

i

國 立 交 通 大 學

資訊科學研究所

博 士 論 文

知識系統中快速索引機制之研究

A Study of an Efficient Indexing Technology for

Knowledge Systems

 研 究 生: 陳威州

 指導教授: 曾憲雄 博士

中華民國九十四年四月

 i

知識系統中快速索引機制之研究

A Study of an Efficient Indexing Technology for

Knowledge Systems

研 究 生：陳威州 Student：Wei-Chou Chen

指導教授：曾憲雄 Advisor：Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 科 學 系

博 士 論 文

A Thesis

Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer and Information Science

April 2004

Hsinchu, Taiwan, Republic of China

中華民國九十四年四月

 i

博碩士論文授權書
(國科會科學技術資料中心版本 91.2.17)

本授權書所授權之論文為本人在＿＿＿國立交通大學＿＿＿＿大學(學院)＿資訊

科學＿系所＿＿＿組＿九十三＿學年度第＿二＿學期取得＿博＿士學位之論文。

論文名稱：＿＿＿＿＿知識系統中快速索引機制之研究＿＿＿＿＿＿

■同意 □不同意 (政府機關重製上網)

本人具有著作財產權之論文全文資料，授予行政院國家科學委員會科

學技術資料中心、國家圖書館及本人畢業學校圖書館，得不限地域、

時間與次數以微縮、光碟或數位化等各種方式重製後散布發行或上載

網路。

本論文為本人向經濟部智慧財產局申請專利(未申請者本條款請不予

理會)的附件之一，申請文號為：＿92135316＿，註明文號者請將全

文資料延後半年再公開。

--

■同意 □不同意 (圖書館影印)

本人具有著作財產權之論文全文資料，授予教育部指定送繳之圖書館

及本人畢業學校圖書館，為學術研究之目的以各種方法重製，或為上

述目的再授權他人以各種方法重製，不限地域與時間，惟每人以一份

為限。

上述授權內容均無須訂立讓與及授權契約書。依本授權之發行權為非專屬性

發行權利。依本授權所為之收錄、重製、發行及學術研發利用均為無償。上述同

意與不同意之欄位若未鉤選，本人同意視同授權。

指導教授姓名:曾憲雄

研究生簽名: 學號: 8823805

(親筆正楷) (務必填寫)

日期:民國 94 年 4 月 29 日

 i

國家圖書館

博碩士論文電子檔案上網授權書

本授權書所授權之論文為本人在國立交通大學（學院）資訊科學系所

_____________組，93 學年度第_2_學期取得博士學位之論文。

論文名稱：知識系統中快速索引機制之研究

指導教授：曾憲雄

■同意

本人具有作財產權之上列論文全文（含摘要），以非專屬、無償授權國

家圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數位化

方式將上列論文重製，並得將數位化之上列論文及論文電子檔以上載

網路方式，提供讀者基於個人非營利性質之線上檢索、閱覽、下載或

列印。

上述授權內容均無須訂立讓與及授權契約書。依本授權之發行權為非

專屬性發行權利。依本授權書所為隻收錄、重製、發行及學術研發利

用均為無償。上述同意與不同意之欄位若未勾選，本人同意視同授權。

研究生：陳威州 學號：8823805

親筆正楷：____________________ （務必填寫）

中華民國 九十四 年 四 月 二十九 日

 i

知識系統中快速索引機制之研究

學生：陳威州 指導教授：曾憲雄 博士

國立交通大學電機資訊學院

資訊科學系

摘要

近年來，知識發現系統(System for Knowledge Discovery in Database)隨著資訊

技術的進步與普及，愈來愈受重視，相關的應用技術及研究也相繼被提出，目的

是希望使用資料庫知識發現(Knowledge Discovery from Database)的技術，將企業

所累積的交易及製造的資料，透過資料探勘(Data Mining)的方法，找出企業知識

(Business Intelligent)與各種行為模式(Behavior Patterns)，進而達到累積企業知識的

目的。由於企業在營運的過程中所累積下來的資料量十分可觀，如何即時達成資

料挖掘的功能並提出有效的知識則成為一個重要的課題。在此篇論文中，我們將

提出一個適用於知識系統及資料庫之資料索引技術-位元組索引技術(Bit-wise

Indexing Technology)。在這個技術中，我們總共提出了三個不同的索引方法，包

含簡單位元組索引方法(Simple Bit-wise Indexing Method)、概括式位元組索引方法

(Encapsulated Bit-wise Indexing Method)及精簡式位元組索引方法(Compacted

Bit-wise Indexing Method)，可針對連續性及非連續性型態的資料進行處理，我們

 ii

亦也提出了二元化索引編碼及資料搜尋演算法，用以節省搜尋大量資料的處理時

間。

為了驗證我們所提出技術的效率、彈性及實際可用性，我們將這個技術分別

應用於四個不同的知識系統領域, 包含回饋式學習(Reinforcement Learning)，模式

學習 (Pattern Learning), 監督式學習 (Supervised Learning) 及非監督式資料

(Unsupervised Learning)挖掘知識系統等。而這四個實際系統包含應用在製造過程

中由於製程時間的問題所產生的產品缺陷之以遺傳演算法之製造缺陷偵測系統、

應用在網路入侵偵測系統中的入侵模式的挖掘與比對以提昇系統彈性及效率、應

用在以資料為導向之約略集合論特徵選取技術並使用於知識擷取系統上以節省執

行時間及應用在半導體製造過程中用於缺陷偵測的資料挖掘系統以提昇系統效

能。其中用於半導體製造過程中用於缺陷偵測的資料挖掘系統己被台灣積體電路

公司正式納入該公司之智慧型電子資料分析系統中的良率改善子系統，用以提高

良率改善的效率，而以資料為導向之約略集合論特徵選取技術已被實際應用於某

國際壽險的客戶關係管理系統專案中之擷取壽險保單回流貸款客戶特徵候選名單

用以提昇企業收益。

關鍵詞：知識發現、位元組索引、資料挖掘、模式比對、特徵選取、知識萃取、

知識分析

 iii

A Study of an Efficient Indexing Technology for

Knowledge Systems

Student: Wei-Chou Chen Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science

National Chiao Tung University

Abstract

Recently, the Knowledge Discovery in Database (KDD) has grown rapidly, as IT

and AI technologies have become widely discussed and researched. Relevant research,

applications, and tool development in business, science, government, and academia are

becoming increasingly popular. Particularly in some worldwide enterprises, KDD

systems are applied to discover useful business intelligence and customer behavior

patterns using data mining technology. However, since the quantity of data is

continuously and rapidly growing in such enterprises, correctly and efficiently

discovering useful information is becoming a significant issue. In this thesis, we will

propose an efficient indexing technology of knowledge and database systems, called

Bit-wise Indexing Technology. There are three indexing models in this technology,

including Simple Bit-wise Indexing Method, Encapsulated Bit-wise Indexing Method

and Compacted Bit-wise Indexing Method. Also, the corresponding indexing and

matching algorithms for such indexing models are also proposed.

 iv

In order to demonstrate the suitability, flexibility and efficiency of the proposed

indexing methods, we will try to apply the proposed method in four kinds of KDD

applications, including reinforcement learning, pattern matching, supervised learning

and unsupervised-learning data mining applications, in this thesis. For enhancing the

system performance, the simple bit-wise indexing method was applied to the

manufacturing defect detection problem, time aspect (MDDP-t) for manufacturing

domains. For improving the flexibility and accuracy, the encapsulated bit-wise

indexing method is applied to the pattern matching module of an Internet intrusion

detection system. To reduce the processing time, the compacted bit-wise indexing

method is applied to the data-driven rough-set based feature selection. Additionally,

the proposed feature selection method was adopted in a KA project to discover the

desired feature sets to construct a CBR system for a world-wide financial group

customer relationship management system’s loan promotion function. In the last

application, three proposed methods are hybridly applied to the data mining module of

a defect detection mechanism in a semiconductor manufacturing system to improving

the accuracy and usability. The proposed method was officially employed in the Yield

Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in Taiwan

Semiconductor Manufacturing Corporation (TSMC) for root cause detection of

manufacturing defects and yield enhancement.

Keywords: Knowledge Discovery, Bit-wise Indexing, Data Mining, Pattern Match,

Feature Selection, Knowledge Acquisition, Knowledge Analysis

 v

誌 謝

曾幾何時，我從一個北商補校的學生，到今天取得博士學位，一晃眼也已經

十幾個年頭了，回首來時路，喜怒哀樂、悲歡離合，雖然辛苦，但也甘之如飴；

雖有磨難，卻也逆來順受。隨著年歲的增長，自己也更能體認人生的目的何在，

而今天的畢業，不是一個終點，而是另一個蛻變後的起點。

從高雄工學院資管系、義守大學資工所，到交通大學資科博士班，何其有幸

讓我能接觸到資訊學門高等教育的三個主要科系，也因為如此，更能體會到資訊

教育的理論面、工程面及應用面其實是環環相扣、密不可分的。而啓發我將三個

面向的想法，融合一體並帶入產業應用的關鍵人物，就是我的恩師 曾憲雄博士，

他不僅在學術領域上給予我無私的指導與啟發，在應用領域上亦給予我很大的空

間與舞台，而最最重要的是，在待人處事及應對進退的做人道理上，給了我很多

的指導及鼓勵，特別是在博士修業期間，當我面臨人生中最低潮的那二年，恩師

對我所展現的寬容與支持，心中的感謝絕非筆墨所能形容的。所以恩師所給予我

的指導，絕非僅是這本博士論文而已，而我相信，在未來的道路上，不論是在學

界或是業界，定會深深的影響著我的。

而在我的博士論文口試期間，非常感謝 孫春在教授、 袁賢銘教授及 楊

維邦教授能不厭其煩在學生博士論文計畫、校內及校外口試中，從不同的角度及

觀點，給予指導及提醒；而在校外口試中，亦要感謝針對目前相關研究及產業應

用面上，給予許多包含博士論文本身及未來研究發展方向建議的清華大學 陳良

弼教授、成功大學 郭耀煌教授、台灣大學 陳銘憲教授及高雄大學 洪宗貝教

授。由於他們的指導，才能使這篇論文更臻完整。

從進入交大到現在已經快六個年頭了，知識工程實驗室一直是我與其他研究

夥伴們共同生活的地方，從資格考試前挑燈夜戰、論文投稿期限前的秉燈夜書到

論文校外口試前的最後準備，一幕幕的記憶晃如昨日般清晰。今天我的畢業，不

代表結束，後續的研究仍需仰賴實驗室夥伴們持續不斷的互相扶持及共同努力，

加油！

相較於其他博士班學生而言，我的學習歷程有著很大的不同，而我的家人們，

所給我的支持與鼓勵，無疑是最大的原動力，而其中最要感謝的就是我的父母親，

對於我的母親而言，從來沒有希望自己的兒子能念到多高的學歷，而是一直注重

 vi

我的品德教育，在她嚴厲管教的背後，總是不吝給我慈母的關懷，如果沒有她無

私無我的關懷與支持，這本博士論文是不可能完稿付梓的，謝謝您，我的母親。

今天我取得博士學位，最高興的應該是我的爸爸了吧，我一生中最大的遺憾，

就是未能在父親辭世前，親眼看到我拿到博士學位的樣子，求學的路，我一直走

的很辛苦，在高職階段，曾想放棄自己，是父親苦口婆心的勸我回頭，我永遠無

法忘記父親在花蓮車站前，等我回家的身影。雖然因為父親的病，而使得博士修

業的時程有所延遲，但就我而言，沒有比陪伴父親更重要的事呀。雖然父親無法

看到我現在的成就，但是我相信，他仍在我的身旁，無時無刻的陪伴著我、鼓勵

著我。

至於我的太太 姿婷，自從嫁給我後，一直克盡妻職，將我的生活起居及一

家大小照顧的妥妥當當，讓我能無後顧之憂的努力於學業及事業之上，今天拿到

學位的小小榮耀，當然也要跟老婆大人一起分享。

要感謝的人很多，無法一一詳述，對於所有曾經幫助及支持過我的人，在此

致上最誠摯的謝意。

 vii

Contents

Abstract (In Chinese) .. i

Abstract (In English)... iii

Acknowledgement .. v

List of Figures.. ix

List of Tables ... xi

List of Algorithms.. xiv

Chapter 1 Introduction ... 16

1.1 Motivation .. 16

1.2 Contributions .. 26

1.3 Reader’s Guide ... 27

Chapter 2 Related Review... 28

2.1 Data Warehousing... 28

2.2 Bitmap Indexing methods of Data Warehousing.. 32

2.3 Feature Selection and Rough Set... 35

Chapter 3 Simple Bit-wise Indexing Method ... 37

3.1 General Assumptions and Notations for Simple BWI Method 37

3.2 The Indexing Phase of Simple BWI Method ... 40

3.3 The Matching Phase of Simple BWI Method .. 48

3.4 Analysis and Experiments of Simple BWI Method 55

Chapter 4 Advanced Bit-wise Indexing Method .. 61

4.1 Encapsulated Bit-wise Indexing Method ... 61

4.2 Compacted Bit-wise Indexing Method .. 79

Chapter 5 Using BWI indexing in an Intelligent Manufacturing Defect

 viii

Detection Method for the Time Issue .. 102

5.1 Problem Description ... 102

5.2 Problem Definition of MDDP-t... 105

5.3 Genetic Algorithm for MDDP-t..117

5.4 Experiments for MDDP-t.. 124

Chapter 6 Using BWI indexing in Intrusion Detection System 129

6.1 Problem Description ... 129

6.2 The Representation of Intrusion Behavior ... 132

6.3 Architecture of BIPAM ... 134

Chapter 7 Using BWI indexing in Feature Selection Method for Knowledge

Acquisition ... 144

7.1 Problem Description ... 144

7.2 The proposed bitmap-based feature selection method.............................. 146

7.3 Complexity Analysis and Experiments.. 175

Chapter 8 Using BWI Indexing in Semiconductor Manufacturing Defect

Detection Systems .. 184

8.1 Problem Description ... 185

8.2 DM Project for Yield Enhancement... 186

8.3 Evaluation Result for the Yield Enhancement DM Project....................... 194

8.4 Intelligent Yield Enhancement System for Semiconductor

Manufacturing .. 204

Chapter 9 Conclusions and Future Work... 220

References……... 223

Index……….. 234

 ix

List of Figures

Figure 2.1: Architecture of a typical data warehousing system.....................................29

Figure 2.2. Architecture of a data warehousing system with distributed components....30

Figure 2.3: An example of a manufacturing star schema in a data warehouse.32

Figure 2.4: An example of Bitmap indexes ..34

Figure 3.1: Simple BWI indexing method v. s. Bitmap indexing method58

Figure 3.2: Speed-up of parallel BWI indexing on two processors machine.60

Figure 3.3: Speed-up of parallel BWI indexing on four processor machine.60

Figure 4.1: An example of Flat target table T ...65

Figure 5.1: Products processed by machines m1,1 and m1,2.. 110

Figure 5.2: The regression lines for (a) mi,j and (b) mi,k .. 113

Figure 5.3: The machine-behavior vectors of machine cluster si 115

Figure 5.4: Experimental Results for Various Population Sizes.................................. 125

Figure 5.5: Average root-cause rankings from the training datasets by the top 5

functions for various standard deviation values .. 126

Figure 6.1: The architecture of the BIPAM .. 135

Figure 6.2: The detailed process of Phase 1 ... 135

Figure 6.3: The detailed process of phase 2 ... 140

Figure 7.1: The flowchart of the proposed feature selection approach........................ 148

Figure 7.2: The structure of a cleansing tree .. 157

Figure 7.3: Cleansing tree with feature spanned order <C1, C2, C3, C4>..................... 161

Figure 7.4: The cleansing tree generated on the new order <C4, C2, C3, C1> 164

Figure 8.1: the flowchart of data preparation procedure... 190

 x

Figure 8.2: the flowchart of data mining procedure.. 191

Figure 8.3: The Processing Time of all computing solutions 202

Figure 8.4: The architecture of information collection part in MDDS Knowledge

Platform... 208

Figure 8.5: The architecture of Learning and Analyzing part in MDDS Knowledge

Platform... 211

Figure 8.6: The architecture of Application part in MDDS Knowledge Platform 216

 xi

List of Tables

Table 3.1: An example of a flat target table T in a data warehouse that transforms from

a data schema...40

Table 3.2: The TBWI of five records in Figure 2.4(a) ...48

Table 3.3: Two relevant records and their similarities ..55

Table 4.1: The TBWI of 23 records in Figure 4.2..71

Table 4.2: Five relevant records and their similarities ..78

Table 4.3: The M
BWIT of records in Figure 4.2..84

Table 4.4: The
1DP

BWIT of records with cli=1 in of M
BWIT ..84

Table 4.5: The
2DP

BWIT of records with cli=1 in of M
BWIT ..84

Table 4.6: The
3DP

BWIT of records with cli=1 in of M
BWIT ..85

Table 4.7: The
4DP

BWIT of records with cli=1 in of M
BWIT ..85

Table 4.8: The
5DP

BWIT of records with cli=1 in of M
BWIT ..85

Table 4.9: The
6DP

BWIT of records with cli=1 in of M
BWIT ..85

Table 4.10: The
7DP

BWIT of records with cli=1 in of M
BWIT ..86

Table 4.11: The
8DP

BWIT of records with cli=1 in of M
BWIT ..86

Table 4.12: The
9DP

BWIT of records with cli=1 in of M
BWIT ..86

Table 4.13: The
10DP

BWIT of records with cli=1 in of M
BWIT ..86

Table 4.14: The
11DP

BWIT of records with cli=1 in of M
BWIT ..86

 xii

Table 4.15: The
12DP

BWIT of records with cli=1 in of M
BWIT ..87

Table 4.16: The
13DP

BWIT of records with cli=1 in of M
BWIT ..87

Table 4.17: The
14DP

BWIT of records with cli=1 in of M
BWIT ..87

Table 4.18: Two relevant records and their similarities ..99

Table 5.1: An example of products passing through two machine clusters 108

Table 5.2: Weight-learning function example for three MDDP-t instances 120

Table 5.3: Training Datasets for the GA approach.. 124

Table 5.4: Test Datasets... 125

Table 5.5: Actual root-cause rankings for the test datasets ... 127

Table 6.1: The packet log of Network Activities Filtering Module 137

Table 6.2: The packet log table .. 138

Table 6.3: The service-user activity event tables .. 139

Table 7.1: An example of a target table.. 149

Table 7.2: The record vectors and class vectors from Table 7.1.................................. 151

Table 7.3: Calculating the weight of each feature... 163

Table 7.4: The cleansed feature matrix of Table 7.2 ... 165

Table 7.5: The 2-feature matrix M2 found by the Calculating next matrix algorithm .. 173

Table 7.6: The time and space complexities of the Find class vector algorithm 176

Table 7.7: The time and space complexities of the Create cleansing tree algorithm ... 176

Table 7.8: The time and space complexities of the Find span order algorithm 177

Table 7.9: The time and space complexities of the Cleansing feature matrix algorithm177

Table 7.10: The time and space complexities of the Selecting feature set algorithm ... 177

Table 7.11: The time and space complexities of the Calculating next matrix algorithm178

Table 7.12: The datasets used in the experiments... 179

 xiii

Table 7.13: The selected feature sets found by the two approaches. 180

Table 7.14: The number of the selected features found by the two approaches. 181

Table 7.15: The CPU times needed by the two approaches .. 181

Table 8.1: The evaluation cases in TSMC data mining project 198

Table 8.2: The performance evaluation of all TSMC cases in this data mining project200

 xiv

List of Algorithms

Algorithm 3.1 - Bit-wise index creation algorithm :...46

Algorithm 3.2 - Bit-wise index matrix creation algorithm :..47

Algorithm 3.3 - Similar-records-seeking algorithm :..49

Algorithm 3.4 - Search-relevant-records algorithm : ...50

Algorithm 3.5 - Similarity-mapping-list creation algorithm :.......................................53

Algorithm 3.6 - Similarity-computing algorithm :..53

Algorithm 4.1 - Encapsulated level calculating Algorithm – Square Root :..................64

Algorithm 4.2 - Encapsulated BWI bit-wise indexes creating Algorithm :68

Algorithm 4.3 - Encapsulated BWI Matrix of bit-wise indexes creating Algorithm :.....69

Algorithm 4.4 - Encapsulated BWI Similar-records-seeking algorithm :......................72

Algorithm 4.5 - Encapsulated BWI Search-relevant-records algorithm :......................73

Algorithm 4.6 - Encapsulated BWI Similarity-mapping-list creation algorithm :75

Algorithm 4.7 - Encapsulated BWI Similarity-computing algorithm :75

Algorithm 4.8 - Compacted BWI bit-wise indexes creating Algorithm :81

Algorithm 4.9 - Compacted BWI Matrix of bit-wise indexes creating Algorithm :82

Algorithm 4.10 - Compacted BWI Similar-records-seeking algorithm :88

Algorithm 4.11 - Compacted BWI Search-relevant-records-main-matrix algorithm : ...90

Algorithm 4.12 - Compacted BWI search-relevant-records-drill-packet algorithm :91

Algorithm 4.13 - Compacted BWI Concatenate-rdi-result algorithm :91

Algorithm 4.14 - Compacted BWI Similarity-mapping-list creation algorithm:............93

Algorithm 4.15 - Compacted BWI Similarity-computing algorithm:94

Algorithm 5.1 - MDDP-t GA algorithm ... 123

 xv

Algorithm 7.1 – Find class vector algorithm : ... 152

Algorithm 7.2 – Create cleansing tree algorithm : ... 158

Algorithm 7.3 – Find span order algorithm :... 162

Algorithm 7.4 – Cleansing feature matrix algorithm : ... 164

Algorithm 7.5 – Selecting feature set algorithm :... 170

Algorithm 7.6 - Calculating next matrix algorithm :.. 171

Algorithm 8.1 - Information_Collection algorithm .. 206

Algorithm 8.2 - Learning_and_Analysis algorithm.. 210

Algorithm 8.3 - Application algorithm .. 214

 16

Chapter 1
Introduction

1.1 Motivation

Recently, the fields of Knowledge System and Data Mining have rapidly grown

years, since IT and AI technologies have become widely discussed and researched.

Related research, applications, and tool development in business, science, government,

and academia are becoming increasingly popular. Especially in some enterprises, KDD

systems are applied to discover useful business intelligence and customer behavior

patterns via some machine learning and data mining technologies. However, since the

amount of data is rapidly increasing in such enterprises, efficiently discovering the

useful knowledge becomes a significant issue. In database-related fields, indexing is

adopted to provide a global distribution and storage/location information for efficiently

retrieving the individual item (record) within a huge dataset (table). This approach can

clearly help users to quickly search a dedicated record (set) in a database for the given

query conditions, but may not be appropriate for retrieving huge numbers of records,

such as OLAP queries in data warehousing and knowledge system analysis

requirements, owing to the indexing characteristics. Therefore, the bitmap indexing

 17

method [54][74] became popular in data warehousing to obtain the efficient OLAP

query requirements. In some previous cases [11][13], the bitmap indexing method has

been applied to a case-based knowledge system to accelerate similar-case retrieval and

similarity-based computing procedures, but it is not suitable in this domain due to the

lack of similarity retrieving ability of such method. The major issue in constructing an

effective knowledge system is to propose a flexible and efficient knowledge learning

procedure, which can transform the information in the given data set into a

well-defined knowledge structure in the knowledge base. Obviously, the data

management abilities, including data structure, indexing, processing and manipulation

abilities, become very important for the underlying data repositories. Generally, the

indexing mechanism for a knowledge system, particularly in the learning procedure,

should provide an encoding and representation method to compare and analyze the

individuals (records) of data set efficiently. Additionally, the knowledge base indexing

method should not only concentrate on the efficient matching query ability, but also

provide the similarity analyzing and calculating abilities. Due to immediacy and

performance issues, choosing an appropriate data indexing method is an important

issue, particularly with large amounts of data. The data representation not only

influences the performance of the knowledge system, but also affects the efficiency

and accuracy of the underlying knowledge base. In this thesis, we will propose an

 18

efficient (using all bit operations), extensive (accepting both symbolic and continuous

data formats) and flexible (with similar retrieving ability) indexing technology, called

Bit-wise Indexing Technology. Three indexing methods are proposed, the Simple

Bit-wise Indexing Method and two advanced indexing methods, including the

Encapsulated and Compacted Bit-wise Indexing Methods. Additionally, the

corresponding indexing, matching algorithms for such indexing models are also

proposed. The proposed bit-wise indexing methods not only accelerate the analyzing

performance of knowledge system, but also can be applied in a traditional database

system for efficiently similarity-based retrieving. In order to demonstrate the suitability,

flexibility and efficiency of the proposed indexing methods, we will try to apply the

proposed method in four knowledge system applications, including reinforcement

learning, pattern matching, supervised learning and unsupervised-learning data mining

applications.

At first, we will propose a novel, efficient and parallelized indexing method,

called the Simple Bit-wise Indexing Method, to reduce the data processing and query

overhead of some knowledge discovery systems. Bit-wise indexing is similar to bitmap

indexing method except that the matrix of bit-wise or bitmap indices, which is

generated from the related table of the data resource of KDD systems via bit-wise

indexes creation algorithm, is partitioned horizontally. Additionally, bit-wise indexing

 19

has more powerful similarity retrieving and parallelization capabilities than bitmap

indexing. Since the bit length of each attribute in the simple bit-wise indexing or

bitmap indexing method depends on the number of distinct attribute values of it, the

problem of long bit-wise strings arises when the number of distinct values is huge. For

instance), in a huge data warehouse, there may exist millions customer records,

meaning that some attributes may have million of distinct values. When these

attributes are encoded into the bit strings of the bitmap or Simple Bit-wise Indexing

Method, one million bits per record are required, of which only one is set to 1.

Although many compression technologies have been proposed for such a problem,

they still require additional computational time. Therefore, this study presents two

advanced bit-wise indexing methods, including Encapsulation Bit-wise Indexing and

Compacted Bit-wise Indexing methods. Encapsulation Bit-wise Indexing Method, is

used to solve the problem of long bit-wise lengths. Encapsulation Bit-wise Indexing

Method partitions the longer bit strings into at least two levels to preserve disk space

and memory. Additionally, the computation time of OLAP queries is reduced since the

bit length of each record is decreased. For example, the dual-level encapsulation

bit-wise indexing method decreases bit length of such attributes from one million to

2,000 bits.

 20

Applying the Encapsulation Bit-wise Indexing Method to the data resource of

KDD system can significantly reduce the indexing storage and improve query

performance. However, the total number of bit-wise index string that needs to be

compared via AND bit-wise operation is still reminded. In order to accelerate the

processing time of OLAP queries, another indexing model, called Compacted Bit-wise

Indexing Method, is proposed. As we know, the attribute is the basic information of all

data queries. Additionally, the concept hierarchy of each attribute is an important issue

of roll-up and drill-down operations of the data warehouse. In the Compacted Bit-wise

Indexing Method, the significance of attributes, including attribute weight and concept

hierarchy, need to be evaluated via some statistical methods. Compacted Bit-wise

Indexing Method compacts the bit strings of higher ranking attributes by at least two

levels, including high-level concept hierarchy and the others, the high-level concept

attributes is kept in the first level bit-wise indexes matrix, while the others are stored in

the second levels. Furthermore, the encapsulated bit-wise indexing method can also be

applied to further reduce the bit length. The processing time of queries can be hugely

reduced since the total bit length can be largely reduced (via encapsulated bit-wise

indexing method) and the irrelevant records can be filtered out (via the higher level

concept hierarchy of compacted bit-wise indexing method).

 21

The proposed bit-wise indexing methods are suitable for helping many knowledge

discovery systems in order to accelerate the processing performance. In the thesis, the

proposed methods is applied in four knowledge system applications, including

reinforcement learning, pattern matching, supervised learning and

unsupervised-learning data mining applications, to demonstrate the suitability,

flexibility and efficiency. The first application consisted of a reinforcement-learning

defect detection learning system for the time aspect in manufacturing domains. This

implementation employed the Sample Bit-Wise Indexing Method to encode the defect

status of manufacturing products and hence accelerate data preprocessing. Additionally,

a bit-based Genetic Algorithm is used to learn suitable weights for each computed

signature, since the chromosome and the corresponding GA operators are appropriate

for the bit operations of BWI indexing method. First, the manufacturing defect

detection problem, time aspect, for (MDDP-t) is formally modeled and defined. A

root-cause evaluation function (RCEF), which is a linear combination of three probing

functions defined independently according to the experiences of domain experts, is

proposed to evaluate whether a specific machine is the root cause of a time problem.

The probing function weights are determined separately. Additionally, this study

presents a genetic algorithm (GA) with encoding and GA operations appropriate for

MDDP-t weight-learning problems to obtain suitable weights for the probing functions.

 22

The training examples include MDDP-t instances with known root causes provided by

the Taiwan Semiconductor Manufacturing Company [TSMC]). Experimental results

show that the proposed method can ensure efficiency and accuracy.

The second application introduces a pattern-learning network intrusion detection

system. This implementation uses the Encapsulated Bit-wise Indexing Method to

encode the networking activity with minimal monitoring time window in order to

accelerate the data preparation procedure. Moreover, a bit-based intrusion Pattern

Matching mechanism is proposed to efficiently learn, roll-up, drill-down and combine

the intrusion pattern with different time-windows/services/ports combinations. In

general, the user’s pattern can be transformed into a sequence of network activities that

are extracted from the related network packets. These kinds of network packets can be

collected and then be transformed into some sequence of bit-wise strings showing the

intrusion patterns. The Network Activities Analyzing Phase can first filter out the raw

network packets and log necessary features (Source IP, Destination IP, Source port,

Destination port) in a small time window to perform data sampling and data cleaning

and to reduce the amount of data. After that, with combined users and services

information, the sufficient service-user activity events are found and used by the

second phase. The Features/Pattern Mining Phase transforms the sufficient service-user

activity events to some bit-wise strings and next merges the bit-wise strings into some

 23

other bit-wise strings with the same source IP. After gathering those bit-wise strings,

the Pattern Mining Module and Pattern Merging Module can perform some data

mining processes to find possible intrusion patterns that can be the source of the

candidates of intrusion patterns for future intrusion detection systems. Finally, the

pattern with bit-wise indexing representation can be easily transformed into a

corresponding Finite State Machine for efficient real-time tracing and monitoring of

networking activities.

The third application is a supervised-learning data-driven feature selection

method for CBR systems. As we know, the critical issue in case-based reasoning is to

select the correct and enough features to represent a case. However, this task is

difficult to carry out since such knowledge is often exhaustively captured and cannot

be represented successfully. A new, efficient feature selection method is proposed here.

The bit-wise-based feature selection method is proposed for discovering the optimal

feature sets for decision–making problems. And the corresponding indexing and

selecting algorithms for proposed feature selection method are also proposed. This

implementation applies the Feature Selection Method using Rough Set Theory, which

is appropriate for finding the optima solution from a given data set, except for the long

processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to

encode the feature and class relationships to reduce the processing time of feature

 24

selection procedure. Finally, some experiments and comparisons are given and the

result shows the efficiency and accuracy of our proposed methods.

The last application combines the bit-wise indexing methods (including Sample,

Encapsulated and Compact Bit-wise Indexing Methods), Data Mining Technologies,

and Statistic Methods to construct an unsupervised-learning data-driven data mining

system for an engineering data analysis (EDA) a production-level defect detection

system. With large quantities of semiconductor engineering data stored in databases

and versatile analytical charting and reporting in production and development, IT

systems in most semiconductor manufacturing companies permit users to access and

analyze data quickly and conveniently. Making the semiconductor process more

sophisticated means that more data must be analyzed and troubleshooting, especially in

yield enhancement, becomes more difficult,. Currently, information summarized from

these systems is too detailed to be easily assimilated by engineers. Engineers need to

daily review thousands of charts and statistical results to undertake trouble shooting

jobs. Using simple statistics, these charts and statistics are listed by these IT systems in

an order of priority for review. Engineers frequently catch the real root cause of a

problem only after reviewing many charts and statistical results. Those simple statistics

do not show the complicated intersectional effect resulting from nonlinear interaction

among many factors reliably and quickly. This application, describes the experiences

 25

that applied such hybrid data mining solutions for low-yield root cause detection

situation in the Taiwan Semiconductor Manufacturing Company Ltd. (TSMC).

Typically, the data mining solutions have high time and space complexities, but failure

to discover the low-yield situation quickly causes significant damage. In this

application, the BWI indexing method was applied to the data mining application to

accelerate the processing time. As expected, the BWI-indexing-based data mining

solution saved over 90% of processing time compared with conventional data mining

solutions. The accuracy and performance evaluations for 42 real cases from TSMC are

made and reviewed herein. According to the evaluation results, the data mining engine

using bit-wise indexing uses only 10% of processing time rather than the in-memory

process without the BWI indexing method. Additionally, some critical issues about

using a data mining solution to detect semiconductor manufacturing defects are

discussed and reviewed herein. Finally, the system framework of the next-generation

data mining solution in the future is proposed to provide a knowledgeable, reasonable,

reliable and flexible data mining solution in semiconductor manufacturing.

 26

1.2 Contributions

1. Three indexing models, called Simple bit-wise indexing method, Encapsulation

bit-wise indexing method and Compacted bit-wise indexing method, are proposed,

along with indexing and matching algorithms corresponding to each proposed

indexing model.

2. A manufacturing defect detection system for the time aspect problem using the

Sample Bit-wise Indexing Method and a Genetic Algorithm are proposed to

improve the encoding and computing performance.

3. A network user behavior pattern matching module using Encapsulated Bit-wise

Indexing Method of an Internet intrusion detection system is proposed to enhance

the usability and flexibility of IDS systems.

4. A data-driven feature selection method using Compact Bit-wise Indexing Method

and Rough Set Theory for the CBR system is applied to improve the performance

of the feature selection procedure.

5. A data mining module of a defect detection mechanism in a semiconductor

manufacturing system using hybrid bit-wise indexing methods is proposed to

improve the performance of the data mining and defect detection procedure.

Additionally, the system framework of the next-generation data mining solution is

also given.

 27

1.3 Reader’s Guide

The remaining parts of this thesis are organized as follows. The reviews of the

relative works are given in Chapter 2. The Simple Bit-wise Indexing Method is

proposed in Chapter 3. The advanced indexing methods, including Encapsulation and

Compacted Bit-wise Indexing Method are introduced in Chapter 4. An Intelligent

Manufacturing Defect Detection Method for the time issue using Sample BWI

indexing method is given in Chapter 5 and a network user pattern matching method of

an Internet intrusion detection system using Encapsulated BWI method is discussed in

Chapter 6. In Chapter 7, a data-driven feature selection method using Compact BWI

indexing method and Rough Set Theory of CBR system is proposed and a data mining

module using hybrid BWI indexing methods for low-yield defect detection in a

semiconductor manufacturing system is briefly reviewed in Chapter 8. The conclusion

and future works are finally given in Chapter 9.

 28

Chapter 2
Related Review

2.1 Data Warehousing

The concept of data warehousing was first proposed by Inmon in 1993. A data

warehouse contains information collected from individual data source and integrated

into a common repository for efficient querying and analysis. When the data sources

are distributed over several locations, a data warehouse is responsible for collecting the

necessary data and saving it in appropriate forms. The architecture of a typical

data-warehousing system is shown in Figure 2.1.

There are three major components in it: the data collector, the data warehouse,

and the OLAP and query processor. The data collector is responsible for collecting

necessary information and transaction messages from individual data source through

communication networks to meet the requirements of end users and the views defined

in the data warehouse. The data warehouse receives data from the data collector, filters

them, and stores them in its own database. The OLAP and query processor provide all

necessary information for user queries and OLAP requirements. The data collector or

 29

OLAP and query processors may also be divided into several subparts, each located

near a data source.

Figure 2.1: Architecture of a typical data warehousing system

Data Source 1 Data Source 2 Data Source n

Data
Warehouse

Data
Collector

OLAP & Query Processor

...

Users

 30

Figure 2.2. Architecture of a data warehousing system with distributed
components

A data warehouse usually contains a large number of views in order to speed up

query processing and avoid large amounts of network transmission. Views can be

defined by query languages and provide particular formats of query results to users.

Data warehousing systems use two kinds of views: materialized views and virtual

views. A materialized view retrieves all necessary information from data sources

according to the view definition and physically stores the extracted data in a data

warehouse. A virtual view retrieves the information from other materialized views

using the query language whenever the view contents are required. Each kind of view

Data Source 1 Data Source 2 Data Source n

Data
Warehouse

Data
Collector 2

OLAP & Query
Processor 1

...

Users
Group 1

Data
Collector 1

Data
Collector n

OLAP & Query
Processor 2

OLAP & Query
Processor m...

Users
Group 1

Users
Group 1

 31

has its advantages and disadvantages. One of the primary goals of a data warehousing

system is to support on-line analytical processing, call OLAP, and help in decision

making. For this reason, data warehouses must maintain appropriate views to ensure

that OLAPs are efficient.

Data warehouses are often built to support on-line analytical processing. On the

other hand, the OLAP is a technology and the DW is an architectural infrastructure.

Typical OLAP operation includes rolling-up (increasing the level of aggregation) and

drilling-down (decreasing the level of aggregation or increasing detail). The star

schema is the most popular data model of data warehousing. The manufacturing star

schema example of a data warehouse is shown in Figure 2.3. In this figure, there are

four dimension tables, including Tool, Product, Recipe and Time tables, and an

Ordering fact table. The relationships between fact table and those dimension tables are

kept thru relation keys.

Since OLAP queries of data warehouse are usually complex, the performance of

OLAP queries is a critical issue in the data warehouse. Therefore, the indexing

technology is often embedded in the data warehouse environment [54][74][75].

 32

Manufacturing
Fact

Recipe Dimension

Time Dimension

Recipe_name

Recipe_Parameters

Date/Time

Quarter

 Year

Product_id

Tool_id

Recipe_id

Recipe_id

Tool
Dimension

Tool_id

Tool_name

Wafer Amount Month

Product
Dimension

Product_id

Product_name

Date/Time

Figure 2.3: An example of a manufacturing star schema in a data warehouse.

2.2 Bitmap Indexing methods of Data Warehousing

As mentioned above, the query processing is the critical issue in the data

warehouse environment. In recent years, many indexing technologies, such as B-tree,

k-d tree, R-tree, Value List and Bitmap indexing methods [54][74][75], have been

proposed in data warehouse system. The Bitmap is the most popular indexing method

in OLAP system since it was designed to search and analyze the data for the OLAP

queries efficiently. The basic idea of Bitmap indexing method is using a string of bits

which is called bitmap vector and formed by 1 or 0 to indicate whether the some

attributes are equal to a specific value or not [75]. A bit in the bit string maps the

position of a record in the table. If the content of the attribute is associated with a

 33

specific value, the bit is set as “1”. The Bitmap indexing method is illustrated in Figure

2.4

In Figure 2.4(a), there are three attributes in the table, including Tool_id, Name

and Location. The attribute values domain of Tool_id, Name and Location are {3210,

2688, 6150, 6210, 8850}, {AWOX01, AWOX02, AWOX03, AWOX04, AWOX05}

and {FAB 1, FAB 2, FAB 3}, respectively. It can be easily seen that the number of

distinct values of Tool_id, Name and Location are 5, 5 and 3, respectively. Therefore,

thirteen bitmap indexing vectors are generated as shown in Figure 2.4(b). Assume that

a query with conditions (Name = AWOX02 or Location = FAB 3) is required to

execute, the bitmap indexing vectors BAWOX02 and BFAB 3 are operated with operation

OR and then the result is { 0, 1, 0, 0, 1 }. Therefore, the records 2 and 4 are formed as

the result set of the query. In addition to the simple bitmap indexing method described

above, there are still some extension can be found in [74][75]. However, it seems that

Bitmap indexing method is more efficient than other indexing methods since the

method had been widely used in the commercial products of DWs.

 34

 Tool id Name Location

1 3210 AWOX01 FAB 1

2 3688 AWOX02 FAB 1

3 6150 AWOX03 FAB 2

4 6210 AWOX04 FAB 2

5 8850 AWOX05 FAB 3

(a) Tool dimension table

B3210 B3688 B6150 B6210 B8850 BAWOX01 BAWOX02 BAWOX03 BAWOX04 BAWOX05 BFAB 1 BFAB 2 BFAB 3

1 0 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 1

(b) Bitmap indexes for (a)

Figure 2.4: An example of Bitmap indexes

Since the bitmap indexing method seems to be able to be directly applied to

indexing and retrieval phrases in the data warehousing. However, there are still some

problems should be solved:

1) When the number of records in the data warehouse is large, the bits in the bitmap

indexing vectors will be extended hugely. Also, the number of bitmap indexing

vectors is dependent on the summary of distinct value for attributes. If the

number of distinct values for some attributes is large, the number of bitmap

indexing vectors is also large. Although many solutions are proposed to solve

these problems, the extra cost of computing also needs to be spent.

 35

2) In the data warehousing, the ability of similarity retrieving may need to be

considered. Some extra computation of the similarity between the records is

required.

In other words, it is not quite suitable to straightly apply the bitmap indexing

method to the data warehousing directly. It needs some adaptation. We will discuss the

details of our new indexing technology in following two chapters.

2.3 Feature Selection and Rough Set

Feature selection is about finding useful (relevant) features to describe an

application domain [7][11][14][15][19][24][39][42][47][48][79]. The problem of

feature selection can formally be defined as selecting minimum features M’ from

original M features where M’≦ M such that the class distribution of M’ features is as

similar as possible to M features. Generally speaking, the function of feature selection

is divided into three parts: (1) simplifying data description, (2) reducing the task of

data collection, and (3) improving the quality of problem solving. The benefits of

having a simple representation are abundant such as easier understanding of problems,

and better and faster decision making. In the case of data collection, having less

features means that less data should be collected. As we know, collecting data is never

 36

an easy job in many applications because it could be time-consuming and costly.

Regarding the quality of problem solving, the more complex the problem is if it has

more features to be processed. It can be improved by filtering out the irrelevant

features which may confuse the original problem, and it will win the better

performance. There are many discussions about feature selection, and many existing

methods to assist it, such as GA technology [60], entropy measure[31], and rough set

theory [78].

Next, the rough set theory is briefly reviewed. The rough set theory, proposed by

Pawlak in 1982 [55], can serve as a new mathematical tool for dealing with data

classification problems [36][56][76][77][78][79]. It adopts the concept of equivalence

classes to partition training instances according to some criteria. Two kinds of

partitions are formed in the mining process: lower approximations and upper

approximations. Rough sets can also be used for feature reduction. The features that do

not contribute to the classification of the given training data are removed. The concepts

of equivalence classes and approximations are quite suitable to generate the bit-based

class vectors and record vectors, which can then be directly and efficiently transformed

to the bit-wise indexing matrixes in CBR system. This work thus adopts these concepts

to solve the feature selection problem.

 37

Chapter 3
Simple Bit-wise Indexing Method

In this chapter, the Simple bit-wise indexing methods will be introduced. At first,

the general assumptions and notations for BWI Technology will be given. After that,

the definitions and algorithms of Simple bit-wise indexing method are proposed.

3.1 General Assumptions and Notations for Simple BWI Method

In the section, the basic assumptions and nations are illustrated in detail. As

mentioned above, the bit length of each attribute in the bit-wise indexing or bitmap

indexing method depends on the number of its distinct values. This implies that the

problem of long bit-wise string arises when the number of distinct values is large.

Although there are many compression technologies had been proposed to solve such

problem, the extra computational time is usually needed. Therefore, the condensable

bit-wise indexing method is proposed to solve the long bit-wise length problem. Using

this method, only the attributes with longer bit lengths are partitioned into two or more

levels for saving the storage of disk and memory both. Also, computation time of

 38

OLAP queries is also reduced since the bit length of each record is shortened.

In order to answer the user’s query statements, we search records in the target

table of data warehousing. In the beginning, we transform the data schema of data

warehousing to a single target table, called flat target table.

Since the data store in data warehouse is updated periodically, maybe a day, a

week, or a longer period, the indexing phase will be executed in initialization and

maintenance stages of data warehousing. The querying phase is called during the

running time of queries for the current users.

Without loss of generality, we assume that the data schema of the warehouse

consists n fact table and m dimension tables. Definition 3.1 defines a flat target table

that was transformed from the data schema of data warehouse.

DEFINITION 3.1 : Flat target table

The flat target table T is created by joining all non-redundancy fields of the fact

tables and all dimension tables via some SQL statements

EXAMPLE 3.1：

The example of data schema is shown in Figure 2.3. There are one fact table,

 39

Manufacturing fact and four dimension tables, including Tool, Product, Recipe, and

Time dimension tables of a manufacturing company. The attribute set of Tool, Product,

Recipe, and Time dimensions are {Tool_id ,Tool_name}, {Product_id, Product_name},

{Recipe_id, Recipe_name, Recipe_parameters}, and {Date/Time, Month, Quarter,

Year}, respectively. The attribute set of fact table f is {Tool_id, Product_id, Recipe_id,

Date/Time, Wafer amount}. Moreover, the referential relationships between fact table

and the dimensions are {Tool.Tool_id=Manufacturing.Tool_id},

{Product.Product_id=Manufacturing.Product_id},

R3={Recipe.Recipe_id=Manufacturing.Recipe_id}, and

R4={Time.Date/Time=Manufacturing.Date/Time}. Therefore, the SQL statement of flat

target table T can be generate as follows:

Select Tool_id, Tool_name, Product_id, Product_name, Recipe_id, Recipe_name,

Suppiler.category, Year, Quarter, Month, Date/Time, Wafer amount

Into TargetTable

From Manufacturing, Tool, Product, Recipe, Time

Where Tool.Tool_id = Manufacturing.Tool_id

 and Product.Product_id = Manufacturing.Product_id

 and Recipe.Recipe_id = Manufacturing.Recipe_id

 40

 and Time.Date/Time = Manufacturing.Date/Time.

After above SQL statement is executed, the flat target table TargetTable is thus

generated and the structure of this table is shown in Table 3.1.

Table 3.1: An example of a flat target table T in a data warehouse that transforms
from a data schema

Tool_id Tool_name Product_id Product_name Suppiler_id Recipe_name

Recipe_parameters Time/Date Month Quarter Year Wafer Amount

 After the flat target table is generated, our indexing technologies will focus

on this target table in the following sections.

3.2 The Indexing Phase of Simple BWI Method

Assume a set of records R is stored in a table T for a specific domain, denoted

DOM. The i-th record in R is represented by Ri. Also assume all the records in R can be

abstracted by a set of attributes A, denoted A = <A1, A2, …, Ar>, where r is the number

of attributes. The value of an attribute Ak for a record Rj is denoted Vk(j), which can not

 41

be null. The attribute values of a record Rj can then be represented as V(j) = <V1(j),

V2(j),…, Vr(j)>. The set of possible values for attribute Ai, called attribute value

domain, is denoted Vi = <Vi1, Vi2, …, Viα(i)>, where α(i) is the number of values for Ai,

and Vij is the j-th possible attribute value of Ai.

In a data warehousing system, a set of records is stored in the warehouse for

serving a new coming query. A matching function is used to evaluate records based on

a weighted sum of matched attributes with a new coming query condition. Attribute

value can thus be used for indexing a record. An index of a record using Simple

Bit-wise Indexing Method can be formally defined as follows.

DEFINITION 3.2 - Record Index :

The index INDk of a record Rk in a table T for domain DOM is defined as:

INDk = {A1 = V1(k), A2 = V2(k), …, Ar = Vr(k)}.

A record in table T can be formally defined as follows.

DEFINITION 3.3 – Record :

A record Rk in a table T for domain DOM is a pair (INDk, rvk), where rvk is the

actual contents of record Rk and Rk∈R.

 42

In the most indexing methods of data warehousing, the numeric-type data are

usually treated as the computational attributes and thus will not be included in the

indexes. However, in some real applications, the numeric attributes also need to be

indexed for further investigation. For example, in the data warehouse of manufacturing

domain, the numeric recipes are the important factors for processing control and defect

detection. The same situation will happen in the data/time-type attributes. The basic

operations and notations of future definitions are shown as follows:

OPERATION 3. 1 - Type, Year, Month, Day, Hour, Minute and Second

Operations :

 Type(Ai)=
⎪
⎩

⎪
⎨

⎧

S

D

N

A

A

i

i

Otherwise,

type,-date/time is

,type-numeric is

 Year(Vi)=The number of year in x for Type(Ai)=D; otherwise, return Null.

 Month(Vi)=The number of month in x for Type(Ai)=D; otherwise, return Null.

 Day(Vi)=The number of day in x for Type(Ai)=D; otherwise, return Null.

 Hour(Vi)=The number of hour in x for Type(Ai)=D; otherwise, return Null.

 Minute(Vi)=The number of minute in x for Type(Ai)=D; otherwise, return Null.

 Second(Vi)=The number of second in x for Type(Ai)=D; otherwise, return Null.

 43

OPERATION 3.2 - Minima Element (MNE) Operation :

 MNE(Ai)=
⎪
⎩

⎪
⎨

⎧
=
=

Null

A

A

DA

NA

i

i

i

i

in date/timeearliest the

in number smallest the

Otherwise,

,)Type(If

,)Type(If

OPERATION 3.3 : Maxima Element (MXE) Operations :

 MXE(Ai)=
⎪
⎩

⎪
⎨

⎧
=
=

Null

A

A

DA

NA

i

i

i

i

in date/timelatest the

in number largest the

Otherwise,

,)Type(If

,)Type(If

A bit-wise indexing vector used in the proposed indexing method is defined as

follows.

DEFINITION 3.4 : Bit-wise indexing vector of an attribute where Type(Ai)=S :

The bit-wise indexing vector Bi of the i-th attribute for record Rk is a bit string

Bi=bi1bi2…biα(i), where bij=1 if Vi(k)=Vij and bij=0 otherwise.

EXAMPLE 3.2 :

Assume that the domain of attribute Name is <AWOX01, AWOX02, AWOX03,

AWOX04, AWOX05> and the attribute value of Name in the second record is

AWOX01. According to the Definition 3.4, bit-wise indexing method uses the 5 bits as

the bit vector of the index in which every bit represents a specific value of the index

 44

attribute Name.

B2:

AWOX01 AWOX02 AWOX03 AWOX04 AWOX05

b11 b12 b13 b14 b15

Therefore, we get B2= b21b22b23b24b25="10000"

DEFINITION 3.5 - Bit-wise indexing vector of an attribute where Type(Ai)≠S :

The bit-wise indexing vector Bi of the i-th attribute for record Rk is a bit string

Bi=bi1bi2…))((ii AMXEifb , where bij=1 if fi(Vi(k))=j and bij=0 otherwise, where the function

fi is given via user for clustering the numeric attribute Ai and)())((iAMXEf ii α≤ .

EXAMPLE 3.3 :

Assume that the second attribute Recipe_degree is <10, 12, 14, 16, 18, 20, 22>

and the attribute value of Recipe_degree in the second record is 16. Also, the given

function f2 is given in following.

F2(Vi(k))=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=≤
=<≤
=<≤
=<

418)(

318)(16

216)(12

112)(

kV

kV

kV

kV

i

i

i

i

According to the Definition 3.5, bit-wise indexing method uses the 4 bits as the

bit vector of the index in which every bit represents a specific value of the index

 45

attribute Recipe_degree.

B2:

f2(Vi(k))=1 f 2(Vi(k))=2 f 2(Vi(k))=3 f 2(Vi(k))=4

0 0 1 0

Therefore, we get B2= b21b22b23b24="0010"

For the data-time type data, assume that the domain of attribute

Manufacturing_Date is <1992/01/02, 1992/10/01, 1993/10/10, 1994/01/22,

1992/06/07> and the attribute value of Manufacturing_Date in the second record is

1992/10/01. Also, the given function f2 is given in following.

F2(Vi(k))=
⎪
⎩

⎪
⎨

⎧

=
=
=

=
=
=

3

2

1

1994))((

1993))((

1992))((

kVYear

kVYear

kVYear

i

i

i

According to the Definition 3.5, bit-wise indexing method uses the 3 bits as the

bit vector of the index in which every bit represents a specific value of the index

attribute Manufacturing_Date.

B2:

f2(Vi(k))=1 f2(Vi(k))=2 f2(Vi(k))=3

1 0 0

Therefore, we get

B2= "100"

 46

DEFINITION 3.6 - Bit-wise indexing vector of a record :

The bit-wise indexing vector BWIk of a record Rk is the concatenation of the

bit-wise indexing vectors of all the attributes for record Rk. That is, BWIk=B1B2…Br,

where r is the number of attributes.

DEFINITION 3.7 - Matrix of bit-wise indexes for table T :

A matrix TBWI of bit-wise indexes for Table T is represented as

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

||

2

1

RBWI

BWI

BWI

M
, where

|R| is the number of records.

The bit-wise indexes for all saved records are generated by the following two

algorithms:

Algorithm 3.1 - Bit-wise index creation algorithm :

Input: A record Ri.

Output: A bit-wise index BWIi of Ri.

Step 1: Create a bit-wise vector of length r, where r is the number of attributes.

Step 2: Repeat the following sub-steps for each attribute j until all attributes are

processed.

 47

Step 2.1: If Type(Aj)≠S, go to Step 2.2, else set bjk=1 if Vj(i)=Vjk; set bjk=0

otherwise.

Step 2.2: Set bjk=1 if fj(Vj(i))=k; set bjk=0 otherwise.

Step 3: Return the vector BWIi.

Algorithm 3.2 - Bit-wise index matrix creation algorithm :

Input: A set of records in T.

Output: A bit-wise index matrix TBWI of the records.

Step 1: Create an empty matrix TBWI.

Step 2: Repeat the following sub-steps for each record Ri until all records are

processed.

Step 2.1: Use the bit-wise index creation algorithm (Algorithm 3.1) to get the

index BWIi of Ri.

Step 2.2: Add BWIi into TBWI.

Step 3: Return TBWI.

After a bit-wise index matrix is built, bit-wise operations can easily be used to

retrieve desired record for the new coming queries.

 48

EXAMPLE 3.4:

Assume that a Target Table T containing five records is shown in Figure 2.4(a),

The bit-wise indexes for the above records are shown in Table 3.2.

Table 3.2: The TBWI of five records in Figure 2.4(a)

 BWI1 10000 10000 100

 BWI2 01000 01000 100

 BWI3 00100 00100 010

 BWI4 00010 00010 010

 BWI5 00001 00001 001

3.3 The Matching Phase of Simple BWI Method

Calculating the similarities between a query and saved records is a

time-consuming task. A two-phase matching approach, called the

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time.

It includes the relevant-records-retrieving phase and the similarity-computing phase. In

the first phase, all irrelevant records are filtered out to avoid calculation of their

similarities. The time of calculating the similarities of useful saved records can then be

decreased. The similarities of the query with remaining saved records are then

computed in the similarity-computing phase. The algorithm is described as follows.

 49

Algorithm 3.3 - Similar-records-seeking algorithm :

Input : A bit-wise index matrix TBWI and a new query RN.

Output : A set of similar record Rc with their similarity degrees with RN.

Step 1: Use the bit-wise index creation algorithm (Algorithm 3.2) to get the index

BWIN of the new query RN according to the condition part of the query.

Step 2: Initialize the counter j to 1 and Rc to an empty set.

Step 3: For each BWIj in TBWI, do the following sub-steps (1<j≤|R|):

Step 3.1: Call the search-relevant-records algorithm (Algorithm 3.4) to compute

the relevance degree rdij between BWIN and BWIj.

Step 3.2: If rdij=0, ignore the record Rj and go to Step 3.5.

Step 3.3: Call the similarity-computing algorithm (Algorithm 3.6) to compute

the similarity simj between RN and Rj.

Step 3.4: Add record Rj with its similarity simj to Rc.

Step 3.5: Add 1 to j.

Step 4: Sort the results in Rc in descending order of their similarities.

Step 5: Output Rc.

A saving record is relevant to a new query that will be transformed to a desired

bit-wise index via bit-wise index creation algorithm. If they have at least one same

 50

attribute value, the saving record is then similar with the new query in a certain degree.

The bits in the corresponding positions of the matched attributes should be set as "1" in

their bit vectors. This can easily be found by using the ‘AND’ bit-wise operation to

compare the two bit vectors. The following Search-relevant-records algorithm is thus

proposed to achieve this purpose.

Algorithm 3.4 - Search-relevant-records algorithm :

Input: The bit-wise indexing vector BWIN of a new query R N and the index BWIj

of a saved record Rj in R.

Output: The relevant degree rdij between RN and Rj.

Step 1: Use the ‘AND’ bit-wise operation on BWIN and BWIj and store the result as

rdij, which is also a bit string.

Step 2: Return rdij.

Since the ‘AND’ bit-wise operation is fast, the Search-relevant-records algorithm

selects relevant saved records quickly. If rdi is zero, then the saved record is thought of

as irrelevant and will be filtered out.

After all relevant saved records have been retrieved, the similarities between the

 51

query condition and them are computed. As mentioned above, a matching function

based on a weighted sum of matched attributes is defined to calculate the similarity

degrees. Each attribute has its own weight. Since a record has only one value for an

attribute, at most one bit in the bit string rdi is set for each attribute after the

Search-relevant-records algorithm is executed. Accordingly, a special bit-wise vector,

called the Mask Vector, is proposed to help compute similarities. Let <1> be the string

of length α with all bits being 1 and <0> be the string of length α with all bits being 0.

The definition of the Mask Vector is shown below.

DEFINITION 3.8 - Mask Vector:

A bit-wise indexing mask vector Mask is a set of Maskk, where 0 < k ≤ r and r is

the number of attributes. Each Maskk, denoting the mask vector of attribute Ak, is a

concatenation of r bit strings as Maskk=
∑
=

r

j
j

SSS
1

)(
21 ...

α
, where Si = <1> for ∑

−

=

1

1

)(
k

j

jα +1 ≤

i ≤ ∑
=

k

j

j
1

)(α and Si = <0> otherwise.

By applying the 'AND' operation on Maskk and the bit-wise vectors rdi’s

generated from the search-relevant-records algorithm, the similarities between a query

and a saved record for attribute Ak can easily be found by the following

similarity-measuring function:

 52

∑

∑

=

=
×

= r

j
j

r

j
jij

i

W

WPC

RSIM

1

1

)(

)(,

where)(iRSIM is the similarity between the i-th saved record and the new query,

jW is the weight of the j-th attribute, ijPC = 0 if the result of performing the AND

bit-wise operation on rdii and Maskj is 0, and ijPC = 1 otherwise.

Several saved records may have the same similarity with a new query as long as

they have the same attributes matched. This is especially common when the numbers

of possible values for attributes are large. For this situation, the cost for calculating

similarities of saved relevant records can be reduced if all possible similarities are

pre-computed and stored into the Similarity Mapping List. Each element in the

Similarity Mapping List is a similarity value for some attributes matched. Thus, the

similarity of a saved record with a new query for known attributes matched can easily

be found from the list, instead of from calculation by the above formula. The Similarity

Mapping List is formally defined as follows.

DEFINITION 3.9 - Similarity Mapping List:

Let L be a Similarity Mapping List and Li be an element in L with an index value i,

which is determined from the attributes matched, 1≤i≤2|r|-1. Let i be represented as a

binary code bi1bi2…bir, with bij=1 if the j-th attribute is matched and bij=0 otherwise,

 53

1≤j≤r. The value of Li is thus

∑

∑

=

=

×

r

j
j

r

j
jij

W

Wb

1

1 .

Algorithm 3.5 - Similarity-mapping-list creation algorithm :

Input: Weights of attributes W1, W2, …, Wr of R.

Output: A similarity mapping list L.

Step 1: Initialize the counter i to 1 and the list L to be empty.

Step 2: For each i, 1≤i≤2|r|-1, do the following sub-steps:

Step 2.1: Encode i into a binary string <bi1bi2…bir>.

Step 2.2: Calculate the similarity degree Li by the formula in Definition 3.9.

Step 2.3: Put Li into the list L with index i.

Step 3: Return L.

After the Similarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 3.6 - Similarity-computing algorithm :

Input: The relevant degree rdij of record Rj with a new query, the Mask Vector, and

the Similarity Mapping List L.

 54

Output: The similarity of Rj with a new record.

Step 1: Initialize a zero binary string of length r.

Step 2: For each i, 1 ≤ i ≤ r, set the i-th position in the string to 1 if the result of using

the ‘AND’ bit-wise operation on Maski and rdij is not all 0.

Step 3: Transform the binary string into an integer j.

Step 4: Get Lj from the Similarity Mapping List.

Step 5: Return Lj.

Since the Similarity Mapping List and the Mask Vector are constructed in the

pre-processing step, and since only the ‘AND’ bit-wise operations are executed on

Mask Vectors and bit-wise vectors of relevant records in the Similarity-computing

algorithm, the computational time for finding the similarities can thus be significantly

reduced.

EXAMPLE 3.5:

Continuing from Example 3.4, the BWIN of a new query RN, which is

{Toolid=6210, Name=AWOX01, Location=FAB1}, is <10000 10000 100>. Also

assume that weight W1, W2 and W3 are set to 0.33. Each BWIj in TBWI in Table 3.2 is

processed as follows.

 55

• For BWI1, The relevant degree rdi1 between BWI1 and BWIN is found as <10000

10000 100> by the Search-relevant-records algorithm. Since more than one bit in

rdi1 are "1", Record 4 is a relevant record. Its similarity is found as 1. Record 1 is

then a relevant record.

• For BWI3, BWI4 and BWI5, The relevant degree rdi between these records and BWIN

is found as <00000 00000 000>. Since all the bits in these rdis are "0", Records 3, 4

and 5 are thus filtered out.

After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 3.3.

Table 3.3: Two relevant records and their similarities

Relevant Record Record 1 Record 2

Similarity 1 0.333

3.4 Analysis and Experiments of Simple BWI Method

As mentioned above, the proposed matching algorithms include two phases to

reduce the computational time. At the retrieving-relevant-records phase, irrelevant

prior records are filtered out. Thus, only the similarities between relevant prior records

and the new query are computed at the similarity-computing phase. Assume that the

number of records in the target table is N and the average filtering percentage is M. The

 56

time needed to retrieve relevant saved records and to calculate their similarities in

STEP 3 of Algorithm 3.5 is analyzed as:

Timewith filtering ≈)tMN)tr(MNtN(candand ××+×××+×

=)tM)tr(Mt
M

1
M(N candand ×+××+×××

=)tt)r
M

1
((MN cand +×+×× ,

where andt is the time needed for an ‘AND’ bit-wise operation and ct is the

seek time in the Similarity Mapping List. If no filtering is performed, the time needed

to calculate their similarities in STEP 3 of Algorithm 3.5 is analyzed as:

Timewithout filtering ≈)tN)tr(NtN(candand ×+××+×

 =)tt)r1((N cand +×+× .

The performance due to the filtering is then:

)tt)r1((N

)tt)r
M

1
((MN

Time

Time

cand

cand

filtering without

filtering with

+×+×

+×+××
≈

 ≈ M.

 57

The proposed method can indeed improve the performance of query although

some extra storage spaces are required. These storage spaces are used for storing the

bit-wise indexes and the Similarity Mapping List. The sizes of extra storage spaces

required in our method are analyzed as follows.

 The storage space required for the bit-wise indexes TBWI = ∑
=

×
r

i

iR
1

)(α , where α(i)

is the number of bits used for attribute Ai, r is the number of attributes, and |C| is the

number of records in warehouse. For example, assume that there are 100000

records in a warehouse and 16 attributes to describe each record. Also assume each

attribute has 4 possible values. The storage space required for TBWI =

∑
=

×
16

1

4)100000(
i

 bits = (6400000/8) bytes = 800000 bytes ≅ 0.8 M bytes.

 The storage space of the Mask Vector = ∑
=

×
r

i

ir
1

)(α . For the above example, the

storage space required for the Mask Vector = (∑
=

×
16

1

416
i

) bits = (1024/8) bytes =128

bytes.

 The storage space required for the Similarity Mapping List L =)12(−× rf , where f

is the storage space required for storing a similarity value. Assume that f is a 4-byte

real number. For the above example, the storage space required for the Similarity

Mapping List L = 4×(216-1) bytes = 262140 bytes ≅ 256 K bytes.

Note that the size of the extra storage space required for the Similarity Mapping

 58

List is exponential to r. Therefore, the Similarity Mapping List is not suitable for

domains with large numbers of attributes.

The result of comparing the Simple BWI indexing method with the Bitmap

indexing method is shown in Figure 3.1.

Figure 3.1: Simple BWI indexing method v. s. Bitmap indexing method

We can see that Simple BWI method is faster than Bitmap indexing method, the

reasons are:

 In retrieving relevant cases phase, the Bitmap indexing technology is not suitable

for retrieving similar cases. For example, when a new case comes, the Bitmap

indexing method needs to check all possible attribute combination vectors in order

to retrieve relevant prior cases. The more attributes check, the more time it needs.

 In similarity measurement phase, the Bitmap indexing method needs to check the

0

50

100

150

200

250

300

350

400

50
0

35
00

65
00

95
00

12
50

0

15
50

0

18
50

0

21
50

0

24
50

0

27
50

0

30
50

0

33
50

0

36
50

0

39
50

0

42
50

0

45
50

0

48
50

0

51
50

0

54
50

0

57
50

0

60
50

0

63
50

0

66
50

0

69
50

0

72
50

0

75
50

0

78
50

0

81
50

0

84
50

0

87
50

0

90
50

0

93
50

0

96
50

0

99
50

0

number of records

re
tr

ie
va

l
ti

m
e

BWI-CBR

Bitmap-CBR

 59

all corresponding position in all possible attribute combination vectors, especially

when the number of attribute of query needs or the number of records in the table

T are large. The waste time is lengthy and unbearable. Therefore, the BWI

indexing method is faster than that in Bitmap indexing method when the similarity

computing is needed.

Also, we compare the Simple BWI indexing method with single processor and the

parallel Simple BWI indexing with multiple processors for showing the improvement

of the performance. In Figures 3.2 and 3.3, the dual CPUs parallel Simple BWI

indexing method can increase the performance about 1.6 times and the quad CPUs

parallel Simple BWI indexing method can increase the performance about 3.2 times. It

is obvious that Simple BWI indexing method is quite suitable for parallelization since

the bit-wise indexing matrix of the proposed method can be separated into several

independent sub-matrixes and these sub-matrixes is almost balanced. Therefore, when

the Simple BWI indexing method is built in a multiple CPU machine, the workload

can be easily shared into each processor and assure that the workload of each processor

is almost balanced.

 60

Figure 3.2: Speed-up of parallel BWI indexing on two processors machine.

0

0.5

1

1.5

2

2.5

3

3.5

4

50
0

55
00

10
50

0

15
50

0

20
50

0

25
50

0

30
50

0

35
50

0

40
50

0

45
50

0

50
50

0

55
50

0

60
50

0

65
50

0

70
50

0

75
50

0

80
50

0

85
50

0

90
50

0

95
50

0

Number of records

efficiency

Figure 3.3: Speed-up of parallel BWI indexing on four processor machine.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

50
0

55
00

10
50

0

15
50

0

20
50

0

25
50

0

30
50

0

35
50

0

40
50

0

45
50

0

50
50

0

55
50

0

60
50

0

65
50

0

70
50

0

75
50

0

80
50

0

85
50

0

90
50

0

95
50

0

number of records

efficiency

 61

Chapter 4
Advanced Bit-wise Indexing Method

In the chapter, the advanced bit-wise indexing method, including Encapsulated

bit-wise indexing method and Compacted bit-wise indexing method, are introduced,

including the definitions and algorithms of indexing and matching phases in these two

bit-wise indexing methods are proposed in the following sections.

4.1 Encapsulated Bit-wise Indexing Method

4.1.1 General Assumptions and Notations for Encapsulated BWI

Technology

As we can see, the bit length of bit-wise indexing vector for some attribute

depends on the number of its distinct values. When the attribute contains a large

amount of distinct values, the size of its corresponding bit-wise indexing vector

becomes hugely large, when the required bit-length is too large to handle, partitioning

 62

the bit-length to several levels seems helpful for this issue. There is a threshold (Th)

which can be used to determine whether the encapsulated bit-wise indexing technology

is applied or not. That is, when the total length of bit vectors is larger than this

threshold (Th), the algorithm is applied on. The following notations and definitions are

given to describe the encapsulated bit-wise indexing method.

NOTATION 4.1 :

eli = the maxima encapsulated level of attribute Ai

j
iei = the bit length of j-th encapsulated level of attribute Ai

eii = the total bit length of BWI index for the given attribute Ai, eii=∑
=

iel

j

j
iei

1

ei = the total bit length of BWI index for the given record Ri, ei=∑
=

r

j
jei

1

Th= the threshold for separating bit-length to levels boundary

We propose an Encapsulated bit-wise indexing method on data warehouse to

achieve the goal of saving storage and accelerating user query procedure. This method

includes two phases. One is creating indexes phase, and the other is querying phase.

The indexing phase transforms the contents of table into a bit vector matrix (in here,

called a matrix of bit-wise indexes), and the query phase is retrieving records to answer

the query statements as soon as possible.

 63

4.1.2 The Indexing Phase of Encapsulated BWI Method

The indexing phase includes Encapsulated level calculating Algorithm,

Encapsulated BWI attributes index creating Algorithm and Encapsulated BWI matrix

of bit-wise indexes creating Algorithm. The Encapsulated level calculating Algorithm

calculates an encapsulated level of each attribute for creating the corresponding

bit-wise indexes, the Encapsulated BWI Bit-wise indexes creating Algorithm creates

corresponding BWI index of matrix of multi-level bit-wise indexes. The Encapsulated

BWI Matrix of bit-wise indexes creating Algorithm creates bit vectors matrix of data

warehouse. These algorithms and examples are shown as follows.

In Encapsulated bit-wise indexing method, there are several methods to decide the

partition size of indexing vector. Here, we use square root to calculate the compact size

of indexing vector. For instance, when n bits are required to represent a specify

attributes in simple bit-wise indexing method, 2⎡ n ⎤ bits are required by two levels

indexing vectors respectively in two-level encapsulated bit-wise indexing method. For

example, assume that attribute A uses 10,000 bits to be the indexing vector when

simple bit-wise indexing method is applied. There are 200 bits are required in

two-level condensable bit-wise indexing method. As we can see, the used bits can be

 64

largely reduced to 1/50. When the condensable bit-wise indexing method is used in the

data warehousing, the used bits in much more compact then using bitmap and simple

bit-wise indexing methods. Therefore, we propose the following definitions and

algorithms.

Algorithm 4.1 - Encapsulated level calculating Algorithm – Square Root :

Input: Table T of data warehouse and threshold Th.

Output: The corresponding eli and j
iei for all attribute in A.

Step 1 : Let eli = 1, 1
iei =α(i) and ei = ∑∑

= =

r

j

el

k

k
j

i

ei
1 1

,for 1 ≤ i ≤ r.

Step 2: If ei > Th, do the following sub-steps; otherwise go to Step 3.

Step 2.1: If not exist a j
iei where and j

iei > 2×⎡ j
iei ⎤ with minima eli and j,

Return false for Th limitation

Step 2.2: Let eli=eli +1, ei=ei- j
iei +2×⎡ j

iei ⎤, j
iei =⎡ j

iei ⎤, iel
iei =⎡ j

iei ⎤ and go

to Step 2.

Step 3: Return the corresponding eli and j
iei for all attribute in A.

EXAMPLE 4.1:

Figure 4.1 shows a flat target table T including attribute set A = < LotID, StepID,

ToolID, Yield >, four attributes and 23 records. The attribute values domains of Cid,

 65

Name, Gender, and City are V1=< 0001, 0002, 0003, ….., 00022, 00023 >, V2=<

PS_1, PS_2, PS_3, PS_4, PS_5 >, V3=< AWOX11, AWOX12, AWOX13, AWOX14,

AWOX21, AWOX31, AWOX32, AWOX33, AWOX34, AWOX35, AWOX36,

AWOX41, AWOX42, AWOX43, AWOX51>, and V4=< 92.1, 92.2, 92.3, 93.1, 93.2,

94.3, 94.4, 94.5, 94.6, 95.5, 95.6, 95.7, 95.7, 95.8, 96.1, 96.5, 99.1, 99.3>, respectively.

It can be easily seen that the number of distinct values of LotID, StepID, ToolID and

Yield are ei1= 23, ei2=5, ei3=15 and ei4=18, respectively.

 LotID StepID ToolID Yield LotID StepID ToolID Yield

1 0001 PS_1 AWOX11 92.1 13 0013 PS_3 AWOX34 93.1

2 0002 PS_1 AWOX11 92.3 14 0014 PS_3 AWOX35 94.4

3 0003 PS_1 AWOX12 92.2 15 0015 PS_3 AWOX36 95.8

4 0004 PS_1 AWOX13 99.1 16 0016 PS_4 AWOX41 93.2

5 0005 PS_1 AWOX14 99.3 17 0017 PS_4 AWOX41 94.5

6 0006 PS_2 AWOX21 93.1 18 0018 PS_4 AWOX41 95.6

7 0007 PS_2 AWOX21 94.5 19 0019 PS_4 AWOX42 94.6

8 0008 PS_2 AWOX21 95.6 20 0020 PS_4 AWOX42 94.3

9 0009 PS_2 AWOX21 95.7 21 0021 PS_4 AWOX43 95.7

10 0010 PS_3 AWOX31 96.1 22 0022 PS_5 AWOX51 95.5

11 0011 PS_3 AWOX32 92.2 23 0023 PS_5 AWOX51 96.5

12 0012 PS_3 AWOX33 92.3
Figure 4.1: An example of Flat target table T

ei =∑∑
= =

4

1

1

1j k

k
jei = 23 + 5 + 15 + 18 = 61 bits be the length of an encoded record.

The threshold Th is set to 35 initially. Also, all levels of attributes have initial

 66

value 1, e.g., el1 = 1, el2 = 1, el3 = 1, el1 = 1 and the vector length of all attribute are

thus 1
1ei =23, 1

2ei =5, 1
3ei =15 and 1

4ei =18.

Since ei > Th, the attribute LotID with the max length of indexing string 1
1ei =23

is chosen for length reducing. Therefore, the encapsulation level of attribute LotID

el1=1+1=2, 1
1ei = 2

1ei =⎡ 23 ⎤=5, ei1=10 and the total length of vectors ei is reduced to

48 (61-23+10). However, the length is still larger than the threshold Th. The attribute

Yield is then chosen. Therefore, the encapsulation level of attribute Yield el4=1+1=2,

1
4ei = 2

4ei =⎡ 18 ⎤=5, ei4=10 and the total length of vectors ei is reduced to 40

(48-18+10). Since the length is still larger than the threshold Th. The attribute ToolID

is then chosen. Therefore, the encapsulation level of attribute ToolID el3=1+1=2,

1
3ei = 2

3ei =⎡ 15 ⎤=4, ei4=8 and the total length of vectors ei is reduced to 33 (40-15+8).

Finally, the total length of vector is reduced to 33 and the algorithm stops.

As mentioned in Definition 3.5, the user can provide a suitable transforming

function for the continuously type attributes, including numeric and data-time type. In

the encapsulated BWI method, user can provide an eli-level transforming functions fi

for the attribute Ai in order to close for the physical meaning than encapsulated BWI

itself only. fi=< 1
if , 2

if ,…, iel
if > where the number of value domain of k

if should

 67

equal to k
iei . The definition is shown below:

DEFINITION 4.1 – Encapsulated BWI bit-wise indexing vector of an attribute

where Type(Ai)≠S :

The bit-wise indexing vector Bi of the i-th attribute for the record Rj in T is set of

bit strings. Bi=< 1
iB , 2

iB , …, iel
iB >, where fi=< 1

if , 2
if ,…, iel

if > is the eli-level of

function that given by user k
iB =bj1bj2… k

i
je

b , where bjl=1 if k
if (Vi(k))=l and bjl=0

otherwise.

EXAMPLE 4.2 :

Assume that the second attribute Recipe_degree is <10, 12, 14, 16, 18, 20, 22, 24>.

Also, after the Encapsulated level calculating Algorithm – Square Root executed, and

the 1
2ei , 1

2ei and eli are all set to 2. The attribute value of Recipe_degree in the second

record is 16. Also, user gives the following two-level (fl=2) function 1
2f and 2

2f .

1
2f (Vi(k))= ⎣Vi(k)/10⎦

2
2f (Vi(k))= ⎣(Vi(k) – (1

2f (Vi(k))×10))/5⎦+1

According to the Definition 4.1, bit-wise indexing method uses the 4 bits as the

bit vector of the index in which every bit represents a specific value of the index

attribute Recipe_degree.

 68

1
2B :

1
2f (Vi(k))=1 1

2f (Vi(k))=2

1 0

2
2B :

2
2f (Vi(k))=1 2

2f (Vi(k))=2

0 1

Therefore, we get B2=
1
2B 2

2B ="1001"

Algorithm 4.2 - Encapsulated BWI bit-wise indexes creating Algorithm :

Input: A record Ri.

Output: A bit-wise index BWIi of Ri.

Step 1: Create a bit-wise vector BWIi of length 0.

Step 2: Repeat the following sub-steps for each attribute Aj until all attributes are

processed.

Step 2.1: If Type(Aj) ≠ S and fi≠∅, go to Step 2.2, else let m=n if Vj(i)=Vjn, create

a bit-wise vector Bi with 0 and repeat the following sub-steps for each

encapsulated level elk until all encapsulated levels are processed

Step 2.1.1: Let B’=b1b2… k
jei

b to a all-zero string with length k
jei

Step 2.1.2: If k≠ kel , go to Step 2.1.3, else if the m=0, set k
jei

b =1 and set bm=1

 69

otherwise, go to Step 2.1.5.

Step 2.1.3: Let o = ⎣m/ ∏
+=

jel

kp

p
iei

1

⎦, if o= k
jei , set bo=1 and set 1+ob =1 otherwise.

Step 2.1.4: Set m=m-(o× ∏
+=

jel

kp

p
iei

1

)

Step 2.1.5: Concatenate the bit strings Bj and B’ into Bj.

Step 2.2: If Type(Aj) ≠ S and fi≠∅, for each k
jB , do the following sub-steps

Step 2.2.2: Set bjl=1 if k
if (Vi(k))=l and bjl=0 otherwise.

Step 2.2.3: Concatenate the bit strings Bj and k
jB into Bj.

Step 3: Concatenate the bit strings B1, B2,…, and Br into BWIi.

Step 4: Return the vector BWIi.

Algorithm 4.3 - Encapsulated BWI Matrix of bit-wise indexes creating Algorithm :

Input: Table T of the data warehouse.

Output: The TBWI of the data warehouse.

Step 1: Create an empty bit-wise indexes matrix TBWI for table T.

Step 2: Call Encapsulated level calculating Algorithm – Square Root (Algorithm 4.1)

to get the corresponding els and eis.

Step 3: Repeat the following sub-steps for each record Ri until all records are

processed.

 70

Step 3.1: Use the Encapsulated BWI bit-wise index creation algorithm

(Algorithm 4.2) to get the index BWIi of Ri.

Step 3.2: Add BWIi into TBWI.

Step 4: Return TBWI.

After a bit-wise index matrix is built, bit-wise operations can easily be used to

retrieve desired record for the new coming queries.

EXAMPLE 4.3:

Assume that a Target Table T containing 23 records is shown in Figure 4.2 and the

user gives the following two-level (fl=2) function 1
2f and 2

2f of attribute Yield .

1
2f (Vi(k))=⎡(Vi(k)-90)/2⎤

2
2f (Vi(k))= ⎡((Vi(k) – (90+(1

2f (Vi(k))-1) ×2)) /0.4) ⎤

The bit-wise indexes for the above records are shown in Table 4.1.

 71

Table 4.1: The TBWI of 23 records in Figure 4.2

BWI LotID StepID ToolID Yield

eis 1
1ei 2

1ei 1
2ei 1

3ei 2
3ei 1

4ei 2
4ei

BWI1 10000 10000 10000 1000 1000 01000 10000

BWI2 10000 01000 10000 1000 1000 01000 10000

BWI3 10000 00100 10000 1000 0100 01000 10000

BWI4 10000 00010 10000 1000 0010 00001 00100

BWI5 10000 00001 10000 1000 0001 00001 00010

BWI6 01000 10000 01000 0100 1000 01000 00100

BWI7 01000 01000 01000 0100 1000 00100 01000

BWI8 01000 00100 01000 0100 1000 00100 00010

BWI9 01000 00010 01000 0100 1000 00100 00001

BWI10 01000 00001 00100 0100 0100 00010 10000

BWI11 00100 10000 00100 0100 0010 01000 10000

BWI12 00100 01000 00100 0100 0001 01000 10000

BWI13 00100 00100 00100 0010 1000 01000 00100

BWI14 00100 00010 00100 0010 0100 00100 01000

BWI15 00100 00001 00100 0010 0010 00100 00001

BWI16 00010 10000 00010 0010 0001 01000 00010

BWI17 00010 01000 00010 0010 0001 00100 01000

BWI18 00010 00100 00010 0010 0001 00100 00010

BWI19 00010 00010 00010 0001 1000 00100 01000

BWI20 00010 00001 00010 0001 1000 00100 10000

BWI21 00001 10000 00010 0001 0100 00100 00001

BWI22 00001 01000 00001 0001 0010 00100 00010

BWI23 00001 00100 00001 0001 0010 00010 01000

4.1.3 The Matching Phase of Encapsulated BWI Method

Calculating the similarities between a query and saved records is a

time-consuming task. A two-phase matching approach, called the Encapsulated BWI

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time.

 72

It includes the Encapsulated BWI relevant-records-retrieving phase and the

Encapsulated BWI similarity-computing phase. In the first phase, all irrelevant records

are filtered out to avoid calculation of their similarities. The time of calculating the

similarities of useful saved records can then be decreased. The similarities of the query

with remaining saved records are then computed efficiently in the similarity-computing

phase. The algorithm is described as follows.

Algorithm 4.4 - Encapsulated BWI Similar-records-seeking algorithm :

Input : A bit-wise index matrix TBWI and a new query RN.

Output : A set of similar record Rc with their similarity degrees with RN.

Step 1: Use the Encapsulated BWI bit-wise index creation algorithm (Algorithm 4.2)

to get the index BWIN of the new query RN according to the condition part of

the query.

Step 2: Initialize the counter j to 1 and Rc to an empty set.

Step 3: For each BWIj in TBWI, do the following sub-steps (1<j≤|R|):

Step 3.1: Call the Encapsulated BWI search-relevant-records algorithm

(Algorithm 4.5) to compute the relevance degree rdij between BWIN

and BWIj.

Step 3.2: If rdij=0, ignore the record Rj and go to Step 3.5.

 73

Step 3.3: Call the Encapsulated BWI similarity-computing algorithm (Algorithm

4.7) to compute the similarity simj between RN and Rj.

Step 3.4: Add record Rj with its similarity simj to Rc.

Step 3.5: Add 1 to j.

Step 4: Sort the results in Rc in descending order of their similarities.

Step 5: Output Rc.

Even the encoding procedure of BWI index in Encapsulated BWI method is

different than the Simple one, it still can easily be found by using the ‘AND’ bit-wise

operation to compare the two bit vectors. The following Encapsulated BWI

Search-relevant-records algorithm is thus proposed to achieve this purpose.

Algorithm 4.5 - Encapsulated BWI Search-relevant-records algorithm :

Input: The bit-wise indexing vector BWIN of a new query R N and the index BWIj

of a saved record Rj in R.

Output: The relevant degree rdij between RN and Rj.

Step 1: Use the ‘AND’ bit-wise operation on BWIN and BWIj and store the result as

rdij, which is also a bit string.

Step 2: Return rdij.

 74

Since the ‘AND’ bit-wise operation is fast, the Search-relevant-records algorithm

selects relevant saved records quickly. If rdi is zero, then the saved record is thought of

as irrelevant and will be filtered out. Since the properties of Encapsulated BWI mode,

if rdi has some ‘1’ bits, it does not mean that the saved record is relevant. As

mentioned above, a matching function based on a weighted sum of matched attributes

is defined to calculate the similarity degrees. As the same with Simple BWI method. the

Mask Vector and the Similarity Mapping List are used in Encapsulated BWI method

and then be defined at Definition 4.2 and 4.3.

DEFINITION 4.2 - Encapsulated BWI Mask Vector :

A Encapsulated BWI bit-wise indexing mask vector eMask is a set of eMaskk,

where 0 < k ≤ ∑
=

r

i
iel

1

. Each eMaskk, denoting the mask vector of attribute Ak, is a

concatenation of r bit strings as eMaskk=S1S2…
∑
=

r

i
iel

S
1

, where Si = <1> for

∑
−

=

1

1

k

i
iel ≤i≤∑

=

k

i
iel

1

 and Si = <0> otherwise.

DEFINITION 4.3 - Encapsulated BWI Similarity Mapping List :

Let L be an Encapsulated BWI Similarity Mapping List and Li be an element in L

with an index value i, which is determined from the attributes matched, 1≤i≤
∑
=

r

i
iel

12 -1.

Let i be represented as a binary code bi1bi2…
∑
=

r

i
ieli

b
1

. The value of Li is thus

 75

∑

∑ ∏

=

=
+=

×
∑

∑

+

=

−

=

r

j
j

r

j
j

el

elk

ik

W

Wb

j

l
l

j

l
l

1

1
1

1

1

1

1 .

Algorithm 4.6 - Encapsulated BWI Similarity-mapping-list creation algorithm :

Input: Weights of attributes W1, W2, …, Wr of R.

Output: A similarity mapping list L.

Step 1: Initialize the counter i to 1 and the list L to be empty.

Step 2: For each i, 1≤i≤
∑
=

r

i
iel

12 -1, do the following sub-steps:

Step 2.1: Encode i into a binary string <bi1bi2…
∑
=

r

i
ieli

b
1

>.

Step 2.2: Calculate the similarity degree Li by the formula in Definition 4.3.

Step 2.3: Put Li into the list L with index i.

Step 3: Return L.

After the Similarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 4.7 - Encapsulated BWI Similarity-computing algorithm :

Input: The relevant degree rdij of record Rj with a new query, the Mask Vector, and

 76

the Similarity Mapping List L.

Output: The similarity of Rj with a new record.

Step 1: Initialize a zero binary string of length r.

Step 2: For each i, 1 ≤ i ≤ ∑
=

r

i
iel

1
, set the i-th position in the string to 1 if

AND(eMaski, rdij) = AND(eMaski, BWIN).

Step 3: Transform the binary string into an integer j.

Step 4: Get Lj from the Similarity Mapping List.

Step 5: Return Lj.

EXAMPLE 4.4:

Continuing from Example 4.3, the BWIN of a new query RN, which is

{StepID=PS_1, ToolID=AWOX13, Yield=99.1}, is < 1
1ei =00000 2

1ei =00000

1
2ei =10000 1

3ei =1000 2
3ei =0010 1

4ei =00001 2
4ei =00100>. Also assume that weight

W2, W3 and W4 are set to 0.4, 0.4 and 0.2, respectively. Each BWIj in TBWI in Table 4.1

is processed as follows.

• For BWI1, BWI2 and BWI3, all the relevant degrees rdi1, rdi2 and rdi3 between BWI1,

BWI1, BWI1 and BWIN are found as <00000 00000 10000 1000 0000 00000 00000>

by the Encapsulated BWI Search-relevant-records algorithm. Since more than one bit

 77

in rdi1 is "1", Records 1, 2 and 3 are possible relevant records. According to the

Definition 4.2, the eMask2 = <00000 00000 11111 0000 0000 00000 00000> and

eMask3=<00000 00000 00000 1111 1111 00000 00000>. Since the result of

AND(eMask2, rdi1) = <00000 00000 10000 0000 0000 00000 00000> is equal to the

result of AND(eMask2, BWIN) = <00000 00000 10000 0000 0000 00000 00000> and

the result of AND(eMask3, rdi1) = <00000 00000 00000 1000 0000 00000 00000> is

not equal to the result of AND(eMask3, BWIN) = <00000 00000 00000 1000 1000

00000 00000>, the similarities of Records 1, 2 and 3 are found as 0.4 via

ALGORITHM 4.7. Record 1, 2, 3 are then the relevant records.

• For BWI4: The relevant degree rdi4 between BWI4 and BWIN is found as <00000

00000 10000 1000 0010 00001 00100> by the Encapsulated BWI

Search-relevant-records algorithm. Since more than one bit in rdi1 is "1", Record 4 is

a possible relevant record. According to the Definition 4.2, the eMask2 = <00000

00000 11111 0000 0000 00000 00000>, eMask3=<00000 00000 00000 1111 1111

00000 00000> and eMask3=<00000 00000 00000 1111 1111 11111 11111>. Since

the results of AND(eMask2, rdi4) is equal to AND(eMask2, BWIN), AND(eMask3,

rdi4) is equal to AND(eMask3, BWIN) and AND(eMask4, rdi4) is equal to

AND(eMask4, BWIN), the similarity of Record 4 is found as 1 via ALGORITHM 4.7.

Record 4 is then a relevant record.

 78

After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 4.2.

Table 4.2: Five relevant records and their similarities

Relevant Record Record 4 Record 1 Record 2 Record 3 Record 5

Similarity 1 0.4 0.4 0.4 0.4

4.1.4 Analysis and Experiments of Encapsulated BWI Method

As we can see, the major different between Similarity-computing algorithm

(Algorithm 3.6) of Simple BWI method and Encapsulated BWI similarity-computing

algorithm (Algorithm 4.7) of Encapsulated BWI method is in Step 2. In Simple BWI

method, one ‘AND’ bit-wise operation and a bit-to-integer operation are used.

However, two ‘AND’ bit-wise operations and a bit-comparing operation are used. In

general, the bit-wise and bit-to-integer operations are quite the efficiency operation,

however, bit-comparing operations are not and thus highly depends on the length of bit

string. The storage saving and computation time of Encapsulated BWI method are

tradeoff. The more encapsulated level used, the more storage saving, however, the

more computing time needing.

 79

4.2 Compacted Bit-wise Indexing Method

In the Section, the Encapsulated bit-wise indexing method is introduced, including

the definitions and algorithms of indexing and matching phases in Encapsulated

Bit-wise Indexing Method are proposed.

4.2.1 General Assumptions and Notations for Compacted BWI Method

In Section 4.1, we propose the Encapsulated bit-wise indexing method to a data

warehouse and it can largely reduce the width of the matrix of bit-wise indexes.

However, the total number of bit-wise index string that needs to be compared via

“AND” bit-wise operation are still required. In order to accelerate the processing time

of OLAP queries, we propose a more sophisticated indexing model, called Compacted

bit-wise indexing method.

As we know, the attributes are the base information of all OLAP queries and the

concept hierarchy of each attribute is beneficial for roll-up and drill-down operations

of the data warehouse. In the Compacted bit-wise indexing method, the importance of

attributes, including attribute and concept hierarchy, is evaluated via encapsulated level

of Encapsulated BWI method. Using this method, the bit strings of attributes are

partitioned into two levels. For all attribute, and the encapsulated level is smaller than

 80

compact level cli are kept in the first level bit-wise indexes matrix, called Main Matrix

M
BWIT , and each BWIi in M

BWIT are linked to a bit-wise indexes matrices, called

Drill-Packet Matrix
iDP

BWIT , to keep the remain encapsulated levels. According to the

BWI indexing structure, the processing time of OLAP queries can be hugely reduced

since most irrelevant record will be filtered out in the matching procedure using M
BWIT .

NOTATION 4.2:

cli = the compacted level of of attribute aj.

M
iBWI = the bit-wise indexing for Main Matrix M

BWIT .

D
iBWI = the bit-wise indexing for Drill-Packet Matrix

kDP
BWIT .

M
BWIT = the Main Matrix of bit-wise indexes matrix of T

iDP
BWIT = the Drill-Packet Matrix

iDP
BWIT bit-wise indexes matrix of BWIi of M

BWIT

rdmi = the result vector of matching M
NBWI and M

iBWI , where 1≤i≤| M
BWIT |.

rddi = the result vector of matching D
NBWI and D

iBWI . where 1≤i≤r

We propose a Compacted bit-wise indexing method on data warehouse to achieve

the goals of saving storage and accelerating user query procedure. This method

includes two phases. One is creating indexes phase, and the other is querying phase.

The indexing phase transforms the contents of table into a Main Matrix M
BWIT and

| M
BWIT | Drill-down Matrix

iDP
BWIT , and the query phase is retrieving records to answer the

 81

query statements as soon as possible.

4.2.2 The Indexing Phase of Compacted BWI Method

The indexing phase includes Compacted BWI attributes index creating Algorithm

and Compacted BWI matrix of bit-wise indexes creating Algorithm. In this method, the

Encapsulated level calculating Algorithm (Algorithm 4.2.1) is still used to calculate an

encapsulated level of each attribute for creating the corresponding bit-wise indexes, the

Compacted BWI Bit-wise indexes creating Algorithm creates corresponding BWI index

of matrix of two-level bit-wise indexes. The Compacted BWI Matrix of bit-wise

indexes creating Algorithm creates Main Matrix M
BWIT and | M

BWIT | Drill-down Matrix

iDP
BWIT of Table T in the data warehouse. These algorithms and examples are shown as

follows.

Algorithm 4.8 - Compacted BWI bit-wise indexes creating Algorithm :

Input: A record Ri.

Output: Two bit-wise vectors M
iBWI and D

iBWI of Ri.

Step 1: Create two bit-wise vectors, including M
iBWI and D

iBWI , of length 0.

Step 2: Repeat the following sub-steps for each attribute Aj until all attributes are

processed.

Step 2.1: If Type(Aj) ≠ S and fi≠∅, go to Step 2.2, else let m=n if Vj(i)=Vjn. Repeat

 82

the following sub-steps for each encapsulated level elk until all

encapsulated levels are processed

Step 2.1.1: Let B’=b1b2… k
jei

b to a all-zero string with length k
jei

Step 2.1.2: If k≠ kel , go to Step 2.1.3, else if the m=0, set k
jei

b =1 and set bm=1

otherwise, go to Step 2.1.5.

Step 2.1.3: Let o = ⎣m/ ∏
+=

jel

kp

p
iei

1

⎦, if o= k
jei , set bo=1 and set 1+ob =1 otherwise.

Step 2.1.4: Set m=m-(o× ∏
+=

jel

kp

p
iei

1

)

Step 2.1.5: If k≤cli, concatenate the bit strings M
iBWI and B’ to M

iBWI and

concatenate the bit strings D
iBWI and B’ to D

iBWI otherwise.

Step 2.2: If Type(Aj) ≠ S and fi≠∅, for each k
jB , do the following sub-steps

Step 2.2.2: Set bjl=1 if k
if (Vi(k))=l and bjl=0 otherwise.

Step 2.2.3: If k≤cli, concatenate the bit strings M
iBWI and k

jB to M
iBWI and

concatenate the bit strings D
iBWI and k

jB to D
iBWI otherwise.

Step 3: Return the vectors M
iBWI and D

iBWI .

Algorithm 4.9 - Compacted BWI Matrix of bit-wise indexes creating Algorithm :

Input: Table T of the data warehouse.

Output: The M
BWIT and | M

BWIT |
iDP

BWIT of the Table T in data warehouse.

 83

Step 1: Create an empty bit-wise indexes matrix M
BWIT for table T.

Step 2: Call Encapsulated level calculating Algorithm – Square Root (Algorithm 4.1)

to get the corresponding els and eis.

Step 3: Repeat the following sub-steps for each record Ri until all records are

processed.

Step 3.1: Use the Compacted BWI bit-wise index creation algorithm (Algorithm

4.8) to get the indexes M
iBWI and D

iBWI of Ri.

Step 3.2: Set k=1 and do the following sub-steps.

Step 3.2.1: If M
kBWI =∅, Create an empty Drill-Packet Matrix

kDP
BWIT , set

M
kBWI = M

iBWI , add D
iBWI into

kDP
BWIT , and go to Step 3.

Step 3.2.1: If M
kBWI = M

iBWI , add D
iBWI into

kDP
BWIT and go to Step 3.

Step 4: M
BWIT and | M

BWIT |
iDP

BWIT .

After bit-wise index matrixes, including M
BWIT and all related

iDP
BWIT , are built,

bit-wise operations can easily be used to retrieve desired record for the new coming

queries.

EXAMPLE 4.5:

Continuing Example 4.3, assume that the compacted level cli of all attributes are

set to 1. According to the Algorithm 4.9, the Main Matrix M
BWIT for the records in

 84

Figure 4.2 is shown in Table 4.3 and the corresponding Drill-Packet Matrixes are

shown in Table 4.4 to 4.17.

Table 4.3: The M
BWIT of records in Figure 4.2

BWI LotID StepID ToolID Yield
MBWI1 10000 10000 1000 01000
MBWI2 10000 10000 1000 00001
MBWI3 01000 01000 0100 01000
MBWI4 01000 01000 0100 00100
MBWI5 01000 00100 0100 00010
MBWI6 00100 00100 0100 01000
MBWI7 00100 00100 0010 01000
MBWI8 00100 00100 0010 00100
MBWI9 00010 00010 0010 01000
MBWI10 00010 00010 0010 00100
MBWI11 00010 00010 0001 00100
MBWI12 00001 00010 0001 00100
MBWI13 00001 00001 0001 00100
MBWI14 00001 00001 0001 00010

Table 4.4: The

1DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI1 10000 1000 10000

DBWI2 01000 1000 10000

DBWI3 00100 0100 10000

Table 4.5: The

2DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

 85

DBWI4 00010 0010 00100

DBWI5 00010 0001 00010

Table 4.6: The

3DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI6 10000 1000 00100

Table 4.7: The

4DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI7 01000 1000 01000

DBWI8 00100 1000 00010

DBWI9 00010 1000 00001

Table 4.8: The

5DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI10 00001 0100 10000

Table 4.9: The

6DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI11 10000 0010 10000

DBWI12 01000 0001 10000

 86

Table 4.10: The
7DP

BWIT of records with cli=1 in of M
BWIT

BWI LotID ToolID Yield

DBWI13 00010 1000 00100

Table 4.11: The

8DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI14 00010 0010 01000

DBWI15 00001 0010 00001

Table 4.12: The

9DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI16 10000 0001 00010

Table 4.13: The

10DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI17 01000 0001 01000

DBWI18 00100 0001 00010

Table 4.14: The

11DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI19 00010 1000 01000

 87

DBWI20 00001 1000 10000

Table 4.15: The

12DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI21 10000 0100 00001

Table 4.16: The

13DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI22 01000 0010 00010

Table 4.17: The

14DP
BWIT of records with cli=1 in of M

BWIT

BWI LotID ToolID Yield

DBWI23 00100 0010 01000

4.2.3 The Matching Phase of Compacted BWI Method

Calculating the similarities between a query and saved records is a

time-consuming task. A two-phase matching approach, called the Compacted BWI

Similar-records-seeking algorithm, is thus proposed here to reduce the matching time.

It includes the Compacted BWI relevant-records-retrieving phase and the Compacted

BWI similarity-computing phase. In the first phase, all irrelevant records are filtered

 88

out to avoid calculation of their similarities. The time of calculating the similarities of

useful saved records can then be decreased. The similarities of the query with

remaining saved records are then computed efficiently in the similarity-computing

phase. The algorithm is described as follows.

Algorithm 4.10 - Compacted BWI Similar-records-seeking algorithm :

Input: A bit-wise index matrixes M
BWIT , | M

BWIT |
iDP

BWIT , Table T and a new query RN.

Output: A set of similar record Rc with their similarity degrees with RN.

Step 1: Use the Compacted BWI bit-wise index creation algorithm (Algorithm 4.8)

to get the indexes M
NBWI and D

NBWI and of the new query RN according to

the condition part of the query.

Step 2: Initialize the counter j to 1 and Rc to an empty set.

Step 3: For each M
jBWI in M

BWIT , do the following sub-steps (1<j≤| M
BWIT |):

Step 3.1: Call the Compacted BWI Search-relevant-records-main-matrix

algorithm (Algorithm 4.11) to compute the relevance degree rdmj

between M
NBWI and M

jBWI .

Step 3.2: If all bits in rdmj are 0, go to Step 3.5.

Step 3.3: For each D
kBWI in

jDP
BWIT , do the following sub-steps:

Step 3.3.1: Call the Compacted BWI search-relevant-records-drill-packet

 89

algorithm (Algorithm 4.12) to compute the matrix of relevance

degree rddk between D
NBWI and D

kBWI .

Step 3.3.2: Call the Compacted BWI Concatenate-rdi-result algorithm

(Algorithm 4.13) to concatenate the bit strings rdmj and rddk to

rdik.

Step 3.3.3: Call the Compacted BWI similarity-computing algorithm

(Algorithm 4.15) to compute the similarity simj between RN and

Rk using rdik.

Step 3.3.4: If simk ≠ 0, add record Rk with its similarity simk to Rc.

Step 3.5: Add 1 to j.

Step 4: Sort the results in Rc in descending order of their similarities.

Step 5: Output Rc.

Even the encoding procedure of BWI index in Encapsulated BWI method is

different than the Simple one, it still can easily be found by using the ‘AND’ bit-wise

operation to compare the two bit vectors. The following Compacted BWI

Search-relevant-records-main-matrix algorithm, is thus proposed to achieve this

purpose.

 90

Algorithm 4.11 - Compacted BWI Search-relevant-records-main-matrix algorithm :

Input: The bit-wise indexing vector M
NBWI of a new query R N and the index

M
jBWI in M

BWIT .

Output: The relevant degree rdmj between M
NBWI and M

jBWI .

Step 1: Use the ‘AND’ bit-wise operation on M
NBWI and M

jBWI and store the

result as rdmj, which is also a bit string.

Step 2: Return rdmj.

Since the ‘AND’ bit-wise operation is fast, the Compacted BWI

Search-relevant-records-main-matrix algorithm selects relevant saved records quickly.

If rdmi is zero, then the saved records in the
iDP

BWIT are thought of as irrelevant and will

be filtered out. Since the properties of Compacted BWI mode, if rdm has some ‘1’ bits,

it means that some saved records indexed in the
iDP

BWIT are relevant. However, the

similarities between query and these records should be calculated based on the

matching result of D
NBWI and all contains indexes in

iDP
BWIT . The following

Compacted BWI Search-relevant-records-main-matrix-drill-packet algorithm and

Compacted BWI Concatenate-rdi-result algorithm are thus proposed to achieve this

purpose.

 91

Algorithm 4.12 - Compacted BWI search-relevant-records-drill-packet algorithm :

Input: The bit-wise indexing vector D
NBWI of a new query R N and the index

D
kBWI in

jDP
BWIT .

Output: The relevant degree rddk between D
NBWI and D

kBWI .

Step 1: Use the ‘AND’ bit-wise operation on D
NBWI and D

kBWI and store the

result as rddk, which is also a bit string.

Step 2: Return rddk.

Algorithm 4.13 - Compacted BWI Concatenate-rdi-result algorithm :

Input: The relevant degree bit strings rdmj and rddk.

Output: The relevant degree rdik.

Step 1: Initialize the counter m,n to 1 and rdik to an empty bit string.

Step 2: For m≤r, do the following sub-steps:

Step 2.1: Add the bits between position ∑∑
−

= =

1

1 1

m

n

cl

l

l
n

i

ei +1 to ∑∑
= =

m

n

cl

l

l
n

i

ei
1 1

of rdmj to

rdik.

Step 2.2: Add the bits between position ∑ ∑
−

= +=

1

1)1(

m

n

el

cll

l
n

i

i

ei +1 to ∑ ∑
= +=

m

n

el

cll

l
n

i

i

ei
1)1(

of rddj to

rdik.

Step 2.3: Add 1 to m.

 92

Step 3: Return rdik.

EXAMPLE 4.6:

Continuing from Example 4.5, assume that rdmj = <00000 10000 1000 00000>

and rdmj = <00000 1000 00000>. For the first attribute, the sub-string of rdmj at

position 1 (1101
11

1

1

1

=+=+∑∑
−

= =n l

l
nei) to 5 (5

1

1

1

1

=∑∑
= =n l

l
nei) will be appended to rdik first.

rdik is set to <00000>. The sub-string of rddj at position 1 (1101
11

1

2

)11(

=+=+∑ ∑
−

= +=n l

l
nei) to 5

(5
1

1

2

)11(

=∑ ∑
= +=n l

l
nei) will then be appended to rdik. rdik is then set to <00000 00000>.

Finally, the rdik is set to <00000 00000 10000 1000 1000 00000 00000> after the

Compacted BWI Concatenate-rdi-result algorithm is executed.

As mentioned above, a matching function based on a weighted sum of matched

attributes is defined to calculate the similarity degrees. As the same with Simple and

Encapsulated BWI methods, the Compacted BWI Mask Vector and the Compacted

Similarity Mapping List are used in Compacted BWI method then be defined at

Definition 4.4 and 4.5.

DEFINITION 4.4 - Compacted BWI Mask Vector :

A Encapsulated BWI bit-wise indexing mask vector cMask is a set of cMaskk,

 93

where 0 < k ≤ ∑
=

r

i
iel

1

. Each cMaskk, denoting the mask vector of attribute Ak, is a

concatenation of r bit strings as cMaskk=S1S2…
∑
=

r

i
iel

S
1

, where Si = <1> for

∑
−

=

1

1

k

i
iel ≤i≤∑

=

k

i
iel

1

 and Si = <0> otherwise.

DEFINITION 4.5 - Compacted BWI Similarity Mapping List :

Let L be an Compacted BWI Similarity Mapping List and Li be an element in L

with an index value i, which is determined from the attributes matched, 1≤i≤(
∑
=

r

i
iel

12 -1).

Let i be represented as a binary code bi1bi2…
∑
=

r

i
ieli

b
1

. The value of Li is thus

∑

∑ ∏

=

=
+=

×
∑

∑

+

=

−

=
r

j
j

r

j
j

el

elk

ik

W

Wb

j

l
l

j

l
l

1

1

)(

1)(

)(

1

1

1

1 .

Algorithm 4.14 - Compacted BWI Similarity-mapping-list creation algorithm:

Input: Weights of attributes W1, W2, …, Wr of R.

Output: A similarity mapping list L.

Step 1: Initialize the counter i to 1 and the list L to be empty.

Step 2: For each i, 1≤i≤
∑
=

r

i
iel

12 -1, do the following sub-steps:

Step 2.1: Encode i into a binary string <bi1bi2…
∑
=

r

i
ieli

b
1

>.

Step 2.2: Calculate the similarity degree Li by the formula in Definition 4.5.

 94

Step 2.3: Put Li into the list L with index i.

Step 3: Return L.

After the Similarity Mapping List has been built, the similarity of each saved

record and a new query can be quickly found by the following algorithm.

Algorithm 4.15 - Compacted BWI Similarity-computing algorithm:

Input: The relevant degree rdij of record Rj with a new query, the Compacted Mask

Vector, and the Similarity Mapping List L.

Output: The similarity of Rj with a new record.

Step 1: Initialize a zero binary string of length r.

Step 2: For each i, 1 ≤ i ≤ ∑
=

r

i
iel

1
, set the i-th position in the string to 1 if

AND(cMaski, rdij) = AND(cMaski, BWIN).

Step 3: Transform the binary string into an integer j.

Step 4: Get Lj from the Similarity Mapping List.

Step 5: Return Lj.

 95

EXAMPLE 4.7:

Continuing from Example 4.6, the M
NBWI and D

NBWI of a new query RN,

which is <StepID=PS_1, ToolID=AWOX13, Yield=99.1>, is < 1
1ei =00000 1

2ei =10000

1
3ei =1000 1

4ei =00001 > and < 2
1ei =00000 2

3ei =0010 2
4ei =00100>. Also assume that

weight W2, W3 and W4 are set to 0.4, 0.4 and 0.2 correspondingly. Each M
jBWI in TBWI

in Table 4.3 is processed as follows.

• For MBWI1 , the relevant degree rdm1 = <00000 10000 1000 00000> since:

 <00000 10000 1000 00001> (M
NBWI)

AND <00000 10000 1000 00000> (MBWI1)

 <00000 10000 1000 00000> (rdm1)

Since more than one bit in rdm1 is "1", all D
iBWI in Drill-Packet Matrix

1DP
BWIT are

retrieved to further investigation. There are three D
iBWI in

1DP
BWIT , including

DBWI1 , DBWI2 and DBWI3 ,the relevant degree rdd1 = <00000 0000 00000> since:

 <00000 0010 00100> (D
NBWI)

AND <00000 1000 10000> (DBWI1)

 <00000 0000 00000> (rdd1)

 The relevant degree rdd2 = <00000 0000 00000> since:

 <00000 0010 00100> (D
NBWI)

AND <00000 1000 10000> (DBWI2)

 <00000 0000 10000> (rdd2)

 96

The relevant degree rdd3 = <00000 0000 00000> since:

 <00000 0010 00100> (D
NBWI)

AND <00000 0100 10000> (DBWI3)

 <00000 0000 00000> (rdd3)

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi1,

rdi2 and rdi3 are thus generated as following:

rdi1= <00000 00000 10000 1000 0000 00000 00000>

rdi2= <00000 00000 10000 1000 0000 00000 00000>

rdi3= <00000 00000 10000 1000 0000 00000 00000>

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000

00000 00000> and cMask3=<00000 00000 00000 1111 1111 00000 00000>. Since the

result of AND(cMask2, rdi1) = <00000 00000 10000 0000 0000 00000 00000> is

equal to the result of AND(cMask2, BWIN) = <00000 00000 10000 0000 0000 00000

00000> and the result of AND(cMask3, rdi1) = <00000 00000 00000 1000 0000

00000 00000> is not equal to the result of AND(cMask3, BWIN) = <00000 00000

00000 1000 1000 00000 00000>, the similarities of record 1, 2 and 3 are found as 0.4.

Record 1, 2, 3 are then the relevant records.

• For MBWI2 , the relevant degree rdm2 = <00000 10000 1000 00001> since:

 <00000 10000 1000 00001> (M
NBWI)

AND <00000 10000 1000 00001> (MBWI2)

 97

 <00000 10000 1000 00001> (rdm2)

Since more than one bit in rdm2 is "1", all D
iBWI in Drill-Packet Matrix

2DP
BWIT are

retrieved to further investigation. There is only one DBWI4 in
1DP

BWIT , ,the relevant

degree rdd1 = <00000 0000 00000> since:

 <00000 0010 00100> (D
NBWI)

AND <00000 0010 00100> (DBWI4)

 <00000 0010 00100> (rdd4)

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi4, is

thus generated as following:

rdi4= <00000 00000 10000 1000 0010 00001 00100>

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000

00000 00000>, cMask3=<00000 00000 00000 1111 1111 00000 00000> and

cMask4=<00000 00000 00000 0000 0000 11111 11111>. Since the results of

AND(cMask2, rdi4) is equal to AND(cMask2, BWIN), AND(cMask3, rdi4) is equal to

AND(cMask3, BWIN) and AND(cMask4, rdi4) is equal to AND(cMask4, BWIN), the

similarity of Record 4 is found as 1. Record 4 is then a relevant record.

• For MBWI1 , the relevant degree rdm3 = <00000 10000 1000 00001> since:

 <00000 10000 1000 00001> (M
NBWI)

AND <00000 10000 1000 00001> (MBWI3)

 <00000 10000 1000 00001> (rdm3)

 98

Since more than one bit in rdm3 is "1", all D
iBWI in Drill-Packet Matrix

3DP
BWIT are

retrieved to further investigation. There only one DBWI5 in
1DP

BWIT , ,the relevant

degree rdd5 = <00000 0000 00000> since:

 <00000 0010 00100> (D
NBWI)

AND <00000 1000 00010> (DBWI5)

 <00000 0000 00000> (rdd5)

After the Compacted BWI Concatenate-rdi-result algorithm executed, the rdi5 is

thus generated as following:

rdi5= <00000 00000 10000 1000 0000 00001 00000>

According to the Definition 5.1, the cMask2 = <00000 00000 11111 0000 0000

00000 00000>, cMask3=<00000 00000 00000 1111 1111 00000 00000> and

cMask4=<00000 00000 00000 0000 0000 11111 11111>. Since the result of

AND(cMask2, rdi1) is equal to the result of AND(cMask2, BWIN), however, result of

AND(cMask3, rdi1) is not equal to the result of AND(cMask3, BWIN), the similarities

of record 5 are found as 0.4. Record 5 is then a relevant record.

• For the other M
iBWI , the relevant degree rdmi are all equal to <00000 00000 0000

00000> , where 6≤ i ≤14, since no “1” bit in rdm, all other records are filtered out

using the Main Matrix only.

After the relevant records are sorted in decreasing order of similarities, the results

are shown is Table 4.18.

 99

Table 4.18: Two relevant records and their similarities

Relevant Record Record 1 Record 2 Record 3 Record 4 Record 5

Similarity 0.4 0.4 0.4 1 0.4

4.2.4 Analysis and Experiments of Compacted BWI Method

As we can see, the major different between Encapsulated BWI

Similar-records-seeking algorithm (Algorithm 4.4) of Encapsulated BWI method and

Compacted BWI Similar-records-seeking algorithm (Algorithm 4.10) of Compacted

BWI method is in Step 3, the computation time analysis (worse case analysis) is shown

below

In Encapsulated BWI method, the “AND” operations should be taken

∏∏
= =

r

i

el

j

j
i

i

ei
1 1

 times.

In Compacted BWI method, the “AND” operations should be taken

∏ ∏∏∏∏ ∏∏∏∏∏
= +== == +== == =

+×=×+
r

i

el

clj

j
i

r

i

cl

j

j
i

r

i

el

clj

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

i

i

ii

i

ii

eieieieiei
1 11 11 11 11 1

)1()(times.

The number of extra “AND” operations is:

 100

∏∏∏∏∏ ∏∏∏
= == == +== =

=−+×
r

i

cl

j

j
i

r

i

el

j

j
i

r

i

el

clj

j
i

r

i

cl

j

j
i

iii

i

i

eieieiei
1 11 11 11 1

)1(times

In the worst case analysis, the Compacted BWI method uses extra ∏∏
= =

r

i

cl

j

j
i

i

ei
1 1

time “AND” operations than the Encapsulated BWI method. However, the

Encapsulated BWI method should process extra ∑∑∏ ∏∏∏
= == +== =

××
r

i

cl

j

j
i

r

i

el

clj

j
i

r

i

cl

j

j
i

ii

i

i

eieiei
1 11 11 1

bits than the Compacted BWI method.

In Encapsulated BWI method, the total bit should be processed

∏ ∑∑∏
= = ==

×
r

i

r

i

el

j

j
i

el

j

j
i

ii

eiei
1 1 11

 bits.

In Compacted BWI method, the total bit should be processed

∏ ∑ ∑∏∏∏∏ ∑∑∏
= = +=+== == = ==

××+×
r

i

r

i

el

clj

j
i

el

clj

j
i

r

i

cl

j

j
i

r

i

r

i

cl

j

j
i

cl

j

j
i

i

i

i

i

iii

eieieieiei
1 1 111 11 1 11

)()(bits.

The saving bits are:

∑∑∏ ∏∏∏

∑∑∏∏∏ ∏∏∏

∑∑∏∏∏∏

∑∑∏∏

∑ ∑∏ ∑∑∏∑∑

∏ ∑ ∑∏∏∏∏ ∑∑∏∏ ∑∑∏

= == +== =

= == == +== =

= == == =

= == =

= +== = === =

= = +=+== == = === = ==

×−×=

×−×=

×−=

×−=

×+×−×=

××+×−×

r

i

cl

j

j
i

r

i

el

clj

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

r

i

el

clj

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

r

i

el

j

j
i

r

i

cl

j

j
i

r

i

cl

j

j
i

r

i

el

clj

j
i

r

i

r

i

cl

j

j
i

cl

j

j
i

r

i

el

j

j
i

r

i

r

i

el

clj

j
i

el

clj

j
i

r

i

cl

j

j
i

r

i

r

i

cl

j

j
i

cl

j

j
i

r

i

r

i

el

j

j
i

el

j

j
i

ii

i

i

iii

i

i

iii

ii

i

i

iii

i

i

i

i

iiiii

eieiei

eieieiei

eieiei

eieiR

eiReieieiR

eieieieieieiei

1 11 11 1

1 11 11 11 1

1 11 11 1

1 11 1

1 11 1 111 1

1 1 111 11 1 111 1 11

)())1((

)()(

)()(

)()(

)]()([)(

])([)()]([)(

 101

When the record size (|R|) of T is quite large, the Compacted BWI method can

be applied since the disk storage will be largely reduced. Once the record size is

smaller then)()1(
1 11 1
∑∑∏ ∏

= == +=

×−
r

i

cl

j

j
i

r

i

el

clj

j
i

ii

i

eiei , the Encapsulated BWI method should be

used since the extra processing time will be used by Compacted BWI method

 102

Chapter 5
Using BWI indexing in an Intelligent
Manufacturing Defect Detection
Method for the Time Issue

In this chapter, an implementation that consisted of a reinforcement-learning defect

detection root-cause learning system for the time aspect in manufacturing domains is

introduced. This implementation employed the Sample Bit-Wise Indexing Method to

encode the defect status of manufacturing products and hence accelerate data

preprocessing. Additionally, a bit-based Genetic Algorithm is used to learn suitable

weights for each computed signature, since the chromosome and the corresponding GA

operators are appropriate for the bit operations of BWI indexing method.

5.1 Problem Description

In recent years, the problem of detecting defects in the workshop has become

increasingly important for manufacturers. In order to raise the quality of products, the

root causes of low-quality situations must be found as soon as possible. Thus, process

 103

control, statistical analysis, and cause-methodology-analysis techniques have all been

widely applied in addressing the problem [10][18][22][27][53][62][70]. However, it is

very difficult to identify the root causes of defects due to a wide variety in the types of

causes of defects. For example, in the semiconductor manufacturing industry there are

many causes of low yields, among them: machine failures, improper operation,

improper parameters, manufacturing time problems, and scheduling and material

problems. Many studies have been devoted to investigating these issues. The advent of

advanced manufacturing technologies has led to overlong queues and increased

manufacturing times in workshops that may cause oxidation problems, which are

becoming more critical, but the diagnosis of such problems is usually very difficult and

time-consuming. In this chapter, we will proposed a manufacturing defect detection

problem, time aspect, for manufacturing domains (MDDP-t) is formally modeled and

defined. In this section, the manufacturing defect detection problem, time aspect, for

manufacturing domains (MDDP-t) is formally modeled and defined. A root-cause

evaluation function (RCEF), which is a linear combination of three probing functions

defined independently according to the experiences of domain experts, is proposed to

evaluate whether a specific machine is the root cause of a time problem. Determining

the weights for these probing functions is considered a separate issue here, and a

genetic algorithm (GA) with encoding and GA operations suitable for MDDP-t

 104

weight-learning problems is given to find appropriate weights for the probing functions.

Several instances of MDDP-t with known root causes, some provided by the Taiwan

Semiconductor Manufacturing Company [TSMC]), are given as training examples.

Experimental results show the proposed approaches can ensure efficiency and

accuracy.

Many technologies or methods are employed to identify the causative factors of

manufacturing defects, including Statistical Process Control (SPC), Advanced Process

Control (APC) [18][53], and Machine Learning (ML) approaches. However, the real

problems are sometimes chaotic, little-understood, and may be caused by complex

interactions among multiple factors. Therefore, root-cause sorting becomes a critical

issue for all manufacturing enterprises, especially some high technology ones like

semiconductor manufacturing corporations.

SPC and APC [10][53] are widely used in the semiconductor industry to monitor

manufacturing behavior in workshops via motion and condition sensors. SPC monitors

manufacturing by analyzing the statistical results of procedures, generating lists of

meaningful results, and warning if the results are outside predefined control boundaries

based on machine behaviors and expert experience. However, they sometimes issue

warnings for good products (type-two error) and may not always warn of defective

products (type-one error). APC, an advanced revision of SPC, not only monitors the

 105

statistical results of machines behaviors [18][53], but also takes predefined actions to

adjust machine behaviors when machines become unstable. Although APC seems more

advanced than SPC, the resulting action-selection problem raises a separate issue that

must be resolved.

Certain intelligent methods with self-learning abilities are employed to provide

fault analysis and suggest solutions. In [53], a combination of self-organizing neural

networks and rule induction was used to identify critical poor-yield factors from

normally collected wafer manufacturing data, and the corresponding behavior model

thus learned to predict possible behaviors. A decision-tree approach used to locate the

root cause of yield loss in integrated circuits was reported in [59]. The utility of

decision trees for yield analysis lies in pointing to process steps that may not be

captured by analyses of parametric data.

5.2 Problem Definition of MDDP-t

As mentioned above, we are concerned with the time aspects of detecting which

machines make product defects. In this section, we first define various parameters used

in this chapter, and then propose a formal definition of “Manufacturing Defect

Detection Problem, time aspects” (MDDP-t). Generally, quality baselines must exist

for all products in order to ensure good manufacturing procedures. Taking an example

 106

from semiconductor manufacturing, the quality baseline for 150-nanometer yields is

usually set to 90% or above in a well-tuned manufacturing fab. When yields become

unstable and drop below the quality baseline, product engineers (“lot owners” in

semiconductor manufacturing fabs) investigate to find the major reason (called the

“root cause”) for the low-yield situation. For example, a product engineer may collect

data on all low and normal product yields and identify suspect factors, e.g., abnormal

machine behaviors, in-line metrologies, processing and queuing times, which are the

most likely root causes according to statistical- or data-analysis results. In this chapter,

MDDP-t is considered a quadruple, including product manufacturing machine

information (PM), product manufacturing time information (PT), product

manufacturing yield information (PY), and quality baseline(yθ). The Notation 5.1 is

defined as following:

NOTATION 5.1:

M the set of machines;

cp number of products;

cm number of machines;

cs number of machine clusters;

si
 i-th machine cluster such that si = {mi,1, mi,2, …,)(, iim α }, where 1 ≤ i ≤ cs,

and α(i) is the number of machines in si and mi,j is the j-th machine in si, 1 ≤

 107

j ≤ α(i);

pi product pi, 1 ≤ i ≤ cp;

yi product quality pi, 1 ≤ i ≤ cp;

yθ acceptable product quality baseline;

pmi product pi manufacturing information vector

 pmi = < 1
ipm , ,2

ipm …, sc
ipm >, where pi is processed by the j

ipm -th

machine in sj and 1 ≤ i ≤ cp;

pti target manufacturing time vector for product pi

 pti = < 1
ipt , ,2

ipt …, sc
ipt >, where j

ipt is the processing time for

machine j
ipm and 1 ≤ i ≤ cp;

pyi pi product yield;

PM manufacturing procedure for products in P, where PM is a cp×cs matrix and

PMi,j=
j

ipm ;

PT product manufacturing time, where PT is a cp×cs matrix and PTi,j=
j

ipt ;

PY product quality yield, where PY is a column matrix and PYi = ipy ;

MDDP-t a given quadruple manufacturing defect detection problem involving time,

where MDDP-t=(PM, PT, PY, yθ).

 108

Table 5.1: An example of products passing through two machine clusters

 s1 pt1 s2 pt2 Y

p1 m1,1 10 m2,1 23 0.85
p2 m1,1 10 m2,1 23 0.86
p3 m1,1 11 m2,2 23 0.80
p4 m1,2 13 m2,3 60 0.60
p5 m1,2 12 m2,3 25 0.90
p6 m1,2 12 m2,3 66 0.60
p7 m1,3 10 m2,3 27 0.83
p8 m1,3 11 m2,3 25 0.65
p9 m1,3 11 m2,2 25 0.88
p10 m1,3 10 m2,2 23 0.85

EXAMPLE 5.1.

As shown in Table 5.1, there are 10 products in this example (cp=10) and each

product is processed by two machine clusters (cs=2), where s1={m1,1, m1,2, m1,3}(α(1)=3)

and s2={m2,1, m2,2, m2,3} (α(2)=3 and cm=6). Each product pi is processed by machine

pmi in target time pti. Assume that the given yield threshold yθ is 0.7. According to the

definitions given above, the manufacturing information vector pm1 and corresponding

manufacturing target time vector pt1 are, respectively, <1,1,1,2,2,2,3,3,3,3> and

<10,10,11,13,12,12,10,11,11,10>. Therefore, the manufacturing procedure, target time,

and product yield matrixes are

 109

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

23

23

33

33

32

32

32

21

11

11

10

9

8

7

6

5

4

3

2

1

pm

pm

pm

pm

pm

pm

pm

pm

pm

pm

PM ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2310

2511

2511

2710

6612

2512

3513

2311

2310

2310

10

9

8

7

6

5

4

3

2

1

pt

pt

pt

pt

pt

pt

pt

pt

pt

pt

PT , and

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

85.0

88.0

65.0

83.0

60.0

90.0

60.0

80.0

86.0

85.0

10

9

8

7

6

5

4

3

2

1

py

py

py

py

py

py

py

py

py

py

PY .

Finally, the production for the MDDP-t instance in Table 7.1 is set to (PM, PT, PY,

0.7).

Three probing functions, including Individual Machine, Intra-cluster, and

Machine Behavior, are proposed to find possible root causes for given MDDP-t

instances. The three probing functions are described in detail below:

1. Individual-Machine probing function (f1): This criterion considers individual

machine behaviors in given datasets. If the low-product-yield percentage of one

machine, especially one with an abnormal target time, is higher than that of other

machines, it may be considered a root-cause candidate. For example, Figure 5.1,

shows that machine m1,2 produces low yields of products p4 and p6, 66%, obviously

higher than that of machine m1,1 with a low-yield percentage of 0%.

 110

Figure 5.1: Products processed by machines m1,1 and m1,2

Certain notation must be defined in order to calculate the parameters of this

function:

NOTATION 5.2:

mvi,j the set of products processed by machine mi,j;

myi,j the set of low-yield products processed by machine mi,j;

mtyi,j the set of low-yield products with abnormal target time processed by

machine mi,j.

The Individual-machine probing function for machine mi,j is the multiplication of

the ratio of processed product (
n

mv ji || ,) by the ratio of low-yield product processed

with abnormal target time (
||

||

,

,

ji

ji

my

mty
)j. As mentioned above, a higher result from this

Low-Yield
Area

PY

PT0

yθ

μ(mi,j) μ(mi,j)+σ(mi,j) μ(mi,j)-σ(mi,j)

Normal Area
1

Processed products of m1,1

Processed products of m1,2

P3

P2
P1

P4P6

P5

 111

function means a higher possibility of being a root cause.

Since applying conventional comparison and computation operators to generate

mvi,j, myi,j, and, mtyi,j may be time-consuming, we use the BWI indexing method to

reduce the time required to compute this decision variable. The detailed notation and

functions resulting from use of the BWI indexing method are defined as follows:

NOTATION 5.3:

mvi,j the machine-bit vector of machine mi,j, where mvi,j=<b1b2b3…
pcb >, mvi,j(k) is

the k-bit (bk) of mvi,j, and bk = 1 if jpmi
k = for 1 ≤ i ≤ cs , 1 ≤ j ≤ α(i), and 1

≤ k ≤ cp; otherwise, bk = 0;

mvLY the machine-bit vector of low-yield products for the given MDDP-t instance,

where mvLY=< b1b2b3…
pcb > and bk = 1 if pyk<yθ for 1 ≤ k ≤ cp; otherwise, bk

= 0;

OC
jimv , the abnormal target time machine-bit vector of machine mi,j, where

mvi,j=<b1b2b3…
pcb > and bk = 1 if)()(,, jiji

i
k mmpt σμ +> or

)()(,, jiji
i
k mmpt σμ −< ; otherwise, bk = 0;

myi,j the machine vector for low-yield products from machine mvi,j, where myi,j

=AND(mvi,j, mvLY);

 112

mtyi,j the machine vector for outlier products of machine mvi,j, where mtyi,j

=AND(myi,j,
OC

jimv ,);

count_one(x) 1-bit count in bit-vector x;

count_zero(x) 0-bit count in bit-vector x;

μ(mi,j) the average manufacturing time for machine mi,j,
()

)(_

)(

,

1
,

ji

c

k
ji

i
k

mvonecount

kmvpt
p

∑
=

×
;

σ(mi,j) the standard deviation for machine mi,j, manufacturing time

()
)(_

)()(

,

,
1

2

,

ji

ji

c

k
ji

i
k

mvonecount

kmvmpt
p

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−∑

=

μ
.

Obviously, the time required to compute mvi,j, myi,j and mtyi,j is thus largely

reduced since all comparison and computation operations use the bit-wise indexing

method. The formulation of the Individual Machine probing function (f1) is thus:

Individual Machine probing function f1(mi,j) for an MDDP-t

)(_

)(_)(_
)(

,

,,
,1

ji

jiji
ji myonecount

mtyonecount

n

mvonecount
mf ×= ………………………...……(5.1).

2. Intra-cluster probing function (f2): The second criterion considers the slopes of

machine behavior regression lines within machine clusters. Intra-cluster machine

 113

behavior is represented as a regression line of data points on a two-dimensional

plane where the x and y axes are, respectively, the target time and yield of each

product processed by the machine. A higher absolute slope value for the

regression line means higher time-issue sensitivity for the corresponding machine.

In other words, it may be a root-cause candidate in the time-issue problem. As

shown in Figures. 5.2(a) and 5.2(b), the absolute value of the machine-curve

slope of mi,j is higher than that of mi,k. Therefore, machine mi,j has a higher

possibility of being a root-cause candidate. The following definitions and

functions are needed to calculate the parameters of this function:

Figure 5.2: The regression lines for (a) mi,j and (b) mi,k

Certain notation must be defined in order to calculate the parameters of this

function:

),(ixoffset i-th 1-bit offset (l. to r.) in bit-vector x;

evsi,j the set of data points for products processed by machine j
ipm :

Machine mi,j Machine mi,k

Yield

Yield

Target time Target time

 114

 evsi,j={(x1, y1), (x2, y2), …, ()(_)(_ ,,
,

jiji mvonecountmvonecount yx), } where

xk=),(, kmvoffset ji
py , yk=

j
kmvoffset ji

pt),(,
 for 1 ≤ k ≤ count_one(mvi,j) ;

regress(evsi,j) the evsi,j regression line;

slope(regress(evsi,j)) the slope of regress(evsi,j).

For the example shown in Table 5.1, the bit operation is mv1,1(3)=1,

)(_ 1,1mvonecount =3,)(_ 1,1mvzerocount =7 and)3,(1.1moffset =3, and we have the

evaluation vector set for machine 1
1pm , evs1,1={<0.85, 10>, <0.86, 10>, <0.80, 11>}.

Intra-machine-center probing function f2(mi,j) for the MDDP-t problem:

))(()(,,2 jiji evsregressslopemf = …………………………………………………(5.2)

3. Machine Behavior probing function (f3): The third criterion considers similarities

among machine behaviors in given datasets with respect to the time issue. The

behavior of an arbitrary machine can be represented as a machine-behavior vector

with)(_ , jimtyonecount and)(_ ,
OC

jimvonecount the respective x and y axes. The

sum of the degrees of included angle between the machine-behavior vector of a

machine in a machine cluster and all the other machine-behavior vectors is

calculated. The machine with the highest sum has the highest possibility of being

 115

the root cause in that machine cluster. As shown in Figure 5.3, of the four machines

in machine cluster si, the computed sum for machine mi,4 is obviously much higher

than the others. Thus, machine mi,4 has higher possibility of being the root cause in

this example. The following definitions and functions must be defined in order to

calculate the parameters for this function.

Figure 5.3: The machine-behavior vectors of machine cluster si

inner_product(x, y) the inner product of machine-behavior vector (x, y);

),(yxθ the included angle of machine-behavior vector (x, y), where

yx

yxproductinner
yx

⋅
= −),(_

cos),(1θ ;

mx_inc(mi,j, mi,k) the included angle between the machine-behavior vectors of

machines mi,j and mi,k, where mx_inc(mi,j, mi,k)=

)))(_),(_()),(_),(_((,,,, ki
OC

kiji
OC

ji mtyonecountmvonecountmtyonecountmvonecountθ .

m
v

O
C

mty

(9, 5)mi.4
Machine Cluster si

(9, 2) mi.1
(10, 2) mi.2

(10, 2) mi.3

 116

Therefore, formulation of Machine Behavior probing function f3(mi,j) is as

follows:

Machine-behavior probing function f3(mi,j) of MDDP-t is:

1)(

),(_
)(

)(

1
,,

,3 −
=
∑

=

i

mmincmx
mf

i

k
kiji

ji α

α

………………………………………….………..…(5.3)

EXAMPLE 5.2

Continuing from Example 5.1, the following machine bit-vectors were obtained:

mv1,1=<1110000000>, mv1,2=<0001110000>, mv1,3=<0000001111>,

mv2,1=<1100000000>, mv2,2=<0010000011>, and mv2,3=<0001111100>; the low-yield

machine bit-vector of product P is <0001010100> and the out-of-control machine-bit

vectors of machines m1,1 and m1,2 are, respectively, OCmbv 1,1 =<0010000000> and

OCmbv 2,1 =<0001000000>. And my1,1=<1110000000> AND <0001010100> =

<0000000000>, my1,2=<0001110000> AND <0001010100> = <0001010000> and the

corresponding mty1,1 and mty1,2 are thus ANDed to <0000000000> and <0001000000>.

As mentioned above, we use these probing functions as major criteria in

evaluating MDDP-t according to experts’ experience in the semiconductor

manufacturing domain. We then define a Root Cause Evaluation Function RCEF(mi,j),

which is a linear combination of the three probing functions along with their

 117

corresponding weights wi used to identify the importance of each probing function in

the RCEF, to compute the root-cause possibility of machine mi,j.

Root Cause Evaluation Function RCEF(mi,j) of MDDP-t

∑
=

×=
3

1
,,)()(

k
jikkji mfwmRCEF

However, the corresponding weights W={w1, w2, w3} of these three RCEF

probing functions require further investigation. A genetic algorithm is thus used to

solve the weight-learning problem of the three given probing functions in order to

determine suitable weights for the MDDP-t.

5.3 Genetic Algorithm for MDDP-t

The search space in a GA (Genetic Algorithm) consists of possible solutions to a

problem [15]. A solution in the search space is called an individual and its genotype

consists of a set of chromosomes represented by sequences of 0s and 1s. These

chromosomes can dominate individual phenotypes. Each individual has an associated

objective function called its fitness. A good individual is one that has a high/low fitness

 118

value depending on whether the problem involves maximization or minimization. The

strength of a chromosome in an individual is represented by its fitness value and the

chromosomes of individuals are carried to the next generation. The set of individuals

with associated fitness values is called the population. The population at a given stage

in the GA is referred to as a generation. The best individual in each generation is the

individual with the best discovered fitness value.

There are three main components in the GA while loop:

(1) selection/reproduction, the process of selecting good individuals from the current

generation to be carried to the next generation;

(2) crossover, the process of shuffling two randomly selected strings (chromosomes) in

two parent individuals to generate new offspring;

(3) replacement, the replacing of the worst-performing individuals in a generation

based on fitness value.

Sometimes one or more bits of a chromosome are complemented to generate a

new offspring. This process is called mutation. The population size is finite in each GA

generation, which implies that only relatively fit individuals in generation j will be

carried to the next generation j+1. The power of GA is that the algorithm terminates

 119

rapidly to an optimal or near optimal solution. The iterative process is terminated when

the solution reaches the optimum value [16].

Details of the GA developed to solve MDDP-t are described in this section. As

mentioned above, the weight set W is quite important in solving MDDP-t. Since the

weights are domain-dependent, we propose a GA-based weight-learning function for

MDDP-t to find weights w for each probing function according to MDDP-t instances

with known root causes. The weight-learning function is described in detail below.

NOTATION 5.4

Mi machine set for the i-th MDDP-t instance;

rmi root-cause machine already known to cause the i-th MDDP-t instance

defect.

rank(Mi, rmi) k, where rmi is the k-th largest RCEF value in set Mi.

Weight-learning Problem: Given k MDDP-t instances, find weights w1, w2 and w3 to

minimize :

∑
=

k

i
ii rmMrank

1

),(………………………...…………………………………..…..(5.4)

 120

EXAMPLE 5.3:

Assume three MDDP-t instances with three weight sets. According to the rankings

of actual root causes in the three datasets evaluated using these three functions shown

in Table 5.2, w1 is the best choice.

Table 5.2: Weight-learning function example for three MDDP-t instances

),(11 rmMrank),(22 rmMrank),(33 rmMrank ∑
=

3

1

),(
i

ii rmMrank

1w 1 1 2 4

2w 2 3 4 9

3w 1 2 4 7

There are five parts to our GA approach: encoding, crossover/mutation,

selection/terminal conditions, and fitness determination. In general, the chromosomes

in the first generation are created randomly and succeeding generations are generated

by crossover and mutation. Details of these four parts are given below.

Encoding

The proposed probing functions are based on expert experiences, and each

chromosome is the concatenation of the bit-strings represented by w1, w2 and w3. Since

not all probing functions are used in every domain, the n-bit flags e1, e2 and e3 are used

to help the GA efficiently determine which probing functions to use in the RCEF

 121

function. When the one-bit ei is set to zero, the weight wi of that probing function is set

to zero in the chromosome. Obviously, the n-bit ei is used to set the probing function

probability determination to 1/n. Assume the probing function determination

probability is 25% and the number of bits for ei is set to 4. The corresponding essential

flag ei also uses n bits in the tail of its weight string, the initial values of which are

randomly set. According to the above definitions, assume that w1=00011=3, s1=01,

w2=00101=5, s2=10, w3=00100=4, and s3=10. The chromosome thus generated is

000110100101100010010.

Crossover/Mutation Procedures

Many methods can be employed in the crossover process, thus, suitable operation

should be selected according to the application domain. For example, the strings

001111001011001001 and 010011011001001011 could be crossed over after the

second locus in each to produce 000011011001001011 and 011111001011001001. Our

experience indicates the random one-point crossover method is suitable for solving

MDDP-t learning problems.

The conventional bit-inversion method can be used in the mutation process. For

example, the second position in the string 001111001011001001 might be mutated to

yield 011111001011001001 by changing the 0 to 1 in bit 2. Our experience indicates

 122

the inversion probability should be set to 0.05.

Selection/Terminal Conditions

The population size in each generation and terminal conditions can be determined

according to the application domain. Our experience indicates the initial chromosome

number in the population should be set to 300 and the terminal conditions set to 500

generations.

Fitness Function

Many chromosomes are produced in each generation and weights W must be

evaluated. In order to identify suitable weight sets, all machine information is input to

the RCEF, which then computes the actual root-cause rankings. An MDDP-t GA

fitness function and MDDP-t GA algorithm are shown below.

MDDP-t GA fitness function

For n given MDDP-t instances MDDP-t1, MDDP-t 2 , …, MDDP-t n, let rmj be the

actual root-cause of the MDDP-t j instance. Weight set Wi is better than weight set Wj if

∑
=

n

k
kk rmMrank

1

),(using weight set Wi is smaller than the same function using Wj.

 123

Algorithm 5.1 - MDDP-t GA algorithm

Input: Training datasets

Output: The weight set W for the RCEF

Step1: Initialize population (bit-strings combining w1, e1, w2, e2, w3, e3)

Step2: Choose parents

Step3: Construct offspring using one-point crossover

Step4: Call mutation procedure

Step5: For all flags ei, if ei is all 0, set wi=0; otherwise wi=wi

Step6: Evaluate offspring and replace least-fit individual with better offspring

Step7: Go to Step2 until a terminal condition is reached

Training will generate several weight sets, which can then be applied to detecting

root causes in future datasets. When a new dataset with an unknown root cause is input

into the manufacturing defect detection system for root cause discovery, it must first be

translated into MDDP-t terms. After that, the top combination is used to generate a

possible root-cause ranking list. Engineers can use these ranking lists to check

machines one by one and filter out possible killer machines. Finally, engineers can then

record the real root cause and may re-compute the MDDP-t learning procedure if the

weights resulting from training fail to identify the correct root cause.

 124

5.4 Experiments for MDDP-t

There were 21 data datasets in our experiments, some of them are provided by the

Taiwan Semiconductor Manufacturing Company (TSMC). We divided these into 12

training datasets, shown in Table 5.3, and 9 test datasets, shown in Table 5.4, each with

a real root cause. We used the training datasets to find the top 5 weight combinations

for the RCEF, and used the test datasets to evaluate the accuracy of the weight sets.

Table 5.3: Training Datasets for the GA approach

DataSet
Size of dataset

(Lots*Attributes)
Number of machine

clusters
Number of machines

Dataset1 300*4211 2314 4456
Dataset 2 302*3345 1842 4235
Dataset 3 255*6625 2356 6822
Dataset 4 187*2568 1108 3684
Dataset 5 427*1548 1001 2265
Dataset 6 392*3954 2304 5262
Dataset 7 265*2879 1105 4552
Dataset 8 267*2265 1096 3665
Dataset 9 321*2451 1664 4556
Dataset 10 367*4325 2025 4456
Dataset 11 357*2848 1456 3698
Dataset 12 285*2525 1875 3308

 125

Table 5.4: Test Datasets

Dataset
Size of dataset

(rows*columns)
Number of machine

clusters
Number of machines

D1 365*2234 986 3625
D2 752*3365 1245 3688
D3 654*3364 2856 4652
D4 586*3324 1846 4875
D5 564*1239 823 2234
D6 452*2235 1134 3048
D7 165*3321 1652 3698
D8 215*1254 656 2043
D9 346*2236 1134 2365

IThe initial mutation probability was set to 0.05, and the maximum number of

generations to 3000. The CPU times and population sizes for the RCEF weight

combinations are shown in Figure 5.4. As shown, the CPU usage is marginally near the

polynomial time cost.

Figure 5.4: Experimental Results for Various Population Sizes

 126

The average root-cause rankings for the training datasets from the top 5 weight

sets for various standard deviation values of probing functions are shown in Figure 5.5.

When the standard deviation was between 1 and 1.5, the genetic algorithm found the

best solutions, but hit errors increased when the time standard deviation was greater

than 2 and less than 0.75 since too much information was pruned and computational

noise was included.

Figure 5.5: Average root-cause rankings from the training datasets by the top 5
functions for various standard deviation values

We chose top 5 chromosomes when the GA training process finished. The results

for the γβα ,, combinations are shown in Table 5.5. Clearly, the actual root-cause

rankings for the test datasets are quite high and the hit-error averages are all in a

tolerable range.

contradiction similarity = 30%

0

10

20

30

40

50

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Standard deviation(times)

A
vg

.
R

an
k

 127

Table 5.5: Actual root-cause rankings for the test datasets

w & e D1 D2 D3 D4 D5 D6 D7 D8 D9 Summary
w={18,5,6}
e={1,1,1} 2 8 1 2 1 9 7 2 2 34

w={10,12,2}
e={1,1,1} 3 5 3 2 2 13 9 6 8 51

w={12,8,6}
e={1,1,1} 1 32 6 8 16 25 13 6 3 110

w={8,15,10}
e={1,1,1} 25 12 7 12 18 6 3 13 16 112

w={6,7,13}
e={1,1,1}

46 18 10 9 11 2 4 2 19 120

Average 15.4 8.3 5.4 6.6 9.6 11 7.2 5.7 9.6 9.5

As mentioned above, the proposed method is quite useful for finding actual root

causes in actual manufacturing datasets using the weights discovered by the proposed

GA learning approach.

Quickly solving product-yield and quality problems in complex manufacturing

processes is becoming increasingly difficult. Although the “manufacturing time

problem” may be avoided via process control, statistical analyses, and experimental

design, it is still very difficult to resolve once it happens. In this section, the

manufacturing time problem for the manufacturing domain (MDDP-t) has been

formally modeled and defined. Accordingly, a root-cause evaluation function (RCEF)

has been proposed to evaluate whether a specific machine is the root cause of a time

problem. The RCEF uses three probing functions independently defined according to

 128

the experiences of domain experts. Moreover, a genetic algorithm (GA) has been

designed to find suitable weights for the proposed probing functions. Experiments

were also performed and the results show the proposed approaches can ensure

efficiency and accuracy.

In the future, we will continue focusing our research on this topic. We will keep

challenging the correctness of the proposed MDDP-t by seeking useful probing

functions from different perspectives and different application domains. We will also

try to apply similar learning models to other MDDP problems in the semiconductor

manufacturing domain, such as the wafer-in-process (MDDP-wip),

wafer-acceptance-test (MDDP-wat), and in-line metrologies (MDDP-im) issues, in

order to discover the root causes of MDDP problems as correctly and efficiently as

possible.

 129

Chapter 6
Using BWI indexing in Intrusion
Detection System

In this chapter, a pattern-learning network intrusion detection system is described.

This implementation uses the Encapsulated Bit-wise Indexing Method to encode the

networking activity with minimal monitoring time window in order to accelerate the

data preparation procedure. Moreover, a bit-based intrusion Pattern Matching

mechanism is proposed to efficiently learn, roll-up, drill-down and combine the

intrusion pattern with different time-windows/services/ports combinations.

6.1 Problem Description

Due to the rapid growth of networked computer resources and the increasing

importance of the related applications, intrusions that threaten the infrastructure of

 130

these network applications become critical problems today.

[35][37][38][40][46][57][66][72] Network intrusion detection (NID) is the process of

identifying possible intrusion behaviors from the network that provides information to

the security administrators. Although many intrusion detection systems had been

proposed and some possible intrusion behaviors had been identified and detected

[1][20][21][26][49][57][69], no optimal solution had been found due to the variances

of the intrusion patterns. In this work, we are concerned about how to identify possible

intrusion behaviors that can help users to build an intrusion detection system through

data mining processes to secure the infrastructure of the network. In the intrusion

detection domain, five issues need to be considered, including Pattern representation,

Computability, Performance, Maintenance and Extendibility. In this chapter, we

propose a new, efficient and service-oriented intrusion pattern mining and

representation method, called Bit-wise-based Intrusion Pattern Mining Method

(BIPAM), which can provide higher performance, better maintenance and expressive

abilities. In our model, BIPAM consists of two phases, Network Activities Analyzing

Phase and Features/Pattern Mining Phase, and a database that contains the information

about the users and the mined intrusion patterns is used in these two phases.

In general, almost all intrusion patterns can be transformed into a sequence of

 131

network activities that are extracted from the related network packets. These kinds of

network packets can be collected and then be transformed into some sequence of

bit-wise strings showing the intrusion patterns. The Network Activities Analyzing

Phase of BIPAM can first filter the raw network packets and log necessary features

(Source IP, Destination IP, Source port, Destination port) in a small time window to

perform data sampling and data cleaning and to reduce the amount of data. After that,

with combined users and services information, the sufficient service-user activity

events are found and used by the second phase. The Features/Pattern Mining Phase

transforms the sufficient service-user activity events to some bit-wise strings and next

merges the bit-wise strings into some other bit-wise strings with the same source IP.

After gathering those bit-wise strings, the Pattern Mining Module and Pattern Merging

Module can perform some data mining processes to find possible intrusion patterns

that can be the source of the candidates of intrusion patterns for future intrusion

detection systems.

Since the expression of intrusion pattern is one of the most important things in an

intrusion detection system, the expressions of intrusion pattern in current intrusion

detection systems will be firstly introduced and the representation of the bit-wise

indexing method will be next introduced in this section.

 132

6.2 The Representation of Intrusion Behavior

According to the results of previous researches, the representation of intrusion

behavior can be categorized as follows:

Implicit representation of intrusions: Some intrusion detection systems use

their own models for detecting some specific intrusion behaviors. For example, the

detection system for DDoS (Distributed DoS), which intrudes the system by

coordinating hosts, analyzes the network information with the known properties of

DDoS intrusion. These kinds of intrusion detection systems may not provide an

understandable representation for intrusion behavior, since the knowledge for intrusion

detection is imbedded in the system.

Rule oriented intrusion representation: This is the most common representation

for intrusion detection knowledge. In an if…then formatted rule, the condition of the

rule records the matching criteria for the intrusion, and the action of rule records the

reaction for the intrusion. For example, a rule for BO (Back Orifice) intrusion, which is

a back door intrusion by using specific program, may check every packet information

whether the connection is through port 31337 or not. Once the rule is triggered, the

action defined in the action part of the rule, e.g., alert the administrator, is then

 133

performed.

Pattern oriented intrusion representation: Many intrusions may not be

accomplished by a single step, so does the intrusion detection. Using a single rule can

only represent intrusions with single step or intrusions with a significant feature, e.g.,

BO intrusion, some application vulnerabilities. However, for intrusions with several

steps to execute, a pattern oriented intrusion representation for intrusion behavior will

be needed. A pattern oriented intrusion representation will represent intrusion in a

sequence of states; for example, a sequence of states in a state machine or a state

diagram.

Specific intrusion representation: Many researches are trying to define specific

model together with corresponding specific intrusion representation to represent

intrusion. For example, goal tree, which has good performance on some specific target

intrusions, had been used to represent intrusion pattern in some previous researches.

However, the specific representations will sometimes lack the extendibility since the

specific representation may be not suitable for all kinds of intrusions.

Each kind of intrusion behavior expression has advantages and disadvantages, but

different intrusion detection systems usually require different intrusion behavior

expressions. Thus, it is difficult to integrate the intrusion behavior knowledge by these

intrusion behavior expressions. In this chapter, we will propose an efficient mining

 134

method BIPAM to explore the possible intrusion patterns via monitoring and analyzing

the users’ behaviors.

As mentioned above, the bit-wise indexing method can be easily indexed and

parallelized, the bit-wise indexing method is quite suitable to solve the performance

and scalability issues of a real-time IDS.

6.3 Architecture of BIPAM

As we know, building an intrusion detection system becomes one of the most

popular solutions to secure the network infrastructure in recent years. Since the

expression of intrusion patterns is very important in building an intrusion detection

system. The architecture of BIPAM consisting of three main components for quickly

mining possible intrusion patterns is proposed as shown in Figure 6.1. The database in

Figure 6.1 stores the users’ information, some users’ historical mined data and the

possible intrusion patterns gathered in the past.

 135

Network Activities
Analyzing Phase

Features
/Pattern Mining

Phase

Phase 1 Phase 2

Database

Network User
Information

Internet
Events

Intrusion
Features/Patterns

Figure 6.1: The architecture of the BIPAM

Figure 6.2 shows the detailed architecture of the Network Activities Analyzing

Phase. In this phase, the Network Activities Filtering Module, Network Services

Analyzing Module and Service to User Merging Module are proposed to provide

sufficient service-user activity events to the next phase.

Network Activities
Filtering Module

Service to User
Merging Module

Phase 1

Database

Network User
Information

Internet
Events

Network Services
Analyzing Module

Network User
Information

Candidate
Packets

Sufficient
Service-User

Activity Events

Figure 6.2: The detailed process of Phase 1

 136

Before the whole mining procedure is proceed, the IP address of target machines

that may be intruded, called victim IP, should be defined. These target machines

usually provide some important services and thus easy to be treated as the victims by

the intruders. The victim IPs are the primary parameters of BIPAM. The network

packets, including TCP, UDP and ICMP packets, are checked by Network Activities

Filtering Module and all unrelated packets of the victim IPs are filtered out via

checking the dumped packet logs. Also, the corresponding IP address for each related

packets, called possible inflictor IP, is to compare the IP information in the database in

order to check the historical status of such IP. If the IP is dangerous, the system alert

will be trigged. Also, all the packets from such IP will be restricted. For example,

assume that there are twenty packets pass through the Network Activities Filtering

Module. The detailed log about these packets is shown in Table 6.1. Also, the victim IP

is 140.113.167.100. In Table 6.1, the packet 2 and 4 are filtered out since they are not

related packet of victim IP. Also, four possible inflictor IPs, including 140.113.167.122,

140.127.12.113 and 115, denote them as pii1, pii2 and pii3 respectively. Assume that

140.127.12.115 is the known dangerous IP. The system will notify the administrator via

sending some warning messages and then all requirements from this IP are denied.

After executing the Network Activities Filtering Module, the amount of network

packets needed to be logged will be reduced and all connected between the source IPs

 137

will be collected. Also, all possible inflictor IPs can be found for further investigation.

Table 6.1: The packet log of Network Activities Filtering Module

Source IP Destination IP Pt Packet
Type

Serv
Type

Prot. Time Etc

1 140.113.167.122 140.113.167.100 80 TCP web http 12:01:11 ……
2 140.113.167.122 140.113.167.121 21 TCP web ftp 12:01:11 ……
3 140.113.167.122 140.113.167.100 80 TCP web http 12:01:12 ……
4 140.113.167.122 140.113.167.121 21 TCP web ftp 12:01:13 ……
5 140.113.167.122 140.113.167.100 80 TCP web http 12:01:14 ……
6 140.113.167.122 140.113.167.100 80 TCP web http 12:01:15 ……
7 140.127.12.113 140.113.167.100 1 TCP u/k u/k 12:01:16 ……
8 140.127.12.113 140.113.167.100 1 TCP u/k u/k 12:01:16 ……
9 140.113.167.122 140.113.167.100 80 TCP web http 12:01:17 ……
10 140.127.12.113 140.113.167.100 2 TCP u/k u/k 12:01:18 ……
11 140.127.12.115 140.113.167.101 80 TCP web http 12:01:19
12 140.113.167.122 140.113.167.100 80 TCP web http 12:01:19 ……
13 140.127.12.113 140.113.167.100 3 TCP u/k u/k 12:01:20 ……
14 140.113.167.122 140.113.167.100 80 TCP web http 12:01:20 ……
15 140.127.12.113 140.113.167.100 4 TCP u/k u/k 12:01:21 ……
16 140.113.167.122 140.113.167.100 80 TCP web http 12:01:22 ……
17 140.127.12.113 140.113.167.100 5 TCP u/k u/k 12:01:23 ……
18 140.127.12.113 140.113.167.100 6 TCP u/k u/k 12:01:24 ……
19 140.113.167.122 140.113.167.100 80 TCP web http 12:01:25 ……
20 140.127.12.113 140.113.167.100 7 TCP u/k u/k 12:01:27 ……

After filtering the network packets, the Network Service Analyzing Module

transfers the packet information into packet log table shown in Table 6.2, which

contains the attributes about the network activities including Source IP, Destination IP,

Destination port, trigger time, and service type. Those packet log table can then be

classified according to the source IP, destination IP and service type in order to show

the relationships between services and servers.

 138

Table 6.2: The packet log table

Source IP Destination IP Dest.
Port

Service
Type

Time

1 140.113.167.122 140.113.167.100 80 Web 12:01:11
3 140.113.167.122 140.113.167.100 80 Web 12:01:12
5 140.113.167.122 140.113.167.100 80 Web 12:01:14
6 140.113.167.122 140.113.167.100 80 Web 12:01:15
7 140.127.12.113 140.113.167.100 1 u/k 12:01:16
8 140.127.12.113 140.113.167.100 1 u/k 12:01:16
9 140.113.167.122 140.113.167.100 80 Web 12:01:17
10 140.127.12.113 140.113.167.100 2 u/k 12:01:18
12 140.113.167.122 140.113.167.100 80 Web 12:01:19
13 140.127.12.113 140.113.167.100 3 u/k 12:01:20
14 140.113.167.122 140.113.167.100 80 Web 12:01:20
15 140.127.12.113 140.113.167.100 4 u/k 12:01:21
16 140.113.167.122 140.113.167.100 80 web 12:01:22
17 140.127.12.113 140.113.167.100 5 u/k 12:01:23
18 140.127.12.113 140.113.167.100 6 u/k 12:01:24
19 140.113.167.122 140.113.167.100 80 web 12:01:25
20 140.127.12.113 140.113.167.100 7 u/k 12:01:27

The third module in this phase is the Service to User Merging Module. In this

module, the packet log table has been sorted in ascending order according to the

attribute source IP and destination IP, service type and trigger time sequentially. After

sorting the packet log table sorted, for each segment with the same Soruce IP,

Destination IP and service type will be partitioned into several small tables, called

service-user activity events tables. These tables can be easily extracted and analyzed.

Continuing the example in the above, two segments in Table 6.2 with the same Soruce

IP, Destination IP and service type are found. The server-user activity events tables of

 139

Table 6.3 of web and unknown service are shown in Table 6.3(a) and Table 6.3(b),

respectively. After the service-user activity events had been generated, this information

will be delivered to Phase Two for further processing.

Table 6.3: The service-user activity event tables

(a) Service-user activity event of pii1 for web service

Source IP Destination IP
Dest.
Port

Service
Type

Time

1 140.113.167.122 140.113.167.100 80 web 12:01:11
3 140.113.167.122 140.113.167.100 80 web 12:01:12
5 140.113.167.122 140.113.167.100 80 web 12:01:14
6 140.113.167.122 140.113.167.100 80 web 12:01:15
9 140.113.167.122 140.113.167.100 80 web 12:01:17
12 140.113.167.122 140.113.167.100 80 web 12:01:19
14 140.113.167.122 140.113.167.100 80 web 12:01:20
16 140.113.167.122 140.113.167.100 80 web 12:01:22
19 140.113.167.122 140.113.167.100 80 web 12:01:25

(b) Service-user activity event of pii2 for unknow service

Source IP Destination IP
Dest.
Port

Service
Type Time

7 140.127.12.113 140.113.167.100 1 u/k 12:01:16
8 140.127.12.113 140.113.167.100 1 u/k 12:01:16
10 140.127.12.113 140.113.167.100 2 u/k 12:01:18
13 140.127.12.113 140.113.167.100 3 u/k 12:01:20
15 140.127.12.113 140.113.167.100 4 u/k 12:01:21
17 140.127.12.113 140.113.167.100 5 u/k 12:01:23
18 140.127.12.113 140.113.167.100 6 u/k 12:01:24
20 140.127.12.113 140.113.167.100 7 u/k 12:01:27

In the Feature/Pattern Mining Phase, there are three modules, including Bit-wise

Transforming Module, Pattern Mining Module and Pattern Merging Module. The goals

 140

in this phase are transforming the network events to some corresponding bit-wise

strings and performing data mining processes in order to find possible intrusion

patterns. The detailed architecture of this phase is shown in Figure 6.3.

Bit-wise
Transforming

Module

Pattern
Merging
Module

Database

Bit-wise
String

Attack
Patterns

Sufficient
Service-User

Activity Events

Phase 2

Pattern Mining
Module Bit-wise

Patterns

Possible
Bit-wised

Attack
 Patterns

Figure 6.3: The detailed process of phase 2

When the sufficient service-user activity events are collected, the activity events

are transformed into some single-services bit-wise strings according to a small time

window, which is defined to be the basic time slice of IDS, for every service-user

activity event via Bit-wise Transforming Module. These bit-wise strings can then be

stored in the database. For further data mining and storage saving, each single-services

bit-wise string can be transformed into a new single-services bit-wise string with a

larger time slice. Moreover, some single-service bit-wise strings with the same

destination and source IPs may be merged into a new multi-services bit-wise string

since the most networking intrusion behaviors from several different services in order

to setup an proper attack environment. So the final products of this module are these

 141

bit-wise strings that not merely contain single-service user behaviors but also contain

single-service user behaviors. For example, assume the basic time slice of BIPAM is

one second. The bit-wise string of piin for service type m using time slice k is denoted

as ppin.bsk
m, shown as following.

Service-user activity event of pii1 for web service using time slice one and five

seconds

ppi1.bs1
web= 0000000000110110101101001000

ppi1.bs5
web= 001110

Service-user activity event of pii2 for unknown service using time slice one and

five seconds

ppi2.bs1
unknown= 0000000000000001010110101001

ppi2.bs5
unknown= 000111

In the Pattern Mining Module, with the help of the pattern database, these bit-wise

strings of each user are first compared with the existing intrusion patterns stored in the

database using bit-wise indexing method for similarity search. If there is an existing

intrusion pattern is compared with one of these bit-wise strings and the similarity

degree is higher than the given threshold (e.g., 0.9), the IDS will announce a warning

message and take some appropriate actions. For instance, if there is an existing port

 142

scan intrusion pattern, bp*
unknown=1111111111111111111, the similarity between

bp*
unknown and ppi2.bs5

unknown is 1 (if leading 0 is avoided), Although there is no such

kind of intrusion patterns in the database, the security administrators or expertise may

still consider these packet logs as some kinds of intrusions and possible intrusion

patterns might be found and then be stored in the database for further evaluations.

After finishing the works in this module, the bit-wise strings with possible intrusion

patterns of one user will be sent to the next module to find more complex intrusion

patterns. These bit-wise strings can be merged and then compared with existing

intrusion patterns to find the intrusion patterns of multiple services using Pattern

Merging Module. For example, the ppi1.bs1
web and ppi1.bs1

web can be merged and thus

the bit string ppi1,2.bs1
web,unknown = 0000000000110111111111101001 is formed. The bit

string ppi1,2.bs1
web,unknow can then be compared with the existing DDOS patterns for

finding some possible intrusion behavior. At last, the possible bit-wise intrusion

patterns are mined for further works in building an intrusion detection system.

In this chapter, we have proposed a new, efficient and service-oriented intrusion

pattern mining and representation method that provides more expressivities, higher

performance. The intrusion patterns are extracted from the some sample packets that

can be expressed in sequence of packets and thus are represented by some bit-wise

strings for each network service. These bit-wise intrusion patterns can be easily rolled

 143

up and drilled down into the intrusion pattern of variant time window efficiently. Also,

the bit-wise intrusion patterns of each service can be easily merged with the others.

Using this method, the Internet intrusion patterns can be automatically mined from the

basic Internet activity logs efficiently and some interesting and unknown patterns may

be discovered. Now, we are trying to build an online intrusion detection system using

BIPAM for building a high confidence network system.

 144

Chapter 7
Using BWI indexing in Feature
Selection Method for Knowledge
Acquisition

In this chapter, an application that is a supervised-learning data-driven feature

selection method for CBR systems [5][7][23][25][28][31][67][73]is introduced. This

implementation applies the Feature Selection Method using Rough Set Theory, which

is appropriate for finding the optima solution from a given data set, except for the long

processing time issue. Therefore, the Compact Bit-wise Indexing Method is used to

encode the feature and class relationships to reduce the processing time of feature

selection procedure. Finally, some experiments and comparisons are given and the

result shows the efficiency and accuracy of our proposed methods.

7.1 Problem Description

Feature selection is about finding useful (relevant) features to describe an

application domain. Selecting relevant and enough features to effectively represent and

 145

index the given dataset is an important task to solve the classification and clustering

problems intelligently. This task is, however, quite difficult to carry out since it usually

needs an exhaustive search to get the features desired. In the past, some approaches

have been proposed to solve the feature selection problem [11][19]

[24][30][43][47][48][60][78]. These approaches can roughly be classified into the

following two strategies:

1. Optimal strategy: This kind of approaches considers all the subsets of a given

feature set [2][63][76]. Some searching techniques, such as branch and bound, may be

adopted to reduce the search space. For example, Liu et al. proposed a special feature

selector [47], which randomly produced feature subsets according to the Las Vegas

algorithm [7]. It thus searched the entire solution spaces and guaranteed to get an

optimal feature set.

Heuristic strategy: This kind of approaches prunes search spaces according to

some heuristics. The results obtained by these approaches are usually not optimal, but

within a short time [79]. There are three typical heuristic approaches for feature

selection, including forward selection, backward selection and bi-directional selection.

The forward-selection approach initializes the desired feature set as null and then adds

features into it until the results are satisfactory [50][64][78]. The backward-selection

approach initializes the desired feature set as all the given features and then removes

 146

unnecessary features from it [19][78]. The bi-directional selection approach initializes

the desired feature set as a partial feature set, and then either puts good features into it

or eliminates bad features from it [24]. In the past, we proposed a bit-wise indexing

method based on a given feature set to accelerate case matching in CBR [11][13]. In

this section, we further investigate the determination of the appropriate feature set. We

propose a two-phase feature selection approach to discover significant feature sets

from a given database table, and use them to further investigation. The proposed

feature selection approach originates from the bitmap indexing and rough set

techniques. Naturally, it is designed to discover optimal feature sets for the given

dataset since the proposed method is originated from the rough set theory. The

Experimental results also show the efficiency and accuracy of the proposed approach.

7.2 The proposed bitmap-based feature selection method

As we mentioned above, we proposed a heuristic feature-selection approach,

called the bitmap-based feature selection method with discernibility matrix [14], to

find a nearly optimal feature set. However, finding the optimal solutions of feature

selection is still needed in some applications. Although some exhaustive search

methods can guarantee the optimality of selected feature sets, the computation cost

may be very high.

 147

In this section, we thus consider finding an optimal solution via the rough set

techniques and the bit-based indexing method for the feature selection. The proposed

approach encodes a given data set into a bit vector matrix and uses bit-processing

operations on them to reduce the computation time. The proposed approach consists of

several main steps, as shown in Figure 7.1.

 148

Figure 7.1: The flowchart of the proposed feature selection approach

There are two phases in the proposed algorithm - bitmap-indexing phase and

feature selection phase. In the bitmap-indexing phase, the given dataset is transformed

into a bitmap indexing matrix with some additional data information. In the feature

selection phase, a set of relevant and enough features are selected and used to represent

the dataset. The details of the two phases are described in following sub-sections.

Data

Bitmap Indexing

Data Cleansing

Feature Selecting

FindClassVector Algorithm

CreateCleansingTree Algorithm

FindSpanOrder Algorithm

CleanFeatureMatrix Algorithm

SelectingFeatureSet Algorithm

FS=∅

Feature Combining

CalculatingNextMatrix Algorithm

Bitmap Indexing
Phase

Feature Selection
Phase

N

Y

Output FS

 149

7.2.1 Problem Definitions

Let T denote a target table in a database, R denote the set of n records in T, and C

denote the set of m features in T. R can then be represented as {R1, R2, …, Rn}, where

Ri is the i-th record. C can be represented as {C1, C2, …, Cm}, where Cj is the j-th

feature. The first m-1 elements in C are condition features and the last one, Cm, is a

decision feature. Let Vj denote the domain of Cj. Vj can then be represented as {Vj1,

Vj2, …, Vj j
σ }, where each element is a possible value of Cj and σj is the number of

possible values of Cj. Let Vj(i) denote the value of Cj in record Ri, Vj(i) ≠ null. Table 7.1

shows an example of a target table T with ten records R = {R1, R2, …, R10} and five

features C = {C1, C2, C3, C4, C5}. C5 is a decision feature and the others are condition

features.

Table 7.1: An example of a target table

 C1 C2 C3 C4 C5
R1 M L 3 M 1
R2 M L 1 H 1
R3 L L 1 M 1
R4 L R 3 M 2
R5 M R 2 M 2
R6 L R 3 L 3
R7 H R 3 L 3
R8 H N 3 L 3
R9 H N 2 H 2
R10 H N 2 H 1

The purpose of this method is to find the one of the smallest feature set to

 150

effectively index the given table. The definitions and algorithms used in the bitmap

indexing phase and in the feature selection phase are described below.

7.2.2 Indexing Phase

In this phase, the target table is first transformed into a bitmap indexing matrix

with some additional classification information. Let bi is a bit of the bit vector. Let

ONEk denote the bit string of length k, with all the bits set to 1, ZEROk denote the one

with all the bits set to 0, and UNIQUEk denote the one, with only one bit set to 1 and

the others set to 0. A record vector, which is used to keep the information of the records

with a specific value of a feature, is defined below.

DEFINITION 7.1- record vector :

A record vector RVjk is a bit string b1b2…bn, with bi set to 1 for Vj(i) = Vjk and set

to 0 otherwise, where 1≤j≤m, 1≤k≤σj, and 1≤i≤n

RVjk thus keeps the information of the records with the k-th possible value of the

feature Cj. For example in Table 7.1, C1 has three possible values {M, L, H}. The

record vector for C1 = M is 1100100000 since the first, second and fifth records have

this feature value. Similarly, the record vector for C1 = L is 0011010000 and for C1 = H

 151

is 0000001111. All the record vectors are shown in the third column of Table 7.2.

Table 7.2: The record vectors and class vectors from Table 7.1

Feature Feature-value Record

Vector

Class

Vector

V11 1100100000 110

V12 0011010000 111

C1

V13 0000001111 111

V21 1110000000 100

V22 0001111000 011

C2

V23 0000000111 111

V31 1001011100 111

V32 0110000000 100

C3

V33 0000100011 110

V41 1011100000 110

V42 0100000011 110

C4

V43 0000011100 001

V51 1110000001 100

V52 0001100010 010

C5

V53 0000011100 001

A class vector, which is used to keep the information of the classes (values of the

decision feature) with a specific value of a feature, is defined below.

DEFINITION 7.2 - class vector:

A class vector CVjk is a bit string b1b2…b
m

σ , with bi set to 1 if RVjk ∩ RVmi ≠

ZEROn, and set to 0 otherwise, where σm is the number of possible values of Cm and n

 152

is the number of records in R.

Here, the "AND" bit-wise operator is used for the intersection in definition 2. CVjk

thus keeps the information of the classes related to the k-th possible value of the

feature Cj. For example in Table 7.2, the record vector (RV11) for C1 = M is

1100100000 and the one (RV51) for C5 = 1 is 1110000001. Since the bit-wise

intersection of 1100100000 and 1110000001 is 1100000000, not equal to ZERO10, the

first bit in RV11 is thus 1. Similarly, the second and third bits in RV11 are 1 and 0 from

the intersection results of RV11 with RV52, and with RV53. the class vector CV11 is thus

110. All the class vectors are shown in the fourth column of Table 7.2. Formally, a

class vector CVjk can be obtained by the following Find class vector algorithm.

Algorithm 7.1 – Find class vector algorithm :

Input: Record vector RVjk.

Output: Class vector CVjk.

Step 1: Set CVjk to ZEROσm.

Step 2: For each i, 1 ≤ i ≤ σm, set the i-th bit of CVjk to 1 if RVjk ∩ RVmi ≠ ZEROn;

otherwise, set it to 0.

Step 3: Return CVjk.

 153

DEFINITION 7.3 - Feature-value vector :

A feature-value vector Fjk is concatenated of RVjk and CVjk.

For example, the feature-value vector F11 in Table 7.2 is 1100100000110, which is

RV11 concatenated with CV11. All the feature-value vectors for a feature are then

collected together as a feature matrix. This is defined below.

DEFINITION 7.4 - A feature matrix for a feature :

A feature matrix Mj for the feature Cj is denoted

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

jj

j

j

F

F

F

σ

M

2

1

, where σj is the number

of possible values in Cj.

For example, the feature matrix M1 in Table 7.2 is show as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110000001111

1110011010000

1101100100000

1M

The bits with underlines are class vectors. From the definition of the feature

 154

matrix, it is easily derived that applying the bit-wise operator "OR" on all the record

vectors in a feature matrix will get the ONEn vector, and applying the bit-wise operator

"AND" on any two record vectors in a feature matrix will get the ZEROn vector. Note

that, the “OR” and “AND” operators are defined to result for executing “OR” and

“AND” operation on all respective bits for the given two bit vectors. Thus, if we apply

the bit-wise operator "XOR" on all the record vectors in a feature matrix, we will also

get the ZEROn vector. Take M1 as an example. The result for 1100100000 OR

0011010000 OR 0000001111 is 1111111111. The result for 1100100000 AND

0011010000 is 0000000000. The result for 1100100000 XOR 0011010000 XOR

0000001111 is 0000000000.

DEFINITION 7.5 - A feature matrix for a table T :

A feature matrix M for a table T is denoted

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mM

M

M

M
2

1

, where m is the number of

features in T.

For example, the matrix composed of the bit strings from columns 3 and 4 of

Table 7.2 is the feature matrix for the data given in Table 7.1. The feature matrix for a

table is then input to the feature selection phase to find relevant and enough features.

 155

7.2.3 Feature Selection Phase

In this phase, we want to find a set of relevant and enough features to represent

the given dataset. It is further divided into several stages. First, a feature-based

spanning tree is built for cleansing the bitmap indexing matrix. The dataset with noisy

information is thus judged and filtered out according to the spanning tree. The cleansed,

noisy-free bitmap indexing matrix is then used to determine the optimal feature set for

some classification and clustering problems.

Before the feature selection phase is executed, the correctness of the target table

needs to be verified. If there are some records in the target table with the same values

of all condition features, but with different ones of the decision feature, they are treated

as noise records and are filtered out from the target table. Intuitively, every two records

can be compared to find out the inconsistent records in the target table. Its time

complexity is O(n2m), where n is the number of records and m is the number of

features. Below, we propose the concept of a cleansing tree to decrease the time

complexity to O(nmj), where j is the maximum number of possible feature values of a

feature and n is usually much larger than j in the general classification and clustering

problems. The formation of a cleaning tree depends on the given feature order. We thus

have the following definition.

 156

DEFINITION 7.6 - spanned feature order :

A spanned feature order O is a permutation consisting of all the condition features

in a target table T.

For example in Table 7.1, <C1, C2, C3, C4> can be a spanned feature order. When

a spanned feature order is given, a cleansing tree can then be built according to it. The

definition of a cleansing tree is first given below.

DEFINITION 5-7 - cleansing tree :

A cleansing tree Ctree is a tree with a root denoted root[Ctree]. Every node x in

the tree corresponds to a feature value. A node y is the parent of a node x if the feature

of y precedes the feature of x in the given spanned feature order. A node z is the sibling

of a node x if they have the same feature, but different values.

A structure of a cleansing tree is shown in Figure 7.2. Its maximum height is m-1,

where m is the number of features in a decision table T. Each node x has three pointers,

which are p[x], left-child[x] and right-sibling[x], respectively pointing to its parent

node, its leftmost child node and its first right sibling node. It also contains two

 157

additional information, record[x] and class[x], which indicate the associated record and

class vectors of x. If node x has no child, then left-child[x] = NIL; if node x is the

rightmost child of its parent, then right-sibling[x] = NIL.

Figure 7.2: The structure of a cleansing tree

As mentioned above, records may have the same values of all condition features,

but different value of the decision feature. These records are called inconsistent.

Inconsistent records can also be found out when the cleansing tree is built. The

building algorithm uses the valid mask vector to find the consistent records. The valid

mask vector is defined as follows.

 158

DEFINITION 7.8 - valid mask vector :

A valid mask vector ValidMask for a target table T a bit string b1b2…bn, with bi set

to 1 if the i-th record Ri is not inconsistent with other records, and set to 0 otherwise.

The cleansing tree for a given spanned feature order can be built by the following

Create cleansing tree algorithm. The ValidMask is initially set to ONEn., and will be

modified along with the execution of the Create cleansing tree algorithm.

Algorithm 7.2 – Create cleansing tree algorithm :

Input : A feature matrix M, the valid mask ValidMask and a spanned feature order O.

Output : The valid mask ValidMask.

Step 1: Create an empty node x and set it as the root node.

Step 2: Initialize record[x] = ONEn, class[x] = ONEσm and depth = 0, where the

variable depth is used to represent the depth of the node x in the cleansing

tree.

Step 3: Set px = x, where px is used to keep the current parent node.

Step 4: If class[x] is not equal to
m

UNIQUEσ and depth is not equal to m-1, do Step

5 to build the child nodes of node x; otherwise, go to Step 7.

Step 5: Let Cj be the current feature in the spanned feature order to be considered.

 159

For each feature-value vector Fjk in a feature matrix Mj for Cj, if (record[px]

AND RVjk) ≠ ZEROn, do the following sub-steps:

Step 5.1: Create an empty node y.

Step 5.2: If left_child[x] = NIL, consider y as a child node of x and set p[y] = x

and left_child[x] = y; otherwise, consider y as a sibling node of x and

set p[y] = p[x] and right_sibiling[x] = y.

Step 5.3: Set record[y] = (record[p[y]] AND RVjk) and class[y] = (class[p[y]]

AND CVjk).

Step 5.4: If depth = m-1 and class[y] ≠
m

UNIQUEσ , set ValidMask = (record[y]

XOR ValidMask).

Step 5.5: set x = y.

Step 6: If left_child[px] ≠ NIL, set x = left_child[px], depth = depth + 1 and go to

Step 3. Otherwise, do the next step.

Step 7: If right_sibiling[x] ≠ NIL, x = right_sibiling[x] and go to Step 3; otherwise,

set x = p[x] and do the next step.

Step 8: If x ≠ Tree[root], go to Step 7; otherwise, return ValidMask and stop the

algorithm.

For example, the cleansing tree for the data in Table 7.1 with the spanned feature

 160

order <C1, C2, C3, C4> will be built as shown in Figure 7.3. At first, the root node is

generated and all the bits in record[root] and class[root] are set to 1. Since class[root]

is not equal to UNIQUE3, and the current depth is 0, not equal to m-1, the next step is

executed to build the child nodes of the root. The first feature C1 in the spanned feature

order is considered. Since it has three possible values and (record[root] AND RV1k), k

= 1 to 3, is not equal to ZERO10, three nodes, represented as nodes 1, 2 and 3, are

created as the children of the root. Since node 1, the left child node of the root, is not

NIL, it is then processed to generate its child nodes in the same way. Nodes 4 and 5 are

then created for the second feature C2 in the spanned feature order. Since class[node 4]

has been equal to ONE10, the sibling of node 4, which is node 5, is then considered.

Since class[node 5] has also been equal to ONE10, the sibling of node 5, is then

considered. But since node 5 has no sibling, its parent node, node 1 is considered. The

sibling of node 1, which is node 2 is then processed. The same procedure is then

executed until the whole cleansing tree is generated.

The numbers at the left of the nodes in Figure 7.3 indicate the order built. In node

15, the second and third bits of the class vector are both "1". It means that the

corresponding record vectors will have more than one "1". The corresponding records

with bit "1" are then inconsistent since their values of all condition features are the

same, but their values of the decision feature are different. In this example, the ninth

 161

and tenth records are inconsistent. The ValidMask are thus modified from

"1111111111" to "1111111100".

Figure 7.3: Cleansing tree with feature spanned order <C1, C2, C3, C4>

In the above example, the spanned feature order O is set as <C1, C2, C3, C4>.

Different orders will apparently affect the performance of the cleansing spanning trees

built. A cleansing spanning tree with a better spanned feature order can reduce the

space and time complexities. In the past, there were some famous tree structures for

classification, such as the decision-tree approach[58], which was based on the entropy

theory to select the next best feature. In order to reduce the computational complexity

for evaluating the spanning order of features, the following heuristics are thus

proposed.

 162

H1 : The more ‘1’ bits a record vector for a feature value has, the more weight the

feature value has.

H2 : The more ‘1’ bit the class vector for a feature value has, the less weight the

feature value has.

These two heuristics show the relationship between feature values and classes. If

a feature value appears in most records with a single class, the weight of this feature

value is relatively high. These heuristics can be used to save the computation time

when compared to using the entropy theory. The following Find span order algorithm

is thus proposed to determine the spanned feature sequence O of all condition features

by evaluating the feature weights according to the above heuristics.

Algorithm 7.3 – Find span order algorithm :

Input: A feature matrix M for a table T

Output: A spanned feature order O.

Step 1: Initialize weightj = 0, where 1 ≤ j ≤ m-1.

Step 2: For each Mj in M, set:

∑
=

←
j

1k
2

jk

jk
j ,

)]CV(Count[

)RV(Count
weight

σ

 where the function Count(x) is used to count the number of ‘1’ bits in x.

 163

Step 3: Order the features in O in the descendent order of the weight values.

Step 4: Return O.

For example, according to the feature matrix in Table 7.2, the weight of each

feature is calculated as shown in Table 7.3.

Table 7.3: Calculating the weight of each feature

Feature Weight Old

Order

New

Order

C1 3/4+3/9+4/9=1.53 1 4

C2 3/1+4/4+3/9=4.33 2 2

C3 5/9+2/1+3/4=3.31 3 3

C4 4/4+3/4+3/1=4.75 4 1

The new spanned feature sequence O determined by the above algorithm is thus

<C4, C2, C3, C1>, instead of the original order <C1, C2, C3, C4>. The cleansing tree

generated on the new order is shown in Figure 7.4.

 164

Figure 7.4: The cleansing tree generated on the new order <C4, C2, C3, C1>

As we can see, the cleansing tree with new feature order O=<C4, C2, C3, C1> in

Figure 7.4 is much smaller than that in Figure 7.3. The number of nodes has decreased

from 15 to 9. Therefore, the computational time of generating and traversing the

spanning tree can be greatly reduced.

After the cleansing tree is built, the ValidMask may not be ONEn since

inconsistent records may exist. The ValidMask is then used by the following Cleansing

feature matrix algorithm to remove the inconsistent records from the feature matrix.

Algorithm 7.4 – Cleansing feature matrix algorithm :

Input: A feature matrix M for a table T and a valid mask vector ValidMask.

 165

Output: A cleansed feature matrix M.

Step 1: For each feature-value vector Fij in M, do following sub-steps:

Step 1.1: RVij = RVij AND ValidMask.

Step 1.2: CVij = Find class vector algorithm(RVij).

Step 2: Return M.

For example, the ValidMask is set to "1111111100" after the cleansing tree for

Table 7.1 is built. Since the ninth and tenth bits of the ValidMask are 0, the Cleansing

feature matrix algorithm will set these two bits of all the record vectors in Table 7.2 to

0. The class vector of each feature value is then recalculated by the Find class vector

algorithm according to its new record vector. The revised feature matrix is shown in

Table 7.4.

Table 7.4: The cleansed feature matrix of Table 7.2

Feature Feature-value Record

Vector

Class

Vector

V11 1100100000 110

V12 0011010000 111

C1

V13 0000001100 001

 166

V21 1110000000 100

V22 0001111000 011

C2

V23 0000000100 001

V31 1001011100 111

V32 0110000000 100

C3

V33 0000100000 010

V41 1011100000 110

V42 0100000000 100

C4

V43 0000011100 001

V51 1110000000 100

V52 0001100000 010

C5

V53 0000011100 001

For effectively distinguishing the classes from the feature values, we must extend

the concepts related to a single feature to a feature sets. The following definitions are

thus needed.

DEFINITION 7.9 - power of a feature set :

Cs is called the s-power of a feature set C, if each element in Cs is composed of s

distinct condition features from C, 1 ≤ s ≤ m-1.

Thus, we have C1= C. For example, the power set C1 for the data in Table 7.1 is

 167

{{C1}, {C2}, {C3}, {C4}}. The power set C2 is {{C1,C2}, {C1,C3}, {C1,C4}, {C2,C3},

{C2,C4}, {C3,C4}}. Let |Cs| denote the cardinality of Cs. Then:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

s

1m
|C| s

.

Let Cs
j denote the j-th element in Cs, 1 ≤ j ≤ |Cs|. Cs

j is then a feature set. Also let

Vs
j denote the domain of Cs

j, σs
j denote the number of possible values in Vs

j, and Vs
jk

denote the k-th feature value of Cs
j. Each feature set can be represented by a name

vector, defined below.

DEFINITION 7.10 - name vector of a feature set :

The name vector NVs
j of a feature set Cs

j is a bit string b1b2…bm-1, with bi set to 1

if feature Ci is included in Cs
j and set to 0 otherwise.

For the above example, C1
1 denotes the first element in C1, which is {C1}. The

name vector NV1
1 is then 1000 since only C1 is included in C1

1. For another example,

C2 = {{C1,C2}, {C1,C3}, {C1,C4}, {C2,C3}, {C2,C4}, {C3,C4}}. C2
1 denotes the first

element in C2, which is {C1, C2}. The name vector NV2
1 is then 1100 since C1 and C2

are included in C2
1. Similar to a single feature, some terms related to a feature set is

defined below.

 168

DEFINITION 7.11 - record vector of a feature set :

A record vector RVs
jk of a feature set value Cs

jk is a bit string b1b2…bn, with bi set

to 1 for Vs
j(i) = Vs

jk and set to 0 otherwise, where 1 ≤ j ≤ |Cs| and 1 ≤ k ≤ σs
j.

RVs
jk thus keeps the information of the records with the k-th possible value of the

feature set Cs
j. A class vector, which is used to keep the information of the classes

(values of the decision feature) with a specific value of a feature set, is defined below.

DEFINITION 7.12 - class vector of a feature set :

A class vector of CVs
jk of a feature set value Cs

jk is a bit string b1b2…b
m

σ , with bi

set to 1 if RVs
jk ∩ RVmi ≠ ZEROn, and set to 0 otherwise, where σm is the number of

possible values of Cm and n is the number of records in R.

CVs
jk thus keeps the information of the classes related to the k-th possible value of

the feature set Cs
j. A feature-value vector of a feature set is defined below.

DEFINITION 7.13 - Feature-value vector of a feature set :

A feature-value vector Fs
jk is composed of RVs

jk and CVs
jk.

 169

DEFINITION 7.14 - A feature matrix for a feature set :

A feature matrix Ms
j for the feature set Cs

j is denoted

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

s
j

s
j

s
j

j
F

F

F

σ

:
2

1

, where 1 ≤ j ≤ |Cs|

and σs
j is the number of possible values in Cs

j.

DEFINITION 7.15 - s-feature matrix for a table T :

An s-feature matrix Ms for a table T is denoted

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

s
|C|

s
2

s
1

sM

:

M

M

, where 1 ≤ s ≤ m-1.

Hereafter, two algorithms are proposed to find the desired feature set. The first

algorithm, named the Selecting feature set algorithm, is used to find a feature set from

a given s-feature matrix. If there exists a feature set which is sufficient to decide all the

records in the given dataset, the feature set will be returned and the feature selection

procedure stops. Otherwise, s is incremented and the Selecting feature set algorithm is

executed again. The second algorithm, named the Calculating next matrix algorithm,

derives the new feature matrix from the previous feature matrix. The Selecting feature

set algorithm is described as follows.

 170

Algorithm 7.5 – Selecting feature set algorithm :

Input: An s-feature matrix Ms for a table T.

Output: A selected feature set FS.

Step 1: Initialize FS = ∅, j = 1.

Step 2: If j ≤ |C
s|, do the next step; otherwise go to Step 7.

Step 3: Set k = 1, where k is used to keep the number of the value currently processed

in a feature set Cs
j.

Step 4: If k ≤ σs
j, do the next step; otherwise go to Step 6.

Step 5: If CVs
jk ≠

m
UNIQUEσ , set j = j +1 and go to Step 2; otherwise set k = k + 1

and go to Step 4.

Step 6: Set FS = Cs
j; That is, for each i from 1 to m-1, set FS = FS {∪ Ci} if the i-th

bit of the name vector NVs
j for feature set Cs

j is equal to 1.

Step 7: Return FS.

Take the data in Table 7.1 as an example to illustrate the above algorithm. s is set

at 1 at the beginning. The 1-feature matrix M1 for the data is the same as the feature

matrix M found before. The Selecting feature set algorithm will examine the 1-feature

sets one by one. The first element M1
1, which is {C1}, is then processed. The class

vector CV1
11 for the first feature value C1

11 is 110, which is not equal to UNIQUE3.

 171

Using the feature set {C1} can thus not completely distinguish the classes. The other

elements in the 1-feature matrix M1 are then processed in a similar way. In this

example, no element is chosen. Thus ∅ is returned. It means no single feature can

completely distinguish the classes. s is then incremented, and the Selecting feature set

algorithm is then executed from the new s-feature matrix. The new feature matrix can

be easily derived from the previous feature matrix by the following Calculating next

matrix algorithm.

Algorithm 7.6 - Calculating next matrix algorithm :

Input: An s-feature matrix Ms for a table T.

Output: An (s+1)-feature matrix Ms+1 for a table T.

Step 1: For each j, j = 1 to |Cs| - 1, do the following steps.

Step 2: For each l, l = (j mod m) + 1 to m, do the following sub-steps.

Step 2.1: Set NVs+1
j = NVs

j OR NV1
l.

Step 2.2: Set the temporary counter k to 1.

Step 2.3: For each feature-value vector Fs
jx in Ms

j, 1 ≤ x ≤ |Cs
j|, do the following

sub-steps:

Step 2.3.1: For each feature-value vector F1
ly in M1

l, 1 ≤ y ≤ |C1
l|, do the

following sub-steps:

 172

Step 2.3.1.1: Set RVs+1
jk = RVjx AND RV1

ly.

Step 2.3.1.2: Set CVs+1
jk = CVs

jx AND CV1
ly.

Step 2.3.1.3: IF CVs+1
jk ≠

m
UNIQUEσ , set CVs+1

jk = Find class

vector algorithm(RVs+1
jk).

Step 2.3.1.4: Set k = k+1.

Step 3: Return the (s+1)-feature matrix Ms+1.

For example, the 2-feature matrix M2 for the data in Table 7.1 is generated from

the 1-feature matrix M1 as follows. The name vector for feature C2
1 is first calculated.

Thus:

NV2
1 = NV1

1 OR NV1
1

= 1000 OR 0100

= 1100.

The feature-value vector F2
11 in M2

1 is then calculated. The record vector is found

as follows:

RV2
11 = RV1

11 AND RV1
21

= 1100100000 AND 1110000000

 173

= 1100000000.

The class vector is found as follows:

CV2
11 = CV1

11 AND CV1
21

= 110 AND 100

= 100.

In a similar way, all the feature-value vectors in the 2-feature matrix M2 can be

found. The results are shown in Table 7.5:

Table 7.5: The 2-feature matrix M2 found by the Calculating next matrix algorithm

Feature

Set

Feature Set

Value

Name

Vector

Record

Vector

Class

Vector

V2
11 1100 1100000000 100

V2
12 1100 0000100000 010

V2
13 1100 0010000000 100

V2
14 1100 0001010000 011

V2
15 1100 0000001000 001

C2
1

V2
16 1100 0000000100 001

V2
21 1010 1000000000 100

V2
22 1010 0100000000 100

V2
23 1010 0000100000 010

V2
24 1010 0001010000 011

V2
25 1010 0010000000 100

C2
2

V2
26 1010 0000001100 001

 174

V2
31 1001 1000100000 110

V2
32 1001 0100000000 100

V2
33 1001 0011000000 110

V2
34 1001 0000010000 001

C2
3

V2
35 1001 0000001100 001

V2
41 0110 1000000000 100

V2
42 0110 0110000000 100

V2
43 0110 0001011000 011

V2
44 0110 0000100000 010

C2
4

V2
45 0110 0000000100 001

V2
51 0101 1010000000 100

V2
52 0101 0100000000 100

V2
53 0101 0001100000 010

V2
54 0101 0000011000 001

C2
5

V2
55 0101 0000000100 001

V2
61 0011 1001000000 110

V2
62 0011 0000011100 001

V2
63 0011 0010000000 100

V2
64 0011 0100000000 100

C2
6

V2
65 0011 0000100000 010

Note that in Step 2.3.1.2, the class vector derived by the bit-wise "AND" operator

denotes only the "possible" class distribution. For example, the feature-value vector

F2
21 consists of RV2

21 = "1000000000" and CV2
21 = "110" after Step 2.3.1.2. Since each

record belongs to only one class, the above results are not correct. In fact, the class

vector CV2
21 = "100". Step 2.3.1.2 is used as a quick check. If CVs+1

jk ≠
m

UNIQUEσ ,

then the Find class vector algorithm is run in Step 2.3.1.3 to find the correct class

vector.

 175

After the new feature matrix is derived, the Selecting feature set algorithm is then

executed again to find an appropriate feature set. For the above example, the 2-feature

matrix M2 is then input to the Selecting feature set algorithm and the feature set FS =

{C2, C4} are found and returned as the solution.

After the above method is executed, the feature set FS to classify the given data

set T is generated. FS may be over-fitting or under-fitting for the problem since they

are derived only according to the current data set. These features are then evaluated

and modified by domain experts. They thus serve as the candidates for the experts to

have a good initial standpoint.

7.3 Complexity Analysis and Experiments

The time and space complexities of the proposed algorithms are analyzed in this

section. Let n be the number of records, m be the number of features and c be the

number of classes. Also define i as the maximum possible number of features in a

feature set, j as the maximum number of possible values of a feature, and s as the

number of iterations. The time complexity and space complexity of each step in the

Find class vector algorithm is shown in Table 7.6.

 176

Table 7.6: The time and space complexities of the Find class vector algorithm

Step No Time Complexity Space Complexity

Step 1 O(1) O(c)

Step 2 O(jc) O(jc)

Step 3 O(1) O(c)

Total O(jc) O(jc)

The time and space complexities of each step in the Create cleansing tree

algorithm is shown in Table 7.7. Note that the maximum amount of nodes within a

Ctree is n.

Table 7.7: The time and space complexities of the Create cleansing tree algorithm

Step No Time Complexity Space Complexity

Step 1 O(1) O(1)

Step 2 O(1) O(1)

Step 3 O(1) O(1)

Step 4 O(nmj) O(n)

Step 5 O(mj) O(n)

Step 6 O(1) O(1)

Step 7 O(1) O(1)

Total O(nmj) O(n)*

The time and space complexities of each step in the Find span order algorithm is

shown in Table 7.8:

 177

Table 7.8: The time and space complexities of the Find span order algorithm

Step No Time Complexity Space Complexity

Step 1 O(m) O(m)

Step 2 O(cm) O(cm)

Step 3 O(clgc) O(c)

Step 4 O(1) O(1)

Total O(Max(cm, clgc)) O(cm)

The time and space complexities of each step in the Cleansing feature matrix

algorithm is shown in Table 7.9:

Table 7.9: The time and space complexities of the Cleansing feature matrix
algorithm

Step No Time Complexity Space Complexity

Step 1 O(mj) O(mj)

Step 2 O(1) O(1)

Total O(mj) O(mj)

The time and space complexities of each step in the Selecting feature set

algorithm is shown in Table 7.10.

Table 7.10: The time and space complexities of the Selecting feature set algorithm

Step No Time Complexity Space Complexity

Step 1 O(1) O(1)

Step 2 O(msjs) O(1)

Step 3 O(1) O(1)

 178

Step 4 O(js) O(1)

Step 5 O(1) O(1)

Step 6 O(c) O(c)

Step 7 O(1) O(1)

Total O(msjs) O(c)

The time and space complexities of each step in the Calculating next matrix

algorithm is shown in Table 7.11:

Table 7.11: The time and space complexities of the Calculating next matrix
algorithm

Step No Time Complexity Space Complexity

Step 1 O(msjs) O(msjs)

Step 2 O(mj) O(mj)

Step 3 O(1) O(j)

Total O(msjs) O(msjs)

To evaluate the performance of the proposed method, we compare it with other

feature selection methods. Our target machine is a Pentium III 1G Mhz processor

system, running on the Microsoft Windows 2000 multithreaded OS. The system

includes 512K L2 cache and 256 MB shared-memory.

Several datasets from the UCI Repository [60] are used for the experiments.

These datasets have different characteristics. Some have known relevant features (such

as Monks), some have many classes (such as SoybeanL), and some have many

instances (such Mushroom). In addition, a large real data set about endowment

 179

insurances from a world-wide financial group is used to examine the usability of the

proposed method. Experimental results show the proposed method can discover the

desired feature sets and can thus help the enterprise to build a CBR system for their

loan promotion function of customer relationship management system. The data set of

insurance data uses 27 condition features to describe the states of 3 different insurance

types. Different types of attribute values including date/time, numeric and symbolic

data exist. They are all transformed into the symbolic type by some clustering methods.

Six of them have missing values.

The characteristics of the above datasets are summarized in Table 7.12.

Table 7.12: The datasets used in the experiments

Database Name Class No. Condition

Feature No.

Record No. Missing

Features

Monk1 2 6 124 no

Monk2 2 6 169 no

Monk3 2 6 122 no

Vote 2 16 300 no

Mushroom 2 22 8124 Yes

SoybeanL 19 35 683 Yes

Insurance 3 27 35000 Yes

In the experiments, the accuracy, the number of selected features, and the time

will be compared between our method and the traditional rough set method. The

 180

accuracy is measured by the classification results of the target table. If the selected

feature set can solve the problem without any error, 100% accuracy is reached;

otherwise the accuracy is calculated by the number of correctly classified records over

the total number of records. Experimental results show both methods can reach 100%

accuracy. We then compare the feature sets found by these two approaches. The results

are shown in Table 7.13. Obviously, the accuracy of all datasets is 100% since both of

these two method discover the minimal feature sets.

Table 7.13: The selected feature sets found by the two approaches.

 Traditional Rough Set

Approach

Bitmap-based Approach Accuracy

Dataset Feature Set Feature Set 100%

Monk1 C1, C2, C5 C1, C2, C5 100%

Monk2 C1-C6 C1-C6 100%

Monk3 C1, C2, C4, C5 C1, C2, C4, C5 100%

Vote C1-C4, C9, C11, C13, C16 C1-C4, C9, C11, C13, C16 100%

Mushroom C3, C4, C11, C20 C3, C4, C11, C20 100%

SoybeanL Need too much

computation time.

C14, C20, C26, C27, C29,

C30, C31, C32, C33, C34,

C35

100%

Insurance C4, C15, C17, C20, C22,

C25

C4, C15, C17, C20, C22,

C25

100%

Note that there may be more then one solution for the selected features. In Table

7.13, only the first selected feature set (in the alphabetical order) is listed. It is easily

seen that the selected feature sets of our proposed approach and the traditional rough

 181

set approach are the same except for the SoybeanL problem. The SoybeanL problem

needs too much computation time by the traditional rough set approach.

The numbers of the selected features by the two approaches are shown in Table

7.14. Both methods get the same numbers for all problems except for SoybeanL.

Table 7.14: The number of the selected features found by the two approaches.

Dataset Traditional RS Bitmap-based
Monk1 3 3
Monk2 6 6
Monk3 4 4

Vote 8 8
Mushroom 4 4
SoybeanL 11 11
Insurance 6 6

At last, the computation time is compared. The data sets are first loaded into the

memory from the hard disk and the processing times are measured. The time is

rounded to 0 if the real time is less than 0.001 seconds. The results are shown in Table

7.15.

Table 7.15: The CPU times needed by the two approaches

Dataset Traditional RS Bitmap-based
Monk1 0.07 0
Monk2 0.351 0.01
Monk3 0.141 0
Vote 428.19 1.923

 182

Mushroom 4911.32 27.91
SoybeanL >1000000 247805
Insurance 468656 2435.66

Consistent with our expectation, the proposed approach is much faster than the

traditional rough set approach. Especially for the Insurance data, our approach needs

only about 40 minutes, but the traditional rough set approach needs much more

computation time.

In this chapter, we have proposed a bit-based feature selection approach to

discover optimal feature sets for the given table(dataset). In this approach, the feature

values are first encoded into bitmap indices for searching the optimal solutions

efficiently. Also, the corresponding indexing and selecting algorithms are described in

details for implementing the proposed approach. Experimental results on different data

sets have also shown the efficiency and accuracy of the proposed approach.

The traditional rough-set approach has two very time-consuming parts,

combination of features and comparison of upper/lower approximations. In this

method, we use the single-time-clock bit-wise operations to shorten the computation

time of the comparison part. Moreover, the workload in the combination part is highly

reduced since the new levels of combination can be generated via the pervious ones.

The bit-wise operations are also used to speed up the combination generation. The

proposed feature-selection approach also adopts appropriate meta-data structures to

 183

take advantages of the computational power of the bit-wise operations.

The feature selection problem is generally an NP-complete problem. Although the

proposed approach can process a larger amount of features than the traditional

rough-set approach, it still becomes unmanageable especially when the number of

features is huge or when the number of possible values of features is large. In the

future, we will continuously investigate and design efficient heuristic approaches to

manage huge amounts of features and possible values. We will also attempt to integrate

different feature selection approaches to automatically select an appropriate one for

optimal or near-optimal solutions according to the characteristics of given data sets.

 184

Chapter 8
Using BWI Indexing in
Semiconductor Manufacturing Defect
Detection Systems

In this chapter, an unsupervised-learning data-driven data mining system of a

production-level defect detection system in an intelligent engineering data analysis

(iEDA) system in Taiwan Semiconductor Manufacturing Company Ltd. (TSMC) is

introduced. The bit-wise indexing methods (including Sample, Encapsulated and

Compact Bit-wise Indexing Methods), Data Mining Technologies, and Statistic

Methods are hybridly used in this application in order to generate the possible

root-cause candidate list for the given manufacturing details of an individual low-yield

situation event. Also, some critical issues about of applying a data mining solution for

manufacturing defects detection system in semiconductor manufacturing domain will

be discussed and reviewed. Finally, we will propose the system framework of the

next-generation data mining solution in the future for providing a more knowledgeable,

 185

reasonable, reliable and flexible solution for data mining solution in the semiconductor

manufacturing domain.

8.1 Problem Description

In recent years, the procedures of manufacturing have become increasingly

complex [16][17][18]. To meet high expectations regarding yield targets, rapidly

identifying the root causes of defects is essential for meeting high expectations

regarding yield targets. Therefore, the technologies of process control, statistical

analysis and experiment design are used to establish a solid base for well tuned

manufacturing processes. However, identifying root cause remains extremely difficult

due to multi-factor and nonlinear interactions in this intermittent problem. Traditionally,

the process of identifying root cause of defects is costly. The semiconductor

manufacturing industry provides an example. With a huge amount of semiconductor

engineering data stored in the database and versatile analytical charting and reporting in

production and development, the CIM/MES/EDA systems in most semiconductor

manufacturing companies help users analyze the collected data to achieve the goal of

yield enhancement. However, semiconductor manufacturing procedures are

 186

sophisticated, and thus multi-dimensional and large volumes of data are required to be

collected for these procedures. Data mining technologies [4][3][9][33] are employed to

deal with such large amounts of high-dimensional data [6][16][17][29][41][51][52][59].

In this chapter, we propose a data mining system and describe the experience of

applying such systems for discovering the root causes of low-yield situations in TSMC

[16][17]. Additionally, the evaluation of applying such a mining system for

manufacturing defect detection in the semiconductor manufacturing domain is discussed

and reviewed. Finally, a new architecture for a reasonable, reliable and flexible defect

detection platform based on the data mining approach is briefly described.

8.2 DM Project for Yield Enhancement

In June 2002, a research project on data mining techniques was triggered by the

Manufacturing Information Technology Division of Taiwan Semiconductor

Manufacturing Company. Five test cases were conducted, including partial lot-based

information, WIP information, CP information, In-line metrology results, WAT results

and some manufacturing parameters. Each case represents a low-yield situation with an

already discovered root cause related to some manufacturing procedure; however, all of

the cases require extensive trouble-shooting time. Based on the given cases, a prototype

of the data-driven data mining system is required to discover the possible root causes

 187

for the subject cases. Since a large amount of data on this company exists, the data

mining system only discovers the killer machines for the cases that were prepared by

product engineers in the event of an abnormal manufacturing situation. Additionally, the

attribute weights in the given cases are initially treated as equal because of the lack of

previous built-in knowledge. Also, this engine is required to be noise-insensitive since

noise is difficult to filter in semiconductor yield enhancement applications.

After discussing this project, the data mining system should be designed

according to the following criteria:

1. Platform criterion: The data mining system needs to be executed in both server-end

and client-end applications according to the functional specification of an iEDA

(Intelligent Engineering Data Analysis) system in TSMC.

2. Development environment criterion: The data mining system should be developed as

some independent functional modules due to the system integration and platform

issue; and a prototype system integrating all proposed modules should be provided

for testing and evaluation via TSMC.

3. Given data set criterion: Since the EDA system involves a vast and still growing

quantity of data, it seems impossible to analyze all manufacturing data in the EDA

system via the data mining system. The data mining system is designed for

 188

analyzing a pre-generated data set in the event of a low-yield situation. Restated, the

input data for the data mining system should be generated as a low-yield situation

case. Some lot-based manufacturing information is involved in this low-yield

situation case, and each case comprises a maximum of six segments, including basic

lot information, WIP information, CP information, in-line metrology results, WAT

results and other manufacturing parameter segments, and a unique decision feature

used to classify the high and low yield group of given lots. As mentioned above, the

data mining system is designed as a data-driven solution, and no previous

knowledge is built to recognize the attribute catalog and type, with the attributes of

all given cases that are processed by the data mining system being named according

to the pre-defined naming rules. Furthermore, the user-prepared data files are

acceptable only if the naming rules of attributes are followed.

4. Accuracy criterion: In this data mining project, the accuracy rate should exceed 80%

in all cases. The percentage of hit cases thus should exceed 80%, where a hit case

means that the real root cause ranks within the top five rankings on the possible root

cause ranking list.

5. Efficiency criterion: The procedure of the mining engine should be completed

within one minute using the benchmark case involving 300 lots and 13000 attributes

for each lot.

 189

The above criteria are incorporated into a data mining system scenario through the

following procedures:

1. Data preparation procedure: The raw data of cases are first retrieved from the EDA

database and then transformed into Bit-wise Indexing (BWI) matrixes [10] to

accelerate the subsequent mining procedure. Figure 8.1 illustrates three major

functional modules, including the Data Quality Analysis, Cutting- Point Calculating

and Data Dispatcher modules, in this processing phase. Since semiconductor

manufacturing processes have become increasingly sophisticated, data collection

problems also have become increasing serious, particularly when using advanced

technologies. Generally, in a spit lot situation, sparse and null data issues may

seriously impact the accuracy of the data mining results. The Data Quality Analysis

module is then employed to check quality of a given data set based upon our

proposed quality indicators. This function also provides lot and attribute merging

mechanisms in order to help users for combining the spit lot or procedure step in the

given data set. When the quality of the given data set is confirmed by the user, a

decision feature is required for judging the lot information within the whole data set.

The decision feature of this data set is used to separate all given lots into two

independent groups, called normal and abnormal lot group. After the decision

 190

feature is selected, the Cutting-Point Calculating module is executed to determine

whether the normal lot group is located at the right-hand (larger than) or left-hand

(smaller than) side of the given critical point. Certainly, users can define these two

parameters by themselves based on different situations. Since decision feature and

cutting-point are selected, the Data Dispatcher module has been used to dispatch

some individual data segments for data mining according to the naming rules, and

the corresponding BWI matrixes thus are generated.

Raw
Data

Data Quality
Analysis

Cutting-Point
Calculating

Data Dispatcher

Naming
Columns/Lots DM

Model
Decision

Data Segments

Analysis
Result

QC OK
Data Set

Cutting-Point
Calculating

Cutting Point &
Decision Direct

Figure 8.1: the flowchart of data preparation procedure

 191

Cutting Point &
Decision Direct

Data Dispatcher

Transaction_basedLearning_basedFeature_baseStatistical_base

WIP Segment
Numeric
Segment

Symbolic
Segment

In-Line Metrology Segment

Ranking List
(Statistical)

Statistical_base
(GUI Support)

Outcome
Results

Graphic
Request

Ranking List
(CP & others

Feature)

Feature_base
(GUI Support)

Outcome
Results

Graphic
Request

Ranking List
(WAT & others

Numeric)

Learning_base
(GUI Support)

Outcome
Results

Graphic
Request

Ranking List
(EQP Result)

Transaction_base
(GUI Support)

Outcome
Results

Graphic
Request

Ranking List
(Multiple Factor

Result)

Outcome
Results

Graphic
Request

Figure 8.2: the flowchart of data mining procedure

2. Data mining procedure: Once the target BWI matrixes are fully prepared and the

data quality is verified, the data mining procedure is triggered to analyze the content

of cases and discover the root causes for the target cases. Figure 8.2 briefly describes

four major data mining modules, including the Transaction-based, Learning-based,

Feature-based and Statistical-base modules, as presented below:

i) Transaction-based module: Generally, over 80% of low-yield situations in the

semiconductor manufacturing result from machine failure, and it is extremely

difficult to determine the degree to which each machines contributes to failure

during the manufacturing procedure. The root causes for production of low-yield

 192

wafers are hard to determine, since yield can not be qualified during the

manufacturing process. Generally, product engineers require some data analysis

methods for identifying evidence regarding possible root cause. According to the

experience of domain experts, methods based on single variable analysis usually

have seldom null-value tolerant ability. Therefore, these methods are not quite

suitable for seeking the root cause machine for the semiconductor manufacturing

domain. To solve the above problem, the Transaction-based module, including

equipment and multiple factor mining function, is applied to analyze the WIP

data segment to discover each killer machine through a hybrid data mining

method. The equipment mining function is used to rank all possible killer

machines in a given WIP data segment based on the confidence of mining result

[16][17]. That is, this function is used to discover abnormal machine behavior by

analyzing the manufacturing and machine logs. Moreover, semiconductor wafers

usually have one silicon subtract and several metal and dielectric layers. This

arrangement implies that some steps may be repeatedly executed by a killer

machine which influences the yield of all bypass wafers. Therefore, the multiple

factor mining function is proposed to handle the case of equipment failure related

to the descending yield for repeated manufacturing using a single machine. Since

the mining method used in this module integrates some data mining methods of

 193

transaction analysis, it is named the Transaction-based module.

ii) Learning-based module: This module is used to process all of the numerical data

except the in-line metrology measurement part in the given data set to identify

the abnormal behavior of all numeric data in the given data segment. Initially,

each attribute in the give data segment is separated into normal/abnormal groups

according to the decision feature. A learning procedure then is triggered for

identifying the behavior pattern for each attribute based on the distribution and

trend of the normal group for this attribute. Once the attribute behavior pattern is

learned, the degree of abnormality of the corresponding abnormal lots group is

judged and highlighted. Finally, the possible ranking list and corresponding

mining result charts are obtained. Since the resource of learning procedure only

includes the given data segment, the over or under fitting problems remain

unsolved.

iii) Feature-based module: this module is used to process the symbolic and data/time

data in the given data set to determine the root cause of some recipes, programs

and tester changes. All attribute values of a given attribute in the given segments

are partitioned into normal/abnormal groups according to the distribution of

corresponding groups of decision features. Since the corresponding groups are

separated, the similarity degree can be calculated with the proposed feature

 194

similarity calculation method and the ranking list is thus proposed to users.

iv) Statistical-base module: This module is used to process the in-line metrology

measurement segment of the given data set. Since the measurement results of

in-line metrology are randomly sampled and only three or five wafers are

measured in each metrology, the existing lots of null values may influence the

accuracy of the data mining results. Therefore, statistical correlation analysis is

used to process the data in the sparse data set, and may reduce the impact of

quality issues on the given data. The list of attributes in this data set is proposed

and ranked based on the resulted correlation degrees.

3. Possible root cause ranking list generation procedure: After the execution of the

appropriate data mining modules, the possible root cause ranking lists are generated

and the corresponding evaluation indexes obtained. Furthermore, the corresponding

charts of the result of each module are provided to help product engineers realize the

results of the data mining system.

8.3 Evaluation Result for the Yield Enhancement DM Project

From June to September 2002, the proposed data mining system had successfully

 195

highlighted the root causes within top five ranking in the generated ranking list for 15

of the 19 real cases evaluated by proposed data mining system within a maximum of

40 seconds. Two cases were useless due to the data preparation (Case 10 - too few lots

available for mining) and multiple/combination killer machines (Case 12 – a combined

machine issue) issues. The accuracy rate is approximately 88%. According to these

excellent results, TSMC decided that the data mining module should be embedded into

a new function, called Yield Explorer, of the iEDA system in TSMC. After the new

function was released in September 2002, five of the newly received 23 cases could

not be processed due to the out-of-mining-scenario problem (Case 20 – queuing-time

issue) and multiple/combination killer machines issues (Case 20, 21, 22 and 23 –

multiple machines/steps issue), two cases are still undergoing further investigation, and

ten hit cases were obtained from the remaining 16 cases, as listed in Table 8.1. The

performance evaluation about using BWI Indexing is listed in Table 8.2. The accuracy

rate decreases from 88% to 63%, and the reasons for this lower accuracy rate are

briefly described below:

1. Data Preparation Problem：Before the announcement of the data mining

solution at TSMC, all testing cases were carefully reviewed from the

perspectives of both data preparation and quality. The hit rate of all testing

cases in this stage is extremely high. After the Yield Explorer function of

 196

iEDA system was released, the data preparation and quality tasks for data

mining system can be executed by all product engineers in TSMC. Even with

enough training of this function, the concept of data mining remains difficult

for all users to understand so quickly. From our observation, 70% of failure

cases result from inappropriate data preparation procedures, which raise the

problem of data preparation. The following interesting problems should be

discussed.

a. What is a case? - The input of the proposed data mining is a lot data set

with a single root cause, and this data set is judged by a single decision

feature to distinguish the normal and abnormal lot groups for further

mining. Product engineers attempt to identify the reasons for low-yield

situations by examining the situation itself or analyzing the appropriate

data set. In this situation, the task of generating a suitable data set

becomes important for low-yield situation analysis through data mining

systems. (For example, in response to a low-yield situation that occurred

on October 15, product engineers prepared all lot-based data between

October 1 and October 30). It implies that the low yield lots in the

prepared data set may comprise not only the root cause affected lots, but

also the regular low yield lots, since the duration of the given data set is

 197

not evaluated carefully, and it is extremely difficult to differentiate

between the above two varieties lot without any meta-knowledge.

Consequently, the result of data mining systems may be incorrect. On the

other hand, the product engineer can prepare a suitable data set only

when the root cause of low yield situation is most likely discovered.

However, discovering the root cause through data mining becomes

unimportant in this situation.

b. What is a root cause? - The root cause of a low-yield situation is the

major reason for the low-yield situation in a regular manufacturing

procedure, for example, the root cause is first defined as the machine that

affects more than 50% of the low-yield lots in the given data set. In our

experience, it seems not possible to prepare such “perfect” data set before

the root cause still unknown. Therefore, the definition of root cause is

further modified to be the machine that affects the most low-yield lot in

the given data set. Even that, the root cause machine involved root of

Case 12 and 33 are only 15% and 20%, respectively, in the prepared data

sets from the corresponding product engineers. Moreover, it is very

difficult to prepare a suitable data containing just one root cause from the

perspective of the product engineers, and thus the real root cause may not

 198

be highlighted correctly.

c. What is the time duration? – When a low-yield situation occurs, the

product engineer must determine the most likely time duration required

to generate a suitable data set for the data mining system. Generally, the

time duration of a low-yield situation is defined by the product engineer

according to their personal experience. Since data mining system is

highly sensitive for prepared data set, time duration becomes a problem.

Table 8.1: The evaluation cases in TSMC data mining project

No
Lot

Number
Column
Number

Problem Root Cause Rank

1 77 1397 CP Low Yield Tool Issue 1
2 51 3402 CP Bin Wafer-edge Fail Inline Metrology 2

3 154 3953 CP Low Yield Tool Issue 1
4 34 3362 CP Bin Fail CP Test Program 1
5 277 3356 FT Bin Fail Tool Issue 3
6 272 2491 CP Low Yield Tool Issue X
7 146 3183 CP Low Yield Tool Issue 1

8 141 3135 CP Low Yield Tool Issue 3
9 54 3149 CP Low Yield Tool Issue 2
10 4 2719 CP Wafer-Ring Fail Tool Issue X
11 8 1653 CP Bin Fail Tool Issue 4

12 54 2376 CP Low Yield Tool Issue X
13 116 2884 CP Bin Fail Tool Issue 1
14 313 3369 WAT Fail Tool Issue 1
15 53 2462 CP Bin Fail Tool Issue 5
16 484 2903 CP Bin Fail Tool Issue 2

17 189 2809 CP Bin Fail Tool Issue X

 199

18 106 2616 CP Bin Fail Tool Issue 2
19 13 2071 CP Low Yield Tool Issue 4

20 168 1797 WAT fail Tool Issue 10
21 371 1983 CP Bin Fail Tool Issue 15
22 72 2469 CP Bin Fail Tool Issue 16
23 60 2183 CP Low Yield Tool Issue 19
24 91 2511 WAT Fail Unknown Unknown

25 77 2447 CP Bin Fail Tool Issue 1
26 40 1659 CP Low Yield Tool Issue 3
27 72 2137 CP Bin Fail Tool Issue 2
28 23 3500 CP Bin Fail Queue-time Issue X
29 59 1259 CP Bin Fail Testing-tool Issue 1

30 133 1389 CP Bin Fail Tool Issue 3
31 74 1239 CP Bin Fail Tool Issue 1
32 168 4172 CP Bin Fail Unknown Unknown
33 102 2744 CP Bin Fail Tool Issue 11
34 102 2744 CP Bin Fail Tool Issue 3

35 136 1197 CP Bin Fail WAT Parameter 5
36 33 3877 CP Bin Fail WAT Parameter 1
37 167 1642 CP Bin Fail WAT Parameter X
38 65 1189 CP Bin Wafer-edge Fail Tool Issue 1

39 50 1095 CP Bin Wafer-center Fail Tool Issue 27
40 48 1290 CP Low Yield Tool Issue 1
41 92 1198 CP Low Yield Tool Issue X
42 68 1203 CP Bin Fail Tool Issue 17

 200

Table 8.2: The performance evaluation of all TSMC cases in this data mining
project

Storage/Query Solution Processing Time (Seconds) Time Saving

v.s. v.s. Database
Solution

In-Memory
Computing

Solution
BWI Indexing Structure

DB Solution Memory Solution

No
Total
Cells

Storage
Access
Time

Query
Time

Storage
Access
Time

Query
Time

Storage
Access
Time

Query
Time

BWI
Build-up

Time
(Sample)

Secs Percent Secs Percent

1 107569 107 663 45 104 2 4 19 745 96.75% 124 83.22%

2 173502 173 1222 67 152 3 6 24 1362 97.63% 186 84.93%

3 608762 482 3150 190 419 10 19 35 3568 98.24% 545 89.49%

4 114308 102 706 32 70 2 4 19 783 96.91% 77 75.49%

5 929612 759 3939 247 529 15 28 171 4484 95.44% 562 72.42%

6 677552 724 4230 159 333 10 19 29 4896 98.83% 434 88.21%

7 464718 482 4184 108 225 7 13 56 4590 98.37% 257 77.18%

8 442035 552 5913 88 179 6 11 60 6388 98.81% 190 71.16%

9 170046 181 1642 35 73 2 4 24 1793 98.35% 78 72.22%

10 10876 11 106 2 4 0 0 5 112 95.73% 1 16.67%

11 13224 13 122 3 5 0 0 5 130 96.30% 3 37.50%

12 128304 131 1194 23 44 2 3 41 1279 96.53% 21 31.34%

13 334544 399 2183 52 98 5 8 32 2537 98.26% 105 70.00%

14 1054497 1368 6596 149 278 15 25 115 7809 98.05% 272 63.70%

15 130486 151 834 17 32 2 3 20 960 97.46% 24 48.98%

16 1405052 1628 11035 196 362 20 33 380 12230 96.58% 125 22.40%

17 530901 843 5440 81 151 8 13 64 6198 98.65% 147 63.36%

18 277296 387 4099 38 69 4 6 35 4441 99.00% 62 57.94%

19 26923 38 367 3 6 0 1 7 397 98.02% 1 11.11%

20 301896 481 4519 36 63 4 7 7 4982 99.64% 81 81.82%

21 735693 1400 10106 88 154 11 17 18 11460 99.60% 196 80.99%

22 177768 323 3041 21 36 3 4 5 3352 99.64% 45 78.95%

23 130980 191 2952 14 23 2 3 2 3136 99.78% 30 81.08%

24 228501 255 5435 28 49 3 5 10 5672 99.68% 59 76.62%

25 188419 244 4609 20 35 3 4 4 4842 99.77% 44 80.00%

26 66360 78 1598 7 11 1 1 1 1673 99.82% 15 83.33%

 201

27 153864 158 2558 15 24 2 3 4 2707 99.67% 30 76.92%

28 80500 66 1791 8 13 1 2 1 1853 99.78% 17 80.95%

29 74281 52 1367 7 11 1 2 1 1415 99.72% 14 77.78%

30 184737 153 3604 19 32 3 4 3 3747 99.73% 41 80.39%

31 91686 91 1707 9 14 1 2 2 1793 99.72% 18 78.26%

32 700896 660 10767 79 133 11 17 18 11381 99.60% 166 78.30%

33 279888 318 4815 28 46 4 6 8 5115 99.65% 56 75.68%

34 279888 381 3604 27 44 4 6 7 3968 99.57% 54 76.06%

35 162792 249 2719 17 28 2 4 4 2958 99.66% 35 77.78%

36 127941 215 1799 12 19 2 3 3 2006 99.60% 23 74.19%

37 274214 416 2947 23 37 4 6 7 3346 99.49% 43 71.67%

38 77285 95 682 6 10 1 2 2 772 99.36% 11 68.75%

39 54750 77 409 5 8 1 1 1 483 99.38% 10 76.92%

40 61920 76 406 5 8 1 1 1 479 99.38% 10 76.92%

41 110216 159 798 8 13 2 2 2 951 99.37% 15 71.43%

42 81804 125 379 6 10 1 2 2 499 99.01% 11 68.75%

Avg 291107 352 3101 48 94 4 7 30 3412 98.68% 101 69.31%

As we can see, the processing time, including storage access time and query

time, of BWI indexing solution using 1/12 time to compete the data mining

procedure of the proposed data mining engine rather then In-memory computing

solution, the time cost of three storage/query solutions are shown in Figure 8.3 .

 202

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Database Solution In-Memory Comuting Solution
BWI Indexing Solution(Storage/Query Procedure) BWI Indexing Solution(Storage/Query/BWI Indexing Procedure)
Figure 8.3: The Processing Time of all computing solutions

To solve the above problems, the data preparation problem becomes the key

issue in the next-generation data mining system, even if some tradeoff relations

exist among these problems.

2. Null value issue: Among the 72 lots involved in case 22, only 21 contain

values in the decision feature(yield attribute), while four are abnormal. Since

null-value situation is frequent, the proposed data mining system is best

designed for null-value tolerance. Based on the experience of the TSMC

project, the null value issue should be handled for the next-generation data

mining system.

3. Spit lot/step issue: It is known that the spit lot/step issue causes numerous null

values, the data mining system will produce unacceptable results. Essentially,

 203

each record in the lot-based data set represents all wafers within a lot. On

occurrence of the spit lot/step issue, some lots are separated into several

sub-lots, and the lot-based data set are no longer qualified to represent the real

status accordingly. Since the spit lot/step issue becomes more important for

the 130 and 90 nm manufacturing procedures, the lot-based information

should be drilled down to the wafer-based record; however, it is difficult to

retrieve the wafer-based data using the EDA system.

4. Ratio of the Antithesis-group: As mentioned above, the behavior patterns

discovered by the learning procedure of the learning-based module in the

normal lot group are used to challenge the abnormal lot group. Ideally, a ratio

of these two antithesis groups of 70% to 80% lots in the normal lot group is

recommended for data mining. However, it is extremely difficult for product

engineers to maintain this ratio for all given data sets by retrieving suitable

data in every low-yield situation. For example, the root cause machines in

Cases 21 and 22 are ranked 1 and 3, respectively, if the ratio of antithesis

group is set as 80%.

 204

8.4 Intelligent Yield Enhancement System for Semiconductor

Manufacturing

Future research will focus mining engine enhancement, mining platform

construction and knowledge engineering consultation issues.

1. Data mining system enhancement issues:

i) Multiple tools/factors mining scenario – In this scenario, we would like to

develop a new scenario that can discover not only a single, but also a set of

killer machines. In the last year, the root cause of one collected cases is issued

by this situation. Since the failure contribution degree of each tool is hard to be

determined, it is difficult to find out the single machine failure only using the

manufacturing data much less the combination problem of multiple killer

machines; however, such problems become increasingly frequent in advanced

manufacturing procedures implies that developing an efficient and faithful

mining scenario for discovery of multiple tools/factors is also important.

ii) Queue-time mining scenario –This scenario would like to develop a new

scenario for identifying the low-yield situation for workflow resulting from

abnormal waiting time. It means, the wafers becomes low-yield due to the

material oxygenized by the delay during some critical stages. In 2002, some

 205

cases are affected by this situation were treated as numeric data segments and

thus processed via the Learning-based module. Since the results were

inadequate, a new scenario is developing to handle this situation.

iii) Secondary root cause scenario – In this scenario, we will develop a new

scenario for discovering the second root cause. According to our pervious

experience, several root causes are found to be involved in a single case, and

some case preparation guidelines are proposed to avoid such problems.

Therefore, a new scenario is required to handle such situations.

iv) The cross-scenario estimation mechanism – As mentioned above, the results

generated by the proposed modules are ranked independently. A cross-scenario

estimation mechanism to evaluate all ranking lists based on an overall

weighting mechanism will be proposed and the combination issues for the

secondary root causes scenario will be solved accordingly.

2. Mining platform construction issue: Accordingly, a knowledge platform, called

MDDS (Manufacturing Defect Detection System) platform, is proposed to integrate

all developed engines with considering all above enhancement issues in order to

construct a complete yield enhancement platform. Three major parts of the proposed

platform are described as follows:

 206

i) Information Collection part: Regular meetings are recommended to discuss

domain knowledge about semiconductor manufacturing and the related

concepts and information properties of EDA, CIM and MES systems, including

the data format, data amount, and data requirements of data mining solutions

for yield enhancement purposes, which then can be formally and clearly

described. Subsequently, a functional specification with a given dataflow

scenario for the suitable preprocessing and data mining requirements should be

proposed for each type of low-yield situation. Consequently, the Wrapper

System and Wafermap Analyzing System are used to gather all related

information, such as the database resources and other data files. For the

architecture of Information Collection part shown in Figure 8.4, the

corresponding algorithm Information_Collection Algorithm is presented below.

Algorithm 8.1 - Information_Collection algorithm

Input: a set of solved low-yield cases C={c1, c2, …, cn} and ck={lk,1, lk,2, …, ||, kckl ,

rck } such that lk,i is the i-th covered lot of case ck and rck is the known root

cause of case ck for 1 ≤ k ≤ n ,1 ≤ i ≤ |ck| and n ≥ 1.

Output: 1. The corresponding data set DS={ds1, ds2, …, dsn} and wafermap set

WF={wf1, wf2, …, wfn} of C.

 207

2. A set of BWI matrixes BWI={bwi1, bwi2, …, bwin}, where bwik={ D
kbwi ,

W
kbwi } such that D

kbwi and W
kbwi are the corresponding BWI matrixes

of dsk and wfk, respectively, for case ck in C and 1 ≤ k ≤ n.

Step 1. For each case ci in C, do the following sub-steps:

Step 1.1. For all covered lots {li,1, li,2, …, ||, icil } in ci, retrieve data set dsi from all

underlying databases, including CIM, MES and EDA databases, via

Wrapper System.

Step 1.2. For case ci, retrieve wafermaps wfk from the storage of corresponding

wafermaps for all covered lots {li,1, li,2, …, ||, icil } in ci.

Step 2. For each data set in DS and WF, do the following sub-steps:

Step 2.1. For data set dsi in DS, transform dsi to corresponding BWI matrix

D
ibwi via Wrapper System.

Step 2.2. For wafermaps wfi in WF, transform wfi to corresponding BWI matrix

W
ibwi via Wafer Analysis System.

Step 3. Return BWI and then store it in BWI Indexing Server.

 208

EDA Database CIM Database MES Database
Test File &
Wafer Map

Wrapper System

Wafer Map

BWI Indexing Server

Data Queries

Wafermap Analysis System

Queries

BWI Indexing Matrixes

Figure 8.4: The architecture of information collection part in MDDS Knowledge

Platform

The function of all sub-systems in Figure 8.4 is summarized below:

1. Wrapper System：This system is in charge of information collection for all

analysis and mining requirements. Three information resources, CIM, MES

and EDA databases, must be accessed. For each database resource, the product

engineers can retrieve the related information via a data query function, and

these query results are then transformed into a BWI matrix based on the data

format requirements of the proposed dataflow scenario. Moreover, the

corresponding text files, such as the WAT and CP testing resulting, are also

retrieved via some text file processing ability of the database and the

corresponding BWI matrixes then are obtained.

2. Wafermap Analyzing System：This system is in charge of information

 209

collection for all related wafermaps in the Wrapper System. After wafermap

retrieved, each wafermap is transformed to a corresponding BWI matrix for

further analysis.

3. Bit-Wise Indexing Server：This server is used for storing all transformed BWI

matrixes. For all stored BWI Matrixes, this server can provide OLAP and

indexing similarity computing to support parallelized, scalable, high

performance data query for all stored BWI Matrixes.

ii) Learning and analyzing part: After executing the data collection procedure, a

Rule-Learning System is used for mining association rules from the BWI

matrix server based on predefined data relationships, and a Model-Learning

System is used to model learning among all manufacturing machines.

Furthermore, the corresponding BWI matrixes of wafermaps are classified and

analyzed using the Wafermap Analysis System to extract some of the wafermap

patterns among them. Finally, all wafermap patterns, learned rules and machine

models are judged by the domain experts. After the verification procedure, the

suitable wafermap patterns, learned rules and machine models are stored in the

Wafermap Gallery, Knowledge Base and Machine Model Base, respectively.

For the architecture of Learning and analyzing part shown in Figure 8.5, the

 210

corresponding algorithm Learning_and_Analysis Algorithm is presented below.

Algorithm 8.2 - Learning_and_Analysis algorithm

Input: a set of solved low-yield cases C and a set of BWI matrixes BWI={bwi1,

bwi2, …, bwin} and bwik={ D
kbwi , W

kbwi }, for case ck in C and 1 ≤ k ≤ n.

Output: 1. The verified wafermap patterns WP={p1, p2, …, pi} of C.

2. The verified association rules AR={r1, r2, …, rj} of C.

3. The verified neural-network machine models NM={nn1, nn2, …, nnj} of

C.

Step 1. For each BWI matrix bwik in C, do the following sub-steps:

Step 1.1. For wafermaps BWI matrixes Wbwi and the corresponding rc*, analyze

the wafermap patterns WP={p1, p2, …, pi} via Wafer Analysis System.

Step 1.2. For data set BWI matrixes Dbwi and the corresponding rc*, where rc*

is the root cause rcs in C, mining the association rules AR={r1, r2, …,

rj} via Rule-Learning System.

Step 1.3. For data set BWI matrixes Dbwi and the corresponding rc*, where rc*

is the root cause rcs in C, learning the corresponding neural-network

machine models {nn1, nn2, …, nnj} via Model-Learning System.

Step 2. For WP, AR and MN, do the following sub-steps:

 211

Step 2.1. Require the domain experts for results verification.

Step 2.2. Remove the unqualified patterns, rules and machine models from WP,

AR and MN, respectively.

Step 3. Return WP, AR and MN and then store them in Wafermap Gallery,

Knowledge Base and Machine Model Base, respectively.

BWI Indexing Server

Model-Learning
System

Rule-Learning
System

Machine
Model
Base

Wafermap
Gallery

Wafermap
Analysis
System

Verified
Wafermap
Patterns

Knowledge
Base

Verified
Association

Rules

Verified
Machine
Models

BWI Indexing Matrixes

Figure 8.5: The architecture of Learning and Analyzing part in MDDS

Knowledge Platform

The functions of the sub-systems in Figure 8.5 are described below:

1. Wafermap Analyzing System：This system analyzes all of the related

wafermaps and identifies useful wafermap patterns. All input wafermaps are

 212

first classified into systematic and randomized categories. For wafermaps in

the systematic category, the system identifies possible wafermap patterns and

delivers the discovered patterns to the domain experts for verification.

Subsequently, all verified patterns and their indicated root cause are stored in

the Wafermap Gallery for further investigation.

2. Rule-Learning System： This system is applied to analyze all related

information for each solved low-yield situation to discover the correlation

among attributes via the Transaction-based module. Initially, the correlation

between the decision feature and other attributes in the given data is calculated

via the Learning-based module. Subsequently, the highly related features are

treated as the new decision features, and the Transaction-based Module is thus

triggered for mining the possible root causes. After completing the mining

procedure, possible root cause lists of both the original root cause and highly

related features are transformed to the transaction log and processed through

an association rule mining procedure. Finally, the discovered association rules

are delivered to the domain experts for verification and all verified association

rules are stored in the Knowledge Base for further investigation.

3. Model-Learning System：This system manages individual machine behavior

learning based on predefined data relationships. Initially, a predefined

 213

perceptron neural networking should be defined for each individual machine

in the semiconductor manufacturing fab. The input nodes of this perception

consist of manufacturing parameters, temperature, air pressure and sensor

information for the target machine. A half WIP (wafer-in-process) data related

to this machine is used as a training instance to learn the machine model using

neural network technologies, and the other half is used to verify the

perceptron. If the result is satisfied, the machine model is stored in the

Machine Model base; otherwise, the unqualified machine model is verified by

some domain experts for further examination.

4. Wafermap Gallery, Knowledge Base and Machine Module Base: These are the

storage of wafermap patterns, verified manufacturing rules and individual

machine modules, respectively.

iii) Application part: The learning results obtained through the incremental learning

procedures in the Learning and Analysis part are used to examine and monitor

the in-line and off-line procedures for yield enhancement. The Model

Monitoring System, like an advanced APC system, is responsible for in-line

monitoring and delivering alarm messages to both in-line monitoring

workstations and mining engines in the event of abnormal behavior, based on

 214

the related machine information from the manufacturing and measuring tools.

Additionally, the verified mining rules can be applied to examine the in-line

information and identify abnormal situations using the Intelligent Reasoning

System. Once the low-yield situation happens, the related wafermaps are

matched and some suspected machine IDs are thus delivered to the Mining

System for recommendation. The data mining results then are evaluated and

ranked via the cross-scenario estimation mechanism according to the

recommendations from the Wafermap Analysis, Intelligent Reasoning and

Model systems. Finally, a data mining report for the given low-yield situation is

delivered to the corresponding product engineers for further study. For the

architecture of Application part shown in Figure 8.6, the corresponding

algorithm Application Algorithm is presented below.

Algorithm 8.3 - Application algorithm

Input: a newly arrived low-yield cases nc={lnc,1, lnc,2, …, lnc,|nc|} where lnc,i is the i-th

covered lot of case nc and 1 ≤ i ≤ |nc|.

Output: The ranked possible root causes list rcl of nc.

Step 1. For newly arrived low-yield cases, call Information-Collection Algorithm and

the corresponding dsnc, wfnc,
D
ncbwi and W

ncbwi are thus returned.

 215

Step 2. For wafermap set wfnc and BWI matrix W
ncbwi , match the existing wafermap

patterns WP in Wafermap Gallery via Wafermap Analyzing System and the

root cause set rcWP is thus returned, where rcwf is the root causes of all

matched patterns in WP.

Step 3. For data set dsnc and BWI matrix D
ncbwi , trigger inference procedure for all

mined rules AR in Knowledge Base via Intelligent Reasoning System and the

root cause set rcAR is thus returned, where rcAR is the root causes of all trigger

rules in AR.

Step 4. For data set dsnc and BWI matrix D
ncbwi , trigger computing procedure for all

built neural-network-based machine model NM in Machine Model Base via

Model Monitoring System and the abnormal machine set abNM is thus

returned, where abNM is the set of machines that return all abnormal alerts.

Step 5. For data set dsnc and BWI matrix D
ncbwi , trigger the Mining System for

discovering the possible root causes and the ranked list of root cause rcl is

thus found.

Step 6. For root cause in rcWP, rcAP and abNM, if the root cause exists in rcl, enhance

the ranking weight via the cross-scenario estimation mechanism.

Step 7. Rank the rcl according to the new ranking weight.

 216

Figure 8.6: The architecture of Application part in MDDS Knowledge Platform

From Figure 8.6, all sub-systems are described in the following:

1. Wafermap Analyzing System：For each new wafer map, the Wafermap

Analyzing System identifies the matching patterns within the Wafermap

Gallery. Once similar patterns are discovered, the corresponding root causes

are delivered to the Mining System for re-weighting recommendation

2. Intelligent Reasoning System： Following verification by the Learning

 217

System, mining rules can be applied to identify abnormal situations and

pre-examine the given parameters. Once the new case is entered into the

Intelligent Reasoning System, all possible facts obtained are forwarded to the

Mining System for further examination. Similar the Model System, reasoning

results or the confidence and support for triggered rules can be provided

through the explanation function of the Intelligent Reasoning and Learning

Systems.

3. Model Monitoring System： After all machine models are tuned or optimized

by the Learning System, these models can be used to monitor the in-line

manufacturing and measuring tools. After entering a new case into the Model

Monitoring System, the Wrapper System is triggered to collect all related

information of this case. Since then, the machine related parameters are

calculated using the corresponding neural-network machine model. For

abnormal computational results, the corresponding machine ID and some

alarm messages are sent to the Mining System and the users, respectively. If

required, the Model Monitoring System can provide the related evidence

supported by the Model Analyzing System for further explanation.

4. Mining Monitoring System：This system is in charge of data mining procedure.

Once the low-yield situation happens, the related information is delivered to

 218

the Wafermap Analysis, Model Monitoring and Intelligent Reasoning Systems

for re-weighting recommendations. Simultaneously, the corresponding mining

scenarios are triggered. After the results of Wafermap Analyzing, Model

Monitoring, Intelligent Reasoning and Mining Systems are generated, they are

overall evaluated and ranked via the cross-scenario estimation mechanism.

Finally, the data mining report for the given low-yield situation is delivered to

the users for further investigation, and explanations and evidence for each

corresponding result are also provided.

5. Wafermap Gallery, Knowledge Base and Machine Module Base: These

systems are used for the storage of wafermap patterns, verified manufacturing

rules and individual machine modules, respectively.

3. Knowledge engineering consultation task: In our data mining project, since domain

experts and IT persons in semiconductor manufacturing domain are usually not

familiar with data mining concept, we will continually help them realize the concept

of data mining correctly, Also, we will take the opportunity of deploying the MDDS

platform to help the semiconductor manufacturing people understand the esprit of

data mining systems.

 219

Currently, the semiconductor manufacturing is becoming increasingly complex as

market demand drives higher circuit density. This trend requires new and more

sophisticated processing tools, longer process flows, and more detailed sampling of

metrology data to verify process controls. Moreover, this trend also implies large

amounts and high complexity of manufacturing data, and tight time-to-market for

advanced devices. Therefore, an intelligent and efficient yield enhancement system is

desired to deal with the low-yield situation and efficiently increase the yield trend. In

this section, we have proposed a data mining system which had been successfully

applied in Taiwan Semiconductor Manufacturing Company (TSMC) for discovering

the root causes of low-yield situations. Also, the evaluation of our mining system for

manufacturing defects detection in semiconductor manufacturing domain has been

done and several important issues have been fully discussed. Finally, a new

architecture of a reasonable, reliable and flexible defect detection platform using data

mining approach has been described.

 220

Chapter 9
Conclusions and Future Work

The Fields of knowledge Discovery Systems and Data Mining have rapidly grown

in the past 10 years. Research, applications, and tool development in business, science,

government, and academia are becoming increasingly popular. Since the amount of

data is continuously and rapidly growing in most knowledge systems, discovering the

useful information correctly and efficiently is becoming a significant issue. In this

thesis, an efficient indexing technology, called Bit-wise Indexing Technology, and

three indexing methods for different applications were proposed. Furthermore, the

corresponding indexing and matching algorithms for each indexing model were

described in detail. To demonstrate the suitability, flexibility and efficiency of the

proposed indexing methods, they were applied in four knowledge system applications,

including reinforcement learning, pattern matching, supervised learning and

unsupervised-learning data mining applications. In the first application, the Sample

Bit-Wise Indexing Method was used to encode the defect status of manufacturing

product in order to accelerate the data preprocessing procedure. In the second

 221

application, the Encapsulated Bit-wise Indexing Method was used to encode the

networking activity to accelerate the data preparation procedure. The third application

used Compact Bit-wise Indexing method in a Rough-set-based Feature Selection

Method to encode the feature and class relationships efficiently for reducing the

processing time of the feature selection procedure. The proposed feature selection

method had been used in a KA project to discover the desired feature sets to help an

endowment insurance department of a world-wide financial group builds a CBR

system for their loan promotion function of a customer relationship management

system. In the last application, the bit-wise indexing methods, Data Mining

Technologies, and Statistic Methods were hybridly combined to construct an

unsupervised-learning data-driven data mining system for production-level defect

detection in a engineering data analysis system. This application was officially applied

in Yield Explorer Function of Intelligent Engineering Data Analysis system (iEDA) in

Taiwan Semiconductor Manufacturing Corporation (TSMC) for root cause detection

and yield enhancement.

In the future, a product-level bit-wise indexing server will be constructed and the

maintenance issue, such as record/table/relation insertion/deletion/modification, will be

further investigated. Also, the suitable indexing models will be proposed for various

knowledge systems, such as a rule-based expert system, case-based reasoning system

 222

or neural net system. Moreover, the system platform of the next-generation data

mining solution that proposed at the end of Chapter 8 will be further investigated and

constructed and to provide a knowledgeable, reasonable, reliable and flexible data

mining solution in semiconductor manufacturing domain. Additionally, the proposed

bit-wise indexing method will be applied to different application domains. For

instances, the proposed method is currently being applied to an intelligent clinical trial

management system (iCTMS), to enhance the accuracy and performance of the

knowledge acquisition and validation procedures.

 223

References

[1] ADCOM Technology Inc, “Sonic wall”, http://www.adcom.com.tw/product/

sonicw/index.htm, 2000

[2] H. Almullim et al. “Learning with many irrelevant features,” in Proceedings of 9th

National Conference on Artificial Intelligent, 1991, pp. 547-552.

[3] R. Agrawal, T. Imielinski and A. Swami, “Mining association rules between sets

of items in large database”, ACM SIGMOD Conference, 207-216, 1993.

[4] R. Agrawl and R. Srikant, “Fast Algorithm for Mining Association rules”, ACM

VLDB Conference, 487-499, 1994.

[5] R. Barletta, "An introduction to case-based reasoning", AI Expert, Vol. 6, No.8,

pp.42-49, 1991.

[6] D. Braha and A. Shmiloviei, “Data Mining for Improving a Cleaning Process in

the Semiconductor Industry”, IEEE Transactions on semiconductor

manufacturing, 15 (1), 2002.

[7] G. Brassard G. et al. Fundamentals of Algorithm, Prentice Hall, New Jersey, 1996.

[8] N. Cercone, A. An, and C. Chan, “Rule-induction and case-based reasoning:

 224

hybrid architectures appear advantageous”, IEEE Transactions on Knowledge

and Data Engineering, 11(1), 166-174, 1999.

[9] M. S. Chen, J. Han and P. S. Yu, “Data Mining: An Overview from a Database

Perspective”, IEEE Transactions on Knowledge and Data Engineering, 8 (6),

1996.

[10] C. P. Chen, A. Shyu, P. Liou, R. Q. Leu, K. Huang, J. Y. Lin, T. H. Yang, H. C.

Liu, M. I. Ting and Y. C. Shih, “A novel methodology of critical dimension

statistical process control”, 3rd International Workshop on Statistical Metrology,

104-1087, 1998.

[11] W. C. Chen, S. S. Tseng, J. H. Chen, M. F. Jiang, "A framework of feature

selection for the case-based reasoning", in Proceeding of IEEE International

Conference on Systems, Man, and Cybernetics, 2000, CD-ROM.

[12] W. C. Chen; S. S. Tseng; L. P. Chang, M. F. Jiang, “A similarity indexing Method

for the data warehousing - bit-wise indexing method,” in Lecture Notes in

Artificial Intelligent, Vol. 2035, 2001, pp. 525-537

[13] W. C. Chen; S. S. Tseng; L. P. Chang, T. P. Hong, “A parallelized indexing method

for large-scale case-based reasoning,” Expert System with Applications, Vol. 23(2),

2002, pp.95-102.

[14] W. C. Chen; M. C. Yang; S. S. Tseng, “A high-speed feature selection method for

 225

large dimensional data set,” in Proceeding of International Computer Symposium,

2002, CD-ROM.

[15] W. C. Chen; M. C. Yang; S. S. Tseng, “The bitmap-based feature selection

method,” in 18th ACM Symposium on Applied Computing (SAC), Data

Mining Track, 2003, CD-ROM.

[16] W. C. Chen, S. S. Tseng, K. R. Hsiao and C. C. Liu, “A Data Mining Project for

Solving Low-yield Situations of Semiconductor Manufacturing”, IEEE/SEMI

Advanced Semiconductor Manufacturing Conference, 2004.

[17] W. C. Chen, S. S. Tseng and C. Y. Wang, “A Novel Manufacturing Defect

Detection Method Using Data Mining Approach”, 17th International Conference

on Industrial & Engineering Applications of Artificial Intelligence & Expert

Systems, 2004.

[18] C. Chou, K. Yang, G. Chiang and R. Shiao “EPIS (equipment and process

information system) a new prospect of EDA and SPC system”, Semiconductor

Manufacturing Technology Workshop, 163-166, 1998.

[19] S. K. Choubey et al, “On feature selection and effective classifiers,” Journal of

ASIS, Vol. 49(5), 1998, pp.423-434.

[20] Cisco, Cisco PIX firewall manual, http://mail.ht.net.tw/~erik/doc/cisco/pix.zip,

1999

 226

[21] CLDP, CLDP Firewall How to, http://freebsd.ntu.edu.tw/cldp/ Firewall-HOWTO,

2000

[22] J. Daengdej, D. Lukpse, E. Tsui, P. Beinat, and L. Prophet, “Combining

case-based reasoning and statistical method for proposing solution in RICAD”,

Knowledge-Based Systems, 10, 153-159, 1997.

[23] H. Dai, Discovery of Cases for Case-Based Reasoning in Engineering, 89-96,

1997.

[24] J. Doak, “An evaluation of feature selection methods and their application to

computer security,” Technical Report, University of California, 1992.

[25] S. Dutta, B. Wierenga, and A. Dalebout, "Case-based reasoning systems: from

automation to decision-aiding and stimulation", IEEE Transactions on

Knowledge and Data Engineering, 9(6), 911-922, 1997.

[26] FEYA TECHNOLOGIES CO., “Border Ware 6.0”, http://www.feya.com.tw/

security/borderware.html, 2000

[27] E. Fukuda,; S. Harakawa,; Ikeda, M.; “Advanced process control system

description of an easy-to-use control system incorporating pluggable modules”,

IEEE International Symposium on Semiconductor Manufacturing Conference,

321 -324, 1999.

[28] D. Gardingen, and I. Watson,”A web based CBR system for heating ventilation

 227

and air conditioning systems sales support”, Knowledge-Based Systems, 12,

207-214.

[29] M. Gardner and J. Bieker “Data Mining Solves Tough Semiconductor

Manufacturing Problems,” ACM KDD Conference, 2000.

[30] A. Gonzalez, R. Perez, "Selection of relevant features in a fuzzy genetic learning,"

IEEE Transaction on SMC-Part B, Vol. 31(3), 2001, pp. 417-425.

[31] K. M. Gupta, and A. R. Montazemi, “Empirical evaluation of retrieval in

case-based reasoning systems using modified cosine matching function”, IEEE

Transactions on Systems, Man, and cybernetics-Part A: Systems and Humans, 27

(5), 601-612, 1997

[32] A. J. Gonzalez, L. Xu, and U. M. Gupta, “Validation techniques for case-based

reasoning systems”, IEEE Transactions on Systems, Man, and Cybernetic-Part A:

Systems And Humans, 28 (4), 465-477, 1998.

[33] J. Han and M. Kamber. Data Mining: Concepts and Techniques, Morgan

Kaufmann Publishers, 2001.

[34] R. J. Hilderman and H. J. Hamilton, “Measuring the interestingness of discovered

knowledge: A principled approach,” Intelligent Data Analysis, Vol. 7, No. 4, 347

- 382, 2003.

[35] M. Y. Huang, R. J. Jasper and T. M. Wicks "A large scale distributed intrusion

 228

detection framework based on attack strategy analysis", Computer Network, 31,

pp. 2465-2475, 1999

[36] C. C. Huang and B. Tseng, "Rough Set Approach to Case-Based Reasoning,"

Expert Systems with Applications, Vol. 26, No. 3, pp. 369-385, April 2004.

[37] K. Ilgun, “USTAT: A Real-Time Intrusion Detection system for UNIX”, IEEE

Symposium on Research on Security and Privacy, 1993

[38] K. Ilgun, R.A. Kemmerer, P. A. Porras “State Transition Analysis: A Rule-Based

Intrusion Detection System”, IEEE Transactions on Software Engineering, 21 (3),

1995

[39] G. H. John et al. “Irrelevant feature and the subset selection problem,” in

Proceedings of 11th International Conference on Machine Learning, 1994, pp.

121-129.

[40] R. Kemmerer, NSTAT: A Model-based Real-time Network Intrusion Detection

System” Technical Report TRCS-97-18, Department of Computer Science,

University of California, Santa Barbara, 1997

[41] A. Kuiak. “Rough Set Theory: A Data Mining Tool for Semiconductor

Manufacturing.”, IEEE Transaction on electronics packing manufacturing, 24 (1),

2001.

[42] M. Last, A. Kandel, O. Maimon, "Information theoretic algorithm for feature

 229

selection," Pattern Recognition Letter, Vol. 22, 2001, pp.799-811.

[43] H. M. Lee, C. M. Chen, J. M. Chen, Y. L. Jou, "An efficient fuzzy classifier with

feature selection based on fuzzy entropy," IEEE Transaction on SMC-Part B, Vol.

27(2), 1997, pp. 426-432.

[44] L. Li and L. X. “Knowledge-based problem solving: an approach to health

assessment”, Expert Systems with Applications, 16, 33-42, 1999.

[45] T. Li, S. Zhu and M. Ogihara, “Algorithms for clustering high dimensional and

distributed data,” Intelligent Data Analysis, 7 (4), 305 - 326, 2003.

[46] U. Lindqvist and P. A.Porras, “Detecting computer and network misuse through

the production-based expert system toolset (P-BEST)”, IEEE Symposium on

Security and Privacy, 146 – 161, 1999.

[47] H. Liu et al, “A probabilistic approach to feature selection – a filter solution,” in

Proceedings of 13th International Conference on Machine Learning, 1996, pp.

319-327

[48] H. Liu, R. Setiono, "Incremental feature selection," Applied Intelligence, Vol. 9,

1998, pp.217-230.

[49] Megasoft Corporation, http://www.taipeisoft.com/Products/WinR/winr.html, 2000

[50] D. Q. Miao et al, “A heuristic algorithm of reduction for knowledge,” Journal of

Computer Research and Development, Vol. 36(6), 1999, pp. 681-684.

 230

[51] F. Mieno, T. Santo, Y. Shibuya, K. Odagiri, H. Tsuda and R. Take. “Yield

Improvement Using Data Mining System,” IEEE Semiconductor Manufacturing

Conference, 1999.

[52] R. Mike Gardener, J. Bieker and S. Elwell. “Solving Tough Semiconductor

Manufacturing Problems Using Data Mining,” IEEE/SEMI Advanced

Semiconductor Manufacturing Conference, 2000.

[53] S. Mittal, K. Lubic, P. McNally, “Use of Inline Defect Monitors to Drive P852

Yield Improvement” Intel Manufacturing Excellence Conference, 1995.

[54] P. O'Neil, and D. Quass, “Improved query performance with variant indexes”,

The SIGMOD Conference, 1997

[55] Z. Pawlak, "Rough set," International Journal of Computer and Information

Sciences, 1982, pp.341-356,.

[56] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer

Academic Publishers, Boston, 1991.

[57] P. Porras, STAT – A State Transition Analysis Tool for Intrusion Detection,

Master’s thesis, Computer Science Department, University of California, Santa

Barbara, 1992

[58] J. Quinlan, "Introduction of decision trees," Machine Learning, Vol.1(1), 1986,

pp.81-106.

 231

[59] V. Raghavan. “Application of Decision Trees for Integrated Circuit Yield

Improvement”. IEEE/SEMI Advanced Semiconductor Manufacturing

Conference, 2002.

[60] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, "Dimensionality

reduction using genetic algorithm," IEEE Transaction on Evolutionary

Computation, Vol. 4(2), 2000, pp.164-171.

[61] E. Rolland, “Abstract Heuristic Search Method for Genetic Algorithm” Ph.D

dissertation, The Ohio State University Columbus, 1991.

[62] M. Sarfaty, A. Shanmugasundram, A. Schwarm, J. Paik, J. Zhang, R. Pan, M. J.

Seamons, H. Li, R. Hung, S. Parikh,” Advance Process Control solutions for

semiconductor manufacturing”; IEEE/SEMI Advanced Semiconductor

Manufacturing Conference, 2002 Page(s): 101 -106

[63] J. C. Schlimmer et al, “Efficiently inducing determinations: A complete and

systematic search algorithm that uses optimal pruning,” in Proceedings of 10th

International Conference on Machine Learning, 1993, pp. 284-290.

[64] A. Skowron, C. Rauszer, "The discernibility matrices and functions in information

systems," Intelligent Decision Support, 1992, pp.331-362.

[65] S. P. Shieh and V. D. Gligor, “A pattern-oriented intrusion-detection model and

its applications”, EEE Computer Society Symposium on Research in Security and

 232

Privacy, 327 –342, 1991.

[66] S. P. Shieh and V. D. Gligor, “On a pattern-oriented model for intrusion

detection”, IEEE Transactions on Knowledge and Data Engineering, 9 (3), 661

-667, 1997.

[67] K. S. Shin, and I. Han, “Case-based reasoning supported by genetic algorithms

for corporate bond rating”, Expert Systems with Applications, 16, 85-95, 1999.

[68] M. S. Suh,, W. C. Jhee,, Y. K. Ko, and A. Lee, “A case-based expert system

approach for quality design”, Expert Systems With Applications, 15, 181-190,

1998.

[69] SYSWARE Corp., “CheckPoint 2000”, http://firewall.sysware.com.tw/, 2000

[70] B. Tseng, M. C. Jothishankar and T. Wu, "Quality Control Problem in Printed

Circuit Board Manufacturing - an Extended Rough Set Theory Approach,"

Journal of Manufacturing Systems, Vol. 23, No. 1, pp. 56-72, 2004.

[71] UCI Repository : http://www.ics.uci.edu/~mlearn/MLRepository.html

[72] G. Vigna and R. A. Kemmereer “NetSTAT: A Network-based Intrusion Detection

Approach”, IEEE Computer Security Applications Conference, 25-34, 1998.

[73] I. Waston, "Case-based reasoning is a methodology not a technology",

Knowledge-Based Systems, 12, 303-308, 1999.

[74] K. L. Wu and P. S. Yu, “Range-based bitmap indexing for high cardinality

 233

attributes with skew”, The 22nd Annual International Conference on Computer

Software and Applications, 1998.

[75] M. C. Wu, and A.P. Buchmann, “Encoded bitmap indexing for data warehouses”,

The 14th International Conference on Data Engineering, 1998.

[76] F. B. Wu et al. “An inductive learning method based on rough set theory expressed

knowledge system,” Control and Decision, Vol. 14(3), 1999, pp. 206-211.

[77] Y. Yang, T. C. Chiam, "Rule discovery based on rough set theory," in Proceedings

of the Third International Conference on FUSION, Vol. 1, 2000, pp. TuC4_11

-TuC4_16.

[78] H. Yu et al, “Rough set based knowledge reduction algorithms,” Computer Science,

Vol. 28(5), 2001, pp.31-34.

[79] N. Zhong, J. Dong, S. Ohsuga, "Using rough sets with heuristics for feature

selection", Journal of Intelligent Systems, Vol. 16, 2001, pp. 199-214.

 234

Index

APC .. 104, 213

application21, 22, 23, 24, 35, 121, 122, 128, 133, 144, 184, 220, 222, 226

approximations.. 36, 182

backward... 145

baseline... 106, 107

benchmark .. 188

bit operation... 116, 120, 121, 123, 147

CIM ...185, 206, 207, 208

cleansing ..155, 156, 157, 158, 159, 161, 163, 164, 165, 176

complexity ...155, 161, 175, 219

cutting-point.. 190

data warehousing 16, 28, 29, 30, 31, 34, 35, 38, 41, 42, 64, 224

data-driven.. 23, 24, 26, 27, 144, 184, 186, 188, 221

decision making .. 31, 35

decision-tree.. 105, 161

defect detection 21, 24, 26, 27, 42, 102, 103, 107, 123, 184, 186, 219, 221

discernibility ... 146, 231

drill-down ..20, 22, 79, 129

EDA.. 24, 185, 187, 189, 203, 206, 207, 208, 225

encapsulation .. 19, 66

 235

expert system ...221, 229, 232

forward ... 145

genetic algorithm ..21, 103, 117, 126, 128, 231, 232

heuristics..145, 161, 162, 233

IDS ..26, 134, 140, 141

infrastructure... 31, 129, 134

intelligent ...105, 184, 219, 222

knowledge system.. 16, 21, 220, 221, 233

MDDP .. 103, 105, 107, 109, 111~124, 127, 128

mechanism..17, 22, 26, 129, 205, 214, 215, 218

MES...185, 206, 207, 208

meta-data .. 182

meta-knowledge.. 197

neural-network...210, 215, 217

notation.. 110, 111, 113

np-complete .. 183

olap...16, 19, 20, 28, 31, 32, 38, 79, 209

over-fitting .. 175

regression... 112, 113, 114

reinforcement-learning .. 21, 102

roll-up ..20, 22, 79, 129

root-cause 21, 102, 103, 104, 109, 113, 117, 119, 122, 123, 126, 127, 184

rule .. 105, 132, 133, 212, 221

similarity-computing .. 48, 49, 55, 72, 73, 78, 87, 89

SPC... 104, 225

 236

statistical ..20, 24, 103, 104, 106, 127, 185, 194, 224, 226

supervised-learning ... 23, 144

threshold .. 62, 64, 65, 66, 108, 141

under-fitting .. 175

unsupervised-learning ..18, 21, 24, 184, 220

wafermap ..206, 209, 210, 211, 213, 215, 218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

