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Own Chaos and Regular Functions of Time

Student : Sen-Sheng Lin Advisor : Zheng-Ming Ge

Department of Mechanical Engineering
National Chiao Tung University

ABSTRAST

Hyperchaotic Lorenz system is obtained-hy-replacement of its parameters by its chaotic states.
The chaos control, synchronization and uncoupled synchronization of the systems are also obtained
by replacement of its parameters by its:chactic states or by regular functions of time. Furthermore,

by addition and replacement of its own chaoti¢ states, chaos control and synchronization of Lorenz
system can also be obtained.
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Chapter 1

Introduction

Chaos has been observed in a lot of nonlinear dynamical systems [1], and it is quite useful in
many applications such as heart beat regulation [2], fluid mixing [3], human brain [4], etc. When it
is undesirable, chaos control is used [5], while when it is desirable, chaotification is used. During
the past decades, chaos synchronization has been applied in many fields such as secure
communication [6], chemical and biological systems [7], etc.

Hyperchaotic phenomena and chaos control of Lorenz systems are studied in this thesis. The
first hyperchaotic system is hyperchaotic Réssler system [8], after that, many hyperchaotic systems
have been found such as the hyperchaotic MCK circuit [9], the hyperchaotic Chen system [10], etc.
The above hyperchaotic systems are developed by introducing a new state to the original chaotic
systems. Different from that, the hyperchaotic.-Lorenz system studied here is obtained from
excitation by its own chaos. In this thesis, hyperchaos is obtained by replacement of its parameters
by its chaotic states. The chaos control, synchronization and uncoupled synchronization of the
systems are also obtained by replacement of its parameters by its chaotic states or by regular
function of time. Furthermore, by addition and replacement of its own chaotic states, chaos control
and synchronization of Lorenz system can also be obtained.

This paper is organized as follows. Chapter 2 contains the hyperchaos of Lorenz system
excited by its own chaos. First, the second Lorenz system is excited by the first system. Second, the
third Lorenz system is excited by the second system. In Chapter 3, chaos control of Lorenz system
is achieved by chaos excitation and excitation of sum of chaos and regular functions of time. In
Chapter 4, chaos synchronization will be obtained by replacing parameter by chaotic and regular
function of time. In Chapter 5 uncoupled chaos synchronization of two Lorenz systems is obtained

by addition and replacement of its own chaotic states.



Chapter 2

Hyperchaos of a Lorenz System Obtained by Additions of

Chaos

In order to generate hyperchaotic phenomena of a Lorenz system, two types of excitation are
investigated. First, a second Lorenz system is excited by additive chaotic states of the first system.

Second, the third Lorenz system is excited by the second system.

2.1 Hyperchaos of a Lorenz-System Obtained by Additions of Chaotic

States of Its Own System

Chaotic behavior is excited by adding chaotic'signals from chaos supply system. The chaos

supply system is a Lorenz system:

% =-o(X V)
Yo =X Y, —XZ (2.1)
2, =Xy, —bz,

and the chaos excited system is:

X, =—0(X, = Y,) +u,(t)
Yo =% =Y, = X,Z, + U, (1) (2.2)
2, =%,Y, bz, + uy(t)

Rewrite Egs. (2.1) and Egs. (2.2) as:



% =—0(X —Y;)

Yo =X =Y, —XZ

2, = %Y, —bz,

X, = =0 (X, = Y,) + Uy (t) (2.3)
Xo ==X, =Y, = X,Z, + U, (t)

2, =%,Y, —bz, + uy(t)

where 0 =36, r=3, b=20, and the initial condition are x,(0)=0.001, y,(0)=0.001, z,(0)=0, x,

(0)=0.001, Y,(0)=0.001, z,(0)=0.
(1) ul(t) =0, uz(t) =0, us(t) = Azl

Six Lyapunov exponents for system (2.3) are shown in Fig. 2.1 in which three black horizontal lines
are the Lyapunov exponents of system (2.1), three remained colored curves are Lyapunov exponents
of system (2.2). The phase portraits system (2.2) where u,(t) =0, u,(t) =0, u,(t) =-2z, are shown
in Fig. 2.2. When -100<A<0, there are two positive.Lyapunov exponents as shown in Fig 2.1.
Hyperchaos is obtained.
(2) u(t)=0,u,(t)=0,u,(t)=Ay,

The Lyapunov exponents for system (2:3) with-u,(t) =0, u, (t) =0, u,(t) = Ay, are shown in
Fig. 2.3. The local enlargement of Fig. 2.3 is shown in Fig. 2.4. When -1.5<A<1.5 hyperchaos
occasionally appears.
(3) u,(t)=Ay,u,(t)=0,u,(t)=0

The Lyapunov exponents for system (2.3) are shown in Fig. 2.5. The local enlargement of Fig.
2.5 is shown in Fig. 2.6. When -0.3<A<0.3 hyperchaos occasionally appears.
(4) u(t)=0,u,(t)= Ay, u,(t)=0,A=-20~ 20

The Lyapunov exponents for system (2.3) are shown in Fig. 2.7. The local enlargement of Fig.
2.7 is shown in Fig. 2.8. When -0.7<A<0.7, hyperchaos appears frequently.
(5) u (t)=x,u,(t)=0,u,(t) = Az

The Lyapunov exponents for system (2.3) are shown in Fig. 2.9. The local enlargement of Fig.



2.9 is shown in Fig. 2.10. When 1.7<A < 2.4, hyperchaos appears always.
From the above five cases, it is tentatively concluded that the more additive chaotic terms, the

more hyperchaos.

2.2 Hyperchaos of a Lorenz System Excited by Double Additive

Chaotic States of Chaotic Lorenz System

Hyperchaotic is excited by additive chaotic states of excited Lorenz system. The chaos supply

system is a Lorenz system:

X =-0o(X-VY,)
o= —Y,—%Z (2.4)
2, =xY, bz,

and the first chaos excited system is:

X, ==0 (X, = ¥,) + U (t)
Y, =X, — Y, — X,Z, + U, (t) (2.5)
2, =%,Y, —bz, +uy(t)

and the second chaos excited system is:
X3 = =0 (X, = Y,) +Vy(t)
Vo =X, =Y, —X,Z, +V,(t) (2.6)

2y =X, Y, =0z, +Vy(t)

Rewrite Egs. (2.4), Egs. (2.5) and Egs.(2.6) as:



X, =0 (X, —Y;)

Yi =X —Y,— X7,

2y =Xy, — bzl
X, ==0(X, = Y,)+Uu,(t)
yz =X, —Y, = XZ, +U2(t) (2-7)

2, =X%,Y, =0z, +Uy(t)

Xg = =0 (X = Y3) +Vy(t)
Y3 =1X3 = Y3 = X323 +V, ()
2, =XY5 — bz, + v, (t)

where ¢ =36, r=3, b=20, and the initial conditions are x,(0)=0.002, y,(0)=0.001, z,(0)=0.003,
X, (0)=0.004, vy, (0)=0.002, z,(0)=0.001, x,(0)=0.001, y,(0)=0.002, z,(0)=0.001
(1) u (t)=0,u,(t)=Ax,us(t)=0,v,(t) =0,v,(t) = AX,, v5(t) =0

The Lyapunov exponents for systems (2.7) are shown in Fig. 2.11. The local enlargement of
Fig. 2.11 is shown in Fig. 2.12. When 40<A<100; hyperchaos occurs.
(2) u,(t)=0,u,(t)=0,u,(t) = Ax,, v, () =0, v, (t) = 0, v, (t) = Ax,

The Lyapunov exponents for system (2.7) are shown:in Fig. 2.13. The local enlargement of Fig.
2.13 is shown in Fig. 2.14. When 0<A<1.2, hyperchaos occurs.
(3) u (t)=0,u,(t)=0,u,(t) = Az, v, (t)=0,V,(t) =0, v, (t) = x,2,

The Lyapunov exponents for system (2.7) are shown in Fig. 2.15. The local enlargement of Fig.
2.15 is shown in Fig. 2.16. When -0.3<A<0.3, 2.1<A, 2.3, hyperchaos occurs.

From the above three cases, the hyperchaos of case (1) is most abundant.
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Chapter 3

Chaos Control by Replacing Parameter by Chaotic States

In this Chapter, chaos control of a Lorenz system is achieved by chaos excitation and

excitation of sum of chaos and regular functions of time.

3.1 Chaos Control of a Lorenz System by Replacing Parameters with

Chaos

In order to control the chaos of a Lorenz system, some parameters of Lorenz system are

replaced by chaotic signals from a chaos supply system which is also a Lorenz system:

X, =—o(X,~Y;)
yl =X -y, —XZ (3-1)
2, =Xy, —bz,

For Egs. (3.1) witho =36, r=3, b =20;.the initial-condition are x,(0) = 0.001, vy, (0) =0.002, z,
(0) = 0. The chaos excited Lorenz system is:

X, = _O-'(t)(xz - yz)
yz = I"(t)XZ —Y, =%, (3-2)
2, =X%,Y, _b'(t)zz

For Egs. (3.2), the initial conditions are x,(0) = 0.001, y,(0) = 0.002, z,(0) = 0.001, and
o'(t), r'(t), b'(t) arethe chaotic parameters formed by chaotic states of system (3.1).

Foro'(t)=0o,r'(t)=r, b'(t)=x+20y, the phase portrait of x,,y,,z, is shown in Fig 3.1,
which converges to a fix point (0,0,8.3351).

Foro'(t) =o, r'(t) =r,b'(t) =|kx, + p|, withk =95, p=0.1, the phase portrait is shown in Fig.
3.2, which converges to a fix point (506.2837, 506.5360, 29.5925).

For Egs. (3.1) witho =36, r=3, b=20, the initial condition are x,(0) =1.001, y,(0) = 1.002,
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z,(0) = 1. For Egs. (3.2), the initial conditions are x,(0) = 0.001, vy, (0) = 0.002, z,(0) = 0.001,
and o'(t), r'(t), b'(t) arethe chaotic parameters formed by chaotic states of system (3.1).

For o'(t) =0, r'(t) =|ke + p|, b'(t) =bwithk = 0.01, p = 0.1, the phase portrait is shown in Fig.
3.3, which converges to fixed point (0, 0, 0).

For o'(t) =|ke + p|, r'() =1, b'(t) =b , withk =0.01, p = 0.1, the phase portrait is shown in Fig
3.4, which converges to fixed point (8.4853, 8.4853, 27).

For o'(t) =o,r'(t) =r,b'(t) =b+ksin(ewt+ p) , with k=0.01, w=1p=01 the

phase portrait is shown in Fig 3.5, which converges to a fixed point (0.00024, 0.00042, 0.6899).

3.2 Chaos Control of a Lorenz System by Replacing a Parameter with

Sum of Chaos and Regularn Functions:of Time

In order to control the chaos ofia Lorenz system, a given parameter of Lorenz system are
replaced by the sum of chaotic signals from chaos supply:system, and regular function of time. The
chaos supply system is also a Lorenz system:

% =-o(x—Y,)
Yo =X =Y —XZ (3.3)
2, =Xy, bz,
where o =36, r=3, b=20, and the initial conditions are Xx,(0) =0.001, vy, (0)=0.002, z,(0)=0.
The Lorenz system with parameter replaced by sum of chaos and regular function of time is:
X, ==0'(t)(X, —Y,)
Y, = I"(t)XZ — Y, = %12, (3.4)
2, =%Y, —b'(t)22
where the initial conditions are X, (0) = 0.001, vy, (0) = 0.002, z,(0)=0.001, r’(t), is the

parameter replaced by sum of chaos and regular functions of time, while o' ,b" remain

15



unchanged :

o'(t)=o,r'(t)=10sin(0.5t) +10x, + y,, b'(t) =b

The phase portrait, are shown in Fig. 3.6, which is a periodic function of time.

For o'(t)=0o,r'(t)=r,b'(t) =1.1sin(0.5t) + 0.1x, +19.5y, the phase portrait is shown in Fig.
3.7, which converges to a fixed point (0, 0, 8.335).

For o'(t) =|Asin(wt+p)|, r'(t)=r,b'(t)=b and A=200, @=1p=0.1, the phase
portrait is shown in Fig. 3.8, which converges to a fixed point (0, 0, 8.335).

When A=10.5, w=1.5,p=1 the phase portrait is shown in Fig. 3.9, which converges to a

fixed point (0, 0, 8.335).
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Chapter 4

Chaos Synchronization of Two Lorenz Systems by Replacing

Parameter and States by Chaotic and Regular Motion

4.1 Chaos synchronization of Lorenz Systems by Replacing a

Parameter with Regular Functions of Time

In order to synchronization the chaos of two Lorenz systems, a given parameter of Lorenz

system are replaced by regular function of time. Two Lorenz systems are :

X =—oc(X—Y,)
Vi =P =Y, —XZ (4.1)
2, =XY, _bzl

X, = _U’(Xz - yz)
Y, =%, — Y, —%,Z, (4.2
Z.2 =XY, _b'(t)zz

For Egs.(4.1) with o =36,r=3,b =20, where the initial conditions x,(0) =0.001, y,(0) = 0.002,

z,(0) =0, x,(0)=0.001 vy, (0)=0.001,z,(0)=0.001, b'(t) is the parameters replaced by regular
functions of time, while o' , r’" remain unchanged . And we define e =x,—x
€ =Y, —Y,8 =2,-1.

Forc'=o,r' =r,b'(t) =b(t) = |ksin(wt + p)|,@=1k=10, p=0.5, chaos
synchronization is obtained as shown in Fig. 4.1 and Fig. 4.2.

Foro'=o,r'=r,b'(t)=b(t) = |ksin(et + p)|, withw=15k=5p=0.1, two systems

are synchronized; the time histories and the phase portrait are shown in Fig. 4.3, Fig.4.4.
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4.2. Chaos synchronization of a Lorenz System by Replacing some

Parameter and States with Chaotic state

In order to synchronization the chaos of a Lorenz system, some parameters and states of the

Lorenz system are replaced by chaotic signals.

X =—o(f-y)
Vi =P =Y, —XZ (4.3)
2, =XY, _bzl

where o =10, r=28, b=8/3, and the initial conditions are x,(0) = 0.001, vy, (0) =0.002, z (0) =

0. The chaos excited Lorenz system is:

X,=-c'(t)(f -y,)
yz = r'(t)xz —Y, =X, (4.4)
2, =%,Y, _b’(t)zz

where the initial condition is x, (0) =:0.002, ¥,(0) = 0.003, z,(0) = 0.001, and o', r', b" are
the parameters excited by chaotic signals:We definee =x, -x, €, =Y, -VY,;,€ =2, -17,.

For f =kx,,c'(t)=0,r'(t)=r,b'(t)=b, with k=1, two systems are synchronized , the time
histories and the phase portrait are shown in Fig. 4.5-4.6.

For Egs. (4.3) Eqgs.(4.4) where the initial conditions are X, (0) = 0.002, vy, (0) = 0.003, z,(0)
=0.001,and o', r', b’ are the parameters replaced , f is the state replaced.

For f =kx,,o'(t)=0,r'(t)=r,b'(t)=b, with k=10 two systems are synchronized, the time
histories and the phase portrait is shown in Fig. 4.7-4.8

For f (x) =ky,,o'(t) =0, r'(t)=r,b'(t)=b, with k =1two systems are synchronized, the time
histories and the phase portrait are shown in Fig. 4.9-4.10.

For f (x)=ky,,o'(t)=0,r'(t)=r,b'(t)=b, with k=10 two systems are synchronized, the
time histories and the phase portrait are shown in Fig. 4.11-4.12.
If the chaos excited Lorenz systems becomes:
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X =-c'(X —-Y,)
2, = XY, b’(t)zl

X, = =0 ()(X, — ¥,)

2, =X%,Y, —b'(t)22

y,=rf, -y, -z (4.5)

yz = r,(t) fl —Y, - f222 (4.6)

where the initial conditions are x, (0) =0.002, y,(0)=0.003, z,(0)=0,and o', r', b" arethe

parameters replaced, f,, f, are the states replaced.

For f,=x,,0'(t)=0,r'(t)=k,b'(t)=b, f,=px, with k=28 p=0.85 two systems are
synchronized, the time histories and the phase portrait are shown in Fig. 4.13.- 4.14.
For f,=Xx,,o'(t)=0,r'(t)=k,b'(t)=b, f,=px,, withk=28p=16 two systems are
synchronized, the time histories and the phase portrait are shown in Fig. 4.15.- 4.16.
For f,=y, , o'(t)=0,r'(t) =k, bi(t) =b jufy="py, .with k=28, p=1 two systems are
synchronized, the time histories and the phase portrait are shown in Fig. 4.17 - 4.18.
For f,=2, , o'(t)=0o,r'(t) =k, b(t) =b ", f,=pz, “with k=28 p=1two systems are
synchronized, the time histories and the phase‘portrait are shown in Fig. 4.19 - 4.20.
If the chaos excited Lorenz systems becomes:
X = _O-(Xl - yl)
Vo= —Yi—XZ (4.7)
2,=1(x)y,—bz,
X, ==0'(t)(X, —Y,)
Y, = I"(t)XZ —Y, =%, (4.8)
z,=1(x)y,-b'(t)z,

Fora'(t)y=oc(t), r'(t)=r(t),b'(t)=b, f =px,, with p=2

Forr'(t) = px, +qy,, with p=0.1, g=20two systems are synchronized the time histories and

the phase portrait are shown in Fig. 4.21-4.22.
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Chapter 5

Uncoupled Chaos Synchronization of Two Lorenz Systems

by Replacing of Parameter by Chaotic and Regular Function

In order to obtain uncoupled chaos synchronization of two Lorenz systems, the corresponding
parameters are replaced by a function of regular function of time and state of a third Lorenz system.
There are two Lorenz systems of which two corresponding parameters are replaced by a

regular function of time. Two identical Lorenz systems to be synchronized are:

X =-co(X-VY,)
Yo =X =Y, —XZ (5.1)
2, =XY, _bzl

X, = _U’(Xz -Y,)
Y, = I"Xz — Y, =%, (5.2)
2, =X,Y, -0z,

where o=0¢'=10, r=r'=28, b=Db"'=8/3,and the initial conditions are x,(0)=0.001, vy, (0)=0.002,

z,(0)=0. x,(0)=0.001, vy, (0)=0.002, z,(0)=0.001, the third Lorenz system is:

Xy = _U(Xs - y3)

Ys =X — Y3 = X325 (5.3)
2, = XY, bz,

with initial condition  x,(0)=0.001, y,(0)=0.002, z,(0)=0.001.

We define e =x,-x ,&,=Y,-VY,,€ =7,-7,.

1) r(t) =r'(t) = Asin(owt+ p)

When A=25, @ =20, p=0.5 two system are synchronized. The time histories of e,e,,e, and the

phase portrait are shown in Fig. 5.1-5.2.

(2) b'(t) = b(t) = Ax,sin(wt)
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When A=0.5, @ =10 two systems are synchronized. The time histories of e, e,,e;and the phase
portrait are shown in Fig. 5.3-5.4.

(3) b'(t) = b(t) = [kx;sin(wt) + y |

When A=0.5, @ =10 two systems are synchronized. The time histories of e, e,,e;and the phase
portrait are shown in Fig. 5.5-5.6.

(4) b(t) =b'(t) = Asin(w sin(w,t))

When A=10, »=0.5, @, =20 two systems are synchronized. The time histories of e ,e,,e,and the

phase portrait are shown in Fig. 5.7-5.8.

(5) b(t) =b'(t) = Asin(w + ksin(o,t+ p))

When A=2,0=9.99, @, =10, k=1, p=0.6 two system are synchronized.

The time histories of e, e,,e, and the phase portrait are shown in Fig. 5.9-5.10.
(6) o(t)=0'(t) = Asin(o + ksin(o,t + p))

When A=17, ©=9.99, o, =10, k=2, p=1.2,two system’are synchronized.

The time histories of e, e,,e, and the phase portrait.are shown in Fig. 5.11-5.12.

(Db'(t) = ky, sin(ow + (sin(o,t=+ p))

When k=32, ©=9.99,®, =10 ,p=1.2.two system are synchronized. The time histories of
e,e,,e,and the phase portrait are shown in Fig. 5:13-5.14.

(8) b=b'(t) =|Asin(wt+ p)/ X

When A=7, ®=5,p=0.1 two system are synchronized.

The time histories of e, e,,e,and the phase portrait are shown in Fig. 5.15-5.16.

When b '(t) = |ky, sin(@ (sin(sin(e,t))))

, when k=10, @=0.5, 0, = 1 two system are

synchronized. The time histories of e, e,,e,and the phase portrait are shown in Fig. 5.17-5.18.
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Fig.5. 17 Time histories of x,,¥,,2, for D'(t) = \10y2 Sin(0.5(Sin(Sin(t))))‘
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Chapter 6

Conclusions

We can obtain by different ways hyperchaos of Lorenz system that excited by its own chaos.
Chaos control of Lorenz system is achieved by chaos excitation and excitation of sum of chaos and
regular functions of time. Chaos synchronization will be obtained by replacing parameter by chaotic
and regular function of time. Uncoupled chaos synchronization of two Lorenz systems by replacing

parameter by chaotic and regular function.
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