
 1

Chapter 1

Introduction

The motivation for this dissertation is stated first in Sec. 1.1. The background

knowledge for the related topics is then introduced in Sec 1.2. Overview of the

proposed methods is in Sec. 1.3.The organization of the dissertation is in Sec 1.4.

1.1 Motivation

Traditionally, in progressive viewing of an image, the information contained in

the image is partitioned into several parts. The most significant part is viewed or

transmitted first, while the least significant part is done last. If the most significant

part is damaged or lost, the recovered image will be significantly degraded. In most

researches [CT 01, BBP 02, CJC 98] about progressive reconstruction on one end of

the transmission channel, the receiver can immediately stop the transmission of the

image, if the reconstructed rough version of the image shows that the image being

reconstructed (for example, a jet airplane) is not the one the receiver is interested (for

example, Lena). Notably, these methods are not fault-tolerant or unbiased: some parts

are more important than the others, and the important parts cannot be lost. To develop

a new progressive viewing system that is fault-tolerant and unbiased, using sharing

technique might be one of the possible solutions.

Therefore, a progressive image viewing method using sharing is introduced in

 2

Chapter 2. In that method, an user can set several thresholds, namely, the k thresholds:

r1 ≤ r2 ≤ … ≤ rk = r. If less than r1 shared results are present, nothing can be revealed.

However, if r1 shared results are present; a rough version of the image can be revealed.

Of course, for each s>1, if rs shared results are received, the quality of the recovered

image is, at least, not worse than the one using rs-1 shared results. Finally, if rk shared

results are received; the image can be recovered losslessly.

When lossless recovery of the images is not so critical, we can reduce the size of

each share, and hence reduce the transmission time or storage space, by developing a

vector-quantized version that is still progressive. In this version, each shared result is

much smaller than the one generated in Chapter 2, although receiving rk or more

shared results can only reveals lossy image. More specifically, a progressive method

of vector-quantized images is proposed in Chapter 3. In the proposed (r1, r2, … ,

rk)-thresholds method, when the generated n shares are stored or transmitted using n

distinct channels, the interception of up to r1-1 channels will not let the thief has a

chance to peep a clue of the vector-quantized image; and the vector-quantized image

can be viewed progressively as long as the numbers of received shares reach some of

the preset threshold values {r1, r2, … , rk}, where r1 ≤ r2 ≤ … ≤ rk. Finally, if the

number of shares that survive in an attack is not less than the given threshold value rk,

then the vector-quantized image recovered by our system is exactly the one recovered

 3

by traditional VQ.

Chapters 2 and 3 are both based on the secret sharing scheme proposed by

Blakley [Blakley 01] and Shamir [Shamir 02]. Another famous sharing scheme is

Visual Cryptography (VC). When a computer is not available, VC is an alternative

solution for sharing a secret image. The secret image shared by VC scheme can be

decoded instantly by stacking the generated transparencies together. In Chapter 4, we

will propose a VC scheme for progressive viewing of a secret image. Our VC scheme

is a weighted version. The quality obtained from stacking two lower-weight

transparencies is worse than the quality from stacking two higher-weight

transparencies. Moreover, stacking additional transparency on the stacked

transparencies always yields better quality.

In Chapter 5, the proposed VC-based system is modified to share multiple secret

images. The transparencies T0, T1, … Tk with weights w0, w1, … , wk are generated to

encode the secret images S1, … , Sk. Stacking Ti and Tj (j < i), the secret image Si is

revealed. Therefore, T0 can be hold by the most important person who can view all

secret images S1, … , Sk by stacking T0 on T1, … Tk, respectively. This property makes

the tool applicable to the management of multiple secret images in a company.

Another application is the so-called “game cards”. When a player play the game, he

can get game card T0 initially. When he passes the test at stage i (i > 0), he is granted

 4

the game card Ti. The player can view the secret image Si by stacking Ti and Tj

together (j is the number corresponds to an earlier stage).

1.2 Background Review

1.2.1 Secret image sharing

Blakley [Blakley 01] and Shamir [Shamir 02] first proposed the idea of secret

sharing, known as the (r, n) threshold scheme. In their (r, n) threshold scheme, the

system is formed of a dealer and n participants, and the dealer distributes a secret

number into n shares and each participant holds one share. Later, if r shares are

received, then the secret number can be revealed. If less than r shares are received,

then no information about the secret number can be revealed. This secret sharing

scheme is fault-tolerant in the sense that n-r shares can be lost during the

reconstruction (because only r shares are needed).

Thien and Lin [TL 03] applied the idea of Ref.[Shamir 02] to share a secret

image and to generate n shadow images. The size of shadow image is only 1/r of that

of the original secret image. The secret image can be recovered if any r of the n

shadow images are received. Because of the smaller size (the 1/r size) property of the

shadow images, the total transmission time needed to recover an image (by receiving

r shadow images) will not increase.

 5

The method to share a secret image is based on Shamir’s [Shamir 02] polynomial

threshold scheme with a prime number p. The image is divided into several

non-overlapped sectors, and each sector has r pixels. For each sector j, the r

coefficients a0, a1, …, ar-1 of the corresponding polynomial

)(mod...)(1
110 pxaxaaxq r

rj
−

− ×++×+=

are assigned as the r gray values of the r pixels in the sector. The w-th shadow image

is the collection






 =

r

sizeimageoriginal
jwq j ,...,2,1|)(. Because each sector j,

which has r pixels, contributes only one pixel qj(w) to the w-th shadow image, the size

of the w-th shadow image is only 1/r of the secret image. This property holds for

every w∈{1, 2, 3,…, p-1}.

1.2.2 Vector quantization

 Vector Quantization [Gray 84, NK 88, Mielikainen 02, LBG 80, MM02,

EMSMSZ 03, CCL 04] is a technique for compressing digital images. In the encoding

phase of VQ, a given image is divided into several blocks, and then each block is

mapped to its closest codeword chosen from a given codebook. The indices of the

codewords are kept in a file to record the mapping sequence. In the decoding phase of

VQ, the indices are used for finding the corresponding codewords to reconstruct the

given image.

1.2.3 Visual cryptography

 6

 Visual cryptography (VC) [NS 95, HKS 00, YC05, BSS 96, CAM 00, LT 03,

HC 01, WC 05, HCL 04, Hou 03] is a kind of secret image sharing scheme that

decodes a given secret image by human visual system without any computation. In the

encoding phase of VC, n transparencies, also called shares, are generated. In the

decoding phase of VC, the secret image is revealed by stacking the shares together.

Naor and Shamir [NS 95] introduced the so-called (r, n)-threshold visual cryptography.

Stacking at least r of the n generated shares can decode the secret completely, but

stacking less than r shares gives no information about the secret.

Now we review the definition of “contrast” first. In VC, each pixel of the secret

image is extended to a block for each of the n generated shares. Let p× q be the block

size. (Therefore, each share will be p× q times bigger than the secret image in size.) In

the stacking result, if at least db black elements exist in each black block, and if at

most dw black elements exist in each white block, then the contrast of the stacking

result was defined in Ref. [HKS 00] as
qp

dd wb

×
−

.

1.2.4. Multi-secret image sharing and access structure.

 Multi-secret images sharing system is an interesting research area for

fault-tolerantly protecting many secret images. Wu and Chang [WC 05] embedded

two secret images into two circle transparencies, called shares. If two shares are

stacked together, the content of the first secret image can be revealed. Moreover,

 7

rotating one of the two shares by a given angle degree, the other secret image can be

revealed then. Their method is more flexibility than traditional VC scheme. However,

so far, only two secret images can be applied by their method.

Tsai et al [TCC 02] and Feng et al [FWTC 05] proposed sharing methods for

multiple images. In [TCC 02], they adopted XOR computing for embedding and

extracting the secret images, and in [FWTC 05], they adopted Largrange’s

interpolation that is also applied in Thien and Lin [TL 02] for generating several

shares in order to fault-tolerantly recover the single secret image. The method of

[TCC 02] and [FWTC 05] should use computer to extracting the secret images.

Although the method in [TCC 02] and [FWTC 05] is very convenient in network

environment, but when in war, a computer may be not easy for use; the multi-secret

image sharing must have other approaches, like VC. Moreover; in both [TCC 02] and

[FWTC 05], when some particular share is lost or damaged, more than one secret

images can not be revealed forever. In our method, each share is lost or damaged, at

most one secret image can not be revealed forever.

 Visual Cryptography for general access structure was introduced in [ABSS 96,

ABSS 01, BS 01]. Stacking each qualified subset of transparencies together can reveal

the secret image, but stacking other, forbidden, sets of transparencies together has no

information on the secret image. In [ABSS 96, ABSS 01, BS 01], only single secret

 8

image is applied. Notably, in [FWTC 05], their method can be applied on general

access structure; however, as mentioned above, their method is not for VC, thus, can

not reveal secret images by stacking the shares together.

1.3 Overview of the proposed methods

We briefly describe below each of the proposed methods.

1.3.1 Progressive viewing of images: a sharing approach

In our system, the original image is rearranged and then shared by an ((r1, r2, …

rk), n) threshold scheme. The n shared results are then hidden into n host images to

form n stego images. When rk stego images are collected (rk < n), the image can be

recovered losslessly. Therefore, the loss of n− rk stego images will not affect the

lossless recovery. On the other hand, if less than rk, but not less than r1, stego images

are received, people can still view the rough version of the original image in a

progressive manner. Therefore the advantages of the proposed scheme are as follows:

(1). Unlike most progressive image recovery methods, the original image is divided

into several parts of equal importance. Therefore, there is no need to worry about

which part is lost or received first. (2). If the original image is a secret image, i.e. if

security is of big concern, then the image can be transmitted using n distinct channels

(one shared result per channel). Then the interception of some channels by the enemy

(up to r1-1 channels) will not reveal the secret. On the other hand, the disconnection

 9

of some channels (up to n-rk channels) will not affect the lossless recovery of the

secret image.

1.3.2 Progressive viewing of vector-quantized images: a sharing approach

This chapter introduces a technique of progressive viewing of vector-quantized

images. The ((r1, r2, … rk) , n)-threshold sharing scheme is applied to the index file of

a given quantized image and n shares are generated. The loss or damage of up to n− rk

shares does not affect at all the quality of the image reconstructed by VQ. The n

shares can be stored or transmitted using up to n distinct channels to increase the

survival rate, and each share is several times smaller than the index file. When the

number of received shares reaches some preset threshold values (r1, r2, … rk), the

VQ-image can be viewed in a progressive manner with fault-tolerance.

1.3.3 Progressive viewing of a secret image : a VC approach

 A VC approach for progressive viewing of images is designed in this chapter. n

weighted transparencies {t1, t2,…, tn}, also called shares, are generated to share a

secret image. No single share can reveal any information about the secret image.

However, when we stack at least two shares, the secret image is revealed to an extent;

and the revealed contrast level is (SUM{weights}-MAX{weights})/(p×q). (Here, both

SUM and MAX operators are evaluated using the set of the shares being stacked,

which is a subset of {t1, t2,…, tn}, and p×q means each share is p×q times greater than

 10

the secret image in size.)

1.3.4 Progressive viewing of multiple secret images: a VC approach

A VC-based system for sharing multiple secret images is proposed. Several

weighted transparencies are generated so that people can reveal multiple secret

images by stacking some transparencies together. The transparency with larger weight

decides which secret image will be revealed. The proposed method has the following

characteristics: decoding without computation, multiple secret images recovery,

max-weight dominance, and fault-tolerance.

1.4 Dissertation Organization

In the rest of this dissertation, Chapter 2 shows a sharing method for progressive

viewing of images. Chapter 3 shows another sharing method for progressive viewing

of vector-quantized images. Chapters 4 and 5, respectively, propose the Visual

Cryptograph systems for progressive viewing of single secret image and multiple

secret images. Chapter 6 summarizes the relations between Chapters 2-5. Finally, the

conclusions and suggestions for future works are in Chapter 7.

 11

Chapter 2

Progressive viewing of images: a sharing approach

 In this chapter, a sharing approach of progressive viewing of images is

proposed. The user can set several thresholds, namely, the k thresholds: r1 ≤ r2 ≤ …

≤ rk = r. If less than r1 shared results are received, nothing can be revealed. However,

if r1 shared results are received; a rough version of the original image can be revealed.

Then, for each s>1, if rs shared results are received, the quality of the recovered image

is better than or equal to the one using rs-1 shared results. Finally, if rk shared results

are received; the image can be recovered losslessly.

Notably, if the original image is an important (secret) image, then, since the

content of each shared result always looks noisy, an attack from hackers is more likely.

Therefore, a data-hiding method [WTL 04] is utilized to hide the shared results in

some host images to form stego images which look ordinary instead of being noisy,

and hence avoid attracting the hackers’ attention.[BD 03, PAK 99, BBGHPP 00]

Sec. 2.1 shows the encoding phase; and Sec. 2.2 shows the decoding phase.

Experimental results are in Sec. 2.3. Sec. 2.4 discusses the design to control quality.

Finally, the conclusions are stated in Sec. 2.5.

2.1 Encoding

The scheme is illustrated in Fig. 2.1. Firstly, a bit-plane scanning method is

 12

adopted to rearrange the gray value information of the original image. Then, the

rearranged data is shared. Finally, the shared results are hidden into some host images.

Figure 2.1: The flow chart of our method (the encoding phase).

Step1. Bit plane scanning to rearrange data

 First, let the k threshold values r1, r2, … ,rk be assigned so that r1 ≤ r2 ≤ … ≤ rk

= r. Here the k thresholds denote the distinct number of shared results needed to

recover the image with distinct quality levels. For example, when r1 shared results are

received, a quite rough image can be recovered. Then, when more shared results are

received, the image quality becomes better and better. Finally, If rk shared results are

received, the image can be recovered completely.

Bit-plane

scanning

Hiding

Process

Original

image

Rearranged

data

Sharing

Shared

results

n Host

images

n Stego

images

 13

 Below we discuss how to scan the image and generate the rearranged data. To

begin the process, the original image is divided into several non-overlapped sectors,

and the sectors are processed one by one. Each sector always has RSUM

pixels

(RSUM = r1 + r2 + … +rk). Since each pixel has 8 bits in gray-level image, each sector

has 8(r1 + r2 + … +rk) bits. We then rearrange these bits to get another r1 + r2 + … +rk

values and each of them is still an 8-bit number ranging from 0 to 255. For example,

if k = 3 and if we assign 2, 3, 4 as the k threshold values, then each sector contains

2 + 3 + 4 = 9 pixels. Without the loss of generality, let the 9 pixels of the sector being

discussed have the gray values 166, 167, 164, 166, 168, 165, 163, 166, and 168,

respectively. By the rearranging process, shown in Fig. 2.2, the 9 transformed values

of the sector will be 255, 128, 63, 224, 0, 143, 171, 76, and 140. The details are

shown below. The nine input pixels {A, B, C, D, E, F, G, H, I} are

A = 166 = (1010 0110)2 = (A1A2A3A4 A5A6A7A8)2 ,

B = 167 = (1010 0111)2 = (B1B2B3B4 B5B6B7B8)2 ,

C = 164 = (1010 0100)2 = (C1C2C3C4 C5C6C7C8)2 ,

D = 166 = (1010 0110)2 = (D1D2D3D4 D5D6D7D8)2 ,

E = 168 = (1010 1000)2 = (E1E2E3E4 E5E6E7E8)2 ,

F = 165 = (1010 0101)2 = (F1F2F3F4 F5F6F7F8)2 ,

G = 163 = (1010 0011)2 = (G1G2G3G4 G5G6G7G8)2 ,

 14

H = 166 = (1010 0110)2 = (H1H2H3H4 H5H6H7H8)2 ,

I = 168 = (1010 1000)2 = (I1I2I3I4 I5I6I7I8)2 .

 Now, we scan these 8×9=72 bits according to the order specified in Fig. 2.2,

i.e. the 9 most significant bits (MSB) first (A1, B1, … , I1)2, then the 9 second-most

significant bits (A2, B2, … , I2)2, then the 9 third-most significant bits (A3, B3, … , I3)2,

etc. We therefore obtain a rearranged 72-bit data set (A1, B1, … , I1, A2, B2, … , I2, A3,

B3, … , I3, … , A8, B8, … , I8)2. If we read these 72 bits (according to the above order),

and explain them as 9 numbers (each one is an 8-bit number), then we obtain the

rearranged result for this sector, namely, the following 9 values:

(A1B1C1D1 E1F1G1H1)2 = (1111 1111)2 = 255,

(I1A2B2C2 D2E2F2G2)2 = (1000 0000)2 = 128,

(H2I2A3B3 C3D4E4F3)2 = (0011 1111)2 = 63,

(G3H3I3A4 B4C4D4E4)2 = (1110 0000)2 = 224,

(F4G4H4I4 A5B5C5D5)2 = (0000 0000)2 = 0,

(E5F5G5H5 I5A6B6C6)2 = (1000 1111)2 = 143,

(D6E6F6G6 H6I6A7B7)2 = (1010 1011)2 = 171,

(C7D7E7F7 G7H7I7A8)2 = (0100 1100)2 = 76,

(B8C8D8E8 F8G8H8I8)2 = (1000 1100)2 = 140.

 15

 MSB LSB

 128 64 32 16 8 4 2 1

Pixel A = 166 = (1 0 1 0 0 1 1 0)2

Pixel B = 167 = (1 0 1 0 0 1 1 1) 2

Pixel C = 164 = (1 0 1 0 0 1 0 0) 2

Pixel D = 166 = (1 0 1 0 0 1 1 0) 2

Pixel E = 168 = (1 0 1 0 1 0 0 0) 2

Pixel F = 165 = (1 0 1 0 0 1 0 1) 2

Pixel G = 163 = (1 0 1 0 0 0 1 1) 2

Pixel H = 166 = (1 0 1 0 0 1 1 0) 2

Pixel I = 168 = (1 0 1 0 1 0 0 0) 2

 Figure 2.2: The sequence of scanning the 8 bit planes. Note that RSUM = r1 + r2

+ … + rk

pixels are scanned for each sector.

Step2. Sharing

Recall that in our example above, we assumed that r1=2, r2=3, r3=4, and

therefore each sector has 9 pixels. In Step 1, we already transformed the 9 pixels {166,

167, 164, 166, 168, 165, 163, 166, 168} of the current sector (say, Sector j) into 9 new

values {255, 128, 63, 224, 0, 143, 171, 76, 140}. Now, take the first r1=2 transformed

values {255, 128} to form the first polynomial

 16

=)()1(xf j (255 + 128x) mod 257 (2.1)

for the current sector. Then take the next r2=3 transformed values {63, 224, 0} to form

the second polynomial

)()2(xf j = (63 + 224x + 0x2) mod 257 (2.2)

for the current sector. Finally, take the final rk=r3=4 transformed values {143, 171, 76,

140} to form the final polynomial

)()3(xf j = (143 + 171x + 76x2 + 140x3) mod 257 (2.3)

for the current sector. For each participant w∈{1, 2, 3, …, 256}, the collection







 == kiand

RSUM

sizeimageoriginal
jwf i

j ,...,2,1,,...,2,1|)()((2.4)

is called the w-th shared result SR(w). Notably, since each sector has

RSUM = r1+r2+…+rk pixels, the total number of sectors that we have is

RSUM

sizeimageoriginal
jMAX = . Also note that for each shared result SR(w), it receives

only k numbers)()1(wf j ~)()(wf k
j generated from Sector j which is an RSUM-pixel

region of the original image. Therefore, the size of each shared result is

krrr

k

RSUM

k

+++
=

...21

of that of the original image. In the above example, this

ratio is
3

1

432

3 =
++

.

(Optional) Step 3: Hiding the shared results in some host images

The contents of the shared results look noisy. Therefore, in the special case that

the original image is an important secret image, in order to avoid attracting an

 17

attacker’s attention, the shared results had better be hidden in some host images to

form stego images which look ordinary (non-noisy). The hiding algorithm that we use

here is one we developed earlier (similar to the one used in Sec. 2.3 of Ref. [WTL

04]). Note that the size of each shared result is about
krrr

k

+++ ...21

of the original

image; therefore, the size of each stego image is about
krrr

k

+++ ...

2

21

 of that of the

original image.

2.2 Decoding

The recovery of the original image includes three steps: extracting the shared

results from stego images, recovering the rearranged values from the shared results,

and restoring the pixel values from the rearranged values.

Step 1: Extracting the shared results from stego images

 This step only needs some simple operations such as division, addition and

multiplication. The procedure is similar to the one used in Sec. 2.3 of Ref. [WTL 04],

and hence omitted.

Step 2: Recovering the rearranged values from the shared results

To illustrate this step, let us inspect the example given in Equations (2.1)~(2.3)

where k = 3 threshold values were used (r1=2, r2=3, r3=4). According to Eq. (2.4), the

shared result held by participant w is

 SR(w) = { })(),(),()()()(wfwfwf jjj
j

321
U (2.5)

 18

where j ranges through all possible sectors contained in the original image. Now, in

the decoding phase, assume that we receive two shared results, say, SR(1) and SR(4).

Then, since

 SR(1) = { })(),(),()()()(111 321
jjj

j
fffU

and

 SR(4) = { })(),(),()()()(444 321
jjj

j
fffU ,

we can know the values)1()1(
jf and)4()1(

jf for each sector j. Therefore, the

coefficients 255 and 128 of the polynomial)()1(xf j defined in Eq. (2.1) can be

determined (two points (1,)1()1(
jf) and (4,)4()1(

jf) determine a line; and the equation

of this unique interpolation polynomial can be found by using Lagrange’s

interpolation [see Sec. 3.2 of Ref. [TL 02]]).

In the process of progressive transmission, assume that we receive one more

shared result, say, besides SR(1) and SR(4), we also receive SR(5). Then, since

 SR(5) = { })(),(),()()()(555 321
jjj

j
fffU

we can know the values)1()2(
jf ,)4()2(

jf , and)5()2(
jf . Again, by using Lagrange’s

interpolation, we can find the unique interpolation polynomial through the three

points (1,)1()2(
jf), (4,)4()2(

jf), (5,)5()2(
jf). The three coefficients 63, 224, and 0 of

)()2(xf j defined in (2) are therefore obtained. Therefore, {255, 128; 63, 224, 0} are all

known when we received three shared results SR(1), SR(4), and SR(5).

 19

An analogous argument shows that we can know all 9 coefficients in Eq.

(2.1)~(2.3) if we receive four shared results, say, SR(1), SR(4), SR(5), and SR(8).

Step 3: Restoring the pixel values from the rearranged values

 After obtaining the rearranged values in the previous step, the values can be

transformed back to restore the pixels of the original image. For example, if {255, 128}

and {63, 224, 0} are recovered in the previous step (assuming that three shared results

are received), then, 255=(1111 1111)2, 128=(1000 0000)2, 63=(0011 1111)2,

224=(1110 0000)2, 0=(0000 0000)2 together form a sequence of 40 bits, i.e.

(1111 1111 1000 0000 0011 1111 1110 0000 0000 0000)2. If we restore these 40 bits

according to the scan order listed in Fig. 2.2, we can restore at least 4
9

40 =





 most

significant bits of the 9 pixels A~I. In fact 40−9×4 = 4 implies that the first four pixels

(A~D) can recover one more bit each. Therefore the 5
9

40 =





 most significant bits

of the pixels A, B, C, D are revealed to be (10100)2, (10100)2, (10100)2, and (10100)2,

respectively; while the 4
9

40 =





 most significant bits of the pixels E, F, G, H, I are

revealed to be (1010)2, (1010)2, (1010)2, (1010)2, (1010)2, respectively (see Fig. 2.2).

2.3 Experimental results

The experimental result is shown in Figures 2.3-2.5 and Table 2.1. The input is

the image Lena shown in Fig. 2.3, which is shared by our progressive scheme. In the

experiment, we use k = 4 thresholds, which are (r1=2) < (r2=3) < (r3=4) < (r4=rk=5).

 20

We generate, say, n = 6 shares, and then the six shared results are hidden in six host

images to generate six stego images. Fig. 2.4 shows the stego images. The PSNRs of

them range from 34.20 to 34.49. Notably, the size of each host image and each stego

image in this experiment is 388 × 388, because 388388×










+++
×××≈

5432

4
5125122 where

5432

4
512512

+++
×× , i.e. original image

size times
krrr

k

+++ ...21

, is the size of each shared result. The factor 2 is due to the

fact that the stego image size is two times greater than the data (the shared result)

hidden inside.

Fig. 2.5 shows the images recovered from various numbers of the stego images.

Fig. 2.5(a) shows the recovered image when “any” two of the stego images in Fig. 2.4

are available. The recovered image is with bad quality because PSNR is only 14.57db.

Fig. 2.5(b) shows the recovered image when any three of the stego images are

available. The recovered image has a better quality (29.28db). Fig. 2.5(c) shows the

recovered image when any four of these stego images are available. The recovered

image is with much better quality (48.46db). Fig. 2.4 shows the recovered image

when any five of the six stego images are available. The recovered image is lossless.

 21

Figure 2.3. The 512×512 original image.

(a) (b) (c)

 (d) (e) (f)

Figure 2.4. The six 388×388 stego images (the PSNRs range from 34.20 to

34.49).

 22

 (a) (b)

 (c) (d)

Figure 2.5. The recovered images revealed from various numbers of stego

images. (a) from any 2 stego images (PSNR=14.57); (b) from any 3

stego images (PSNR=29.28); (c) from any 4 stego images (PSNR =

48.46); (d) from any 5 stego images (lossless).

2.4 Quality Control Design

It is possible to control the quality of the image recovered from a small number

of shared results. In some applications, if people receive, say, only 3 shared results,

we hope that image quality is poor (for example, a cable system whose image quality

depends on the amount of money paid by the viewer). In some other applications,

however, we hope that only 3 shared results can still provide good-quality recovery

(for example, the hot line between two police stations). To control quality, we may

 23

repeat some threshold values in the design. For example, consider a design where the

threshold values are {3, 4, 5}. If we only use three threshold values {r1=3, r2=4, r3=5},

we get the results shown the middle column of Table 2.1, i.e. 20.01 db and 42.7 db

when we received 3 and 4 shared results, respectively. (Note that 3+4+5=12 pixels per

sector in this case and we construct 3 polynomials for each sector and these 3

polynomials have 3, 4, and 5 coefficients, respectively.) Now, in some business

application, the image owner may hope to reveal only poor quality image when less

than 5 shared results are purchased. Thresholding {r1=3, r2=4, r3=5, r4=5, r5=5} is

then a solution for this, because only about 5.28
22

7
8

55543

43 ≈×=×
++++

+
 of the

8 bits is revealed for each pixel when 4 shared results are received. (Note that there

are 3+4+5+5+5=22 pixels per sector in this thresholding case, and in the encoding

phase we build up 5 polynomials, and the number of coefficients in them are 3, 4, 5, 5,

5, respectively. Receiving 4 shared results can recover only the first two polynomials

(because 3≦4 and 4≦4), and therefore recover only 3+4=7 of the 22 coefficients of

the polynomials.) As shown in Table 2.1, the image quality is quite poor (13.15 db or

24.00 db) when the image is recovered by 3 or 4 shared results. Finally, when fast

revealing of the good-quality image is required, e.g:, between police stations,

thresholding {r1=3, r2=3, r3=3, r4=4, r5=5} can achieve the goal, because

48
2

1
8

54333

333 =×=×
++++

++
of the 8 bits is revealed for each pixel when only 3

 24

shared results are received. (Note that there are 3+3+3+4+5=18 pixels per sector in

this thresholding case, and in the encoding phase we build 5 polynomials, and the

number of coefficients in them are 3, 3, 3, 4, 5, respectively. Receiving 3 shared

results can recover the first three polynomials, and therefore recover 3+3+3 = 9 of the

18 coefficients). As shown in Table 2.1, the image quality is acceptable (31.11 db)

when the image is recovered by 3 shared results. Moreover, the image quality is good

(46.38 db) when the image is recovered by 4 shared results.

Table 2.1. Three kinds of thresholding that are all composed

of 3, 4, and 5 shared results.

Thresholding

3, 4, 5

(12 pixels/sector)

3, 4, 5, 5, 5

(22 pixels/sector)

3, 3, 3, 4, 5

(18 pixel/sector)

3 20.01 13.15 31.11

4 42.70 24.00 46.38

5 lossless lossless lossless

2.5 Summary

 In the proposed method, there are several characteristics: (1) the scheme is

fault-tolerant (allowing n-r stego images to be lost or damaged); (2) the shadow

results are equally important, thus, there is no need to worry about which part is lost

Number of

stego images

PSNR

 25

(or which part is transmitted first) during the transmission; (3) the scheme is secure

(less than r1 shared results cannot reveal any information about the image). (4)

Quality-control design is possible (as explained in Sec. 2.4).

 26

Chapter 3

Progressive viewing of vector-quantized images:

a sharing approach

In this chapter, we propose a sharing approach of progressive viewing of any

image already quantized by a vector quantization (VQ) process. The approach is an

((r1, r2, … , rk), n)-threshold sharing system: n shares are created to replace the index

file of a given quantized image, and the loss or damage of up to n-rk shares does not

affect at all the quality of the image reconstructed by VQ. The n shares can be stored

or transmitted using up to n distinct channels to increase the survival rate, and each

share is several times smaller than the index file. When some communication

channels are faster than the others, the proposed method also provides some “rough”

versions of the image quickly (before the expected VQ-image is recovered

completely), when some of the required rk shares arrive much later than the other

shares do.

The remaining of the chapter is organized as follows. Sec. 3.1 describes the

encoding method. Sec. 3.2 describes the decoding method. Sec. 3.3 shows the

experimental results. Finally, Sec. 3.4 presents the conclusions.

 27

3.1 Encoding

The encoding phase of the proposed method is illustrated in Fig. 3.1. Firstly, a

sorted codebook is generated via sorting a given public codebook so that the average

gray-values of the codewords are in a non-decreasing order (for each codeword, take

an average among all dimensions of the codeword). The reason that the codebook

must be sorted will be explained later at the end of Sec. 3.2. Right now let us still

focus on how to use this sorted codebook to quantize an image. If we have been given

the index file created earlier for the given image using the “non-sorted” codebook,

then, in order to obtain the new index file corresponding to the sorted codebook, we

simply modify the content of that given index file. This is just an easy job of

switching names, for we only have to apply the 1-to-1 mapping (which maps the

codewords of the non-sorted codebook to that of the sorted codebook) to the indices

of the old index file. On the other hand, if no index file is given, then, in order to get

Bit-plane

Scanning

Encoding

Sorting process
Original

image
Public

Codebook

Sorted

Codebook

VQ index

file Sharing

Shares

Bit-transformed

data

Figure 3.1. The encoding phase.

 28

the index file, we directly quantize the original image using the sorted codebook. In

both cases, an index file is generated, and it is corresponding to the sorted codebook.

Now, let the index file be bit-transformed further by a bit-plane scanning method

introduced below in Sec. 3.1.1. After that, the bit-transformed indices are shared to

generate the n shares, as explained in Sec. 3.1.2.

3.1.1 Bit-transform of the indices.

Let the k given threshold values be r1 ≤ r2 ≤ … ≤ rk , as stated earlier. The r1 is the

minimal threshold value to reveal the image roughly, and rk is the threshold value to

reveal the image identical to the one recovered by traditional VQ. Then, we perform

the bit-transform of the index file, as described below. Firstly, the index file is divided

into non-overlapping sectors so that each sector has RSUM (= r1 + r2 + … + rk)

indices. The indices of each sector are then processed by a bit-plane scanning. For

example, assume that RSUM=5, the five indices of a sector are (738, 770, 751, 721,

643), and each index has t bits (t = 10 if there are 1024 codewords; t = 9 if there are

512 codewords; and so on). An example of the bit-transformed process using t = 10 is

shown in Fig. 3.2, and the 5
5 =×

t

t
 bit-transformed values (still t bits per value) of

the sector are (1000, 758, 642, 132, 935), according to the appearance order. Of

course, the first several transformed values of the sector consist of the significant bits

of the original indices. For instance, 1000 and 758 together record the four ([2×t/5] =

 29

[2×10/5]=4) most significant bits (MSB) of the original indices in the above example.

 MSB LSB

 512 256 128 64 32 16 8 4 2 1

738 = (1 0 1 1 1 0 0 0 1 0)2

770 = (1 1 0 0 0 0 0 0 1 0)2

751 = (1 0 1 1 1 0 1 1 1 1)2

721 = (1 0 1 1 0 1 0 0 0 1)2

643 = (1 0 1 0 0 0 0 0 1 1)2

Figure 3.2. An example showing the bit-transform process.

3.1.2 Sharing the bit-transformed indices.

As stated above in Sec. 3.1.1, every r1 + … + rk indices are grouped together to

form a sector, and the r1 + … + rk indices inside each sector are bit-transformed to

another r1 + … + rk values. Now, these values are to be shared. In the sharing process,

the r1 + … + rk values inside each sector are divided further into k sub-sectors (SS) so

that each SSi has ri values. Then, at each SSi, the ri values are shared using a

polynomial Pi(x) of degree ri − 1, and its ri coefficients are in fact the the ri values

being shared. (Therefore, each sector is equipped with k polynomials (P1(x), P2(x), …,

Pk(x)) of its own: polynomial P1 is to share the first r1 transformed values; polynomial

P2 is to share the next r2 transformed values; and so on.) Finally, each Share j is just a

record of the values (P1(j), P2(j), …, Pk(j)) recorded in a sector-by-sector manner. An

 30

example is given below to help the readers to understand the sharing process.

Example. (An example illustrating how to share the bit-transformed indices.)

Without the loss of generality, assume that there are k = 2 threshold values {r1 = 2, rk

= r2 = 3}, and the r1 +… + rk = r1 + r2 = 2 + 3 = 5 bit-transformed indices of the

current sector are (1000, 758, 642, 132, 935). These 5 bit-transformed indices are to

be shared. Therefore, create two polynomials P1(x) = 1000 + 758x (mod 1031) and

P2(x) = 642 + 132x + 935x2 (mod 1031) for this sector. The reason we use 1031 in the

mod-function is because it is the prime number closest to, but still larger

than, 102 =1024 when indices are all 10-bits. (Similarly, the prime number 521 should

be used when indices are all 9-bits, for 521> 92 =512.) Now, without the loss of

generality, assume that n = 4 shares are to be generated (n is the number of shares to

be generated, and its value must be not less than any threshold value [therefore, n ≥

Max{2,3}=3 is required here]). Then, Share 1 keeps a record of the pair (P1(1), P2(1));

Share 2 keeps (P1(2), P2(2)); Share 3 keeps (P1(3), P2(3)); and Share 4 keeps (P1(4),

P2(4)).

The decoding phase will be given in next section. Right now, we just explain

why people can use the shares created above to recover the image in a “progressive”

manner. Assume that only two of the four created shares (for example, Shares 2 and 4)

 31

arrive at the receiver end of a network. Then, the recovery of the three coefficients (c1,

c2, c3) = (642, 132, 935) for P2 (x) are still not possible, since (c1, c2, c3) cannot be

solved from the only two equations related to P2, i.e. from P2(2) = (c1 + 2c2 + 4c3)

mod 1031, and P2(4) = (c1 + 4c2 + 16c3) mod 1031. However, the two coefficients (a,

b) = (1000, 758) of P1(x) an be recovered immediately by solving the linear set

P1(2) = (a + 2b) mod 1031

P1(4) = (a + 4b) mod 1031 ,

using the so-called Lagrangian interpolation polynomials (the solving detail can be

found in [CH 98] stated by Chang and Hwang). As a result, the [2×10/5]=4 most

significant bits of the original five indices in the sector can be revealed. Therefore, the

five indices can be roughly estimated; then people can see a rough version of the

image. On the other hand, if 3 (=r2 =rk) of the 4 generated shares are received, for

example, Shares 1, 2, and 4 are received; then we have (P1(1), P2(1)) from Share 1;

(P1(2), P2(2)) from Share 2; and (P1(4), P2(4)) from Share 4. As a result, we may use

the two equations P1(2) = (a + 2b) mod 1031 and P1(4) =(a + 4b) mod 1031 to solve

for {a,b} and obtain {a=1000, b=758}, as stated above. We also have the three

equations P2(1) = (c1 + 1c2 + 1c3) mod 1031, P2(2) = (c1 + 2c2 + 4c3) mod 1031, and

P2(4) = (c1 + 4c2 + 16c3) mod 1031 to solve for {c1 , c2 ,c3} and obtain {c1=642, c2

=132,c3=935}.Therefore, not only (1000, 758), but also (642, 132, 935), can be

 32

recovered. As a result, all five original indices (738, 770, 751, 721, 643) can be

recovered completely without any error. Since the whole index file can be exactly

recovered, the image obtained will be exactly the VQ-image reconstructed by the

ordinary VQ method. ---End of the example.

Notably, after our bit-transform and sharing, the index file is replaced by n shares

in our scheme, and these n shares can be transmitted using n distinct channels.

Intercepting up to r1 –1 channels by the hackers will not reveal anything about the

index file; and hence, will not reveal the image. The reason is quite obvious, as

explained below. P1(x) only has r1 coefficients; however, in order to recover back its

r1 coefficients, r1 shares will be needed in order to provide the data {P1(j)} at r1

distinct values of j. Similarly, P2(x) needs r2 shares to recover its coefficients, and so

on. Since r1 ≤ r2 ≤ … ≤ rk, if we get less than r1 shares, none of the coefficients can be

recovered, and this is true for each of the k polynomials.

Besides the no-leaking property just mentioned, also note that, the disconnection

of up to n – rk channels will not influence the recovery of the vector-quantized image.

This is due to the fact that each of the k polynomials has no more than rk coefficients;

therefore, if we get rk shares (recall that each share j keeps a record of {P1(j), P2(j), …,

Pk(j)}), then we get enough information to solve for the ri coefficients of each

 33

polynomial Pi(x).

3.2 Decoding

The sorted codebook discussed in the encoding phase is used again here in the

decoding phase. Fig. 3.3 illustrates the decoding phase. There are three cases in the

decoding phase, as explained below. If less than r1 shares are collected, then nothing

can be recovered. If less than rk (but not less than r1) shares are collected, then the

bit-transformed data can be partially recovered, and so can the index file. A

rough-quality image is obtained in this case. Finally, if at least rk shares are collected,

then the bit-transformed data can be completely recovered, and so can the index file.

The image recovered in this case will be identical to the one recovered by ordinary

vector quantization algorithm.

Below we explain why the codebook should be sorted. When the number of

received shares is less than rk (but still not less than r1), in order that “partial

information” of the index file can still recover a rough image, the estimation of the

indices is required. Of course, the image distortion due to wrong estimation certainly

exists. Therefore, to reduce serious distortion, the public codebook is sorted in

advance so that the neighboring codewords will have similar average gray-values. By

doing so, we can alleviate the big image distortion introduced by using the

neighboring codewords, when indices are estimated. To be able to estimate the indices

 34

from their partial data (so that images can be recovered progressively), the bit-plane

scanning method is also used earlier in the encoding phase to generate the

bit-transformed data. By doing so, the first several elements created in each sector and

stored in the transformed data, can be used to recover the most significant bits of the

original indices.

Figure 3.3. The decoding phase.

3.3 Experimental results

Decoding Decoding

Sorting

Public

Codebook

Sorted

Codebook

Complete

index file

of VQ

Part of the

index file

of VQ

Image quality is

rough

Image quality is as

ordinary VQ

Number of
received
shares

Reverse the

bit-plane

scanning

< rk but ≥ r1

shares
Part of the

index file

of VQ

Partial

recovery of

bit-transformed

data

Reverse the

bit-plane

scanning

< r1 shares

≥ rk shares

Get nothing.

Complete

index file

of VQ

Full recovery

of

bit-transformed

data

 35

The experimental results are discussed in this section. Fig. 3.4 shows the original

image Lena, which is vector-quantized to obtain an index file according to a public

codebook, and the reconstructed VQ-image is shown in Fig. 3.5. So far, not a little bit

of the proposed method is used. Then, when the codebook is sorted, the index file is

also modified accordingly. Then, in the first experiment, k = 2 thresholds {r1 = 2 , rk =

r2 = 3} are used, and n = 4 shares are generated. Each share is about

5
2

 211

=
+

=
+…+ rr

k

rr

k

k

 times smaller than the index file in size, for each sector of r1

+…+ rk transformed values only contributes k values {P1(j), … , Pk(j)} to Share j (see

Sec. 3.2), true for any j = 1, 2, … ,n. Fig. 3.6 shows the image recovered from the

“partial” index file, which is generated when only 2 shares are received. Fig. 3.7

shows the recovered image when 3 or more shares are received. Note that this

recovered image is identical to the traditional VQ-recovered image shown in Fig. 3.5,

and it should be of no surprise, since rk = r2 = 3 implies that the index file is fully

reconstructed when 3 or more shares are received. In the second experiment, k = 3

thresholds {r1 = 3, r2 = 4, r3 = 5} are used, and n = 6 shares are generated. Each share

is
4
1

12
3

321

==
++ rrr

k
 times smaller than the index file in size. Figures 4.8 and 4.9

show the recovered images from the partial index files, which are generated when 3

and 4 shares are received, respectively. Fig. 3.10 shows the recovered image when 5

or more shares are received. Again, the image in Fig. 3.10 is identical to the ordinary

 36

VQ-recovered image shown in Fig. 3.5, since rk = r3 = 5 implies that the index file is

fully reconstructed when 5 or more shares are received.

Figure 3.4. Original image

Figure 3.5. The recovered image (PSNR = 31.60 dB) using ordinary VQ [LBG 80].

Figure 3.6. The recovered image when only 2 shares are received in the (r1, r2) = (2, 3)

case. The PSNR is 20.97 dB.

 37

Figure 3.7. The recovered image (identical to the 31.60dB image in Fig. 3.5) when 3

or more shares are received in the (r1, r2) = (2, 3) case.

Figure 3.8. The recovered image when 3 shares are received in the (r1, r2, r3) = (3, 4, 5)

case. The PSNR is 19.24 dB.

Figure 3.9. The recovered image when 4 shares are received in the (r1, r2, r3) = (3, 4, 5)

case. The PSNR is 22.37 dB.

 38

Figure 3.10. The recovered image (identical to the 31.60dB image in Fig. 3.5) when 5

or more shares are received in the (r1, r2, r3) = (3, 4, 5) case.

3.4 Discussion

In this chapter, we have proposed a method that generates n small shares from

the index file of VQ, and then progressively recovers the vector-quantized image

(VQ-image) in a fault-tolerant manner. The method is achieved by using the “sorted”

codebook, and the sharing of bit-transformed indices.

The method can be treated as a post-processing tool for any VQ algorithm. With

this post-processing, there are some extra properties added to the VQ algorithm being

used: 1). The proposed method reduces the chance that the VQ-image is unveiled

when the index file is intercepted, for the n shares can be stored or transmitted in n

distinct channels, and the thief has to intercept at least r1 channels before he can see a

vague image. 2). It also increases the survival rate of the VQ-image after a sequence

of attacks from the hackers, for up to n－ kr shares can be lost (in fact, even if n－r1

shares are lost, we can still get a vague version of the VQ-image). 3). When the n

 39

shares are received from n distinct channels, some shares might arrive earlier than the

others, so the progressive reconstruction is useful. 4). Each share is equally important,

so it is unnecessary to worry about which share is transmitted first in the transmission

period, or worry about which share is lost in the recovery period. 5). Since the index

file is already much smaller than the image itself (12.8 times smaller in our examples),

the fact that each share is smaller than the index file means that the storage space of

each share in any of the n distinct channels (one share per channel) is very compact.

6). If an image is quite confidential, then we may just give up the progressive property,

and use only one threshold value by setting k = 1 and r1 = rk = r. This ensures that the

VQ-image (Fig. 3.5) is either fully recovered (when at least r shares are received) or

completely invisible (when less than r shares are received).

 40

Chapter 4

Progressive viewing of a secret image: a VC

approach

For a given image, a progressive viewing method using visual cryptograph (VC)

approach is introduced in this chapter. The generated transparencies are with weights.

By controlling the weights in the design, we can get some special effects. For example,

if we create Shares 1-4, and their weights are w1 = 1, w2 = 2, and w3 = w4 =3,

respectively. Then, since w1 + w2 + w3 = w3 +w4, the result of stacking shares {1,2,3}

is just like that of stacking shares {3,4}. Therefore, the holder of Share 3 can either

ask for the help from two low-rank holders (the holders of Shares 1 and 2), or, the

help from a high-rank holder (the holder of Share 4).

For the rest of this chapter, Sec. 4.1 describes the details of our scheme.

Experimental results are in Sec. 4.2. Finally, the conclusions are stated in Sec. 4.3.

4.1 The proposed method

Let the n generated shares be {t1, t2, …, tn} with the corresponding weights being

{w1, w2, … , wn} and w1 ≤ w2 ≤ … ≤ wn. In our method, the weights {w1, w2, … , wn}

of the shares can be any positive integers, and each pixel in the black-and-white secret

image will be expanded into blocks of size p×q (one block per pixel). In the above, p

and q must meet the rule that p × q ≥ w1 + … + wn due to the design used in Algorithm

 41

4.1 and 4.2. For the purpose of attaining the best contrast, adjusting the parameters to

make “≥” become “=” is suggested (“=” can be achieved by adjusting {w1, w2, … ,

wn}, or n, or p × q).

Algorithm 4.1: The process of sharing a white pixel of the secret image among

the corresponding blocks of the n shares.

Input : the n weights w1 ≤ w2 ≤ … ≤ wn .

Output: n blocks (one block per share, and each block has size p×q).

Steps:

 Step 1. Let i = 1 and w0 = 0. Let the Painting-Guide be a set { } pj
qkkjQ ≤≤

≤≤= 1
1),(.

 Step 2. (Create the corresponding Block Bi for Share i.)

2.1 Randomly select wi – wi-1 elements from Q. Then, delete these wi – wi-1

elements from Q.

2.2 Paint Block Bi according to the Painting-Guide Q. More precisely, an

element of Block Bi is painted as white if that element appears (and as

black if that element disappears) in Q.

 Step 3. Raise the value of i by 1 and go to Step 2 until i > n.

For example, assume that there are n = 4 shares and the four weights are (w1, w2,

w3, w4) = (1, 2, 3, 3). The block size can be assigned as p × q = 3 × 3, since 3 × 3 = 1

+ 2 + 3 + 3. To share a white pixel of the secret image, the corresponding expanded

 42

block in each share is generated as in Fig. 4.1. In this figure, (a), (b), (c), and (d) are

the expanded blocks in Shares 1, 2, 3, and 4, respectively. For Share 1, because w1 = 1,

a random position (say, (2, 3)) is selected (and then deleted) from Q = {(j, k)| 1 ≤ j ≤ 3,

1 ≤ k ≤ 3}. In Fig. 4.1(a), position (2, 3) of the block of Share 1 is set to black and all

other positions are set to white. For Share 2, because w2 − w1 = 1, one more random

position (say, (3, 2)) is selected (and then deleted) from Q. In Fig. 4.1(b), positions (2,

3) and (3, 2) of the block of Share 2 are set to black, and all other positions are set to

white. For Share 3, because w3 − w2 = 1, an additional random position (say, (1, 2)) is

selected (and then deleted) from Q. In Fig. 4.1(c), positions {(2, 3), (3, 2), (1, 2)} of

the block of Share 3 are set to black, and all other positions are set to white. For Share

4, because w4−w3=0, no new random position is needed. In Fig. 4.1(d), the block of

Share 4 is therefore the same as the block of Share 3. In this example, when we stack

shares, at most 3 of the 9 positions in the block will be black if the block is a stacking

result representing a white pixel of the secret image.

Figure 4.1. The expanded blocks of a white pixel.

Algorithm 4.2: The process of sharing a black pixel of the secret image among

(a) (b) (c) (d)

 43

the corresponding blocks of the n shares.

Input: the n weights w1 ≤ w2 ≤ … ≤ wn .

Output: n blocks (one block per share, and each block has size p×q).

Steps :

 Step 1. Let i = 1 and the Painting-Guide be a set { } pj
qkkjQ ≤≤

≤≤= 1
1),(.

 Step 2. (Create the corresponding Block Bi for Share i.)

2.1 Randomly select wi elements from Q. Then, delete these wi elements

from Q.

2.2 Paint Block Bi according to the wi elements selected in Step 2.1. More

precisely, an element of Block Bi is painted as black (white) if that

element is (is not) among the wi elements selected in Step 2.1.

 Step 3. Raise the value of i by 1, and go to Step 2 until i > n.

For explanation, assume again that n = 4, (w1, w2, w3, w4) = (1, 2, 3, 3), and

p × q = 3 × 3. Then, the expanded block of a black pixel in each share is generated as

in Fig. 3.2. In this figure, (a), (b), (c), and (d) are the expanded blocks in Shares 1, 2, 3,

and 4, respectively. For Share 1, because w1 = 1, a random position (say, (1, 2)) is

selected (and then deleted) from Q = {(j, k)| 1 ≤ j ≤ 3, 1 ≤ k ≤ 3}. In Fig. 3.2(a),

Position (1, 2) of the block of Share 1 is therefore set to black, and the remaining

positions are set to white. For Share 2, two new random positions (say, (2, 1) and (2,

 44

3)) are selected (and then deleted) from the 9 – w1 = 9 – 1 = 8 existent positions in Q.

In Fig. 3.2(b), Positions (2, 1) and (2, 3) of the block of Share 2 are therefore set to

black, and the remaining positions are set to white. For Share 3, because w3 = 3, three

new random positions (say, (2, 2), (3, 1), and (3, 3)) are selected (and then deleted)

from the 9 – w1 – w2 = 9 – 1 – 2 = 6 existent positions in Q. In Fig. 4.2(c), positions (2,

2), (3, 1), and (3, 3) of the block of Share 3 are therefore set to black, and the

remaining positions are set to white. At last, in Fig. 4.2(d), Positions {(1, 1), (1, 3), (3,

2)} of the block of Share 4 are set to black, and the remaining positions are set to

white, for w4 = 3 and {(1, 1), (1, 3), (3, 2)} are the only three possible positions

(according to the current content of Q).

Figure 4.2. The expanded blocks of a black pixel.

 Remarkably, when we stack the shares from a subset S of {t1, … , tn}, the

stacked p-by-q block representing a black pixel will have ∑
∈St

i

i

w black elements, and

the stacked p-by-q block representing a white pixel will have }|{Max Stw ii ∈ black

elements. Therefore, it is reasonable to use
qp

ww i
St

St
i

i
i

×

−
∈∈

∑ Max

 to represent the contrast

of the stacking result. This definition of contrast also agrees with the definition given

in [HKS00].

(a) (b) (c) (d)

 45

4.2 Experimental results

The experimental results are shown in Figures 4.3-4.8. In each experiment, n = 4

shares are generated for each given image, and the weights of the four shares are {1, 2,

3, 3}. Since 1 + 2 + 3 + 3 = 9, the block size p × q is set to 3 × 3 to meet the

requirement ∑
=

≥×
n

i
iwqp

1

. When we stack all 4 shares (see Fig. 4.5(e) and 4.8(e)), the

best contrast value [(1+2+3+3)-Max{1,2,3,3}]/(3×3)=2/3 for this {1,2,3,3}-setting is

obtained. In the first experiment, the input is the binary logo image shown in Fig. 4.3,

and it is shared by the proposed scheme. Fig. 4.4 shows the n = 4 shares that look

noisy. The shares in Fig. 4.4(a), 4.4(b), 4.4(c), and 4.4(d) are with weights w1 = 1, w2

= 2, w3 = 3, w4 = 3, respectively. Each share with heavier weight is darker than the

one with lighter weight; because each share with lighter weight is generated with

fewer black elements in the expanded blocks (see Figures 4.1 and 4.2). Therefore, the

weights of the shares are roughly equivalent to their darkness. Fig. 4.5 shows the

stacking results of various combinations. Fig. 4.5(a) is the result of stacking Fig. 4.4(a)

and 4.4(b); Fig. 4.5(b) is the result of stacking Fig. 4.4(c) and 4.4(d); Fig. 4.5(c) is the

result of stacking Fig. 4.4(a)-(c); Fig. 4.5(d) is the result of stacking Fig. 4.4(b)-(d);

and Fig. 4.5(e)) is the result of stacking Fig. 4.4(a)-(d). An analogous experiment is

done on a halftone [11] image Lena (Fig. 4.6). The experimental results are shown in

Fig. 4.7-4.8. Recall that Shares 1, 2, 3, and 4 are with weights w1 = 1, w2 = 2, w3 = 3,

 46

and w4 = 3, respectively. These 4 shares look just like the 4 shares in Fig. 4.4. Fig. 4.8

shows the stacking results for the halftone image Lena. Fig. 4.8(a) is when we stack

Shares 1 and 2; Fig. 4.8(b) is when we stack Shares 3 and 4; Fig. 4.8(c) is when we

stack Shares 1, 2, and 3; Fig. 4.8(d) is when we stack Shares 2, 3, and 4; and Fig.

4.8(e) is when we stack all 4 shares.

Figure 4.3. A binary logo image.

(a) (b)

 (c) (d)

Figure 4.4. The n = 4 shares for the logo image.

 47

 (a) (b) (c)

(d) (e)

Figure 4.5. The stacking results for the logo image.

Figure 4.6. A halftone image Lena.

 48

 (a) (b)

(c) (d)

Figure 4.7. The n = 4 shares for the halftone image Lena.

 (a) (b) (c)

Figure 4.8. The stacking results for the halftone image Lena.

 49

 (d) (e)

Figure 4.8. (Continued)

4.3 Discussion

 The contrast of stacking the shares in a subset S is
qp

ww i
St

St
i

i
i

×

−
∈∈

∑ Max

. Therefore, if

each weight is set to 1, and all n shares are stacked, then the contrast can be as high

as
qp

n

×
−1

, which can be rewritten as
n

n 1−
 if the block size p × q is designed to be n.

For example, if n = 9 shares are generated, the block size is 3×3, and 1 = w1 = w2 = …

= w9, then the contrast of stacking all nine shares is
9

8
. Likewise, if n = 4 shares are

generated, the block size is 2×2, and 1= w1 = w2 = w3 = w4, then the contrast of

stacking all four shares is
4

3
. Notably, according to the definition of the contrast value

(see [HKS 00]), no designer can get a contrast value higher than 1. In our design, as

the value of n increases, our contrast value
n

n 1−
 can become very close to the

optimal value 1.

As a conclusion, there are several characteristics in the proposed VC scheme: (1)

fault-tolerant recovery, i.e. some shares can be absent; (2) adjustable contrast, i.e. the

 50

clarity of the stacking result is proportional to the difference between the maximal

weight and the total weights (both measured using the shares currently available on

the scene); (3) progressive contrast, i.e. it always gives a better contrast if we add one

more not-yet-stacked share to the current set of the shares being stacked; Note that

Property (1) can be found in many VC schemes; but Properties (2)-(3) are less

common. Also note that: (4) the contrast formula
qp

ww i
St

St
i

i
i

×

−
∈∈

∑ Max

 is an explicit and

convenient formula for each user of the proposed method, for he can use it to analyze

and determine the weight values before designing his own version.

 51

Chapter 5

Progressive viewing of multiple secret images:

a VC approach

 In this chapter, we propose a new VC scheme for progressive viewing, and the

scheme shares k multi-secret images among k+1 transparencies The method is a kind

of VC using access structure. The forbidden set contains only subsets of which each

contains single transparency. All other subsets, containing at least two transparencies,

can reveal at least one of the secret images after stacking them. The answer to the

question “which secret image will be revealed?” is totally up to the transparency

whose weight is relatively larger among the received transparencies.

The remaining parts of this chapter are organized as follows: the proposed

method is stated in Sec. 5.1; the experimental results are shown in Sec. 5.2; the

conclusions are described in Sec. 5.3.

5.1 The proposed method

The proposed scheme shares k binary secret images S1, S2, … , Sk to generate a

basic transparency and k weighted transparencies. The k transparencies T1, …, Tk are

with weights w1, w2, … , wk, respectively, in increasing order: w1 < w2 < … < wk. The

basic transparency T0 is with weight w0 (= w1). Every corresponding binary pixels of

the secret images are encoded into blocks t0, t1, … , tk that belongs to T0, T1, … , Tk,

 52

respectively. Let the p×q be the block size. Therefore, each transparency will be p× q

times bigger than the secret image in size.

In the max-weight dominance multi-secret image sharing system, stacking

transparency Ti and some of Tj (j < i) together, the secret image Si is revealed. Before

stating the encoding algorithm, the stacking result representing the secret images

should be defined, in detail, the original secret image pixel (“white” and “black”)

should be defined as the number of black terms in the block of stacking results

representing S1, S2, …, Sk.

 For each block of the stacking result representing Si, the corresponding

brightness is defined as follows:

1. “White” pixel of Si corresponds to wi black terms in the block.

2. “Black” pixel of Si corresponds to the following two cases:

(i < k): at least (usually more than) wi black terms and no more than wi+1 black

terms.

(i = k) at least (usually more than) wi black terms and no more than p×q black

terms.

For example, {S1, S2} is the set of secret images. Therefore, T0, T1, T2 are generated

with weight w0(=w1), w1, and w2. If the block of the stacking result of T0 and T1 has w1

black terms, then it corresponds to a “white” pixel of S1. If the block of the stacking

 53

result of T0 and T1 has w2 black terms, then it corresponds to a “black” pixel of S1.

 Now, we state the encoding process. For each corresponding blocks among T0,

T1, …, Tk, the block of basic transparency T0 is generated first, the corresponding

block of T1 is generated then, … , at last the corresponding block of Tk is generated.

Let t0, t1, …, tk be an array to record each corresponding block of the transparencies T0,

T1, … , Tk, respectively, and u be an array to record the accumulative terms during the

work of generating the corresponding block of the transparencies T0, T1, … , Tk. First,

for generating t0, w0 (= w1) terms are randomly assigned to black and others are assign

to white. After generating t0, array u records the black terms of t0. For generating { ti |

1 ≤ i ≤ k}, there are two cases for concern:

Case 1: the corresponding pixel of secret image Si is “white”

 Let g be a number of nonzero terms of u. For these corresponding terms of ti,

they are assigned to be black. Moreover, wi – g terms are randomly selected from

zero-terms of u, and for these corresponding terms of ti, they are assigned to black.

The rest undefined terms of ti are assigned to white. After generating ti, the

corresponding terms of u increase according to the black terms of ti.

Case 2: the corresponding pixel of secret image Si is “black”

 Case 2.1: i < k,

Assign the less wi terms from the top wi+1 terms of u. For all

 54

corresponding terms of ti, they are assigned to black. After generating ti,

the corresponding terms of u increase according to the black terms of ti.

 Case 2.2: i = k

Assign the less wi terms from u. For all corresponding terms of ti, they

are assigned to black.

 The following example shows how to share three secret images S1, S2, and S3.

For each pixel position, we inspect the three corresponding pixel-values (b1, b2, b3)

taken from (S1, S2, S3), where bi is from Si , and create a block for each of the 1+3=4

transparencies T0, T1, T2, and T3. Assuming the weights for these transparencies are w0

= w1 = 3, w2 = 5, and w3 = 7. Let the size expansion of each transparency be 3 × 3.

The pixel-values (b1, b2, b3) taken from (S1, S2, S3) must be in the following 8 cases:

(W, W, W), (W, W, B), (W, B, W), (W, B, B), (B, W, W), (B, W, B), (B, B, W), and (B,

B, B). Here, W means “white” and B means “black”. Table 5.1 shows the eight cases

of this example. Without the loss of generality, we only discuss two cases (W, B, W)

and (B, W, B).

 55

Table 5.1 Eight cases of encoding

S1 S2 S3 t0 t1 t2 t3

W W W

W W B

W B W

W B B

B W W

B W B

B B W

B B B

 56

In the case (W, B, W), t0 is first generated by randomly selecting w0 = 3 black

term, as . and u records accumulative term as {0, 1, 0, 0, 0, 1, 1, 0, 0}. To

generate t1 (with w1 = 3), the black term of t0 is followed. Then t1 is generated as

 , and then u records accumulative terms as {0, 2, 0, 0, 0, 2, 2, 0, 0}. To

generate t2, the less w2 = 5 terms are selected among the top w3 = 7 terms of u, thus,

only four zero-terms can be selected and additional one term should be randomly

selected from value-2-terms of u. Therefore, t2 is generated as , and u records

accumulative terms as {1, 2, 0, 1, 1, 3, 2, 0, 1}. To generate t3, there should be w3 = 7

black terms, and the number of non-zero-terms of u is equal to 7. Therefore, t3 is

generated as . Now, the stacking results are shown below: the stacking result

of “t0 and t1“ is , only 3 black terms, thus it represents “white” to the pixel of

S1; the stacking result of “t1 and t2“ and “t0, t1 and t2“ is , 7 black terms,

representing “black” to the pixel of S2 (more than 5 black terms);. the stacking result

of t3 and subset (t0, t1, t2) is , 7 black terms, thus it represents “white” to the

pixel of S3.

In the case (B, W, B), t0 is also generated by randomly selecting w0 = 1 black term,

 57

as . and u records accumulative term as {0, 0, 0, 1, 0, 1, 0, 1, 0} . To generate

t1, the less w1 = 3 terms are selected among the top w2 = 5 terms of u(j)’s; thus, w2-w1 =

2 terms are selected from zero-terms of u and remaining one term are selected from

value-1-term of u. Therefore, t1 is generated as , and u records accumulative

terms as {0, 1, 0, 2, 0, 1, 1, 1, 0}. To generate t2, there should be w2 = 5 black terms,

and the number of non-zero terms of u is equal to 5. Therefore t2 is generated as

, and u records accumulative terms as {0, 2, 0, 3, 0, 2, 2, 2, 0}. To generate t3,

the less w3 = 7 terms are selected among the u(j)’s. Therefore, four zero-terms of u are

selected, and then three terms are randomly selected from value-2-terms of u. The t4 is

generated as .

Notably, our method can be designed with fault-tolerant property by assigning

some of S1, …, Sk to be the same images. For example, S1=S2=S3, and S4=S5. The

damage or lost of any two of (T0, T1, T2, T3) never affect the revealing of S1, and the

damage or lost of any one of (T4, T5) and any three of (T0, T1, T2, T3) never affect the

revealing of S4.

If we adequately assign the weights, quality control is also available. Obviously,

when T0, T1, … , Ti are stacked together, the contrast is
qp

ww ii

×
−+1 (if i = k, then wi+1 =

 58

p × q). Therefore, if the value of wi+1－wi is larger, then quality of stacking result is

better. For example, there is two secret images S1 and S2 and p × q = 3 × 3 = 9. If the

stacking result representing S1 (Lena) is not easier to be distinguish than that

representing S2 (NCTU-logo), the weights can be assigned as w0 = w1 = 4, and w2 = 8.

When stacking T0 and T1 together, the contrast is
9

4

9

4812 =−=
×
−

qp

ww
. However,

when stacking T0, T1 and T2 together, the contrast is only
9

1

9

892 =−=
×
−×
qp

wqp
. If

the stacking result representing S2 (Lena) is not easier to be distinguish than that

representing S1 (NCTU-logo), the weights can be assigned as w0 = w1 = 4, and w2 = 5.

When stacking T0 and T1 together, the contrast is only
9

1

9

4512 =−=
×
−

qp

ww
. However,

when stacking T0, T1 and T2 together, the contrast is
9

4

9

592 =−=
×
−×
qp

wqp
.

Moreover, for the example of Table 5.1, the assignment of weights w0 = w1 = 3, w2 = 5,

and w3 = 7 is an average contrast assignment for all secret images.

5.2 Experimental results

In the experiment, there are three secret images, shown in Fig. 5.1(a)-(c). Then

the transparencies with weights w0 = w1 = 3, w2 = 5, and w3 = 7, shown in Fig.

5.2(a)-(d), respectively, are generated. Stacking Fig. 5.2(a) and (b) together, the secret

words of Fig. 5.1(a) can be revealed (see Fig. 5.3). Stacking Fig. 5.2(b) and (c)

together, the secret words of Fig. 5.1(b) can be revealed (see Fig. 5.4). Stacking Fig.

5.2(d) and at least one image from Fig. 5.2(a)-(c), the secret words of Fig. 5.1(c) can

 59

be revealed. Fig. 5.5 shows the result of stacking all generated transparencies in Fig.

5.2.

 (a) (b) (c)

Figure 5.1. The secret images.

 (a) (b)

 (c) (d)

Figure 5.2. The generated transparencies ((a) basic transparency, (b) the transparency

with weight = 3, (c) the transparency with weight = 5, (d) the transparency with

weight = 7.)

 60

Figure 5.3. The stacking result of Fig. 5.2(a) and (b)

Figure 5.4. The result of stacking Fig. 5.2(b) and (c)

Figure 5.5. The result of stacking all transparencies in Fig. 5.2

5.3 Summary

In this chapter, we have proposed a computation-free multi-secret image sharing

method. In the proposed method, the k secret images are shared using only k+1

transparencies. Stacking at least two transparencies together can reveal at least one of

the secret images.

 61

Chapter 6

Conclusions and Future works

6.1 Conclusions

 This dissertation proposed progressive viewing of images, either by

polynomial-style sharing or by VC-style sharing.

 In Chapter 2, each digital image is divided into several shares of

equal-significance. When the number of the available shares reaches a basic threshold

r1, a rough version of the image can be revealed. When the number of the shares

reaches another threshold rt (r1 < rt), a better-quality image can be revealed. We can

view the lossless image when rk shares are received (r1 < rk < n, n is total number of

parts). We need not worry about which part is lost or damaged, as long as rk shares of

them are alive.

 In Chapter 3, a progressive method to view vector-quantized images is proposed.

When rk (r1 < rk < n, n is total number of shares) shares are available, the recovered

image is only of VQ-quality. However, each share is much smaller than the one

generated in Chapter 2. In fact, the size of each share is only
ratencompressioVQ

1
of

the one generated by Chapter 2.

In Chapter 4, we propose a Visual Cryptograph (VC) approach for progressive

viewing of a secret image in order to handle the situation of power-failure or no

 62

computer. The image is revealed by just stacking the shares (transparencies) together.

In this chapter, the shares are with their own weights. When all shares are of equal

weight, all shares are equally significant to the viewing of the images; and this is just

like the systems in Chapter 2 and Chapter 3. However, when weights are unequal, we

can get some special effect. For example, if we create Shares 1-4, and their weights

are w1 = 1, w2 = 2, and w3 = w4 =3, respectively. Then, since w1 + w2 + w3 = w3 +w4,

the result of stacking shares {1,2,3} is just like that of stacking shares {3,4}.

Therefore, the holder of Share 3 can either ask for the help from two low-rank holders

(the holders of Shares 1 and 2), or, the help from a high-rank holder (the holder of

Share 4).

 In Chapter 5, we proposed a multi-secret weighted VC system. In this system, k

secret images are shared using only k+1 transparencies. Stacking at least two

transparencies together can reveal at least one of the secret images. Moreover, among

the stacked transparencies, the one with the largest weight determines which image is

revealed.

 Below, we show the comparison of Chapter 2 and Chapter 3 in Table 6.1, the

comparison of Chapters {2,3} and Chapters {4,5} in Table 6.2, and the comparison of

Chapter 4 and Chapter 5 in Table 6.3.

 63

Table 6.1. The comparison of Chapter 2 and Chapter 3.

Chapter 2

Progressive viewing of images :

a sharing approach

Chapter 3

Progressive viewing of

vector-quantized images : a sharing

approach

Similarity

1. With fault-tolerance;

2. With unbiased property;

3. Quality-control is available.

Dissimilarity

1. The best quality of the

recovered image is lossless.

2. The size of each shared result

is
krrr

k

+++ ...21

 of the

one of the original image.

1. The best quality of the recovered

image is of VQ-quality, thus, lossy.

2. The size of each shared result is

ratencompressiorrr

k

k

1

...21

×
+++

of the one of the original image.

Table 6.2. The comparison of Chapters 2&3 and Chapters 4&5.

 Chapters 2 & 3 Chapters 4 & 5

Similarity 1. With fault-tolerant property

Dissimilarity

1. Unbiased

2. The decoding process needs a

computer

3. The size of each share is

smaller than original gray

image.

4. Need memory to store the

shares

5. Application in image

transmission via network.

1. Biased

2. The decoding process needs no

computer

3. The size of each transparency

is larger than original binary

secret image.

4. Need physical space to store

the transparencies.

5. Application in war and game.

 64

Table 6.3. The comparison of Chapter 4 and Chapter 5.

Chapter 4

Progressive viewing of a secret

image : a VC approach

Chapter 5

Progressive viewing of multiple

secret images : a VC approach

Similarity
1. The decoding process needs no computer.

2. With fault-tolerant and biased property

Dissimilarity

1. For single secret image

2. Stacking any (r >=2)

transparencies together can

have the contour of one

image.

1. For multi-secret image

2. Stacking any (r >= 2)

transparencies together can

have the contour of r－1

images.

6.2 Future works

 Below are some suggestions to extend the proposed methods in the future.

1. In the proposed methods, the watermarking technique might be applied on the

shares to identify the ownership of legal user.

2. In the topic “Progressive viewing of a secret image: a VC approach”, (2, n) has

limited application. Therefore, try to extend (2, n) to (r, n) for more general

applications.

3. The verification of the shares to avoid faked shares might be a topic worthy of

study.

 65

References

[ABSS 96]. G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson, “Visual

Cryptography for General Access Structures,” Information and Computation, Vol. 129,

pp. 86-106, 1996.

[ABSS 01]. G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson, “Extended

capabilities for visual cryptography,” Theoretical Computer Science, Vol. 250, pp.

143-161, 2001.

[BBGHPP 00]. W. Bender, W. Butera, D. Gruhl, R. Hwang, F. J. Paiz, and S. Pogreb,

“Applications for data hiding,” IBM System Journal, Vol. 39(3-4), pp. 547-568, 2000.

[BBP 02]. A. Benazza-Benyahia and J.C. Pesquet, “A unifying framework for lossless

and progressive image coding,” Pattern Recognition, Vol. 35, pp. 627-638, 2002.

[BD 03]. N. Bourbakis and A. Dollas, “SCAN-based compression-encryption-hiding

for video on demand”, IEEE Multimedia Magazine, Vol. 10, pp. 79-87, 2003.

[Blakley 79]. G..R. Blakley, “Safeguarding cryptographic keys,” Proceedings AFIPS

1979 National Computer Conference, Vol. 48, pp. 313-317, New York, USA, June,

1979.

[BS 01]. A. De Bonis and A. De Santis, “Randomness in secret sharing and visual

cryptography schemes,” Theoretical Computer Science, Vol. 314, pp. 351-374, 2001.

[BSS 96] C. Blundo, A. De Santis and D.R. Stinson, “On the contrast in visual

cryptography schemes”, J. Cryptology, Vol.12, pp. 261–289, 1996.

[CAM 00] B. Carlo, D. S. Alfredo and N. Moni, “Visual cryptography for grey level

images,” Information Processing Letters, Vol. 75(6), pp. 255-259, 2000.

 66

[CCL 04]. C.C. Chang, G.M. Chen, M.H. Lin, “Information hiding based on

search-order coding for VQ indices,” Pattern Recognition Letters, Vol. 25, pp.

1253-1261, 2004.

[CH 98]. C. C. Chang and R. J. Hwang, "Sharing secret images using shadow

codebooks, " Information Sciences, Vol. 111, pp. 335-345, 1998.

[CJC 98]. C.C. Chang, J.J. Jau and T.S. Chen, “A fast reconstruction method for

transmitting image progressively,” IEEE Transactions on Consumer Electronics, Vol.

44(4), pp. 1225-1233, 1998.

[CT 01]. K.L. Chung and S.Y. Tseng, “New progressive image transmission based on

quadtree and sharing approach with resolution control,” Pattern Recognition Letters,

Vol. 22, pp.1545-1555, 2001.

[EMsmsz03]. A.M. Eftekhari-Moghadam, J. Shanbehzadeh, F. Mahmoudi, H.

Soltanian-Zadeh, “Image retrieval based on index compressed vector quantization,”

Pattern Recognition, Vol. 36, pp. 2635-2647, 2003.

[FWTC 05]. J. B. Feng, H. C. Wu, C. S. Tsai, and Y. P. Chu, “A new multi-secret

images sharing scheme using Largrange’s interpolation,” The Journal of Systems

and Software, Vol. 76(3), pp. 327-339, 2005.

[HC 01] R. J. Hwang and C. C. Chang, “Hiding a picture in two pictures,” Optical

Engineering, Vol. 40, pp. 342-351, 2001.

[HCL 04] H. C. Hsu, T. S. Chen and Y. H. Lin, “The Ringed Shadow Image

Technology of Visual Cryptography by Applying Diverse Rotating Angles to hide the

Secret Sharing,” Proc. of the 2004 IEEE ICNSC, pp. 996-1001, 2004.

 67

[HKS 00] T. Hofmeister, M. Krause and H. U. Simon, “Contrast-optimal k out of n

secret sharing schemes in visual cryptography,” Theoretical Computer Science, Vol.

240(2), pp. 471-485, 2000.

[Hou 03] Y. C. Hou, “Visual cryptography for color images,” Pattern Recognition,

Vol. 36, pp.1619-1629, 2003.

[LBG 80]. Y. Linde, A. Buzo, and R. M. Gray. “An algorithm for vector quantizer

design,” IEEE Transactions on Communications, Vol. 28, pp. 84-95, 1980.

[LT 03] C. C. Lin and W. H. Tsai, “Visual cryptography for gray-level images by

dithering image,” Pattern Recognition Letters, Vol. 24, pp. 349-358, 2003.

[MM 02]. D.Mukherjee and S.K. Mitra, “Successive refinement lattice vector

quantization,” IEEE Trans. Image Processing, Vol. 11(12), pp. 1337 – 1348, 2002.

[NK 88]. N. M. Nasrabadi and R.A. King, “Image coding using vector quantization: A

review,” IEEE Trans. Commun., Vol. 36(8), pp. 957-971, 1988.

[NS 95] M. Naor and A. Shamir, “Visual Cryptography”, Advances in Cryptology –

Eurocrypt 94, Springer, Berlin, pp. 1-12, 1995.

[PAK 99]. F.A.P. Petitcolas, R.J. Anderson, M.G. Kuhn, “Information hiding – a

survey,” Proceedings of the IEEE, Vol. 87(7), pp. 1062-1078, July 1999.

[Shamir 79]. A. Shamir, “How to share a secret,” Communication of the ACM, Vol.

22(11), pp. 612-613, 1979.

[TCC 02]. C. S. Tsai, C. C. Chang, and T. S. Chen, “Sharing multiple secrets in digital

images,” The Journal of Systems and Software, Vol. 64(2), pp. 163-170, 2002.

 68

[TL 02]. C.C. Thien and J.C. Lin, “Secret image sharing,” Computer & Graphics, Vol.

26, pp. 765-770, 2002.

[WC 05]. H. C. Wu and C. C. Chang, “Sharing visual multi-secrets using circle

shares,” Computer Standards & Interfaces, Vol. 28, pp. 123-135, 2005.

[WTL 04]. Y. S. Wu, C.C. Thien, and J.C. Lin, “Sharing and hiding secret images with

size constraint,” Pattern Recognition, Vol. 37(7), pp. 1377-1385, 2004.

[YC 05] C. N. Yang and T. S. Chen, “Aspect ratio invariant visual secret sharing

schemes with minimum pixel expansion,” Pattern Recognition Letters, Vol. 26(2), pp.

193-206, 2005.

 69

Vita

Shang-Kuan Chen was born in 1972 in Taiwan, Republic of China. He received his

BS degree in applied mathematics in 1994 from Fu Jen Catholic University, Taiwan.

In 1998, he received his MS degree in applied mathematics from National Chiao Tung

University, Taiwan. Since 1999 he has been studying toward a PhD degree in the

Computer Science Department of National Chiao Tung University. His research

interests include visual cryptography, data hiding, and interconnecting network.

 70

Publication List of Shang-Kuan Chen

A. Journal papers

1. Shang-Kuan Chen and Ja-Chen Lin, “Fault-tolerant and Progressive Transmission

of vector-quantized images” WSEAS Transactions on Signal Processing, Vol. 2(5),

pp.787-793, 2006.

2. Shang-Kuan Chen and Ja-Chen Lin, “Fault-tolerant and progressive transmission of

images” Pattern Recognition, Vol. 38, pp. 2466-2471, 2005.

3. Shang-Kuan Chen, Frank Huang, and Yu-Chi Liu, “Some Combinatorial Properties

of Mixed Chordal Rings,” Journal of Interconnection Networks, Vol. 4(1), pp. 3-16,

2003.

B. Conference papers

1. Shang-Kuan Chen and Ja-Chen Lin, “Progressive transmission of vector-quantized

images with security and fault-tolerance” The 5th WSEAS International Conference

on Signal Processing (SIP '06), Istanbul, Turkey, 27-29, 2006 May.

2. Shang-Kuan Chen, “Fault-tolerant and fast image transmission using VQ” The 18th

IPPR Conference on Computer Vision, Graphics and Image Processing, Taipei,

Taiwan, 2005 August.

3. Shang-Kuan Chen and Ja-Chen Lin, “Proactive Secret Image Sharing,” The 17th

IPPR Conference on Computer Vision, Graphics & Image Processing, Hwa-Len,

Taiwan, 2004 August.

4. Frank Huang and Shang-Kuan Chen, “The 1.5-loop network and the mixed

1.5-loop network” SIROCCO 2000, Cattedra Bernardiniana Convento di S.

Bernardino. Via V. Veneto, Italy, pp. 297-306, 2000 May.

