two parent individuals to generate new offspring; 

(3) replacement, the replacing of the worst-performing individuals in a generation 

based on fitness value. 

 

Sometimes one or more bits of a chromosome are complemented to generate a 

new offspring. This process is called mutation. The population size is finite in each GA 

generation, which implies that only relatively fit individuals in generation j will be 

carried to the next generation j+1. The power of GA is that the algorithm terminates 
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rapidly to an optimal or near optimal solution. The iterative process is terminated when 

the solution reaches the optimum value [16].  

Details of the GA developed to solve MDDP-t are described in this section. As 

mentioned above, the weight set W is quite important in solving MDDP-t. Since the 

weights are domain-dependent, we propose a GA-based weight-learning function for 

MDDP-t to find weights w for each probing function according to MDDP-t instances 

with known root causes. The weight-learning function is described in detail below. 

 

NOTATION 5.4 

Mi machine set for the i-th MDDP-t instance; 

rmi root-cause machine already known to cause the i-th MDDP-t instance 

defect. 

rank(Mi, rmi) k, where rmi is the k-th largest RCEF value in set Mi. 

 

Weight-learning Problem: Given k MDDP-t instances, find weights w1, w2 and w3 to 

minimize : 

∑
=

k

i
ii rmMrank

1

),( ………………………...…………………………………..…..(5.4) 
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EXAMPLE 5.3: 

Assume three MDDP-t instances with three weight sets. According to the rankings 

of actual root causes in the three datasets evaluated using these three functions shown 

in Table 5.2, w1 is the best choice.  

 

Table 5.2: Weight-learning function example for three MDDP-t instances 

 ),( 11 rmMrank  ),( 22 rmMrank  ),( 33 rmMrank  ∑
=

3

1

),(
i

ii rmMrank  

1w  1 1 2 4 

2w  2 3 4 9 

3w  1 2 4 7 

 

There are five parts to our GA approach: encoding, crossover/mutation, 

selection/terminal conditions, and fitness determination. In general, the chromosomes 

in the first generation are created randomly and succeeding generations are generated 

by crossover and mutation. Details of these four parts are given below.  

 

Encoding 

The proposed probing functions are based on expert experiences, and each 

chromosome is the concatenation of the bit-strings represented by w1, w2 and w3. Since 

not all probing functions are used in every domain, the n-bit flags e1, e2 and e3 are used 

to help the GA efficiently determine which probing functions to use in the RCEF 
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function. When the one-bit ei is set to zero, the weight wi of that probing function is set 

to zero in the chromosome. Obviously, the n-bit ei is used to set the probing function 

probability determination to 1/n. Assume the probing function determination 

probability is 25% and the number of bits for ei is set to 4. The corresponding essential 

flag ei also uses n bits in the tail of its weight string, the initial values of which are 

randomly set. According to the above definitions, assume that w1=00011=3, s1=01, 

w2=00101=5, s2=10, w3=00100=4, and s3=10. The chromosome thus generated is 

000110100101100010010.  

 

Crossover/Mutation Procedures 

Many methods can be employed in the crossover process, thus, suitable operation 

should be selected according to the application domain. For example, the strings 

001111001011001001 and 010011011001001011 could be crossed over after the 

second locus in each to produce 000011011001001011 and 011111001011001001. Our 

experience indicates the random one-point crossover method is suitable for solving 

MDDP-t learning problems. 

The conventional bit-inversion method can be used in the mutation process. For 

example, the second position in the string 001111001011001001 might be mutated to 

yield 011111001011001001 by changing the 0 to 1 in bit 2. Our experience indicates 
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the inversion probability should be set to 0.05. 

 

Selection/Terminal Conditions 

The population size in each generation and terminal conditions can be determined 

according to the application domain. Our experience indicates the initial chromosome 

number in the population should be set to 300 and the terminal conditions set to 500 

generations. 

 

Fitness Function 

Many chromosomes are produced in each generation and weights W must be 

evaluated. In order to identify suitable weight sets, all machine information is input to 

the RCEF, which then computes the actual root-cause rankings. An MDDP-t GA 

fitness function and MDDP-t GA algorithm are shown below. 

 

MDDP-t GA fitness function 

For n given MDDP-t instances MDDP-t1, MDDP-t 2 , …, MDDP-t n, let rmj be the 

actual root-cause of the MDDP-t j instance. Weight set Wi is better than weight set Wj if 

∑
=

n

k
kk rmMrank

1

),(  using weight set Wi is smaller than the same function using Wj. 
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Algorithm 5.1 - MDDP-t GA algorithm 

Input:  Training datasets 

Output:  The weight set W for the RCEF 

Step1:  Initialize population (bit-strings combining w1, e1, w2, e2, w3, e3)  

Step2:  Choose parents  

Step3:  Construct offspring using one-point crossover  

Step4:  Call mutation procedure  

Step5:  For all flags ei, if ei is all 0, set wi=0; otherwise wi=wi 

Step6:  Evaluate offspring and replace least-fit individual with better offspring 

Step7:  Go to Step2 until a terminal condition is reached 

 

Training will generate several weight sets, which can then be applied to detecting 

root causes in future datasets. When a new dataset with an unknown root cause is input 

into the manufacturing defect detection system for root cause discovery, it must first be 

translated into MDDP-t terms. After that, the top combination is used to generate a 

possible root-cause ranking list. Engineers can use these ranking lists to check 

machines one by one and filter out possible killer machines. Finally, engineers can then 

record the real root cause and may re-compute the MDDP-t learning procedure if the 

weights resulting from training fail to identify the correct root cause. 
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5.4 Experiments for MDDP-t 

 

There were 21 data datasets in our experiments, some of them are provided by the 

Taiwan Semiconductor Manufacturing Company (TSMC). We divided these into 12 

training datasets, shown in Table 5.3, and 9 test datasets, shown in Table 5.4, each with 

a real root cause. We used the training datasets to find the top 5 weight combinations 

for the RCEF, and used the test datasets to evaluate the accuracy of the weight sets. 

 

Table 5.3: Training Datasets for the GA approach 

DataSet 
Size of dataset 

(Lots*Attributes) 
Number of machine 

clusters 
Number of machines 

Dataset1 300*4211 2314 4456 
Dataset 2 302*3345 1842 4235 
Dataset 3 255*6625 2356 6822 
Dataset 4 187*2568 1108 3684 
Dataset 5 427*1548 1001 2265 
Dataset 6 392*3954 2304 5262 
Dataset 7 265*2879 1105 4552 
Dataset 8 267*2265 1096 3665 
Dataset 9 321*2451 1664 4556 
Dataset 10 367*4325 2025 4456 
Dataset 11 357*2848 1456 3698 
Dataset 12 285*2525 1875 3308 
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Table 5.4: Test Datasets 

Dataset 
Size of dataset 

(rows*columns) 
Number of machine 

clusters 
Number of machines 

D1 365*2234 986 3625 
D2 752*3365 1245 3688 
D3 654*3364 2856 4652 
D4 586*3324 1846 4875 
D5 564*1239 823 2234 
D6 452*2235 1134 3048 
D7 165*3321 1652 3698 
D8 215*1254 656 2043 
D9 346*2236 1134 2365 

 

IThe initial mutation probability was set to 0.05, and the maximum number of 

generations to 3000. The CPU times and population sizes for the RCEF weight 

combinations are shown in Figure 5.4. As shown, the CPU usage is marginally near the 

polynomial time cost. 

 

 

 

Figure 5.4: Experimental Results for Various Population Sizes 
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The average root-cause rankings for the training datasets from the top 5 weight 

sets for various standard deviation values of probing functions are shown in Figure 5.5. 

When the standard deviation was between 1 and 1.5, the genetic algorithm found the 

best solutions, but hit errors increased when the time standard deviation was greater 

than 2 and less than 0.75 since too much information was pruned and computational 

noise was included. 

 

Figure 5.5: Average root-cause rankings from the training datasets by the top 5 
functions for various standard deviation values 

 

We chose top 5 chromosomes when the GA training process finished. The results 

for the γβα ,,  combinations are shown in Table 5.5. Clearly, the actual root-cause  

rankings for the test datasets are quite high and the hit-error averages are all in a 

tolerable range.  
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Table 5.5: Actual root-cause rankings for the test datasets 

w & e D1 D2 D3 D4 D5 D6 D7 D8 D9 Summary 
w={18,5,6} 
e={1,1,1} 2 8 1 2 1 9 7 2 2 34 

w={10,12,2} 
e={1,1,1} 3 5 3 2 2 13 9 6 8 51 

w={12,8,6} 
e={1,1,1} 1 32 6 8 16 25 13 6 3 110 

w={8,15,10} 
e={1,1,1} 25 12 7 12 18 6 3 13 16 112 

w={6,7,13} 
e={1,1,1} 

46 18 10 9 11 2 4 2 19 120 

Average 15.4 8.3 5.4 6.6 9.6 11 7.2 5.7 9.6 9.5 

 

As mentioned above, the proposed method is quite useful for finding actual root 

causes in actual manufacturing datasets using the weights discovered by the proposed 

GA learning approach. 

Quickly solving product-yield and quality problems in complex manufacturing 

processes is becoming increasingly difficult. Although the “manufacturing time 

problem” may be avoided via process control, statistical analyses, and experimental 

design, it is still very difficult to resolve once it happens. In this section, the 

manufacturing time problem for the manufacturing domain (MDDP-t) has been 

formally modeled and defined. Accordingly, a root-cause evaluation function (RCEF) 

has been proposed to evaluate whether a specific machine is the root cause of a time 

problem. The RCEF uses three probing functions independently defined according to 
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the experiences of domain experts. Moreover, a genetic algorithm (GA) has been 

designed to find suitable weights for the proposed probing functions. Experiments 

were also performed and the results show the proposed approaches can ensure 

efficiency and accuracy. 

In the future, we will continue focusing our research on this topic. We will keep 

challenging the correctness of the proposed MDDP-t by seeking useful probing 

functions from different perspectives and different application domains. We will also 

try to apply similar learning models to other MDDP problems in the semiconductor 

manufacturing domain, such as the wafer-in-process (MDDP-wip), 

wafer-acceptance-test (MDDP-wat), and in-line metrologies (MDDP-im) issues, in 

order to discover the root causes of MDDP problems as correctly and efficiently as 

possible. 
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Chapter 6  
Using BWI indexing in Intrusion 
Detection System 

 

In this chapter, a pattern-learning network intrusion detection system is described. 

This implementation uses the Encapsulated Bit-wise Indexing Method to encode the 

networking activity with minimal monitoring time window in order to accelerate the 

data preparation procedure. Moreover, a bit-based intrusion Pattern Matching 

mechanism is proposed to efficiently learn, roll-up, drill-down and combine the 

intrusion pattern with different time-windows/services/ports combinations.  

 

6.1 Problem Description 

 

Due to the rapid growth of networked computer resources and the increasing 

importance of the related applications, intrusions that threaten the infrastructure of 
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these network applications become critical problems today. 

[35][37][38][40][46][57][66][72] Network intrusion detection (NID) is the process of 

identifying possible intrusion behaviors from the network that provides information to 

the security administrators. Although many intrusion detection systems had been 

proposed and some possible intrusion behaviors had been identified and detected 

[1][20][21][26][49][57][69], no optimal solution had been found due to the variances 

of the intrusion patterns. In this work, we are concerned about how to identify possible 

intrusion behaviors that can help users to build an intrusion detection system through 

data mining processes to secure the infrastructure of the network. In the intrusion 

detection domain, five issues need to be considered, including Pattern representation, 

Computability, Performance, Maintenance and Extendibility. In this chapter, we 

propose a new, efficient and service-oriented intrusion pattern mining and 

representation method, called Bit-wise-based Intrusion Pattern Mining Method 

(BIPAM), which can provide higher performance, better maintenance and expressive 

abilities. In our model, BIPAM consists of two phases, Network Activities Analyzing 

Phase and Features/Pattern Mining Phase, and a database that contains the information 

about the users and the mined intrusion patterns is used in these two phases. 

 

In general, almost all intrusion patterns can be transformed into a sequence of 
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network activities that are extracted from the related network packets. These kinds of 

network packets can be collected and then be transformed into some sequence of 

bit-wise strings showing the intrusion patterns. The Network Activities Analyzing 

Phase of BIPAM can first filter the raw network packets and log necessary features 

(Source IP, Destination IP, Source port, Destination port) in a small time window to 

perform data sampling and data cleaning and to reduce the amount of data. After that, 

with combined users and services information, the sufficient service-user activity 

events are found and used by the second phase. The Features/Pattern Mining Phase 

transforms the sufficient service-user activity events to some bit-wise strings and next 

merges the bit-wise strings into some other bit-wise strings with the same source IP. 

After gathering those bit-wise strings, the Pattern Mining Module and Pattern Merging 

Module can perform some data mining processes to find possible intrusion patterns 

that can be the source of the candidates of intrusion patterns for future intrusion 

detection systems. 

 

Since the expression of intrusion pattern is one of the most important things in an 

intrusion detection system, the expressions of intrusion pattern in current intrusion 

detection systems will be firstly introduced and the representation of the bit-wise 

indexing method will be next introduced in this section. 
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6.2 The Representation of Intrusion Behavior 

According to the results of previous researches, the representation of intrusion 

behavior can be categorized as follows: 

Implicit representation of intrusions: Some intrusion detection systems use 

their own models for detecting some specific intrusion behaviors. For example, the 

detection system for DDoS (Distributed DoS), which intrudes the system by 

coordinating hosts, analyzes the network information with the known properties of 

DDoS intrusion. These kinds of intrusion detection systems may not provide an 

understandable representation for intrusion behavior, since the knowledge for intrusion 

detection is imbedded in the system. 

Rule oriented intrusion representation: This is the most common representation 

for intrusion detection knowledge. In an if…then formatted rule, the condition of the 

rule records the matching criteria for the intrusion, and the action of rule records the 

reaction for the intrusion. For example, a rule for BO (Back Orifice) intrusion, which is 

a back door intrusion by using specific program, may check every packet information 

whether the connection is through port 31337 or not. Once the rule is triggered, the 

action defined in the action part of the rule, e.g., alert the administrator, is then 
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performed. 

Pattern oriented intrusion representation: Many intrusions may not be 

accomplished by a single step, so does the intrusion detection. Using a single rule can 

only represent intrusions with single step or intrusions with a significant feature, e.g., 

BO intrusion, some application vulnerabilities. However, for intrusions with several 

steps to execute, a pattern oriented intrusion representation for intrusion behavior will 

be needed. A pattern oriented intrusion representation will represent intrusion in a 

sequence of states; for example, a sequence of states in a state machine or a state 

diagram. 

Specific intrusion representation: Many researches are trying to define specific 

model together with corresponding specific intrusion representation to represent 

intrusion. For example, goal tree, which has good performance on some specific target 

intrusions, had been used to represent intrusion pattern in some previous researches. 

However, the specific representations will sometimes lack the extendibility since the 

specific representation may be not suitable for all kinds of intrusions. 

Each kind of intrusion behavior expression has advantages and disadvantages, but 

different intrusion detection systems usually require different intrusion behavior 

expressions. Thus, it is difficult to integrate the intrusion behavior knowledge by these 

intrusion behavior expressions. In this chapter, we will propose an efficient mining 
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method BIPAM to explore the possible intrusion patterns via monitoring and analyzing 

the users’ behaviors.  

As mentioned above, the bit-wise indexing method can be easily indexed and 

parallelized, the bit-wise indexing method is quite suitable to solve the performance 

and scalability issues of a real-time IDS. 

 

6.3 Architecture of BIPAM 

As we know, building an intrusion detection system becomes one of the most 

popular solutions to secure the network infrastructure in recent years. Since the 

expression of intrusion patterns is very important in building an intrusion detection 

system. The architecture of BIPAM consisting of three main components for quickly 

mining possible intrusion patterns is proposed as shown in Figure 6.1. The database in 

Figure 6.1 stores the users’ information, some users’ historical mined data and the 

possible intrusion patterns gathered in the past. 
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Figure 6.1: The architecture of the BIPAM 

 

Figure 6.2 shows the detailed architecture of the Network Activities Analyzing 

Phase. In this phase, the Network Activities Filtering Module, Network Services 

Analyzing Module and Service to User Merging Module are proposed to provide 

sufficient service-user activity events to the next phase.  
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Figure 6.2: The detailed process of Phase 1 
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Before the whole mining procedure is proceed, the IP address of target machines 

that may be intruded, called victim IP, should be defined. These target machines 

usually provide some important services and thus easy to be treated as the victims by 

the intruders. The victim IPs are the primary parameters of BIPAM. The network 

packets, including TCP, UDP and ICMP packets, are checked by Network Activities 

Filtering Module and all unrelated packets of the victim IPs are filtered out via 

checking the dumped packet logs. Also, the corresponding IP address for each related 

packets, called possible inflictor IP, is to compare the IP information in the database in 

order to check the historical status of such IP. If the IP is dangerous, the system alert 

will be trigged. Also, all the packets from such IP will be restricted. For example, 

assume that there are twenty packets pass through the Network Activities Filtering 

Module. The detailed log about these packets is shown in Table 6.1. Also, the victim IP 

is 140.113.167.100. In Table 6.1, the packet 2 and 4 are filtered out since they are not 

related packet of victim IP. Also, four possible inflictor IPs, including 140.113.167.122, 

140.127.12.113 and 115, denote them as pii1, pii2 and pii3 respectively. Assume that 

140.127.12.115 is the known dangerous IP. The system will notify the administrator via 

sending some warning messages and then all requirements from this IP are denied. 

After executing the Network Activities Filtering Module, the amount of network 

packets needed to be logged will be reduced and all connected between the source IPs 
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will be collected. Also, all possible inflictor IPs can be found for further investigation. 

 

Table 6.1: The packet log of Network Activities Filtering Module 

# Source IP Destination IP Pt Packet 
Type 

Serv 
Type 

Prot. Time Etc 
 

1 140.113.167.122 140.113.167.100 80 TCP web http 12:01:11 …… 
2 140.113.167.122 140.113.167.121 21 TCP web ftp 12:01:11 …… 
3 140.113.167.122 140.113.167.100 80 TCP web http 12:01:12 …… 
4 140.113.167.122 140.113.167.121 21 TCP web ftp 12:01:13 …… 
5 140.113.167.122 140.113.167.100 80 TCP web http 12:01:14 …… 
6 140.113.167.122 140.113.167.100 80 TCP web http 12:01:15 …… 
7 140.127.12.113 140.113.167.100 1 TCP u/k u/k 12:01:16 …… 
8 140.127.12.113 140.113.167.100 1 TCP u/k u/k 12:01:16 …… 
9 140.113.167.122 140.113.167.100 80 TCP web http 12:01:17 …… 
10 140.127.12.113 140.113.167.100 2 TCP u/k u/k 12:01:18 …… 
11 140.127.12.115 140.113.167.101 80 TCP web http 12:01:19  
12 140.113.167.122 140.113.167.100 80 TCP web http 12:01:19 …… 
13 140.127.12.113 140.113.167.100 3 TCP u/k u/k 12:01:20 …… 
14 140.113.167.122 140.113.167.100 80 TCP web http 12:01:20 …… 
15 140.127.12.113 140.113.167.100 4 TCP u/k u/k 12:01:21 …… 
16 140.113.167.122 140.113.167.100 80 TCP web http 12:01:22 …… 
17 140.127.12.113 140.113.167.100 5 TCP u/k u/k 12:01:23 …… 
18 140.127.12.113 140.113.167.100 6 TCP u/k u/k 12:01:24 …… 
19 140.113.167.122 140.113.167.100 80 TCP web http 12:01:25 …… 
20 140.127.12.113 140.113.167.100 7 TCP u/k u/k 12:01:27 …… 

 

After filtering the network packets, the Network Service Analyzing Module 

transfers the packet information into packet log table shown in Table 6.2, which 

contains the attributes about the network activities including Source IP, Destination IP, 

Destination port, trigger time, and service type. Those packet log table can then be 

classified according to the source IP, destination IP and service type in order to show 

the relationships between services and servers. 
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Table 6.2: The packet log table 

# Source IP Destination IP Dest. 
Port 

Service 
Type 

Time 

1 140.113.167.122 140.113.167.100 80 Web 12:01:11 
3 140.113.167.122 140.113.167.100 80 Web 12:01:12 
5 140.113.167.122 140.113.167.100 80 Web 12:01:14 
6 140.113.167.122 140.113.167.100 80 Web 12:01:15 
7 140.127.12.113 140.113.167.100 1 u/k 12:01:16 
8 140.127.12.113 140.113.167.100 1 u/k 12:01:16 
9 140.113.167.122 140.113.167.100 80 Web 12:01:17 
10 140.127.12.113 140.113.167.100 2 u/k 12:01:18 
12 140.113.167.122 140.113.167.100 80 Web 12:01:19 
13 140.127.12.113 140.113.167.100 3 u/k 12:01:20 
14 140.113.167.122 140.113.167.100 80 Web 12:01:20 
15 140.127.12.113 140.113.167.100 4 u/k 12:01:21 
16 140.113.167.122 140.113.167.100 80 web 12:01:22 
17 140.127.12.113 140.113.167.100 5 u/k 12:01:23 
18 140.127.12.113 140.113.167.100 6 u/k 12:01:24 
19 140.113.167.122 140.113.167.100 80 web 12:01:25 
20 140.127.12.113 140.113.167.100 7 u/k 12:01:27 

 

The third module in this phase is the Service to User Merging Module. In this 

module, the packet log table has been sorted in ascending order according to the 

attribute source IP and destination IP, service type and trigger time sequentially. After 

sorting the packet log table sorted, for each segment with the same Soruce IP, 

Destination IP and service type will be partitioned into several small tables, called 

service-user activity events tables. These tables can be easily extracted and analyzed. 

Continuing the example in the above, two segments in Table 6.2 with the same Soruce 

IP, Destination IP and service type are found. The server-user activity events tables of 
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Table 6.3 of web and unknown service are shown in Table 6.3(a) and Table 6.3(b), 

respectively. After the service-user activity events had been generated, this information 

will be delivered to Phase Two for further processing. 

 

Table 6.3: The service-user activity event tables 

(a) Service-user activity event of pii1 for web service 

# Source IP Destination IP 
Dest. 
Port 

Service 
Type 

Time 

1 140.113.167.122 140.113.167.100 80 web 12:01:11 
3 140.113.167.122 140.113.167.100 80 web 12:01:12 
5 140.113.167.122 140.113.167.100 80 web 12:01:14 
6 140.113.167.122 140.113.167.100 80 web 12:01:15 
9 140.113.167.122 140.113.167.100 80 web 12:01:17 
12 140.113.167.122 140.113.167.100 80 web 12:01:19 
14 140.113.167.122 140.113.167.100 80 web 12:01:20 
16 140.113.167.122 140.113.167.100 80 web 12:01:22 
19 140.113.167.122 140.113.167.100 80 web 12:01:25 

 

(b) Service-user activity event of pii2 for unknow service 

# Source IP Destination IP 
Dest. 
Port 

Service 
Type Time 

7 140.127.12.113 140.113.167.100 1 u/k 12:01:16 
8 140.127.12.113 140.113.167.100 1 u/k 12:01:16 
10 140.127.12.113 140.113.167.100 2 u/k 12:01:18 
13 140.127.12.113 140.113.167.100 3 u/k 12:01:20 
15 140.127.12.113 140.113.167.100 4 u/k 12:01:21 
17 140.127.12.113 140.113.167.100 5 u/k 12:01:23 
18 140.127.12.113 140.113.167.100 6 u/k 12:01:24 
20 140.127.12.113 140.113.167.100 7 u/k 12:01:27 

 

In the Feature/Pattern Mining Phase, there are three modules, including Bit-wise 

Transforming Module, Pattern Mining Module and Pattern Merging Module. The goals 
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in this phase are transforming the network events to some corresponding bit-wise 

strings and performing data mining processes in order to find possible intrusion 

patterns. The detailed architecture of this phase is shown in Figure 6.3. 

Bit-wise
Transforming
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Merging
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Database

Bit-wise
String

Attack
Patterns

Sufficient
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Activity Events

Phase 2

Pattern Mining
Module Bit-wise

Patterns

Possible
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Attack
 Patterns

 
Figure 6.3: The detailed process of phase 2 

When the sufficient service-user activity events are collected, the activity events 

are transformed into some single-services bit-wise strings according to a small time 

window, which is defined to be the basic time slice of IDS, for every service-user 

activity event via Bit-wise Transforming Module. These bit-wise strings can then be 

stored in the database. For further data mining and storage saving, each single-services 

bit-wise string can be transformed into a new single-services bit-wise string with a 

larger time slice. Moreover, some single-service bit-wise strings with the same 

destination and source IPs may be merged into a new multi-services bit-wise string 

since the most networking intrusion behaviors from several different services in order 

to setup an proper attack environment. So the final products of this module are these 
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bit-wise strings that not merely contain single-service user behaviors but also contain 

single-service user behaviors. For example, assume the basic time slice of BIPAM is 

one second. The bit-wise string of piin for service type m using time slice k is denoted 

as ppin.bsk
m, shown as following. 

Service-user activity event of pii1 for web service using time slice one and five 

seconds 

ppi1.bs1
web=  0000000000110110101101001000 

ppi1.bs5
web=  001110 

Service-user activity event of pii2 for unknown service using time slice one and 

five seconds 

ppi2.bs1
unknown= 0000000000000001010110101001 

ppi2.bs5
unknown= 000111 

 

In the Pattern Mining Module, with the help of the pattern database, these bit-wise 

strings of each user are first compared with the existing intrusion patterns stored in the 

database using bit-wise indexing method for similarity search. If there is an existing 

intrusion pattern is compared with one of these bit-wise strings and the similarity 

degree is higher than the given threshold (e.g., 0.9), the IDS will announce a warning 

message and take some appropriate actions. For instance, if there is an existing port 
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scan intrusion pattern, bp*
unknown=1111111111111111111, the similarity between 

bp*
unknown and ppi2.bs5

unknown is 1 (if leading 0 is avoided), Although there is no such 

kind of intrusion patterns in the database, the security administrators or expertise may 

still consider these packet logs as some kinds of intrusions and possible intrusion 

patterns might be found and then be stored in the database for further evaluations. 

After finishing the works in this module, the bit-wise strings with possible intrusion 

patterns of one user will be sent to the next module to find more complex intrusion 

patterns. These bit-wise strings can be merged and then compared with existing 

intrusion patterns to find the intrusion patterns of multiple services using Pattern 

Merging Module. For example, the ppi1.bs1
web and ppi1.bs1

web can be merged and thus 

the bit string ppi1,2.bs1
web,unknown = 0000000000110111111111101001 is formed. The bit 

string ppi1,2.bs1
web,unknow can then be compared with the existing DDOS patterns for 

finding some possible intrusion behavior. At last, the possible bit-wise intrusion 

patterns are mined for further works in building an intrusion detection system. 

In this chapter, we have proposed a new, efficient and service-oriented intrusion 

pattern mining and representation method that provides more expressivities, higher 

performance. The intrusion patterns are extracted from the some sample packets that 

can be expressed in sequence of packets and thus are represented by some bit-wise 

strings for each network service. These bit-wise intrusion patterns can be easily rolled 
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up and drilled down into the intrusion pattern of variant time window efficiently. Also, 

the bit-wise intrusion patterns of each service can be easily merged with the others. 

Using this method, the Internet intrusion patterns can be automatically mined from the 

basic Internet activity logs efficiently and some interesting and unknown patterns may 

be discovered. Now, we are trying to build an online intrusion detection system using 

BIPAM for building a high confidence network system.  
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Chapter 7  
Using BWI indexing in Feature 
Selection Method for Knowledge 
Acquisition 

In this chapter, an application that is a supervised-learning data-driven feature 

selection method for CBR systems [5][7][23][25][28][31][67][73]is introduced. This 

implementation applies the Feature Selection Method using Rough Set Theory, which 

is appropriate for finding the optima solution from a given data set, except for the long 

processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to 

encode the feature and class relationships to reduce the processing time of feature 

selection procedure. Finally, some experiments and comparisons are given and the 

result shows the efficiency and accuracy of our proposed methods. 

7.1 Problem Description 

Feature selection is about finding useful (relevant) features to describe an 

application domain. Selecting relevant and enough features to effectively represent and 
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index the given dataset is an important task to solve the classification and clustering 

problems intelligently. This task is, however, quite difficult to carry out since it usually 

needs an exhaustive search to get the features desired. In the past, some approaches 

have been proposed to solve the feature selection problem [11][19] 

[24][30][43][47][48][60][78]. These approaches can roughly be classified into the 

following two strategies: 

1. Optimal strategy: This kind of approaches considers all the subsets of a given 

feature set [2][63][76]. Some searching techniques, such as branch and bound, may be 

adopted to reduce the search space. For example, Liu et al. proposed a special feature 

selector [47], which randomly produced feature subsets according to the Las Vegas 

algorithm [7]. It thus searched the entire solution spaces and guaranteed to get an 

optimal feature set. 

Heuristic strategy: This kind of approaches prunes search spaces according to 

some heuristics. The results obtained by these approaches are usually not optimal, but 

within a short time [79]. There are three typical heuristic approaches for feature 

selection, including forward selection, backward selection and bi-directional selection. 

The forward-selection approach initializes the desired feature set as null and then adds 

features into it until the results are satisfactory [50][64][78]. The backward-selection 

approach initializes the desired feature set as all the given features and then removes 
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unnecessary features from it [19][78]. The bi-directional selection approach initializes 

the desired feature set as a partial feature set, and then either puts good features into it 

or eliminates bad features from it [24]. In the past, we proposed a bit-wise indexing 

method based on a given feature set to accelerate case matching in CBR [11][13]. In 

this section, we further investigate the determination of the appropriate feature set. We 

propose a two-phase feature selection approach to discover significant feature sets 

from a given database table, and use them to further investigation. The proposed 

feature selection approach originates from the bitmap indexing and rough set 

techniques. Naturally, it is designed to discover optimal feature sets for the given 

dataset since the proposed method is originated from the rough set theory. The 

Experimental results also show the efficiency and accuracy of the proposed approach. 

7.2 The proposed bitmap-based feature selection method 

As we mentioned above, we proposed a heuristic feature-selection approach, 

called the bitmap-based feature selection method with discernibility matrix [14], to 

find a nearly optimal feature set. However, finding the optimal solutions of feature 

selection is still needed in some applications. Although some exhaustive search 

methods can guarantee the optimality of selected feature sets, the computation cost 

may be very high. 
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In this section, we thus consider finding an optimal solution via the rough set 

techniques and the bit-based indexing method for the feature selection. The proposed 

approach encodes a given data set into a bit vector matrix and uses bit-processing 

operations on them to reduce the computation time. The proposed approach consists of 

several main steps, as shown in Figure 7.1. 
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Figure 7.1: The flowchart of the proposed feature selection approach 

There are two phases in the proposed algorithm - bitmap-indexing phase and 

feature selection phase. In the bitmap-indexing phase, the given dataset is transformed 

into a bitmap indexing matrix with some additional data information. In the feature 

selection phase, a set of relevant and enough features are selected and used to represent 

the dataset. The details of the two phases are described in following sub-sections. 

Data

Bitmap Indexing

Data Cleansing

Feature Selecting

FindClassVector Algorithm

CreateCleansingTree Algorithm

FindSpanOrder Algorithm

CleanFeatureMatrix Algorithm
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Feature Combining
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7.2.1 Problem Definitions 

Let T denote a target table in a database, R denote the set of n records in T, and C 

denote the set of m features in T. R can then be represented as {R1, R2, …, Rn}, where 

Ri is the i-th record. C can be represented as {C1, C2, …, Cm}, where Cj is the j-th 

feature. The first m-1 elements in C are condition features and the last one, Cm, is a 

decision feature. Let Vj denote the domain of Cj. Vj can then be represented as {Vj1, 

Vj2, …, Vj j
σ }, where each element is a possible value of Cj and σj is the number of 

possible values of Cj. Let Vj(i) denote the value of Cj in record Ri, Vj(i) ≠ null. Table 7.1 

shows an example of a target table T with ten records R = {R1, R2, …, R10} and five 

features C = {C1, C2, C3, C4, C5}. C5 is a decision feature and the others are condition 

features. 

Table 7.1: An example of a target table 

 C1 C2 C3 C4 C5 
R1 M L 3 M 1 
R2 M L 1 H 1 
R3 L L 1 M 1 
R4 L R 3 M 2 
R5 M R 2 M 2 
R6 L R 3 L 3 
R7 H R 3 L 3 
R8 H N 3 L 3 
R9 H N 2 H 2 
R10 H N 2 H 1 

 

The purpose of this method is to find the one of the smallest feature set to 
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effectively index the given table. The definitions and algorithms used in the bitmap 

indexing phase and in the feature selection phase are described below. 

 

7.2.2 Indexing Phase 

In this phase, the target table is first transformed into a bitmap indexing matrix 

with some additional classification information. Let bi is a bit of the bit vector. Let 

ONEk denote the bit string of length k, with all the bits set to 1, ZEROk denote the one 

with all the bits set to 0, and UNIQUEk denote the one, with only one bit set to 1 and 

the others set to 0. A record vector, which is used to keep the information of the records 

with a specific value of a feature, is defined below. 

 

DEFINITION 7.1- record vector : 

A record vector RVjk is a bit string b1b2…bn, with bi set to 1 for Vj(i) = Vjk and set 

to 0 otherwise, where 1≤j≤m, 1≤k≤σj, and 1≤i≤n 

 

RVjk thus keeps the information of the records with the k-th possible value of the 

feature Cj. For example in Table 7.1, C1 has three possible values {M, L, H}. The 

record vector for C1 = M is 1100100000 since the first, second and fifth records have 

this feature value. Similarly, the record vector for C1 = L is 0011010000 and for C1 = H 
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is 0000001111. All the record vectors are shown in the third column of Table 7.2.  

 

Table 7.2: The record vectors and class vectors from Table 7.1 

Feature Feature-value Record 

Vector 

Class 

Vector 

V11 1100100000 110 

V12 0011010000 111 

 

C1 

V13 0000001111 111 

V21 1110000000 100 

V22 0001111000 011 

 

C2 

V23 0000000111 111 

V31 1001011100 111 

V32 0110000000 100 

 

C3 

V33 0000100011 110 

V41 1011100000 110 

V42 0100000011 110 

 

C4 

V43 0000011100 001 

V51 1110000001 100 

V52 0001100010 010 

 

C5 

V53 0000011100 001 

 

A class vector, which is used to keep the information of the classes (values of the 

decision feature) with a specific value of a feature, is defined below. 

 

DEFINITION 7.2 - class vector: 

A class vector CVjk is a bit string b1b2…b
m

σ , with bi set to 1 if RVjk ∩ RVmi ≠ 

ZEROn, and set to 0 otherwise, where σm is the number of possible values of Cm and n 
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is the number of records in R.  

 

Here, the "AND" bit-wise operator is used for the intersection in definition 2. CVjk 

thus keeps the information of the classes related to the k-th possible value of the 

feature Cj. For example in Table 7.2, the record vector (RV11) for C1 = M is 

1100100000 and the one (RV51) for C5 = 1 is 1110000001. Since the bit-wise 

intersection of 1100100000 and 1110000001 is 1100000000, not equal to ZERO10, the 

first bit in RV11 is thus 1. Similarly, the second and third bits in RV11 are 1 and 0 from 

the intersection results of RV11 with RV52, and with RV53. the class vector CV11 is thus 

110. All the class vectors are shown in the fourth column of Table 7.2. Formally, a 

class vector CVjk can be obtained by the following Find class vector algorithm.  

 

Algorithm 7.1 – Find class vector algorithm : 

Input: Record vector RVjk. 

Output: Class vector CVjk. 

Step 1: Set CVjk to ZEROσm. 

Step 2: For each i, 1 ≤ i ≤ σm, set the i-th bit of CVjk to 1 if RVjk ∩ RVmi ≠ ZEROn; 

otherwise, set it to 0. 

Step 3:  Return CVjk. 
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DEFINITION 7.3 - Feature-value vector : 

A feature-value vector Fjk is concatenated of RVjk and CVjk. 

 

For example, the feature-value vector F11 in Table 7.2 is 1100100000110, which is 

RV11 concatenated with CV11. All the feature-value vectors for a feature are then 

collected together as a feature matrix. This is defined below. 

 

DEFINITION 7.4 - A feature matrix for a feature : 

A feature matrix Mj for the feature Cj is denoted 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

jj

j

j

F

F

F

σ

M

2

1

, where σj is the number 

of possible values in Cj.  

 

For example, the feature matrix M1 in Table 7.2 is show as follows: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110000001111

1110011010000

1101100100000

1M  

 

The bits with underlines are class vectors. From the definition of the feature 
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matrix, it is easily derived that applying the bit-wise operator "OR" on all the record 

vectors in a feature matrix will get the ONEn vector, and applying the bit-wise operator 

"AND" on any two record vectors in a feature matrix will get the ZEROn vector. Note 

that, the “OR” and “AND” operators are defined to result for executing “OR” and 

“AND” operation on all respective bits for the given two bit vectors. Thus, if we apply 

the bit-wise operator "XOR" on all the record vectors in a feature matrix, we will also 

get the ZEROn vector. Take M1 as an example. The result for 1100100000 OR 

0011010000 OR 0000001111 is 1111111111. The result for 1100100000 AND 

0011010000 is 0000000000. The result for 1100100000 XOR 0011010000 XOR 

0000001111 is 0000000000. 

 

DEFINITION 7.5 - A feature matrix for a table T : 

A feature matrix M for a table T is denoted 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢

⎣

⎡

mM

M

M

M
2

1

, where m is the number of 

features in T. 

 

For example, the matrix composed of the bit strings from columns 3 and 4 of 

Table 7.2 is the feature matrix for the data given in Table 7.1. The feature matrix for a 

table is then input to the feature selection phase to find relevant and enough features. 
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7.2.3 Feature Selection Phase 

In this phase, we want to find a set of relevant and enough features to represent 

the given dataset. It is further divided into several stages. First, a feature-based 

spanning tree is built for cleansing the bitmap indexing matrix. The dataset with noisy 

information is thus judged and filtered out according to the spanning tree. The cleansed, 

noisy-free bitmap indexing matrix is then used to determine the optimal feature set for 

some classification and clustering problems. 

Before the feature selection phase is executed, the correctness of the target table 

needs to be verified. If there are some records in the target table with the same values 

of all condition features, but with different ones of the decision feature, they are treated 

as noise records and are filtered out from the target table. Intuitively, every two records 

can be compared to find out the inconsistent records in the target table. Its time 

complexity is O(n2m), where n is the number of records and m is the number of 

features. Below, we propose the concept of a cleansing tree to decrease the time 

complexity to O(nmj), where j is the maximum number of possible feature values of a 

feature and n is usually much larger than j in the general classification and clustering 

problems. The formation of a cleaning tree depends on the given feature order. We thus 

have the following definition. 
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DEFINITION 7.6 - spanned feature order : 

A spanned feature order O is a permutation consisting of all the condition features 

in a target table T. 

 

For example in Table 7.1, <C1, C2, C3, C4> can be a spanned feature order. When 

a spanned feature order is given, a cleansing tree can then be built according to it. The 

definition of a cleansing tree is first given below. 

 

DEFINITION 5-7 - cleansing tree : 

A cleansing tree Ctree is a tree with a root denoted root[Ctree]. Every node x in 

the tree corresponds to a feature value. A node y is the parent of a node x if the feature 

of y precedes the feature of x in the given spanned feature order. A node z is the sibling 

of a node x if they have the same feature, but different values. 

 

A structure of a cleansing tree is shown in Figure 7.2. Its maximum height is m-1, 

where m is the number of features in a decision table T. Each node x has three pointers, 

which are p[x], left-child[x] and right-sibling[x], respectively pointing to its parent 

node, its leftmost child node and its first right sibling node. It also contains two 
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additional information, record[x] and class[x], which indicate the associated record and 

class vectors of x. If node x has no child, then left-child[x] = NIL; if node x is the 

rightmost child of its parent, then right-sibling[x] = NIL. 

 

 
Figure 7.2: The structure of a cleansing tree 

 

As mentioned above, records may have the same values of all condition features, 

but different value of the decision feature. These records are called inconsistent. 

Inconsistent records can also be found out when the cleansing tree is built. The 

building algorithm uses the valid mask vector to find the consistent records. The valid 

mask vector is defined as follows. 
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DEFINITION 7.8 - valid mask vector : 

A valid mask vector ValidMask for a target table T a bit string b1b2…bn, with bi set 

to 1 if the i-th record Ri is not inconsistent with other records, and set to 0 otherwise.  

 

The cleansing tree for a given spanned feature order can be built by the following 

Create cleansing tree algorithm. The ValidMask is initially set to ONEn., and will be 

modified along with the execution of the Create cleansing tree algorithm. 

 

Algorithm 7.2 – Create cleansing tree algorithm : 

Input : A feature matrix M, the valid mask ValidMask and a spanned feature order O. 

Output : The valid mask ValidMask. 

Step 1: Create an empty node x and set it as the root node. 

Step 2: Initialize record[x] = ONEn, class[x] = ONEσm and depth = 0, where the 

variable depth is used to represent the depth of the node x in the cleansing 

tree. 

Step 3: Set px = x, where px is used to keep the current parent node. 

Step 4: If class[x] is not equal to 
m

UNIQUEσ  and depth is not equal to m-1, do Step 

5 to build the child nodes of node x; otherwise, go to Step 7. 

Step 5: Let Cj be the current feature in the spanned feature order to be considered. 
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For each feature-value vector Fjk in a feature matrix Mj for Cj, if (record[px] 

AND RVjk) ≠ ZEROn, do the following sub-steps: 

Step 5.1: Create an empty node y. 

Step 5.2: If left_child[x] = NIL, consider y as a child node of x and set p[y] = x 

and left_child[x] = y; otherwise, consider y as a sibling node of x and 

set p[y] = p[x] and right_sibiling[x] = y. 

Step 5.3: Set record[y] = (record[p[y]] AND RVjk) and class[y] = (class[p[y]] 

AND CVjk). 

Step 5.4: If depth = m-1 and class[y] ≠ 
m

UNIQUEσ , set ValidMask = (record[y] 

XOR ValidMask). 

Step 5.5: set x = y. 

Step 6: If left_child[px] ≠ NIL, set x = left_child[px], depth = depth + 1 and go to 

Step 3. Otherwise, do the next step. 

Step 7: If right_sibiling[x] ≠ NIL, x = right_sibiling[x] and go to Step 3; otherwise, 

set x = p[x] and do the next step. 

Step 8: If x ≠ Tree[root], go to Step 7; otherwise, return ValidMask and stop the 

algorithm. 

 

For example, the cleansing tree for the data in Table 7.1 with the spanned feature 
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order <C1, C2, C3, C4> will be built as shown in Figure 7.3. At first, the root node is 

generated and all the bits in record[root] and class[root] are set to 1. Since class[root] 

is not equal to UNIQUE3, and the current depth is 0, not equal to m-1, the next step is 

executed to build the child nodes of the root. The first feature C1 in the spanned feature 

order is considered. Since it has three possible values and (record[root] AND RV1k), k 

= 1 to 3, is not equal to ZERO10, three nodes, represented as nodes 1, 2 and 3, are 

created as the children of the root. Since node 1, the left child node of the root, is not 

NIL, it is then processed to generate its child nodes in the same way. Nodes 4 and 5 are 

then created for the second feature C2 in the spanned feature order. Since class[node 4] 

has been equal to ONE10, the sibling of node 4, which is node 5, is then considered. 

Since class[node 5] has also been equal to ONE10, the sibling of node 5, is then 

considered. But since node 5 has no sibling, its parent node, node 1 is considered. The 

sibling of node 1, which is node 2 is then processed. The same procedure is then 

executed until the whole cleansing tree is generated. 

The numbers at the left of the nodes in Figure 7.3 indicate the order built. In node 

15, the second and third bits of the class vector are both "1". It means that the 

corresponding record vectors will have more than one "1". The corresponding records 

with bit "1" are then inconsistent since their values of all condition features are the 

same, but their values of the decision feature are different. In this example, the ninth 
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and tenth records are inconsistent. The ValidMask are thus modified from 

"1111111111" to "1111111100". 

  

 

Figure 7.3: Cleansing tree with feature spanned order <C1, C2, C3, C4> 

In the above example, the spanned feature order O is set as <C1, C2, C3, C4>. 

Different orders will apparently affect the performance of the cleansing spanning trees 

built. A cleansing spanning tree with a better spanned feature order can reduce the 

space and time complexities. In the past, there were some famous tree structures for 

classification, such as the decision-tree approach[58], which was based on the entropy 

theory to select the next best feature. In order to reduce the computational complexity 

for evaluating the spanning order of features, the following heuristics are thus 

proposed. 
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H1 :  The more ‘1’ bits a record vector for a feature value has, the more weight the 

feature value has. 

H2 :  The more ‘1’ bit the class vector for a feature value has, the less weight the 

feature value has. 

 

These two heuristics show the relationship between feature values and classes. If 

a feature value appears in most records with a single class, the weight of this feature 

value is relatively high. These heuristics can be used to save the computation time 

when compared to using the entropy theory. The following Find span order algorithm 

is thus proposed to determine the spanned feature sequence O of all condition features 

by evaluating the feature weights according to the above heuristics. 

 

Algorithm 7.3 – Find span order algorithm : 

Input: A feature matrix M for a table T  

Output: A spanned feature order O. 

Step 1:  Initialize weightj = 0, where 1 ≤ j ≤ m-1. 

Step 2:  For each Mj in M, set: 

∑
=

←
j

1k
2

jk

jk
j ,

)]CV(Count[

)RV(Count
weight

σ
 

 where the function Count(x) is used to count the number of ‘1’ bits in x. 
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Step 3: Order the features in O in the descendent order of the weight values. 

Step 4: Return O. 

 

For example, according to the feature matrix in Table 7.2, the weight of each 

feature is calculated as shown in Table 7.3. 

 

Table 7.3: Calculating the weight of each feature 

Feature Weight Old 

Order 

New 

Order 

C1 3/4+3/9+4/9=1.53 1 4 

C2 3/1+4/4+3/9=4.33 2 2 

C3 5/9+2/1+3/4=3.31 3 3 

C4 4/4+3/4+3/1=4.75 4 1 

 

The new spanned feature sequence O determined by the above algorithm is thus 

<C4, C2, C3, C1>, instead of the original order <C1, C2, C3, C4>. The cleansing tree 

generated on the new order is shown in Figure 7.4. 
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Figure 7.4: The cleansing tree generated on the new order <C4, C2, C3, C1> 

 

As we can see, the cleansing tree with new feature order O=<C4, C2, C3, C1> in 

Figure 7.4 is much smaller than that in Figure 7.3. The number of nodes has decreased 

from 15 to 9. Therefore, the computational time of generating and traversing the 

spanning tree can be greatly reduced. 

After the cleansing tree is built, the ValidMask may not be ONEn since 

inconsistent records may exist. The ValidMask is then used by the following Cleansing 

feature matrix algorithm to remove the inconsistent records from the feature matrix. 

 

Algorithm 7.4 – Cleansing feature matrix algorithm : 

Input: A feature matrix M for a table T and a valid mask vector ValidMask. 
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Output: A cleansed feature matrix M. 

Step 1: For each feature-value vector Fij in M, do following sub-steps: 

Step 1.1: RVij = RVij AND ValidMask. 

Step 1.2: CVij = Find class vector algorithm(RVij). 

Step 2: Return M. 

 

For example, the ValidMask is set to "1111111100" after the cleansing tree for 

Table 7.1 is built. Since the ninth and tenth bits of the ValidMask are 0, the Cleansing 

feature matrix algorithm will set these two bits of all the record vectors in Table 7.2 to 

0. The class vector of each feature value is then recalculated by the Find class vector 

algorithm according to its new record vector. The revised feature matrix is shown in 

Table 7.4. 

 

 

Table 7.4: The cleansed feature matrix of Table 7.2 

Feature Feature-value Record 

Vector 

Class 

Vector 

V11 1100100000 110 

V12 0011010000 111 

 

C1 

V13 0000001100 001 
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V21 1110000000 100 

V22 0001111000 011 

 

C2 

V23 0000000100 001 

V31 1001011100 111 

V32 0110000000 100 

 

C3 

V33 0000100000 010 

V41 1011100000 110 

V42 0100000000 100 

 

C4 

V43 0000011100 001 

V51 1110000000 100 

V52 0001100000 010 

 

C5 

V53 0000011100 001 

 

For effectively distinguishing the classes from the feature values, we must extend 

the concepts related to a single feature to a feature sets. The following definitions are 

thus needed. 

 

DEFINITION 7.9 - power of a feature set : 

Cs is called the s-power of a feature set C, if each element in Cs is composed of s 

distinct condition features from C, 1 ≤ s ≤ m-1. 

 

Thus, we have C1= C. For example, the power set C1 for the data in Table 7.1 is 
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{{C1}, {C2}, {C3}, {C4}}. The power set C2 is {{C1,C2}, {C1,C3}, {C1,C4}, {C2,C3}, 

{C2,C4}, {C3,C4}}. Let |Cs| denote the cardinality of Cs. Then: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

s

1m
|C| s

. 

Let Cs
j denote the j-th element in Cs, 1 ≤ j ≤ |Cs|. Cs

j is then a feature set. Also let 

Vs
j denote the domain of Cs

j, σs
j denote the number of possible values in Vs

j, and Vs
jk 

denote the k-th feature value of Cs
j. Each feature set can be represented by a name 

vector, defined below. 

 

DEFINITION 7.10 - name vector of a feature set : 

The name vector NVs
j of a feature set Cs

j is a bit string b1b2…bm-1, with bi set to 1 

if feature Ci is included in Cs
j and set to 0 otherwise. 

 

For the above example, C1
1 denotes the first element in C1, which is {C1}. The 

name vector NV1
1 is then 1000 since only C1 is included in C1

1. For another example, 

C2 = {{C1,C2}, {C1,C3}, {C1,C4}, {C2,C3}, {C2,C4}, {C3,C4}}. C2
1 denotes the first 

element in C2, which is {C1, C2}. The name vector NV2
1 is then 1100 since C1 and C2 

are included in C2
1. Similar to a single feature, some terms related to a feature set is 

defined below. 

 



 

 168 

DEFINITION 7.11 - record vector of a feature set : 

A record vector RVs
jk of a feature set value Cs

jk is a bit string b1b2…bn, with bi set 

to 1 for Vs
j(i) = Vs

jk and set to 0 otherwise, where 1 ≤ j ≤ |Cs| and 1 ≤ k ≤ σs
j. 

 

RVs
jk thus keeps the information of the records with the k-th possible value of the 

feature set Cs
j. A class vector, which is used to keep the information of the classes 

(values of the decision feature) with a specific value of a feature set, is defined below. 

 

DEFINITION 7.12 - class vector of a feature set : 

A class vector of CVs
jk of a feature set value Cs

jk is a bit string b1b2…b
m

σ , with bi 

set to 1 if RVs
jk ∩ RVmi ≠ ZEROn, and set to 0 otherwise, where σm is the number of 

possible values of Cm and n is the number of records in R. 

 

CVs
jk thus keeps the information of the classes related to the k-th possible value of 

the feature set Cs
j. A feature-value vector of a feature set is defined below. 

 

DEFINITION 7.13 - Feature-value vector of a feature set : 

A feature-value vector Fs
jk is composed of RVs

jk and CVs
jk. 
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DEFINITION 7.14 - A feature matrix for a feature set : 

A feature matrix Ms
j for the feature set Cs

j is denoted 

⎥
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⎥
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, where 1 ≤ j ≤ |Cs| 

and σs
j is the number of possible values in Cs

j.  

 

DEFINITION 7.15 - s-feature matrix for a table T : 

An s-feature matrix Ms for a table T is denoted 

⎥
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⎥
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, where 1 ≤ s ≤ m-1. 

 

Hereafter, two algorithms are proposed to find the desired feature set. The first 

algorithm, named the Selecting feature set algorithm, is used to find a feature set from 

a given s-feature matrix. If there exists a feature set which is sufficient to decide all the 

records in the given dataset, the feature set will be returned and the feature selection 

procedure stops. Otherwise, s is incremented and the Selecting feature set algorithm is 

executed again. The second algorithm, named the Calculating next matrix algorithm, 

derives the new feature matrix from the previous feature matrix. The Selecting feature 

set algorithm is described as follows. 
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Algorithm 7.5 – Selecting feature set algorithm : 

Input: An s-feature matrix Ms for a table T. 

Output: A selected feature set FS. 

Step 1: Initialize FS = ∅, j = 1. 

Step 2: If j ≤ |C
s|, do the next step; otherwise go to Step 7. 

Step 3: Set k = 1, where k is used to keep the number of the value currently processed 

in a feature set Cs
j. 

Step 4: If k ≤ σs
j, do the next step; otherwise go to Step 6. 

Step 5: If CVs
jk  ≠ 

m
UNIQUEσ , set j = j +1 and go to Step 2; otherwise set k = k + 1 

and go to Step 4. 

Step 6:  Set FS = Cs
j; That is, for each i from 1 to m-1, set FS = FS  {∪ Ci} if the i-th 

bit of the name vector NVs
j for feature set Cs

j is equal to 1. 

Step 7: Return FS. 

 

Take the data in Table 7.1 as an example to illustrate the above algorithm. s is set 

at 1 at the beginning. The 1-feature matrix M1 for the data is the same as the feature 

matrix M found before. The Selecting feature set algorithm will examine the 1-feature 

sets one by one. The first element M1
1, which is {C1}, is then processed. The class 

vector CV1
11 for the first feature value C1

11 is 110, which is not equal to UNIQUE3. 
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Using the feature set {C1} can thus not completely distinguish the classes. The other 

elements in the 1-feature matrix M1 are then processed in a similar way. In this 

example, no element is chosen. Thus ∅ is returned. It means no single feature can 

completely distinguish the classes. s is then incremented, and the Selecting feature set 

algorithm is then executed from the new s-feature matrix. The new feature matrix can 

be easily derived from the previous feature matrix by the following Calculating next 

matrix algorithm. 

 

Algorithm 7.6 - Calculating next matrix algorithm : 

Input: An s-feature matrix Ms for a table T. 

Output: An (s+1)-feature matrix Ms+1 for a table T. 

Step 1: For each j, j = 1 to |Cs| - 1, do the following steps. 

Step 2: For each l, l = (j mod m) + 1 to m, do the following sub-steps. 

Step 2.1: Set NVs+1
j = NVs

j OR NV1
l. 

Step 2.2: Set the temporary counter k to 1. 

Step 2.3: For each feature-value vector Fs
jx in Ms

j, 1 ≤ x ≤ |Cs
j|, do the following 

sub-steps: 

Step 2.3.1: For each feature-value vector F1
ly in M1

l, 1 ≤ y ≤ |C1
l|, do the 

following sub-steps: 
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Step 2.3.1.1: Set RVs+1
jk = RVjx AND RV1

ly. 

Step 2.3.1.2: Set CVs+1
jk = CVs

jx AND CV1
ly. 

Step 2.3.1.3: IF CVs+1
jk ≠ 

m
UNIQUEσ , set CVs+1

jk = Find class 

vector algorithm(RVs+1
jk). 

Step 2.3.1.4: Set k = k+1. 

Step 3: Return the (s+1)-feature matrix Ms+1. 

 

For example, the 2-feature matrix M2 for the data in Table 7.1 is generated from 

the 1-feature matrix M1 as follows. The name vector for feature C2
1 is first calculated. 

Thus: 

NV2
1 = NV1

1 OR NV1
1 

= 1000 OR 0100 

= 1100. 

 

The feature-value vector F2
11 in M2

1 is then calculated. The record vector is found 

as follows: 

 

RV2
11 = RV1

11 AND RV1
21 

= 1100100000 AND 1110000000 
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= 1100000000. 

 

The class vector is found as follows: 

 

CV2
11 = CV1

11 AND CV1
21 

= 110 AND 100 

= 100. 

 

In a similar way, all the feature-value vectors in the 2-feature matrix M2 can be 

found. The results are shown in Table 7.5: 

 

Table 7.5: The 2-feature matrix M2 found by the Calculating next matrix algorithm 

Feature 

Set 

Feature Set 

Value 

Name 

Vector 

Record 

Vector 

Class 

Vector 

V2
11  1100 1100000000 100 

V2
12 1100 0000100000 010 

V2
13 1100 0010000000 100 

V2
14 1100 0001010000 011 

V2
15 1100 0000001000 001 

 

 

C2
1 

V2
16 1100 0000000100 001 

V2
21 1010 1000000000 100 

V2
22 1010 0100000000 100 

V2
23 1010 0000100000 010 

V2
24 1010 0001010000 011 

V2
25 1010 0010000000 100 

 

 

C2
2 

V2
26 1010 0000001100 001 
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V2
31 1001 1000100000 110 

V2
32 1001 0100000000 100 

V2
33 1001 0011000000 110 

V2
34 1001 0000010000 001 

 

 

C2
3 

V2
35 1001 0000001100 001 

V2
41 0110 1000000000 100 

V2
42 0110 0110000000 100 

V2
43 0110 0001011000 011 

V2
44 0110 0000100000 010 

 

 

C2
4 

V2
45 0110 0000000100 001 

V2
51 0101 1010000000 100 

V2
52 0101 0100000000 100 

V2
53 0101 0001100000 010 

V2
54 0101 0000011000 001 

 

 

C2
5 

V2
55 0101 0000000100 001 

V2
61 0011 1001000000 110 

V2
62 0011 0000011100 001 

V2
63 0011 0010000000 100 

V2
64 0011 0100000000 100 

 

 

C2
6 

V2
65 0011 0000100000 010 

 

Note that in Step 2.3.1.2, the class vector derived by the bit-wise "AND" operator 

denotes only the "possible" class distribution. For example, the feature-value vector 

F2
21 consists of RV2

21 = "1000000000" and CV2
21 = "110" after Step 2.3.1.2. Since each 

record belongs to only one class, the above results are not correct. In fact, the class 

vector CV2
21 = "100". Step 2.3.1.2 is used as a quick check. If CVs+1

jk ≠ 
m

UNIQUEσ , 

then the Find class vector algorithm is run in Step 2.3.1.3 to find the correct class 

vector. 
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After the new feature matrix is derived, the Selecting feature set algorithm is then 

executed again to find an appropriate feature set. For the above example, the 2-feature 

matrix M2 is then input to the Selecting feature set algorithm and the feature set FS = 

{C2, C4} are found and returned as the solution. 

 

After the above method is executed, the feature set FS to classify the given data 

set T is generated. FS may be over-fitting or under-fitting for the problem since they 

are derived only according to the current data set. These features are then evaluated 

and modified by domain experts. They thus serve as the candidates for the experts to 

have a good initial standpoint. 

 

7.3 Complexity Analysis and Experiments 

The time and space complexities of the proposed algorithms are analyzed in this 

section. Let n be the number of records, m be the number of features and c be the 

number of classes. Also define i as the maximum possible number of features in a 

feature set, j as the maximum number of possible values of a feature, and s as the 

number of iterations. The time complexity and space complexity of each step in the 

Find class vector algorithm is shown in Table 7.6. 
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Table 7.6: The time and space complexities of the Find class vector algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(1) O(c) 

Step 2 O(jc) O(jc) 

Step 3 O(1) O(c) 

Total O(jc) O(jc) 

 

The time and space complexities of each step in the Create cleansing tree 

algorithm is shown in Table 7.7. Note that the maximum amount of nodes within a 

Ctree is n. 

 

Table 7.7: The time and space complexities of the Create cleansing tree algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(1) O(1) 

Step 2 O(1) O(1) 

Step 3 O(1) O(1) 

Step 4 O(nmj) O(n) 

Step 5 O(mj) O(n) 

Step 6 O(1) O(1) 

Step 7 O(1) O(1) 

Total O(nmj) O(n)* 

 

The time and space complexities of each step in the Find span order algorithm is 

shown in Table 7.8: 
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Table 7.8: The time and space complexities of the Find span order algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(m) O(m) 

Step 2 O(cm) O(cm) 

Step 3 O(clgc) O(c) 

Step 4 O(1) O(1) 

Total O(Max(cm, clgc)) O(cm) 

 

The time and space complexities of each step in the Cleansing feature matrix 

algorithm is shown in Table 7.9: 

 

 

Table 7.9: The time and space complexities of the Cleansing feature matrix 
algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(mj) O(mj) 

Step 2 O(1) O(1) 

Total O(mj) O(mj) 

 

The time and space complexities of each step in the Selecting feature set 

algorithm is shown in Table 7.10. 

 

Table 7.10: The time and space complexities of the Selecting feature set algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(1) O(1) 

Step 2 O(msjs) O(1) 

Step 3 O(1) O(1) 
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Step 4 O(js) O(1) 

Step 5 O(1) O(1) 

Step 6 O(c) O(c) 

Step 7 O(1) O(1) 

Total O(msjs) O(c) 

 

The time and space complexities of each step in the Calculating next matrix 

algorithm is shown in Table 7.11: 

 

Table 7.11: The time and space complexities of the Calculating next matrix 
algorithm 

Step No Time Complexity Space Complexity 

Step 1 O(msjs) O(msjs) 

Step 2 O(mj) O(mj) 

Step 3 O(1) O(j) 

Total O(msjs) O(msjs) 

 

To evaluate the performance of the proposed method, we compare it with other 

feature selection methods. Our target machine is a Pentium III 1G Mhz processor 

system, running on the Microsoft Windows 2000 multithreaded OS. The system 

includes 512K L2 cache and 256 MB shared-memory. 

Several datasets from the UCI Repository [60] are used for the experiments. 

These datasets have different characteristics. Some have known relevant features (such 

as Monks), some have many classes (such as SoybeanL), and some have many 

instances (such Mushroom). In addition, a large real data set about endowment 
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insurances from a world-wide financial group is used to examine the usability of the 

proposed method. Experimental results show the proposed method can discover the 

desired feature sets and can thus help the enterprise to build a CBR system for their 

loan promotion function of customer relationship management system. The data set of 

insurance data uses 27 condition features to describe the states of 3 different insurance 

types. Different types of attribute values including date/time, numeric and symbolic 

data exist. They are all transformed into the symbolic type by some clustering methods. 

Six of them have missing values. 

 

The characteristics of the above datasets are summarized in Table 7.12. 

 

Table 7.12: The datasets used in the experiments 

Database Name Class No. Condition 

Feature No. 

Record No. Missing 

Features 

Monk1 2 6 124 no 

Monk2 2 6 169 no 

Monk3 2 6 122 no 

Vote 2 16 300 no 

Mushroom 2 22 8124 Yes 

SoybeanL 19 35 683 Yes 

Insurance 3 27 35000 Yes 

 

In the experiments, the accuracy, the number of selected features, and the time 

will be compared between our method and the traditional rough set method. The 
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accuracy is measured by the classification results of the target table. If the selected 

feature set can solve the problem without any error, 100% accuracy is reached; 

otherwise the accuracy is calculated by the number of correctly classified records over 

the total number of records. Experimental results show both methods can reach 100% 

accuracy. We then compare the feature sets found by these two approaches. The results 

are shown in Table 7.13. Obviously, the accuracy of all datasets is 100% since both of 

these two method discover the minimal feature sets. 

 

Table 7.13: The selected feature sets found by the two approaches. 

 Traditional Rough Set 

Approach 

Bitmap-based Approach Accuracy 

Dataset Feature Set Feature Set 100% 

Monk1 C1, C2, C5 C1, C2, C5 100% 

Monk2 C1-C6 C1-C6 100% 

Monk3 C1, C2, C4, C5 C1, C2, C4, C5 100% 

Vote C1-C4, C9, C11, C13, C16 C1-C4, C9, C11, C13, C16 100% 

Mushroom C3, C4, C11, C20 C3, C4, C11, C20 100% 

SoybeanL Need too much 

computation time. 

C14, C20, C26, C27, C29, 

C30, C31, C32, C33, C34, 

C35 

100% 

Insurance C4, C15, C17, C20, C22, 

C25 

C4, C15, C17, C20, C22, 

C25 

100% 

 

Note that there may be more then one solution for the selected features. In Table 

7.13, only the first selected feature set (in the alphabetical order) is listed. It is easily 

seen that the selected feature sets of our proposed approach and the traditional rough 
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set approach are the same except for the SoybeanL problem. The SoybeanL problem 

needs too much computation time by the traditional rough set approach. 

 

The numbers of the selected features by the two approaches are shown in Table 

7.14. Both methods get the same numbers for all problems except for SoybeanL. 

 

Table 7.14: The number of the selected features found by the two approaches. 

Dataset Traditional RS Bitmap-based 
Monk1 3 3 
Monk2 6 6 
Monk3 4 4 

Vote 8 8 
Mushroom 4 4 
SoybeanL 11 11 
Insurance 6 6 

 

At last, the computation time is compared. The data sets are first loaded into the 

memory from the hard disk and the processing times are measured. The time is 

rounded to 0 if the real time is less than 0.001 seconds. The results are shown in Table 

7.15. 

 

Table 7.15: The CPU times needed by the two approaches 

Dataset Traditional RS  Bitmap-based  
Monk1 0.07 0 
Monk2 0.351 0.01 
Monk3 0.141 0 
Vote 428.19 1.923 
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Mushroom 4911.32 27.91 
SoybeanL >1000000 247805 
Insurance 468656 2435.66 

 

Consistent with our expectation, the proposed approach is much faster than the 

traditional rough set approach. Especially for the Insurance data, our approach needs 

only about 40 minutes, but the traditional rough set approach needs much more 

computation time.  

In this chapter, we have proposed a bit-based feature selection approach to 

discover optimal feature sets for the given table(dataset). In this approach, the feature 

values are first encoded into bitmap indices for searching the optimal solutions 

efficiently. Also, the corresponding indexing and selecting algorithms are described in 

details for implementing the proposed approach. Experimental results on different data 

sets have also shown the efficiency and accuracy of the proposed approach. 

The traditional rough-set approach has two very time-consuming parts, 

combination of features and comparison of upper/lower approximations. In this 

method, we use the single-time-clock bit-wise operations to shorten the computation 

time of the comparison part. Moreover, the workload in the combination part is highly 

reduced since the new levels of combination can be generated via the pervious ones. 

The bit-wise operations are also used to speed up the combination generation. The 

proposed feature-selection approach also adopts appropriate meta-data structures to 
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take advantages of the computational power of the bit-wise operations.  

The feature selection problem is generally an NP-complete problem. Although the 

proposed approach can process a larger amount of features than the traditional 

rough-set approach, it still becomes unmanageable especially when the number of 

features is huge or when the number of possible values of features is large. In the 

future, we will continuously investigate and design efficient heuristic approaches to 

manage huge amounts of features and possible values. We will also attempt to integrate 

different feature selection approaches to automatically select an appropriate one for 

optimal or near-optimal solutions according to the characteristics of given data sets.  
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Chapter 8  
Using BWI Indexing in 
Semiconductor Manufacturing Defect 
Detection Systems 

In this chapter, an unsupervised-learning data-driven data mining system of a 

production-level defect detection system in an intelligent engineering data analysis 

(iEDA) system in Taiwan Semiconductor Manufacturing Company Ltd. (TSMC) is 

introduced. The bit-wise indexing methods (including Sample, Encapsulated and 

Compact Bit-wise Indexing Methods), Data Mining Technologies, and Statistic 

Methods are hybridly used in this application in order to generate the possible 

root-cause candidate list for the given manufacturing details of an individual low-yield 

situation event. Also, some critical issues about of applying a data mining solution for 

manufacturing defects detection system in semiconductor manufacturing domain will 

be discussed and reviewed. Finally, we will propose the system framework of the 

next-generation data mining solution in the future for providing a more knowledgeable, 
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reasonable, reliable and flexible solution for data mining solution in the semiconductor 

manufacturing domain. 

 

8.1 Problem Description 

 

In recent years, the procedures of manufacturing have become increasingly 

complex [16][17][18]. To meet high expectations regarding yield targets, rapidly 

identifying the root causes of defects is essential for meeting high expectations 

regarding yield targets. Therefore, the technologies of process control, statistical 

analysis and experiment design are used to establish a solid base for well tuned 

manufacturing processes. However, identifying root cause remains extremely difficult 

due to multi-factor and nonlinear interactions in this intermittent problem. Traditionally, 

the process of identifying root cause of defects is costly. The semiconductor 

manufacturing industry provides an example. With a huge amount of semiconductor 

engineering data stored in the database and versatile analytical charting and reporting in 

production and development, the CIM/MES/EDA systems in most semiconductor 

manufacturing companies help users analyze the collected data to achieve the goal of 

yield enhancement. However, semiconductor manufacturing procedures are 
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sophisticated, and thus multi-dimensional and large volumes of data are required to be 

collected for these procedures. Data mining technologies [4][3][9][33] are employed to 

deal with such large amounts of high-dimensional data [6][16][17][29][41][51][52][59]. 

In this chapter, we propose a data mining system and describe the experience of 

applying such systems for discovering the root causes of low-yield situations in TSMC 

[16][17]. Additionally, the evaluation of applying such a mining system for 

manufacturing defect detection in the semiconductor manufacturing domain is discussed 

and reviewed. Finally, a new architecture for a reasonable, reliable and flexible defect 

detection platform based on the data mining approach is briefly described. 

8.2 DM Project for Yield Enhancement 

In June 2002, a research project on data mining techniques was triggered by the 

Manufacturing Information Technology Division of Taiwan Semiconductor 

Manufacturing Company. Five test cases were conducted, including partial lot-based 

information, WIP information, CP information, In-line metrology results, WAT results 

and some manufacturing parameters. Each case represents a low-yield situation with an 

already discovered root cause related to some manufacturing procedure; however, all of 

the cases require extensive trouble-shooting time. Based on the given cases, a prototype 

of the data-driven data mining system is required to discover the possible root causes 
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for the subject cases. Since a large amount of data on this company exists, the data 

mining system only discovers the killer machines for the cases that were prepared by 

product engineers in the event of an abnormal manufacturing situation. Additionally, the 

attribute weights in the given cases are initially treated as equal because of the lack of 

previous built-in knowledge. Also, this engine is required to be noise-insensitive since 

noise is difficult to filter in semiconductor yield enhancement applications. 

 

After discussing this project, the data mining system should be designed 

according to the following criteria: 

1. Platform criterion: The data mining system needs to be executed in both server-end 

and client-end applications according to the functional specification of an iEDA 

(Intelligent Engineering Data Analysis) system in TSMC. 

2. Development environment criterion: The data mining system should be developed as 

some independent functional modules due to the system integration and platform 

issue; and a prototype system integrating all proposed modules should be provided 

for testing and evaluation via TSMC. 

3. Given data set criterion: Since the EDA system involves a vast and still growing 

quantity of data, it seems impossible to analyze all manufacturing data in the EDA 

system via the data mining system. The data mining system is designed for 
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analyzing a pre-generated data set in the event of a low-yield situation. Restated, the 

input data for the data mining system should be generated as a low-yield situation 

case. Some lot-based manufacturing information is involved in this low-yield 

situation case, and each case comprises a maximum of six segments, including basic 

lot information, WIP information, CP information, in-line metrology results, WAT 

results and other manufacturing parameter segments, and a unique decision feature 

used to classify the high and low yield group of given lots. As mentioned above, the 

data mining system is designed as a data-driven solution, and no previous 

knowledge is built to recognize the attribute catalog and type, with the attributes of 

all given cases that are processed by the data mining system being named according 

to the pre-defined naming rules. Furthermore, the user-prepared data files are 

acceptable only if the naming rules of attributes are followed. 

4. Accuracy criterion: In this data mining project, the accuracy rate should exceed 80% 

in all cases. The percentage of hit cases thus should exceed 80%, where a hit case 

means that the real root cause ranks within the top five rankings on the possible root 

cause ranking list. 

5. Efficiency criterion: The procedure of the mining engine should be completed 

within one minute using the benchmark case involving 300 lots and 13000 attributes 

for each lot. 
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The above criteria are incorporated into a data mining system scenario through the 

following procedures: 

1. Data preparation procedure: The raw data of cases are first retrieved from the EDA 

database and then transformed into Bit-wise Indexing (BWI) matrixes [10] to 

accelerate the subsequent mining procedure. Figure 8.1 illustrates three major 

functional modules, including the Data Quality Analysis, Cutting- Point Calculating 

and Data Dispatcher modules, in this processing phase. Since semiconductor 

manufacturing processes have become increasingly sophisticated, data collection 

problems also have become increasing serious, particularly when using advanced 

technologies. Generally, in a spit lot situation, sparse and null data issues may 

seriously impact the accuracy of the data mining results. The Data Quality Analysis 

module is then employed to check quality of a given data set based upon our 

proposed quality indicators. This function also provides lot and attribute merging 

mechanisms in order to help users for combining the spit lot or procedure step in the 

given data set. When the quality of the given data set is confirmed by the user, a 

decision feature is required for judging the lot information within the whole data set. 

The decision feature of this data set is used to separate all given lots into two 

independent groups, called normal and abnormal lot group. After the decision 
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feature is selected, the Cutting-Point Calculating module is executed to determine 

whether the normal lot group is located at the right-hand (larger than) or left-hand 

(smaller than) side of the given critical point. Certainly, users can define these two 

parameters by themselves based on different situations. Since decision feature and 

cutting-point are selected, the Data Dispatcher module has been used to dispatch 

some individual data segments for data mining according to the naming rules, and 

the corresponding BWI matrixes thus are generated. 

Raw
Data

Data Quality
Analysis

Cutting-Point
Calculating

Data Dispatcher

Naming
Columns/Lots DM

Model
Decision

Data Segments

Analysis
Result

QC OK
Data Set

Cutting-Point
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Cutting Point &
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Figure 8.1: the flowchart of data preparation procedure 
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Figure 8.2: the flowchart of data mining procedure 

 

2. Data mining procedure: Once the target BWI matrixes are fully prepared and the 

data quality is verified, the data mining procedure is triggered to analyze the content 

of cases and discover the root causes for the target cases. Figure 8.2 briefly describes 

four major data mining modules, including the Transaction-based, Learning-based, 

Feature-based and Statistical-base modules, as presented below: 

i) Transaction-based module: Generally, over 80% of low-yield situations in the 

semiconductor manufacturing result from machine failure, and it is extremely 

difficult to determine the degree to which each machines contributes to failure 

during the manufacturing procedure. The root causes for production of low-yield 
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wafers are hard to determine, since yield can not be qualified during the 

manufacturing process. Generally, product engineers require some data analysis 

methods for identifying evidence regarding possible root cause. According to the 

experience of domain experts, methods based on single variable analysis usually 

have seldom null-value tolerant ability. Therefore, these methods are not quite 

suitable for seeking the root cause machine for the semiconductor manufacturing 

domain. To solve the above problem, the Transaction-based module, including 

equipment and multiple factor mining function, is applied to analyze the WIP 

data segment to discover each killer machine through a hybrid data mining 

method. The equipment mining function is used to rank all possible killer 

machines in a given WIP data segment based on the confidence of mining result 

[16][17]. That is, this function is used to discover abnormal machine behavior by 

analyzing the manufacturing and machine logs. Moreover, semiconductor wafers 

usually have one silicon subtract and several metal and dielectric layers. This 

arrangement implies that some steps may be repeatedly executed by a killer 

machine which influences the yield of all bypass wafers. Therefore, the multiple 

factor mining function is proposed to handle the case of equipment failure related 

to the descending yield for repeated manufacturing using a single machine. Since 

the mining method used in this module integrates some data mining methods of 
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transaction analysis, it is named the Transaction-based module. 

ii) Learning-based module: This module is used to process all of the numerical data 

except the in-line metrology measurement part in the given data set to identify 

the abnormal behavior of all numeric data in the given data segment. Initially, 

each attribute in the give data segment is separated into normal/abnormal groups 

according to the decision feature. A learning procedure then is triggered for 

identifying the behavior pattern for each attribute based on the distribution and 

trend of the normal group for this attribute. Once the attribute behavior pattern is 

learned, the degree of abnormality of the corresponding abnormal lots group is 

judged and highlighted. Finally, the possible ranking list and corresponding 

mining result charts are obtained. Since the resource of learning procedure only 

includes the given data segment, the over or under fitting problems remain 

unsolved. 

iii) Feature-based module: this module is used to process the symbolic and data/time 

data in the given data set to determine the root cause of some recipes, programs 

and tester changes. All attribute values of a given attribute in the given segments 

are partitioned into normal/abnormal groups according to the distribution of 

corresponding groups of decision features. Since the corresponding groups are 

separated, the similarity degree can be calculated with the proposed feature 
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similarity calculation method and the ranking list is thus proposed to users. 

iv) Statistical-base module: This module is used to process the in-line metrology 

measurement segment of the given data set. Since the measurement results of 

in-line metrology are randomly sampled and only three or five wafers are 

measured in each metrology, the existing lots of null values may influence the 

accuracy of the data mining results. Therefore, statistical correlation analysis is 

used to process the data in the sparse data set, and may reduce the impact of 

quality issues on the given data. The list of attributes in this data set is proposed 

and ranked based on the resulted correlation degrees. 

3. Possible root cause ranking list generation procedure: After the execution of the 

appropriate data mining modules, the possible root cause ranking lists are generated 

and the corresponding evaluation indexes obtained. Furthermore, the corresponding 

charts of the result of each module are provided to help product engineers realize the 

results of the data mining system. 

 

8.3 Evaluation Result for the Yield Enhancement DM Project 

 

From June to September 2002, the proposed data mining system had successfully 
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highlighted the root causes within top five ranking in the generated ranking list for 15 

of the 19 real cases evaluated by proposed data mining system within a maximum of 

40 seconds. Two cases were useless due to the data preparation (Case 10 - too few lots 

available for mining) and multiple/combination killer machines (Case 12 – a combined 

machine issue) issues. The accuracy rate is approximately 88%. According to these 

excellent results, TSMC decided that the data mining module should be embedded into 

a new function, called Yield Explorer, of the iEDA system in TSMC. After the new 

function was released in September 2002, five of the newly received 23 cases could 

not be processed due to the out-of-mining-scenario problem (Case 20 – queuing-time 

issue) and multiple/combination killer machines issues (Case 20, 21, 22 and 23 – 

multiple machines/steps issue), two cases are still undergoing further investigation, and 

ten hit cases were obtained from the remaining 16 cases, as listed in Table 8.1. The 

performance evaluation about using BWI Indexing is listed in Table 8.2. The accuracy 

rate decreases from 88% to 63%, and the reasons for this lower accuracy rate are 

briefly described below: 

1. Data Preparation Problem：Before the announcement of the data mining 

solution at TSMC, all testing cases were carefully reviewed from the 

perspectives of both data preparation and quality. The hit rate of all testing 

cases in this stage is extremely high.  After the Yield Explorer function of 
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iEDA system was released, the data preparation and quality tasks for data 

mining system can be executed by all product engineers in TSMC. Even with 

enough training of this function, the concept of data mining remains difficult 

for all users to understand so quickly. From our observation, 70% of failure 

cases result from inappropriate data preparation procedures, which raise the 

problem of data preparation. The following interesting problems should be 

discussed. 

a. What is a case? - The input of the proposed data mining is a lot data set 

with a single root cause, and this data set is judged by a single decision 

feature to distinguish the normal and abnormal lot groups for further 

mining. Product engineers attempt to identify the reasons for low-yield 

situations by examining the situation itself or analyzing the appropriate 

data set. In this situation, the task of generating a suitable data set 

becomes important for low-yield situation analysis through data mining 

systems. (For example, in response to a low-yield situation that occurred 

on October 15, product engineers prepared all lot-based data between 

October 1 and October 30). It implies that the low yield lots in the 

prepared data set may comprise not only the root cause affected lots, but 

also the regular low yield lots, since the duration of the given data set is 



 

 197 

not evaluated carefully, and it is extremely difficult to differentiate 

between the above two varieties lot without any meta-knowledge. 

Consequently, the result of data mining systems may be incorrect. On the 

other hand, the product engineer can prepare a suitable data set only 

when the root cause of low yield situation is most likely discovered. 

However, discovering the root cause through data mining becomes 

unimportant in this situation. 

b. What is a root cause? - The root cause of a low-yield situation is the 

major reason for the low-yield situation in a regular manufacturing 

procedure, for example, the root cause is first defined as the machine that 

affects more than 50% of the low-yield lots in the given data set. In our 

experience, it seems not possible to prepare such “perfect” data set before 

the root cause still unknown. Therefore, the definition of root cause is 

further modified to be the machine that affects the most low-yield lot in 

the given data set. Even that, the root cause machine involved root of 

Case 12 and 33 are only 15% and 20%, respectively, in the prepared data 

sets from the corresponding product engineers. Moreover, it is very 

difficult to prepare a suitable data containing just one root cause from the 

perspective of the product engineers, and thus the real root cause may not 
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be highlighted correctly. 

c. What is the time duration? – When a low-yield situation occurs, the 

product engineer must determine the most likely time duration required 

to generate a suitable data set for the data mining system. Generally, the 

time duration of a low-yield situation is defined by the product engineer 

according to their personal experience. Since data mining system is 

highly sensitive for prepared data set, time duration becomes a problem. 

 

Table 8.1: The evaluation cases in TSMC data mining project 

No 
Lot 

Number 
Column 
Number 

Problem Root Cause Rank 

1 77 1397 CP Low Yield Tool Issue 1 
2 51 3402 CP Bin Wafer-edge Fail Inline Metrology 2 

3 154 3953 CP Low Yield Tool Issue 1 
4 34 3362 CP Bin Fail CP Test Program 1 
5 277 3356 FT Bin Fail Tool Issue 3 
6 272 2491 CP Low Yield Tool Issue X 
7 146 3183 CP Low Yield Tool Issue 1 

8 141 3135 CP Low Yield Tool Issue 3 
9 54 3149 CP Low Yield Tool Issue 2 
10 4 2719 CP Wafer-Ring Fail Tool Issue X 
11 8 1653 CP Bin Fail Tool Issue 4 

12 54 2376 CP Low Yield Tool Issue X 
13 116 2884 CP Bin Fail Tool Issue 1 
14 313 3369 WAT Fail Tool Issue 1 
15 53 2462 CP Bin Fail Tool Issue 5 
16 484 2903 CP Bin Fail Tool Issue 2 

17 189 2809 CP Bin Fail Tool Issue X 
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18 106 2616 CP Bin Fail Tool Issue 2 
19 13 2071 CP Low Yield Tool Issue 4 

20 168 1797 WAT fail Tool Issue 10 
21 371 1983 CP Bin Fail Tool Issue 15 
22 72 2469 CP Bin Fail Tool Issue 16 
23 60 2183 CP Low Yield Tool Issue 19 
24 91 2511 WAT Fail Unknown Unknown 

25 77 2447 CP Bin Fail Tool Issue 1 
26 40 1659 CP Low Yield Tool Issue 3 
27 72 2137 CP Bin Fail Tool Issue 2 
28 23 3500 CP Bin Fail Queue-time Issue X 
29 59 1259 CP Bin Fail Testing-tool Issue 1 

30 133 1389 CP Bin Fail Tool Issue 3 
31 74 1239 CP Bin Fail Tool Issue 1 
32 168 4172 CP Bin Fail Unknown Unknown 
33 102 2744 CP Bin Fail Tool Issue 11 
34 102 2744 CP Bin Fail Tool Issue 3 

35 136 1197 CP Bin Fail WAT Parameter 5 
36 33 3877 CP Bin Fail WAT Parameter 1 
37 167 1642 CP Bin Fail WAT Parameter X 
38 65 1189 CP Bin Wafer-edge Fail Tool Issue 1 

39 50 1095 CP Bin Wafer-center Fail Tool Issue 27 
40 48 1290 CP Low Yield Tool Issue 1 
41 92 1198 CP Low Yield Tool Issue X 
42 68 1203 CP Bin Fail Tool Issue 17 
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Table 8.2: The performance evaluation of all TSMC cases in this data mining 
project 

Storage/Query Solution Processing Time (Seconds) Time Saving 

v.s. v.s. Database 
Solution 

In-Memory 
Computing 

Solution 
BWI Indexing Structure 

DB Solution Memory Solution 

No 
Total 
Cells 

Storage 
Access 
Time 

Query 
Time 

Storage 
Access 
Time 

Query 
Time 

Storage 
Access 
Time 

Query 
Time 

BWI 
Build-up 

Time 
(Sample) 

Secs Percent Secs Percent 

1 107569 107 663 45 104 2 4 19 745 96.75% 124 83.22% 

2 173502 173 1222 67 152 3 6 24 1362 97.63% 186 84.93% 

3 608762 482 3150 190 419 10 19 35 3568 98.24% 545 89.49% 

4 114308 102 706 32 70 2 4 19 783 96.91% 77 75.49% 

5 929612 759 3939 247 529 15 28 171 4484 95.44% 562 72.42% 

6 677552 724 4230 159 333 10 19 29 4896 98.83% 434 88.21% 

7 464718 482 4184 108 225 7 13 56 4590 98.37% 257 77.18% 

8 442035 552 5913 88 179 6 11 60 6388 98.81% 190 71.16% 

9 170046 181 1642 35 73 2 4 24 1793 98.35% 78 72.22% 

10 10876 11 106 2 4 0 0 5 112 95.73% 1 16.67% 

11 13224 13 122 3 5 0 0 5 130 96.30% 3 37.50% 

12 128304 131 1194 23 44 2 3 41 1279 96.53% 21 31.34% 

13 334544 399 2183 52 98 5 8 32 2537 98.26% 105 70.00% 

14 1054497 1368 6596 149 278 15 25 115 7809 98.05% 272 63.70% 

15 130486 151 834 17 32 2 3 20 960 97.46% 24 48.98% 

16 1405052 1628 11035 196 362 20 33 380 12230 96.58% 125 22.40% 

17 530901 843 5440 81 151 8 13 64 6198 98.65% 147 63.36% 

18 277296 387 4099 38 69 4 6 35 4441 99.00% 62 57.94% 

19 26923 38 367 3 6 0 1 7 397 98.02% 1 11.11% 

20 301896 481 4519 36 63 4 7 7 4982 99.64% 81 81.82% 

21 735693 1400 10106 88 154 11 17 18 11460 99.60% 196 80.99% 

22 177768 323 3041 21 36 3 4 5 3352 99.64% 45 78.95% 

23 130980 191 2952 14 23 2 3 2 3136 99.78% 30 81.08% 

24 228501 255 5435 28 49 3 5 10 5672 99.68% 59 76.62% 

25 188419 244 4609 20 35 3 4 4 4842 99.77% 44 80.00% 

26 66360 78 1598 7 11 1 1 1 1673 99.82% 15 83.33% 
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27 153864 158 2558 15 24 2 3 4 2707 99.67% 30 76.92% 

28 80500 66 1791 8 13 1 2 1 1853 99.78% 17 80.95% 

29 74281 52 1367 7 11 1 2 1 1415 99.72% 14 77.78% 

30 184737 153 3604 19 32 3 4 3 3747 99.73% 41 80.39% 

31 91686 91 1707 9 14 1 2 2 1793 99.72% 18 78.26% 

32 700896 660 10767 79 133 11 17 18 11381 99.60% 166 78.30% 

33 279888 318 4815 28 46 4 6 8 5115 99.65% 56 75.68% 

34 279888 381 3604 27 44 4 6 7 3968 99.57% 54 76.06% 

35 162792 249 2719 17 28 2 4 4 2958 99.66% 35 77.78% 

36 127941 215 1799 12 19 2 3 3 2006 99.60% 23 74.19% 

37 274214 416 2947 23 37 4 6 7 3346 99.49% 43 71.67% 

38 77285 95 682 6 10 1 2 2 772 99.36% 11 68.75% 

39 54750 77 409 5 8 1 1 1 483 99.38% 10 76.92% 

40 61920 76 406 5 8 1 1 1 479 99.38% 10 76.92% 

41 110216 159 798 8 13 2 2 2 951 99.37% 15 71.43% 

42 81804 125 379 6 10 1 2 2 499 99.01% 11 68.75% 

Avg 291107 352 3101 48 94 4 7 30 3412 98.68% 101 69.31% 

 

 

As we can see, the processing time, including storage access time and query 

time, of BWI indexing solution using 1/12 time to compete the data mining 

procedure of the proposed data mining engine rather then In-memory computing 

solution, the time cost of three storage/query solutions are shown in Figure 8.3 . 
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Figure 8.3: The Processing Time of all computing solutions 

To solve the above problems, the data preparation problem becomes the key 

issue in the next-generation data mining system, even if some tradeoff relations 

exist among these problems. 

2. Null value issue: Among the 72 lots involved in case 22, only 21 contain 

values in the decision feature(yield attribute), while four are abnormal. Since 

null-value situation is frequent, the proposed data mining system is best 

designed for null-value tolerance. Based on the experience of the TSMC 

project, the null value issue should be handled for the next-generation data 

mining system. 

3. Spit lot/step issue: It is known that the spit lot/step issue causes numerous null 

values, the data mining system will produce unacceptable results. Essentially, 
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each record in the lot-based data set represents all wafers within a lot. On 

occurrence of the spit lot/step issue, some lots are separated into several 

sub-lots, and the lot-based data set are no longer qualified to represent the real 

status accordingly. Since the spit lot/step issue becomes more important for 

the 130 and 90 nm manufacturing procedures, the lot-based information 

should be drilled down to the wafer-based record; however, it is difficult to 

retrieve the wafer-based data using the EDA system. 

4. Ratio of the Antithesis-group: As mentioned above, the behavior patterns 

discovered by the learning procedure of the learning-based module in the 

normal lot group are used to challenge the abnormal lot group. Ideally, a ratio 

of these two antithesis groups of 70% to 80% lots in the normal lot group is 

recommended for data mining. However, it is extremely difficult for product 

engineers to maintain this ratio for all given data sets by retrieving suitable 

data in every low-yield situation. For example, the root cause machines in 

Cases 21 and 22 are ranked 1 and 3, respectively, if the ratio of antithesis 

group is set as 80%. 
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8.4 Intelligent Yield Enhancement System for Semiconductor 

Manufacturing 

 

Future research will focus mining engine enhancement, mining platform 

construction and knowledge engineering consultation issues. 

1. Data mining system enhancement issues: 

i) Multiple tools/factors mining scenario – In this scenario, we would like to 

develop a new scenario that can discover not only a single, but also a set of 

killer machines. In the last year, the root cause of one collected cases is issued 

by this situation. Since the failure contribution degree of each tool is hard to be 

determined, it is difficult to find out the single machine failure only using the 

manufacturing data much less the combination problem of multiple killer 

machines; however, such problems become increasingly frequent in advanced 

manufacturing procedures implies that developing an efficient and faithful 

mining scenario for discovery of multiple tools/factors is also important. 

ii) Queue-time mining scenario –This scenario would like to develop a new 

scenario for identifying the low-yield situation for workflow resulting from 

abnormal waiting time. It means, the wafers becomes low-yield due to the 

material oxygenized by the delay during some critical stages. In 2002, some 
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cases are affected by this situation were treated as numeric data segments and 

thus processed via the Learning-based module. Since the results were 

inadequate, a new scenario is developing to handle this situation. 

iii) Secondary root cause scenario – In this scenario, we will develop a new 

scenario for discovering the second root cause. According to our pervious 

experience, several root causes are found to be involved in a single case, and 

some case preparation guidelines are proposed to avoid such problems. 

Therefore, a new scenario is required to handle such situations. 

iv) The cross-scenario estimation mechanism – As mentioned above, the results 

generated by the proposed modules are ranked independently. A cross-scenario 

estimation mechanism to evaluate all ranking lists based on an overall 

weighting mechanism will be proposed and the combination issues for the 

secondary root causes scenario will be solved accordingly. 

 

2. Mining platform construction issue: Accordingly, a knowledge platform, called 

MDDS (Manufacturing Defect Detection System) platform, is proposed to integrate 

all developed engines with considering all above enhancement issues in order to 

construct a complete yield enhancement platform. Three major parts of the proposed 

platform are described as follows: 
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i) Information Collection part: Regular meetings are recommended to discuss 

domain knowledge about semiconductor manufacturing and the related 

concepts and information properties of EDA, CIM and MES systems, including 

the data format, data amount, and data requirements of data mining solutions 

for yield enhancement purposes, which then can be formally and clearly 

described. Subsequently, a functional specification with a given dataflow 

scenario for the suitable preprocessing and data mining requirements should be 

proposed for each type of low-yield situation. Consequently, the Wrapper 

System and Wafermap Analyzing System are used to gather all related 

information, such as the database resources and other data files. For the 

architecture of Information Collection part shown in Figure 8.4, the 

corresponding algorithm Information_Collection Algorithm is presented below. 

 

Algorithm 8.1 - Information_Collection algorithm 

Input: a set of solved low-yield cases C={c1, c2, …, cn} and ck={lk,1, lk,2, …, ||, kckl , 

rck } such that lk,i is the i-th covered lot of case ck and rck is the known root 

cause of case ck for 1 ≤ k ≤ n ,1 ≤ i ≤ |ck| and n ≥ 1. 

Output: 1. The corresponding data set DS={ds1, ds2, …, dsn} and wafermap set 

WF={wf1, wf2, …, wfn} of C. 
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2. A set of BWI matrixes BWI={bwi1, bwi2, …, bwin}, where bwik={ D
kbwi , 

W
kbwi } such that D

kbwi  and W
kbwi  are the corresponding BWI matrixes 

of dsk and wfk, respectively, for case ck in C and 1 ≤ k ≤ n. 

Step 1. For each case ci in C, do the following sub-steps: 

Step 1.1. For all covered lots {li,1, li,2, …, ||, icil } in ci, retrieve data set dsi from all 

underlying databases, including CIM, MES and EDA databases, via 

Wrapper System. 

Step 1.2. For case ci, retrieve wafermaps wfk from the storage of corresponding 

wafermaps for all covered lots {li,1, li,2, …, ||, icil } in ci. 

Step 2. For each data set in DS and WF, do the following sub-steps: 

Step 2.1. For data set dsi in DS, transform dsi to corresponding BWI matrix 

D
ibwi  via Wrapper System. 

Step 2.2. For wafermaps wfi in WF, transform wfi to corresponding BWI matrix 

W
ibwi  via Wafer Analysis System. 

Step 3. Return BWI and then store it in BWI Indexing Server. 
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Figure 8.4: The architecture of information collection part in MDDS Knowledge 

Platform 

The function of all sub-systems in Figure 8.4 is summarized below: 

1. Wrapper System：This system is in charge of information collection for all 

analysis and mining requirements. Three information resources, CIM, MES 

and EDA databases, must be accessed. For each database resource, the product 

engineers can retrieve the related information via a data query function, and 

these query results are then transformed into a BWI matrix based on the data 

format requirements of the proposed dataflow scenario. Moreover, the 

corresponding text files, such as the WAT and CP testing resulting, are also 

retrieved via some text file processing ability of the database and the 

corresponding BWI matrixes then are obtained. 

2. Wafermap Analyzing System：This system is in charge of information 
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collection for all related wafermaps in the Wrapper System. After wafermap 

retrieved, each wafermap is transformed to a corresponding BWI matrix for 

further analysis. 

3. Bit-Wise Indexing Server：This server is used for storing all transformed BWI 

matrixes. For all stored BWI Matrixes, this server can provide OLAP and 

indexing similarity computing to support parallelized, scalable, high 

performance data query for all stored BWI Matrixes. 

 

ii) Learning and analyzing part: After executing the data collection procedure, a 

Rule-Learning System is used for mining association rules from the BWI 

matrix server based on predefined data relationships, and a Model-Learning 

System is used to model learning among all manufacturing machines. 

Furthermore, the corresponding BWI matrixes of wafermaps are classified and 

analyzed using the Wafermap Analysis System to extract some of the wafermap 

patterns among them. Finally, all wafermap patterns, learned rules and machine 

models are judged by the domain experts. After the verification procedure, the 

suitable wafermap patterns, learned rules and machine models are stored in the 

Wafermap Gallery, Knowledge Base and Machine Model Base, respectively. 

For the architecture of Learning and analyzing part shown in Figure 8.5, the 



 

 210 

corresponding algorithm Learning_and_Analysis Algorithm is presented below. 

 

Algorithm 8.2 - Learning_and_Analysis algorithm 

Input: a set of solved low-yield cases C and a set of BWI matrixes BWI={bwi1, 

bwi2, …, bwin} and bwik={ D
kbwi , W

kbwi }, for case ck in C and 1 ≤ k ≤ n. 

Output: 1. The verified wafermap patterns WP={p1, p2, …, pi} of C. 

2.  The verified association rules AR={r1, r2, …, rj} of C. 

3. The verified neural-network machine models NM={nn1, nn2, …, nnj} of 

C. 

Step 1. For each BWI matrix bwik in C, do the following sub-steps: 

Step 1.1. For wafermaps BWI matrixes Wbwi and the corresponding rc*, analyze 

the wafermap patterns WP={p1, p2, …, pi} via Wafer Analysis System. 

Step 1.2. For data set BWI matrixes Dbwi  and the corresponding rc*, where rc* 

is the root cause rcs in C, mining the association rules AR={r1, r2, …, 

rj} via Rule-Learning System. 

Step 1.3. For data set BWI matrixes Dbwi  and the corresponding rc*, where rc* 

is the root cause rcs in C, learning the corresponding neural-network 

machine models {nn1, nn2, …, nnj} via Model-Learning System. 

Step 2. For WP, AR and MN, do the following sub-steps: 
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Step 2.1. Require the domain experts for results verification. 

Step 2.2. Remove the unqualified patterns, rules and machine models from WP, 

AR and MN, respectively. 

Step 3. Return WP, AR and MN and then store them in Wafermap Gallery, 

Knowledge Base and Machine Model Base, respectively. 

 

BWI Indexing Server

Model-Learning
System

Rule-Learning
System

Machine
Model
Base

Wafermap
Gallery

Wafermap
Analysis
System

Verified
Wafermap
Patterns

Knowledge
Base

Verified
Association

Rules

Verified
Machine
Models

BWI Indexing Matrixes

 
Figure 8.5: The architecture of Learning and Analyzing part in MDDS 

Knowledge Platform 

 

The functions of the sub-systems in Figure 8.5 are described below: 

1. Wafermap Analyzing System：This system analyzes all of the related 

wafermaps and identifies useful wafermap patterns. All input wafermaps are 
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first classified into systematic and randomized categories. For wafermaps in 

the systematic category, the system identifies possible wafermap patterns and 

delivers the discovered patterns to the domain experts for verification. 

Subsequently, all verified patterns and their indicated root cause are stored in 

the Wafermap Gallery for further investigation. 

2. Rule-Learning System： This system is applied to analyze all related 

information for each solved low-yield situation to discover the correlation 

among attributes via the Transaction-based module. Initially, the correlation 

between the decision feature and other attributes in the given data is calculated 

via the Learning-based module. Subsequently, the highly related features are 

treated as the new decision features, and the Transaction-based Module is thus 

triggered for mining the possible root causes. After completing the mining 

procedure, possible root cause lists of both the original root cause and highly 

related features are transformed to the transaction log and processed through 

an association rule mining procedure. Finally, the discovered association rules 

are delivered to the domain experts for verification and all verified association 

rules are stored in the Knowledge Base for further investigation. 

3. Model-Learning System：This system manages individual machine behavior 

learning based on predefined data relationships. Initially, a predefined 
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perceptron neural networking should be defined for each individual machine 

in the semiconductor manufacturing fab. The input nodes of this perception 

consist of manufacturing parameters, temperature, air pressure and sensor 

information for the target machine. A half WIP (wafer-in-process) data related 

to this machine is used as a training instance to learn the machine model using 

neural network technologies, and the other half is used to verify the 

perceptron. If the result is satisfied, the machine model is stored in the 

Machine Model base; otherwise, the unqualified machine model is verified by 

some domain experts for further examination. 

4. Wafermap Gallery, Knowledge Base and Machine Module Base: These are the 

storage of wafermap patterns, verified manufacturing rules and individual 

machine modules, respectively. 

 

iii) Application part: The learning results obtained through the incremental learning 

procedures in the Learning and Analysis part are used to examine and monitor 

the in-line and off-line procedures for yield enhancement. The Model 

Monitoring System, like an advanced APC system, is responsible for in-line 

monitoring and delivering alarm messages to both in-line monitoring 

workstations and mining engines in the event of abnormal behavior, based on 
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the related machine information from the manufacturing and measuring tools. 

Additionally, the verified mining rules can be applied to examine the in-line 

information and identify abnormal situations using the Intelligent Reasoning 

System. Once the low-yield situation happens, the related wafermaps are 

matched and some suspected machine IDs are thus delivered to the Mining 

System for recommendation. The data mining results then are evaluated and 

ranked via the cross-scenario estimation mechanism according to the 

recommendations from the Wafermap Analysis, Intelligent Reasoning and 

Model systems. Finally, a data mining report for the given low-yield situation is 

delivered to the corresponding product engineers for further study. For the 

architecture of Application part shown in Figure 8.6, the corresponding 

algorithm Application Algorithm is presented below. 

 

Algorithm 8.3 - Application algorithm 

Input: a newly arrived low-yield cases nc={lnc,1, lnc,2, …, lnc,|nc|} where lnc,i is the i-th 

covered lot of case nc and 1 ≤ i ≤ |nc|. 

Output: The ranked possible root causes list rcl of nc. 

Step 1. For newly arrived low-yield cases, call Information-Collection Algorithm and 

the corresponding dsnc, wfnc, 
D
ncbwi  and W

ncbwi  are thus returned. 
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Step 2. For wafermap set wfnc and BWI matrix W
ncbwi , match the existing wafermap 

patterns WP in Wafermap Gallery via Wafermap Analyzing System and the 

root cause set rcWP is thus returned, where rcwf is the root causes of all 

matched patterns in WP. 

Step 3. For data set dsnc and BWI matrix D
ncbwi , trigger inference procedure for all 

mined rules AR in Knowledge Base via Intelligent Reasoning System and the 

root cause set rcAR is thus returned, where rcAR is the root causes of all trigger 

rules in AR. 

Step 4. For data set dsnc and BWI matrix D
ncbwi , trigger computing procedure for all 

built neural-network-based machine model NM in Machine Model Base via 

Model Monitoring System and the abnormal machine set abNM is thus 

returned, where abNM is the set of machines that return all abnormal alerts. 

Step 5. For data set dsnc and BWI matrix D
ncbwi , trigger the Mining System for 

discovering the possible root causes and the ranked list of root cause rcl is 

thus found. 

Step 6. For root cause in rcWP, rcAP and abNM, if the root cause exists in rcl, enhance 

the ranking weight via the cross-scenario estimation mechanism.  

Step 7. Rank the rcl according to the new ranking weight.  

 



 

 216 

 

 
Figure 8.6: The architecture of Application part in MDDS Knowledge Platform 

 

From Figure 8.6, all sub-systems are described in the following: 

1. Wafermap Analyzing System：For each new wafer map, the Wafermap 

Analyzing System identifies the matching patterns within the Wafermap 

Gallery. Once similar patterns are discovered, the corresponding root causes 

are delivered to the Mining System for re-weighting recommendation 

2. Intelligent Reasoning System：  Following verification by the Learning 
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System, mining rules can be applied to identify abnormal situations and 

pre-examine the given parameters. Once the new case is entered into the 

Intelligent Reasoning System, all possible facts obtained are forwarded to the 

Mining System for further examination. Similar the Model System, reasoning 

results or the confidence and support for triggered rules can be provided 

through the explanation function of the Intelligent Reasoning and Learning 

Systems. 

3. Model Monitoring System： After all machine models are tuned or optimized 

by the Learning System, these models can be used to monitor the in-line 

manufacturing and measuring tools. After entering a new case into the Model 

Monitoring System, the Wrapper System is triggered to collect all related 

information of this case. Since then, the machine related parameters are 

calculated using the corresponding neural-network machine model. For 

abnormal computational results, the corresponding machine ID and some 

alarm messages are sent to the Mining System and the users, respectively. If 

required, the Model Monitoring System can provide the related evidence 

supported by the Model Analyzing System for further explanation. 

4. Mining Monitoring System：This system is in charge of data mining procedure. 

Once the low-yield situation happens, the related information is delivered to 
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the Wafermap Analysis, Model Monitoring and Intelligent Reasoning Systems 

for re-weighting recommendations. Simultaneously, the corresponding mining 

scenarios are triggered. After the results of Wafermap Analyzing, Model 

Monitoring, Intelligent Reasoning and Mining Systems are generated, they are 

overall evaluated and ranked via the cross-scenario estimation mechanism. 

Finally, the data mining report for the given low-yield situation is delivered to 

the users for further investigation, and explanations and evidence for each 

corresponding result are also provided. 

5. Wafermap Gallery, Knowledge Base and Machine Module Base: These 

systems are used for the storage of wafermap patterns, verified manufacturing 

rules and individual machine modules, respectively. 

 

3. Knowledge engineering consultation task: In our data mining project, since domain 

experts and IT persons in semiconductor manufacturing domain are usually not 

familiar with data mining concept, we will continually help them realize the concept 

of data mining correctly, Also, we will take the opportunity of deploying the MDDS 

platform to help the semiconductor manufacturing people understand the esprit of 

data mining systems. 
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Currently, the semiconductor manufacturing is becoming increasingly complex as 

market demand drives higher circuit density. This trend requires new and more 

sophisticated processing tools, longer process flows, and more detailed sampling of 

metrology data to verify process controls. Moreover, this trend also implies large 

amounts and high complexity of manufacturing data, and tight time-to-market for 

advanced devices. Therefore, an intelligent and efficient yield enhancement system is 

desired to deal with the low-yield situation and efficiently increase the yield trend. In 

this section, we have proposed a data mining system which had been successfully 

applied in Taiwan Semiconductor Manufacturing Company (TSMC) for discovering 

the root causes of low-yield situations. Also, the evaluation of our mining system for 

manufacturing defects detection in semiconductor manufacturing domain has been 

done and several important issues have been fully discussed. Finally, a new 

architecture of a reasonable, reliable and flexible defect detection platform using data 

mining approach has been described. 
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Chapter 9  
Conclusions and Future Work 

The Fields of knowledge Discovery Systems and Data Mining have rapidly grown 

in the past 10 years. Research, applications, and tool development in business, science, 

government, and academia are becoming increasingly popular. Since the amount of 

data is continuously and rapidly growing in most knowledge systems, discovering the 

useful information correctly and efficiently is becoming a significant issue. In this 

thesis, an efficient indexing technology, called Bit-wise Indexing Technology, and 

three indexing methods for different applications were proposed. Furthermore, the 

corresponding indexing and matching algorithms for each indexing model were 

described in detail. To demonstrate the suitability, flexibility and efficiency of the 

proposed indexing methods, they were applied in four knowledge system applications, 

including reinforcement learning, pattern matching, supervised learning and 

unsupervised-learning data mining applications. In the first application, the Sample 

Bit-Wise Indexing Method was used to encode the defect status of manufacturing 

product in order to accelerate the data preprocessing procedure. In the second 
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application, the Encapsulated Bit-wise Indexing Method was used to encode the 

networking activity to accelerate the data preparation procedure. The third application 

used Compact Bit-wise Indexing method in a Rough-set-based Feature Selection 

Method to encode the feature and class relationships efficiently for reducing the 

processing time of the feature selection procedure. The proposed feature selection 

method had been used in a KA project to discover the desired feature sets to help an 

endowment insurance department of a world-wide financial group builds a CBR 

system for their loan promotion function of a customer relationship management 

system. In the last application, the bit-wise indexing methods, Data Mining 

Technologies, and Statistic Methods were hybridly combined to construct an 

unsupervised-learning data-driven data mining system for production-level defect 

detection in a engineering data analysis system. This application was officially applied 

in Yield Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in 

Taiwan Semiconductor Manufacturing Corporation (TSMC) for root cause detection 

and yield enhancement.  

In the future, a product-level bit-wise indexing server will be constructed and the 

maintenance issue, such as record/table/relation insertion/deletion/modification, will be 

further investigated. Also, the suitable indexing models will be proposed for various 

knowledge systems, such as a rule-based expert system, case-based reasoning system 
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or neural net system. Moreover, the system platform of the next-generation data 

mining solution that proposed at the end of Chapter 8 will be further investigated and 

constructed and to provide a knowledgeable, reasonable, reliable and flexible data 

mining solution in semiconductor manufacturing domain. Additionally, the proposed 

bit-wise indexing method will be applied to different application domains. For 

instances, the proposed method is currently being applied to an intelligent clinical trial 

management system (iCTMS), to enhance the accuracy and performance of the 

knowledge acquisition and validation procedures.  
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