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a b s t r a c t

The nucleus guides life processes of cells. Many of the nuclear proteins participating in the life processes
tend to concentrate on subnuclear compartments. The subnuclear localization of nuclear proteins is hence
important for deeply understanding the construction and functions of the nucleus. Recently, Gene Ontol-
ogy (GO) annotation has been used for prediction of subnuclear localization. However, the effective use
of GO terms in solving sequence-based prediction problems remains challenging, especially when query
protein sequences have no accession number or annotated GO term. This study obtains homologies of
query proteins with known accession numbers using BLAST to retrieve GO terms for sequence-based sub-
nuclear localization prediction. A prediction method PGAC, which involves mining informative GO terms
associated with amino acid composition features, is proposed to design a support vector machine-based

classifier. PGAC yields 55 informative GO terms with training and test accuracies of 85.7% and 76.3%,
respectively, using a data set SNL 35 (561 proteins in 9 localizations) with 35% sequence identity. Upon
comparison with Nuc-PLoc, which combines amphiphilic pseudo amino acid composition of a protein
with its position-specific scoring matrix, PGAC using the data set SNL 80 yields a leave-one-out cross-
validation accuracy of 81.1%, which is better than that of Nuc-PLoc, 67.4%. Experimental results show that
the set of informative GO terms are effective features for protein subnuclear localization. The prediction

been
server based on PGAC has

. Introduction

The cell nucleus is a highly complex organelle that organizes
he comprehensive assembly of genes and their corresponding
egulatory factors. The nucleus guides life processes of cells by
irecting their reproduction, controlling their differentiation and
egulating their metabolic activities. Many of the nuclear proteins
articipating in the life processes tend to concentrate on subnuclear
ompartments (Heidi et al., 2001). The knowledge of protein sub-
uclear localization can provide valuable clues about its molecular

unction, as well as the biological pathway in which it participates
Cocco et al., 2004).

The bulk of computation methods exist in literature for predict-

ng protein subcellular localization and has achieved high accuracy
Bhasin and Raghava, 2004; Cai and Chou, 2004; Chou and Shen,
006a,b; Huang et al., 2008; Nair and Rost, 2005; Nanni and Lumini,
006; Pierleoni et al., 2006; Sarda et al., 2005), particularly sys-
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tematically introduced in a recent review (Chou and Shen, 2007b),
a step-by-step protocol paper (Chou and Shen, 2008) and a book
chapter (Chou, 2009). However, the prediction of protein localiza-
tion at subnuclear level is far more challenging (Lei and Dai, 2006).
We have developed the first ProLoc system using SVM with auto-
matic selection from physicochemical properties for this task using
with considerable prediction accuracy (Huang et al., 2007b). In
this work, we attempted to improve the performance of the sys-
tem through the incorporation of information obtained from Gene
Ontology (GO).

Gene Ontology, which is a controlled vocabulary of terms split
into three related ontology consisting of molecular function, bio-
logical processes and cellular components (Ashburner et al., 2000),
has been utilized to improve prediction of subcellular (Chou and
Shen, 2006a,b; Huang et al., 2008) and subnuclear localization (Lei
and Dai, 2006; Shen and Chou, 2007b). Additionally, GO annota-
tion has been used for various sequence-based prediction tasks,

such as grouping GO terms to improve the assessment of gene set
enrichment (Lewin and Grieve, 2006); using GO with probabilis-
tic chain graphs for (Carroll and Pavlovic, 2006; Wolstencroft et al.,
2006); using GO for analyzing the mouse basic/Helix-Loop-Helix
transcription factor family (Li et al., 2006), using GO for identify-

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://iclab.life.nctu.edu.tw/prolocgac
mailto:syho@mail.nctu.edu.tw
dx.doi.org/10.1016/j.biosystems.2009.06.007
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Table 1
The numbers of proteins within each subnuclear compartment in the data sets SNL 80 and SNL 35. There are nine essential GO terms corresponding to subnuclear com-
partments. M, B and C represent the three branches molecular function, biological process and cellular component, respectively. The number t of (t) in SNL 80L and SNL 35L
represents the number of sequences which are correctly annotated by only one essential GO term.

Label Compartment Essential Branch SNL 80L SNL 80T SNL 35L SNL 35T
GO terms

1 Nuclear PML body GO:0016605 C 8 (1) 5 8 (1) 4
2 Nuclear speckle GO: 0016607 C 44 (32) 23 33 (24) 16

Chromatin GO:0000785 M 66 (9) 33 51 (7) 27
4 Nucleoplasm GO:0005654 C 24 (2) 13 20 (3) 10
5 Nucleolus GO:0005730 C 204 (83) 103 155 (35) 78
6 Heterochromatin GO: 0000792 C 14 (1) 8 8 (0) 5
7 Nuclear envelope GO:0005635 C 40 (13) 21 31 (10) 16
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Nuclear matrix GO:0016363 M
Nuclear pore complex GO:0005643 C

otal

ng membrane proteins and their types (Cai et al., 2005), predicting
he enzymatic attribute of proteins by hybridizing the gene prod-
ct composition and pseudo amino acid composition (Cai et al.,
005), and predicting the transcription factor DNA binding prefer-
nce (Qian et al., 2006). Querying a GO library to obtain GO terms
equires the accession numbers of proteins. Therefore, the use of
O terms for solving sequence-based prediction problems is still
orthy of study, especially when query protein sequences have no

ccession number or annotated GO term. Two ensemble classifiers
um-PLoc (Chou and Shen, 2006a) and Euk-OET-PLoc (Chou and
hen, 2006b) directly use the accession numbers of known proteins
o obtain GO terms, so they do not work for predicting novel pro-
eins without known accession numbers. The GO-AA (Lei and Dai,
006) utilizes the GO terms of their homologies that are retrieved
y BLAST (Altschul et al., 1990) in predicting the subnuclear local-

zation of novel proteins.
Most, but not all, eukaryotic protein sequences in the

niProtKB/Swiss-Prot database (Apweiler et al., 2004) have anno-
ated GO terms. For example, the percentage of 2423 training
roteins whose homologies are not annotated by GO terms is
.96% (Huang et al., 2008). To predict the proteins that do not
ave annotated GO terms, existing GO-based prediction methods
uch as GO-AA (Lei and Dai, 2006), Euk-OET-PLoc (Chou and Shen,
006b) and Hum-PLoc (Chou and Shen, 2006a), use two separate
odules—one that uses GO terms as input features (called the GO-

ased classifier) and another that uses sequence-based features
called the sequenced-based classifier). The GO-based classifier is
sed for proteins with annotated GO terms. These proteins are rep-
esented as high-dimensional vectors of n binary features, where
is the total number of GO terms in the complete annotation set

a component of 1 indicates that the annotation is hit; otherwise,
he component is 0). The sequence-based classifier is applied for
roteins that have no corresponding GO terms.

This study proposes a prediction method PGAC for developing
single SVM-based classifier for sequence-based subnuclear local-

zation prediction. First, BLAST is used to obtain homologies with
nown accession numbers from the query protein to retrieve GO
erms. Each protein sequence had � = n + 20 GO-amino-acid com-
osition (GAC) features, comprising 20 features of the conventional
mino acid composition (AAC) and n GO terms. Subsequently, a
eature mining algorithm, GACmining, which is an extension of
Omining (Huang et al., 2008), was proposed using an intelligent
enetic algorithm (Ho et al., 2004a,b) with an SVM classifier to
dentify simultaneously a small number m of � GAC features and
arameter settings of SVM, where m � �.
A data set SNL 35 of 561 subnuclear proteins with 35% sequence
dentity was established to evaluate the proposed prediction

ethod. The data set SNL 35 was divided into two subsets, one for
raining (SNL 35L) and the other for independent test (SNL 35T), to
void homolog bias and any overestimation of value of the meth-
19 (17) 10 17 (14) 9
52 (43) 27 48 (40) 25

471 (201) 243 371 (134) 190

ods. PGAC, when applied to the training data set SNL 35L, extracted
m = 75 informative GAC features and yielded training and test accu-
racies of 85.7% and 76.3%, respectively. The Matthews correlation
coefficient (MCC) (Hua and Sun, 2001; Huang et al., 2007b; Lei
and Dai, 2006) performances were 0.749 and 0.668 for training
and independent testing, respectively. Upon comparison with the
existing method Nuc-PLoc which combines the amphiphilic pseudo
amino acid composition of a protein with its position-specific scor-
ing matrix (Shen and Chou, 2007b), PGAC yields a leave-one-out
cross-validation accuracy of 81.1% (MCC = 0.691), which is better
than Nuc-PLoc with 67.4% (MCC = 0.50) using SNL 80. The predic-
tion server that is based on PGAC for protein subnuclear localization
has been implemented at http://iclab.life.nctu.edu.tw/prolocgac.

2. Materials

2.1. Data Sets

A data set SNL 80 with 80% sequence identity obtained from another work (Shen
and Chou, 2007b) has 714 protein sequences in nine subnuclear compartments.
The proteins in the data set were screened strictly using the following rules: (1)
sequences with a same subnuclear location (SUBCELLULAR LOCATION) in the CC
field might be annotated with different terms so that several keywords were used
for a same subcellular location, e.g. in search for nuclear envelope proteins, the key-
words ‘nuclear envelope’, ‘nuclear inner membrane’ and ‘nuclear outer membrane’
were used; (2) only one of a group of protein sequences having the same name but
from different species was included to avoid redundancy; (3) sequences annotated
by multiple subnuclear compartments were eliminated; (4) sequences with fewer
than 50 amino acid residues were eliminated; (5) compartments with fewer than
10 proteins were eliminated, and (6) sequences with 80% identity were operated by
a culling program (Shen and Chou, 2007b).

Some proteins can simultaneously exist at more than one location site. This
kind of multiplex proteins may have special functions and hence are particularly
interesting (Chou and Shen, 2007a; Shen and Chou, 2007a). However, the number
of multiplex proteins in the existing nuclear protein database is not large enough
to allow us to construct a statistically meaningful benchmark data set for studying
multiplex nuclear proteins as done in (Shen and Chou, 2007a) for the eukaryotic
and human protein systems. As a compromise, here let us just study the single-
location nuclear proteins (rule 2, mentioned above). Nevertheless, by using the
similar approach as elaborated in (Shen and Chou, 2007a), the current method can
also be extended to deal with the multiplex nuclear proteins once more data for the
nuclear proteins are available in future.

Some studies have shown that sequence similarity is useful when sequences
share >25% identity in sequence-based prediction (Yu et al., 2006). To remove the
homologous sequences from the benchmark data set, a cutoff threshold of 25% was
imposed in (Chou and Shen, 2006a) to exclude those proteins from the benchmark
data sets that have equal to or greater than 25% sequence identity to any other in a
same subset. However, in this study we did not use such a stringent criterion because
the currently available data for subnuclear proteins do not allow us to do so. Other-
wise, the numbers of proteins for some subsets would be too few to have statistical
significance. Therefore, we established another data set SNL 35 of 561 subnuclear
proteins with 35% sequence identity using a culling program (Wang and Dunbrack,

2003) and SNL 80 to evaluate the proposed method. For the SNL 35, Table 1 shows
that only 12 sequences were in Nuclear PML body compartment. Additionally, some
GO annotations, corresponding to subnuclear compartments, are called essential
GO terms for subnuclear localization prediction, such as GO:0005730 (Nucleolus),
GO:0000785 (Chromatin) and GO:0005643 (Nuclear pore complex), as shown in
Table 1.

http://iclab.life.nctu.edu.tw/prolocgac


W.-L. Huang et al. / BioSystems 98 (2009) 73–79 75

Table 2
Results of GO annotation for all sequences in SNL 80L and SNL 35L.

Data set Total GO terms n Number of GO terms Number of sequences annotated by g
essential GO terms
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features, yielding the solution to the problem C(�, rstart).
The details of the procedure and the parameter settings of
IGA can be found in Table 3. The inheritance mechanism of
IBCGA can advance the search for the solution to C(�, r + 1)
by inheriting a good solution Sr to C(�, r).

Table 3
The used control parameters of IGA.

Parameter Value

Population size, N 50
Smallest La

NL 35L 677 0 43
NL 80L 771 0 43

All of the proteins are divided randomly into two separated sets with sizes in
he ratio 2:1, for training and independent testing, respectively. Table 1 presents
he numbers of proteins within each subnuclear compartment in the SNL 80 and
NL 35. The accession numbers and sequences of the corresponding proteins in the
raining and testing data sets can be found at http://iclab.life.nctu.edu.tw/prolocgac.

.2. Gene Ontology Annotation

The growth of Gene Ontology databases in size has increased the effective-
ess of GO-based features. The newest version of the GO database (released
n Dec. 2, 2008, http://www.geneontology.org/) contained 26,417 terms in the
hree branches of biological process, molecular function and cellular compo-
ent. This study utilizes the GOA database, which includes GO annotations for
on-redundant proteins from many species that are in the UniProtKB/Swiss-Prot
atabase (Apweiler et al., 2004). The GOA database was downloaded directly from

tp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/ (UniProt 63.0 released in June
008).

The accession numbers of proteins are required in querying the GOA database to
btain their annotated GO terms. Considering novel query proteins, BLAST (Altschul
t al., 1990, 1997) was used to obtain homologies with known accession numbers
rom the query protein to retrieve GO terms. The parameter e-value of BLAST is
ritical to the quality of the homologies and the number of candidate homologies.
he best values of parameters h and e were determined from h ∈ {1, 2, . . ., 5} and
∈ {10−1, 10−2, . . ., 10−10} using a step-wise method with the k-nearest-neighbor
lassifier (Huang et al., 2007a, 2008). Table 2 shows the GO annotation results for
ll proteins in the SNL 35L and SNL 80L, where (h, e) = (1, 10−9). The size of the com-
lete set of all GO terms from the 371 subnuclear proteins of SNL 35L is n = 677. The
mallest, largest and mean numbers of GO terms that were annotated for individual
roteins were 0, 43 and 10.7, respectively.

To evaluate the prediction performance using the essential GO terms annotated
lone, the numbers of sequences that were annotated with g essential GO terms
ere calculated. Tables 1 and 2 show that 162 out of 371 sequences are annotated

y only one essential GO term (g = 1), and that 134 of these 162 sequences are cor-
ectly annotated. The other 209 (=186 + 23) sequences annotated with zero (g = 0) or

ore than one (g > 1) essential GO term cannot be effectively predicted using the
ssential GO terms alone. This finding indicates that essential GO terms are nec-
ssary but not sufficient for the design of accurate classifiers for the prediction of
rotein subnuclear localization.

. Method

.1. Proposed Mining Algorithm GACmining

The proposed PGAC was implemented based on a mining algo-
ithm, GACmining which is extension of GOmining for feature
election (Huang et al., 2008). An analysis of the selected infor-
ative GO terms in the GO graph reveals that GOmining can

onsider the internal correlation within relevant features rather
han individual features using an efficient global optimization

ethod (Huang et al., 2008). GACmining uses an intelligent genetic
lgorithm (IGA, Ho et al., 2004b) associated with an inheritable
echanism, named IBCGA (Ho et al., 2004a,b) an SVM classifier

o identify a small number, m, of a large number, �, of GAC features
nd parameter settings of SVM. The exploration of the m informa-
ive GAC features from � candidate GAC features is a combinatorial
ptimization problem C(�, m) with a huge search space of size C(�,
) = �!/(m!(� − m)!).

The leave-one-out cross-validation (LOOCV) is considered to
e the most rigorous and objective test that can always yield a

nique result for a given benchmark data set. Hence, LOOCV has
een increasingly and widely used by investigators to examine the
ccuracy of various predictors (Chou and Shen, 2007b). Although
ias-free, this test is very computationally demanding and is often

mpractical for large data sets. The N-fold cross-validation not only
Mean g = 0 g = 1 g > 1

10.7 186 162 23
10.7 232 210 29

provides a bias-free estimation of the accuracy at a much reduced
computational cost, but is also considered as an acceptable test for
evaluating prediction performance of an algorithm (Stone, 1974).
Therefore, GACmining uses the prediction accuracy of 10-fold cross-
validation (10-CV) as the fitness function to perform IBCGA (Ho et
al., 2004a,b) on the entire training sets of proteins under consider-
ing the computation cost.

The input of this algorithm is a training set of protein sequences
that belong to nine classes. The output contains a subset of
m selected GAC features and an SVM classifier with associated
parameter settings. The following algorithm is used to solve the
subnuclear localization prediction problems.

Step 1 (GO terms) Use BLAST to obtain the GO terms that are
annotated for each training protein by retrieving the GOA
database. Let n be the total number of GO terms that have
ever appeared for all training proteins. For example, n = 677,
including d = 9 essential GO terms for SNL 35L.

Step 2 (Sequence representation) The 20 AAC features and 9 essen-
tial GO terms are regarded as crucial GAC features. Represent
each protein as a �-dimensional feature vector P = [p1,
p2, . . ., p�] consisting of the 20 AAC features and n GO terms,
such that � = 20 + n.

Step 3 (Preparation of SVM) The multi-classification problem is
solved by utilizing a series of binary classifiers of LIB-
SVM (Chang and Lin, 2001). A radial basis kernel function
exp(−� ||xi − xj||2) is adopted, where xi and xj are training
samples, and � is a kernel parameter. There are two param-
eters � and a cost parameter C to be tuned in using the SVM.
In this study, � ∈ {2−7, 2−6, . . ., 28} and C ∈ {2−7, 2−6, . . ., 28}.

Step 4 (Chromosome encoding) The IGA-chromosome consists of �
binary IGA-genes fi to select informative GAC features and
two 4-bit IGA-genes for encoding � and C. The correspond-
ing feature pi (the i-th GAC features) is excluded from the
SVM classifier if fi = 0, and is included if fi = 1, where fi = 1,
i = 1, . . ., 20 + d. Let m be the sum of fi. Fig. 1 shows the protein
representation and the IGA-chromosome encoding method.

Step 5 (Fitness function) The value of the fitness function is the
prediction accuracy of 10-CV using the SVM classifier with
the m selected GAC features, � and C by decoding the IGA-
chromosome.

Step 6 (Initial solution) Perform IBCGA to select rstart out of � GAC
pop

Selection probability, ps 0.2
Crossover probability, pc 0.8
Mutation probability, pm 0.05
Factor number of orthogonal arrays 7
Maximum generations, Gmax 60

http://iclab.life.nctu.edu.tw/prolocgac
http://www.geneontology.org/
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/
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Fig. 1. Protein representation an

tep 7 (Best solution) Obtain all solutions Sr from r = rstart + 1 to rend
one by one using IBCGA. For example, rstart = 40 and rend = 80
in this study. Let Sm be the most accurate solution with m
selected GO terms among all solutions Sr.

tep 8 (System uncertainty) Perform Steps 6 and 7 for N indepen-
dent runs to obtain the best of N solutions, Sm, and the
associated parameter setting of the SVM classifier. The best
solution considers both high prediction accuracy and high
mean of appearance frequency ratio, where the frequency
ratio for each run was the percentage of its mi selected GAC
features in all N selected feature sets, i = 1 ,. . . N.

The selection procedure is described as follows. First, collect the
andidate solutions Sm from the N (e.g., 30) solutions that their fre-
uency ratios are larger than the mean of frequency ratio. Secondly,
btain the best solution with the highest prediction accuracy from
hese candidate solutions Sm. For example, Fig. 2 shows that the
est solution for SNL 35L was the 7th (i.e. i = 7) solution because

ts frequency ratio, 54.7%, is larger than the mean of the frequency
atio, 51.4%, and its training accuracy 87.3% is the best.
.2. Prediction Using SVM

For each query protein, the BLAST with (h, e) = (1, 10−9) is first
erformed on the Swiss-Prot database to obtain its homologies

ig. 2. The frequency ratios of the solutions i = 7–13, 21, 23, 28–30 are larger than
he mean frequency ratio 51.4% for SNL 35L. Among these solutions, the 7th has the
ighest prediction accuracy.
chromosome encoding method.

with known accession numbers. Subsequently, the obtained acces-
sion numbers were used to retrieve the corresponding k GO terms,
GO:1, GO:2, . . ., GO:k. The query protein is represented as an m-
dimensional GAC feature vector [p1, p2, . . ., pm] as an input to the
SVM classifier. The first 20 elements pi are the AAC features. The
remaining m − 20 binary features denote the corresponding infor-
mative GO terms, where pi = 0 if the informative GO term is not in
the set of the k GO terms; otherwise, pi = 1.

4. Results and Discussion

4.1. Effectiveness of Feature Selection

To evaluate a candidate set of r informative GAC features accom-
panied with the SVM parameters, the prediction accuracy of 10-CV
serves as a fitness function of IGA. Fig. 3 shows the training accu-
racies of PGAC from r = 40, 41, . . ., 80, were higher than those of
SVM-RBS for SNL 35L and SNL 80L, where SVM-RBS performed
by using SVM with a number r of selected informative GAC fea-
tures by the rank-based selection (RBS) method (Li et al., 2004;
Tung and Ho, 2007). One previous work in ProLoc-GO (Huang et al.,
2008) and ProLoc (Huang et al., 2007b) showed that this univari-
ate method RBS is inferior to the multivariate feature selection by
IGA for selecting GO terms and physicochemical properties, respec-
tively.

The RBS method is described below. First, each of all � GAC fea-
tures (for example, � = 697 for SNL 35L) was ranked according to
the accuracy of SVM with the estimated single feature, where the
best values of parameters (C, �) were determined using a step-wise
approach where � ∈ {2−7, 2−6, . . ., 28} and C ∈ {2−7, 2−6, . . ., 28}. The
top-ranking 80 features ˛i, i = 1, . . ., 80 are then picked, and the
top-ranking 40 features with r = 40 are used as an initial feature
set {˛1, . . ., ˛40}. Consequently, the feature set with size r + 1 is
incrementally created by adding the best feature ˛r + 1 (having the
highest accuracy of SVM using 10-CV) from the remaining 80 − r
features into the current feature set.

Additionally, to measure the effectiveness of the selected m

informative GAC features and associated SVM parameters (C, �),
the classification methods SVM and C5.0 (Quinlan, 2003) using the
20 AAC features, n GO terms and � GAC features (without feature
selection), were also evaluated in terms of the prediction accuracy
of 10-CV using SNL 35L and SNL 80L. The best values of parameters
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Fig. 3. Training accuracies of PGAC and SVM-RBS performed by using SVM with a number r of selected informative GAC features.

Table 4
Performance comparison uses prediction accuracy (%) of 10-CV.

Method Feature (no.) SNL 35L(C,�) SNL 80L (C, �)

n = 677, m = 75 n = 771, m = 78

SVM AAC (20) 55.8 (22,2−1) 58.2 (24, 2−3)
GO terms (n) 81.1 (23, 2−5) 83.4 (23, 2−6)
GAC (� = 20 + n) 81.4 (23, 2−5) 84.3 (23, 2−6)

C5.0 AAC (20) 52.8 55.0
GO terms (n) 79.5 83.0
GAC (� = 20 + n) 78.4 83.4
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Table 6
Prediction accuracies preformed on SNL 80 using leave-one-out cross-validation
(LOOCV).

Method Features SNL 80 (LOOCV)

ProtLock AAC 36.6%
SVM AAC 48.9%
OET-KNN Pse-AAC 55.6%

applied to the whole data set SNL 80 to compare it with existing

T
A

L

1
2

4
5
6
7
8
9

O

roLoc-GAC Selected GAC (m) 87.3 (24, 2−4) 88.7 (24, 2−1)

and C in the SVM-based classifiers were determined using a step-
ise approach. GACmining when applied to SNL 35L and SNL 80L

xtracted m = 75 and 78 informative GAC features, where (C, �) = (24,
−4) and (24, 2−1), respectively.

Table 4 shows that the GO term features outperformed the AAC
eatures and performed similarly to the GAC features when SVM
nd C5.0 were applied to both data sets SNL 35L and SNL 80L.
he AAC features that are included in the GAC feature set are
specially useful in predicting the proteins that do not have anno-
ated GO terms. The accuracies of SVM and C5.0 when applied to
NL 35L were slightly worse than those when applied to SNL 80L
ecause of the low sequence identity of the former. The best clas-
ifier other than PGAC is the SVM with the � GAC features, yielding
ccuracies 81.4% and 84.3% when used on SNL 35L and SNL 80L,

espectively. Using GACmining for feature selection, PGAC improved
he accuracies to 87.3% and 88.7% for SNL 35L and SNL 80L,
espectively.

able 5
ccuracies (%) and MCC preformed on SNL 35.

abel Compartment

Nuclear PML body
Nuclear speckle
Chromatin
Nucleoplasm
Nucleolus
Heterochromatin
Nuclear envelope
Nuclear matrix
Nuclear pore complex

verall accuracy % (MCC)
Nuc-PLoc Fusion of PsePSSM and Pse-AAC 67.4%
ProLoc-GAC GAC 81.1%

4.2. Performance of PGAC

The Matthews correlation coefficient (MCC) (Matthews, 1975)
is typically employed to evaluate the performance on unbalanced
data sets. Table 5 shows detailed results for individual subnucelar
compartments that consist of MCC and the accuracy of leave-one-
out cross-validation (LOOCV) when applied to SNL 35, using m = 75
selected GAC features. The MCC performances of PGAC were 0.749
and 0.668 for SNL 35L and SNL 35T, respectively, and the corre-
sponding overall accuracies were 85.7% and 76.3%. Additionally, the
accuracy for each single subnucelar compartment was correlated
with the number of proteins within the compartment. For exam-
ple, the training and testing accuracies for a single compartment
with a large sample size, such as Chromatin, Nucleolus and Nuclear
pore complex, are relatively high, compared with those for other
compartments with small sample sizes.

PGAC, using SVM with m = 78 informative GAC features, was
prediction methods. Table 6 presents the results of the performance
comparison in terms of the LOOCV accuracy. ProtLock (Cedano et
al., 1997) and SVM (Vapnik, 1998) using the AAC features only have

LOOCV Independent test

SNL 35L SNL 35T

37.5 (0.422) 75.0 (0.517)
84.8 (0.864) 75.0 (0.819)
84.3 (0.709) 74.1 (0.573)
55.0 (0.668) 30.0 (0.303)
94.8 (0.833) 80.8 (0.674)
25.0 (0.496) 40.0 (0.627)
71.0 (0.831) 62.5 (0.777)
88.2 (0.937) 77.8 (0.946)
97.9 (0.976) 100.0 (1.000)

85.7 (0.749) 76.3 (0.668)
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Table 7
The m = 75 informative GAC features selected from SNL 35L. The features in bold style are essential GO terms.

Rank by MED GO term Branch MED Rank by MED GO term Branch MED

1 GO:0016607 C 312.9 39 V AAC 36.9
2 GO:0005643 C 193.8 40 Y AAC 35.8
3 GO:0016363 M 188.4 41 T AAC 35.8
4 GO:0065002 B 176.5 42 GO:0000079 B 35.3
5 A AAC 175.5 43 GO:0051457 B 35.3
6 GO:0005730 C 142.0 44 GO: 0000027 B 34.2
7 GO:0005635 C 90.3 45 GO:0018991 B 33.2
8 GO:0005789 C 81.7 46 GO: 00063 66 B 32.6
9 GO:0005637 C 81.1 47 GO:0016605 C 32.1

10 GO:0005886 C 73.0 48 D AAC 31.5
11 R AAC 72.5 49 GO:0030869 C 31.0
12 GO:0017056 M 66.6 50 K AAC 31.0
13 N AAC 62.3 51 GO: 0006917 B 29.9
14 GO:0000792 C 55.8 52 GO:0000480 B 28.8
15 GO:0000151 C 53.6 53 GO: 0000209 B 26.7
16 GO: 003 0674 M 52.6 54 H AAC 24.0
17 GO: 0042692 C 52.6 55 L AAC 24.0
18 GO:0005823 C 49.3 56 GO:0006378 M 22.4
19 GO:0001682 B 49.3 57 Q AAC 18.6
20 GO: 0006612 B 48.2 58 GO:0000793 C 14.3
21 GO: 0003 702 M 47.2 59 GO: 0040007 B 11.6
22 GO: 003 0496 C 47.2 60 GO:0000775 C 11.1
23 GO:0008267 M 46.1 61 S AAC 10.5
24 GO:0005654 C 46.1 62 I AAC 10.0
25 GO:0005652 C 45.0 63 GO:0030686 M 9.4
26 GO: 0042254 B 43.9 64 GO: 0003 701 M 5.1
27 GO: 0007140 B 43.9 65 GO:0000785 M 5.1
28 GO: 0018024 M 43.4 66 M AAC 5.1
29 GO:0045132 B 42.9 67 GO:0000781 M 4.0
30 GO:0005732 B 42.3 68 GO:0009987 B 3.5
31 GO: 0003 73 5 M 41.8 69 GO:0016586 C 3.0
32 GO:0046580 B 41.8 70 W AAC 2.4
33 GO:0048666 B 40.7 71 E AAC 1.9
34 GO:0008168 M 40.7 72 GO:0043596 C 1.9
35 G AAC 39.6 73 P AAC 0.8
36 GO:0001837 B 39.6 74 C AAC 0.8
37 GO:0007005 B 38.5 75 F AAC 0.3
3
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8 GO:0005681 C 36.9

ccuracies 36.6% and 48.9%, respectively. PGAC has the highest accu-
acy of 81.1% and MCC = 0.691, which is better than ProtLock (Cedano
t al., 1997) and SVM (Vapnik, 1998); it is also better than 55.6% of
ET-KNN, using the Pse-AAC features (Shen and Chou, 2005) and
7.4% (MCC = 0.50) of Nuc-PLoc, which combines the Pse-AAC fea-
ure of a protein and its position-specific scoring matrix (Shen and
hou, 2007b). The results reveal that the informative GAC features
re effective for predicting protein subnuclear localization.

.3. Informative GAC Features

The quantified effectiveness of individual GAC features in
rediction is valuable in characterizing subnuclear localization.
rthogonal experimental design with factor analysis can be used

o examine the individual effects of GAC features according to the
ain effect difference (MED) (Ho et al., 2006; Tung and Ho, 2007).

he factors are the parameters (GAC features) that manipulate the
valuation function, and a setting of a parameter is regarded as a
evel of the factor. In this study, the two levels of one factor are the
nclusion and exclusion of the i-th GO term in the feature selection
sing IGA. The factor analysis can quantify the effects of individual

actors on the evaluation function, rank the most effective factors
nd determine the best level for each factor to optimize the eval-

ation function. The GAC feature with the largest MED is the most
ffective in predicting subnuclear localization. The m = 75 informa-
ive GAC features, consisting of 20 AAC features, nine essential GO
erms and 46 instructive GO terms are ranked by MED and described
n Table 7. The 46 instructive GO terms, comprising 14 GO terms
from the molecular function branch, 21 terms from the biological
process branch, and 11 terms from the cellular component branch
are denoted 14(M), 21(B) and 11(C), respectively.

Table 7 shows that the essential GO term GO:0016607 (Nuclear
speckle), with the largest MED (=312.9), is the most effective feature
among the 75 informative GAC features. The instructive (non-
essential) GO term with the largest MED (=176.5) is GO:0065002
(Intracellular protein transport across a membrane, rank 4). Among
the AAC features, amino acid A is the best with rank 5 and
MED = 175.5. The top ten features are five essential GO terms, four
instructive GO terms and one AAC feature, revealing that the essen-
tial GO terms and the instructive GO terms are more effective than
the AAC features.

The GO terms near the root of the GO graphs are considered
to be more generic while those near the leaves are more specific.
Considering the high correlation among numerous GO terms in
the GO graph, the feature selection algorithm GACmining has two
advantages; (1) the consideration of a set of informative GO terms
simultaneously, rather than individual GO terms, and (2) the reduc-
tion of the search space for candidate instructive GO terms by using
the essential GO terms. The position relationships between instruc-
tive and essential GO terms in the GO graph indicate that at least
21(B) of the 46 instructive GO terms were not offspring of any essen-

tial GO term, because none of the nine (=7(C) + 2(M)) essential GO
terms originated in the branch of biological process (Tables 1 and 7).
This scenario reveals that the nine essential GO terms are indispens-
able features, but are not very effective when used alone. The 46
instructive GO terms are helpful in increasing predictive accuracy.
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W.-L. Huang et al. / Bi

. Conclusions

This study not only investigated the prediction of protein sub-
uclear localization by studying the features of GO annotation, but
lso developed a generalized method for deriving a GO-based fea-
ure set to be used with a specified classifier such as SVM to predict
he functions or properties of protein sequences. A single-classifier
rediction method PGAC was proposed to predict protein subnu-
lear localization. The SVM classifier used informative GAC features,
onsisting of 20 AAC features, nine essential GO terms and a number
f instructive GO terms that were selected by the proposed feature
ining algorithm, GACmining.

The application of PGAC to SNL 35 using 75 informative GAC
eatures yielded training and test accuracies of 85.7% and 76.3%,
espectively. PGAC yielded an LOOCV accuracy of 81.1%, which is
etter than that of Nuc-PLoc, 67.4%, the current best method applied
o SNL 80. The high performance of PGAC arises mainly from the
roposed algorithm, GACmining, an extension of GOmining for GO
erm selection. Both GOmining and GACmining performed well
n selecting informative GO terms for predicting subcellular and
ubnuclear localization. Domain knowledge is embedded into the
lassifier design using the essential GO terms. We believe that the
roposed approach to classifier design can be widely adopted in
he sequence-based prediction of protein functions/characteristics
sing informative GO terms.
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