

Figure. 4.1 Configuration of the error diagnosis experiment

Figure 4.2 Double Ball Bar system

Figure 4.3 Procedures of DBB test & error diagnosis

Figure 4.6 Testing path of the circular contour tracking

Figure 4.7 The completed setup of the DBB system

Figure 4.8 Polar plot obtained from the data capture of DBB test

Figure 5.1 Procedures of Curve Fitting with Least Square Estimation

Figure 5.2 Polar plot of error estimation

Position error	Feed motion error	Command generation error
• Geometric error of	Error due to servo	 Interpolation resolution is
guide way	lag	too rough
• Square error between	 Mismatch of position 	 Acceleration/Deceleration
two axes	loop gain	time constant is too long
Straightness error of	Lost motion	
guide way	 Stick motion 	
• Errors of positioning		
system	STATE OF THE STATE	
Positioning scale		
uniform error	TINA 1896	
Misalignment between		
the encoder and motor		
shaft		
• Pitch error of the screw		
driving system		

Table 1.1. Resources of motiom errors

Item	Error Source	Туре	Parameter Error
1	Linkage Length Error	L1	δ_{L1}
2	Linkage Length Error	L2	δ_{L2}
3	Linkage Length Error	L3	δ_{L3}
4	Linkage Length Error	L4	δ_{L4}
5	Linkage Length Error	L5	δ_{L5}
6	Linkage Length Error	L6	δ_{L6}
7	Slider Error	S1	δ_{S1}
8	Slider Error	S2	δ_{S2}
9	Slider Error	S3	δ_{S3}
10	Slider Error	S4	δ_{S4}
11	Slider Error	S5	δ_{S5}
12	Slider Error	S6	δ_{S6}
13	Translation Error_X axis	B1B2	$\delta_{x,b1b2}$
14	Translation Error _Y axis	B1B2	$\delta_{v,blb2}$
15	Translation Error X axis	ES B2B3	$\delta_{x,b2b3}$
16	Translation Error _Y axis	B2B3	$\delta_{v,b2b3}$
17	Translation Error _X axis	1896B3B1	$\delta_{x,b3b1}$
18	Translation Error _Y axis	B3B1	$\delta_{v,b3b1}$
19	Rotation Error _XY plane	B1B2	$\varepsilon_{xy,blb2}$
20	Rotation Error_XY plane	B2B3	$\varepsilon_{xy,h2h3}$
21	Rotation Error _XY plane	B3B1	$\varepsilon_{xy,b3b1}$
22	Rotation Error _YZ plane	B1B2	$\varepsilon_{yz,b1b2}$
23	Rotation Error _YZ plane	B2B3	E _{yz,b2b3}
24	Rotation Error _YZ plane	B3B1	E _{yz,b3b1}
25	Rotation Error _ about O	B1B2	$\varepsilon_{o,b1b2}$
26	Rotation Error _about O	B2B3	$\varepsilon_{o,b2b3}$
27	Rotation Error _about O	B3B1	$\varepsilon_{o,b3b1}$

Table 3.1 Parameter errors corresponding to geometric errors for a hexglider manipulator

Error	Туре	Characteristic equation of geometric error
TranError X axis	Guideway Type I	$F_{I}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \lambda_{XI}(\sqrt{3}g - qSin\delta - 2rSin\theta) = 0$
TranError X axis	Type II	$F_{2}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \lambda_{XII}(\sqrt{3}f - rSin\theta - 2qSin\delta) = 0$
TranError Y axis	Type I	$F_{3}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \lambda_{YI}(g - 2f + \sqrt{3}qSin\delta) = 0$
TranError Y axis	Type II	$F_{4}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \lambda_{YII}(f - 2g + \sqrt{3}rSin\theta) = 0$
TranError Z axis	Type I	$F_{5}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + 2\lambda_{Z1}(rCos\theta - qCos\delta) = 0$
TranError Z axis	Type II	$F_{6}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta - 2\lambda_{ZII}(rCos\theta - qCos\delta) = 0$
RotError XY Plane	Туре І	$F_{7}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \varepsilon_{XYI}[-\sqrt{3}fg - 3 \cdot BR \cdot g + (2\sqrt{3} \cdot BR + g)rSin\theta + (\sqrt{3} \cdot BR + f)qSin\delta + \sqrt{3}qrSin\thetasin\delta] = 0$
RotError XY Plane	Type II	$F_{8}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \varepsilon_{XYII}[\sqrt{3}fg - 3\cdot BR \cdot f + (\sqrt{3}\cdot BR - g)rSin\theta + (2\sqrt{3}\cdot BR - f)qSin\delta - \sqrt{3}qrSin\thetasin\delta] = 0$
RotError YZ Plane	Туре І	$F_{9}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \varepsilon_{YZI}[-\sqrt{3}fg + grSin\theta + fqSin\delta + 2\sqrt{3} \cdot BR \cdot (r-q)Cos\delta + \sqrt{3}qrSin\thetaSin\delta] = 0$
RotError YZ Plane	Type II	$F_{10}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \varepsilon_{YZII}[2(\sqrt{3} \cdot BR - g)rCos\theta + (f + 2\sqrt{3} \cdot BR)qCos\delta + \sqrt{3}qrSin\thetaSin\delta] = 0$
RotError O	Type I	$F_{II}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta + \varepsilon_{OI}[\sqrt{3}fg - 2 \cdot BR \cdot (f+g) + (2\sqrt{3} \cdot BR - g)rSin\theta + (2\sqrt{3} \cdot BR - f)qSin\delta - \sqrt{3}qrSin\thetaSin\delta] = 0$
Rot- Error O	Type II	$F_{12}(\theta,\delta) = f^{2} + g^{2} + q^{2} + r^{2} - b^{2} - fg - \sqrt{3}grSin\theta - \sqrt{3}fqSin\delta + qrSin\thetaSin\delta - 2qrCos\thetaCos\delta - \varepsilon_{OII}[\sqrt{3}fg - 2 \cdot BR \cdot (f + g) + (2\sqrt{3} \cdot BR - g)rSin\theta + (2\sqrt{3} \cdot BR - f)qSin\delta - \sqrt{3}qrSin\thetaSin\delta] = 0$

(Remark : Tran- Error→Translation Error, Rot- Error→Rotation Error)

Table 3.2 Characteristic	equations of	geometric errors	for	RSSR	mechanism
--------------------------	--------------	------------------	-----	------	-----------

Guide way Error Error equation	B1B2	B2B3	B3B1
Shift_Error X Axis	$\begin{cases} F_1(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_2(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_2(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F_1(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^{*}(\theta, \delta, f_{1}, g_{1}, r_{1}, r_{2}) = 0\\ F_{2}(\delta, \phi, f_{2}, g_{2}, r_{2}, r_{3}) = 0\\ F_{1}(\phi, \delta, f_{3}, g_{3}, r_{3}, r_{1}) = 0 \end{cases}$
Shift_Error Y Axis	$\begin{cases} F_3(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_4(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_4(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F_3(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^{*}(\theta, \delta, f_{1}, g_{1}, r_{1}, r_{2}) = 0\\ F_{4}(\delta, \phi, f_{2}, g_{2}, r_{2}, r_{3}) = 0\\ F_{3}(\phi, \delta, f_{3}, g_{3}, r_{3}, r_{1}) = 0 \end{cases}$
Shift_Error Z Axis	$\begin{cases} F_5(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_6(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_6(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F_5(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^*(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F_6(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_5(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$
Rot_Error XY Plane	$\begin{cases} F_7(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_8(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_8(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F_7(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^*(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F_8(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_7(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$
Rot_Error YZ Plane	$\begin{cases} F_9(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F_{10}(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_{10}(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F_9(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^{*}(\theta, \delta, f_{1}, g_{1}, r_{1}, r_{2}) = 0\\ F_{10}(\delta, \phi, f_{2}, g_{2}, r_{2}, r_{3}) = 0\\ F_{9}(\phi, \delta, f_{3}, g_{3}, r_{3}, r_{1}) = 0 \end{cases}$
Rot_Error O	$\begin{cases} F_{11}(\theta, \delta, f_1, g_1, r_1, r_2) = 0 \\ F^*(\delta, \phi, f_2, g_2, r_2, r_3) = 0 \\ F_{12}(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F_{12}(\theta, \delta, f_1, g_1, r_1, r_2) = 0\\ F_{11}(\delta, \phi, f_2, g_2, r_2, r_3) = 0\\ F^*(\phi, \delta, f_3, g_3, r_3, r_1) = 0 \end{cases}$	$\begin{cases} F^{*}(\theta, \delta, f_{1}, g_{1}, r_{1}, r_{2}) = 0\\ F_{12}(\delta, \phi, f_{2}, g_{2}, r_{2}, r_{3}) = 0\\ F_{11}(\phi, \delta, f_{3}, g_{3}, r_{3}, r_{1}) = 0 \end{cases}$

Table 3.3 Systems of error equations for hexglider manipulator

Parameter error Error source	Given Error Value	Estimated Error Value
LLError_L1_B1B2	0.02mm	0.019996 mm
LLError_L3_B2B3	0.03mm	0.030002 mm
LLError_L5_B2B3	-0.02mm	-0.019994 mm
ShiftError_X_B1B2	-0.01mm	-0.010001mm
ShiftError_X_B2B3	-0.04mm	-0.040019mm

Table 5.1 Error estimation with given errors (1)

Parameter error Error source	Given Error Value	Estimated Error Value
LLError_L1_B1B2	0.02mm	0.019996 mm
LLError_L3_B2B3	0.03mm	0.030002 mm
LLError_L5_B2B3	-0.02mm	-0.019994 mm
ShiftError_X_B1B2	-0.01mm	-0.014276mm
ShiftError_Y_B1B2	0.02mm	0.012598mm
ShiftError_X_B2B3	-0.04mm	-0.040019mm

Table 5.2 Error estimation with given errors (2)

Parameter error Error source	Given Error Value	Estimated Error Value
LLError_L1_B1B2	0.02mm	0.04747 mm
LLError_L2_B2B3	-0.01mm	0.01746 mm
LLError_L3_B2B3	0.03mm	0.02999 mm
LLError_L5_B2B3	-0.02mm	-0.01999 mm

Table 5.3 Error estimation with given errors (3)

ESA				
Parameter error Error source	Given Error Value	Estimated Error Value		
LLError_L1_B1B2	0.02mm	0.02001 mm		
LLError_L3_B2B3	0.03mm	0.02999 mm		
LLError_L5_B2B3	-0.02mm	-0.02000 mm		
ShiftError_X_B1B2	-0.01mm	-0.01002mm		
ShiftError_X_B2B3	-0.04mm	-0.04002mm		
Rot_XY_B1B2	0.01deg	0.00999deg		

Table 5.4 Error estimation with given errors (4)

Parameter error Error source	Given Error Value	Estimated Error Value
LLError_L1_B1B2	0.02mm	0.01999 mm
LLError_L3_B2B3	0.03mm	0.03035 mm
LLError_L5_B2B3	-0.02mm	-0.02048 mm
ShiftError_X_B1B2	-0.01mm	-0.00915mm
ShiftError_X_B2B3	-0.04mm	-0.03847mm
Rot_XY_B1B2	0.01deg	0.01003deg
Rot_YZ_B2B3	0.02deg	0.01994deg

Table 5.5 Error estimation with datum based on DBB test (5)

ESO				
Parameter error Error source	Given Error Value	Estimated Error Value		
LLError_L1_B1B2	0.02mm	0.01987mm		
LLError_L3_B2B3	0.03mm	0.02981mm		
LLError_L5_B2B3	-0.02mm	-0.02008mm		
ShiftError_X_B1B2	-0.01mm	-0.0527mm		
ShiftError_X_B2B3	-0.04mm	-0.02777mm		
Rot_XY_B1B2	0.01deg	0.01038deg		
Rot_XY_B2B3	-0.02deg	-0.01950deg		
Rot_YZ_B2B3	0.02deg	0.01965deg		

Table 5.6 Error estimation with given errors (6)

Parameter error Error source	Given Error Value	Estimated Error Value
LLError_L1_B1B2	0.02mm	0.01966mm
LLError_L3_B2B3	0.03mm	0.02918mm
LLError_L5_B2B3	-0.02mm	-0.02008mm
ShiftError_X_B1B2	-0.01mm	0.01289mm
ShiftError_X_B2B3	-0.04mm	0.01233mm
Rot_XY_B1B2	0.01deg	0.01104deg
Rot_XY_B2B3	-0.02deg	-0.01831deg
Rot_YZ_B1B2	-0.03deg	-0.02931deg
Rot_YZ_B2B3	0.02deg	0.01862deg

Table 5.7 Error estimation with given errors (7)

Error source	Estimated Error Value
LLError_L1_B1B2	-1.419mm
LLError_L3_B2B3	4.479mm
LLError_L5_B2B3	-5.091mm
ShiftError_X_B1B2	2.509mm
ShiftError_X_B2B3	8.046mm
Rot_XY_B1B2	0.141deg
Rot_YZ_B2B3	-0.780deg

Table 5.8 Error estimation with data based on DBB test for the manipulator SP-120