

國 立 交 通 大 學

資訊工程系

博 士 論 文

網格化簡與混合式顯像技術及其在即時顯像的應用

Mesh Simplification and Hybrid Rendering Techniques for

Real-Time Rendering

研 究 生：陳治君

指導教授：莊榮宏 教授

中 華 民 國 九 十 五 年 十 月

網格化簡與混合式顯像技術及其在即時顯像的應用

Mesh Simplification and Hybrid Rendering Techniques for Real-Time Rendering

研 究 生：陳治君 Student：Chih-Chun Chen

指導教授：莊榮宏 Advisor：Jung-Hong Chuang

國 立 交 通 大 學
資 訊 工 程 系
博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

October 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年十月

網格化簡與混合式顯像技術及其在即時顯像的應用

學生：陳治君

指導教授：莊榮宏 教授

國立交通大學資訊工程學系博士班

摘 要

即時顯像是互動應用，如：遊戲、虛擬實境以及虛擬模擬中核心的技術。
即時顯像技術包含了幾何為基礎、影像為基礎以及混合式顯像技術。這本論文中
我們首先提出兩個全新的幾何顯像式技術，而後提出一個混和式顯像系統架構。
在幾個以幾何為基礎的即時顯像之關鍵技術中，多層次模型建構技術為其中極其
重要而且相當廣為流傳的即時顯像技術。我們發展出一個全新、簡單且有效的貼
圖適應性調整機制來消除在漸進式網格模型配合貼圖時產生的貼圖扭曲現象。以
此機制為基礎，我們提出一個新的幾何化簡之曲面與曲面間誤差估測方式，能與
現有的方法相競爭甚至更好。混合式顯像技術在遊戲及虛擬實境中已被證實為非
常有用的幾何式顯像的輔助技術。我們提出一個混合式顯像機制，利用多層次模
型與貼圖並探索可見性的區域連貫性，以額外的儲存空間及預先讀取來做影像品
質與顯像效率的取捨。

為了支援漸進式網格模型的貼圖，我們常讓整個漸進式網格序列共享一個
共有的貼圖。這個共有貼圖能用適當的幾何參數化方法考慮幾何與貼圖壓縮值，
甚至考慮幾何邊折疊時的貼圖誤差得來。我們發現即使用很好的參數化貼圖，漸
進式網格模型貼上貼圖時很容易產生明顯的貼圖扭曲現象，這主要是因幾何的變
化與貼圖硬體的線性內差所致。在這論文中，我們提出一個全新、簡單且很有效
率的方法針對每個幾何邊折疊來調整貼圖內容，以消除貼圖扭曲現象。貼圖之適
應性調整機制及其反運算都是區域性及累進式運算且能以現有的圖學加速卡直

接支援。我們另提出索引貼圖的機制來降低當調整貼圖時可能造成取樣不足進而
產生的影像糊化現象。實驗結果顯示，在測試的例子中，貼圖扭曲現象幾乎都能
被貼圖之適應性調整機制所消除。基於貼圖之適應性調整機制，我們提出一個新
的以映像為基礎的誤差估測法，在不好的參數貼圖下，能夠比 APS 或 QEM 提
供更精確的幾何誤差量測。從實驗結果得知，我們提出的方法比 APS 好上許多，
而幾乎接近 QEM 的結果。

在我們所提出的混合式顯像架構下，場景先被分割成一些蜂巢式的空間，
再對蜂巢內的物體用一般的顯像技術來顯像，而蜂巢外的物體則用多層次貼圖幾
何配合投影式貼圖法來顯像。多層次貼圖幾何為一以物體為基礎，由原始幾何依
據所得到的深度影像化簡而得來，而深度影像則是在蜂巢與其鄰近蜂巢中心點顯
像取得。利用這個多層次貼圖幾何，許多在混合式顯像技術中常被發現的問題，
如：因物體與物體間遮檔而產生的洞的問題，以及因解析度不一致所產生的裂縫
問題都能被消除。而因為物體自身遮檔產生的洞的問題，也能被限制在使用者指
定的範圍內。在我們的顯像架構下，數個由上百萬個三角片所組成的複雜場景，
都可達到高於每秒鐘 600 個畫面的平均顯像速率，而且只有些微的影像失真。

MESH SIMPLIFICATION AND HYBRID RENDERING TECHNIQUES

FOR REAL-TIME RENDERING

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Student: Chih-Chun Chen

Adviser: Prof. Jung-Hong Chuang

October 2006

Hsinchu, Taiwan, Republic of China

c© Copyright by Chih-Chun Chen 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Prof. Jung-Hong Chuang Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Prof. Zen-Chung Shih

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Assistant Prof. I-Chen Lin

Approved for the University Committee on Graduate Studies.

iii

Acknowledgements

I would like to thank my wife and my family. Without their supports I may not be able to get

the Ph.D. degree. I deeply appreciate my adviser Prof. J. H. Chuang not only for his creative

suggestions and discussions on my studies, but also his insightful advisements for the philos-

ophy of life. Finally, I also like to thank all the members of Computer Graphics & Geometry

Modeling Lab. for coloring my life during the studies.

This dissertation is dedicated to my wife Mei-Ying and

my child who will be born around Dec. 2006.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Main Contributions . 3

1.2 Dissertation Organization . 4

2 Related Work 5

2.1 Real-Time Rendering . 5

2.2 Mesh Simplification . 6

2.2.1 Level-of-detail modeling . 6

2.2.2 Progressive meshes . 7

2.2.3 Error metric . 10

2.2.4 Incremental vs. total error metric . 14

2.2.5 Vertex-to-plane vs. surface-to-surface error 15

2.2.6 Texture distortion . 15

2.3 Visibility Culling . 17

2.4 Hybrid Rendering . 17

2.4.1 Region-based sprite . 18

2.4.2 Environment-based mesh . 18

2.4.3 Object-based Textured LOD mesh . 19

3 Texture Adaptation for Progressive Meshes 20

v

3.1 Introduction . 20

3.2 Texture Adaptation . 23

3.2.1 Overview . 23

3.2.2 Cell correspondence between two consecutive levels 24

3.2.3 Texture adaptation . 27

3.2.4 Indexing map . 27

3.3 Experimental Results . 30

3.3.1 Preprocessing time . 32

3.3.2 Reversibility . 32

3.3.3 Multiple charts . 37

4 A New Mapping-Based Error Metric 38

4.1 Introduction . 38

4.2 A New Mapping-Based Error Metric . 39

4.2.1 Maximum error . 40

4.2.2 Average error . 41

4.3 Experimental Results . 42

5 Hybrid Rendering Based on Viewcell Dependent Textured LOD 49

5.1 Introduction . 49

5.1.1 View-cell dependent Textured LOD Modeling 50

5.1.2 System overview . 51

5.2 Hybrid Rendering Scheme . 52

5.2.1 Preprocessing phase . 54

5.2.2 Run-time phase . 64

5.3 Experimental Results . 70

5.3.1 Setup . 70

5.3.2 Image quality measurement . 72

5.3.3 Mesh simplification . 73

5.3.4 Run-time performance . 75

vi

5.3.5 Discussions . 79

6 Conclusion 84

Bibliography 86

vii

List of Tables

3.1 Speedup by packing texture adaptations. 31

3.2 The entire run-time cost of simplifying PM w/ and w/o texture adaptation. . . . 31

3.3 The preprocessing time for constructing the entire PM sequence of the test models. 34

4.1 The preprocessing time for constructing the entire PM sequence w/o texture

adaptation under different error metrics. 47

4.2 The preprocessing time for constructing the entire PM sequence w/ texture

adaptation under different error metrics. 48

5.1 Maximum ratio of side faces seen from a point inside the cell under different

FOVs. 55

5.2 Object and scene statistics. 71

5.3 Simplification performance under different self-occluding-error tolerance Ts. . . 73

5.4 Simplification performance under different projected edge-length tolerance Tl . . 75

5.5 4M scene under different cell sizes 50 and 100. 75

5.6 Performance of the three configurations on a 8M-scene. 76

5.7 Performance of configuration C under different scene complexities. 76

5.8 Preprocessing time for different scene complexities. 79

5.9 Storage and loading time under different scene complexities (Ts = 5,Tl = 4.5). . 82

viii

List of Figures

2.1 Illustration of the full edge collapse UV ecol−→ V′. 8

2.2 Half-edge collapsing of UV ecol−→ V. 8

2.3 Half-edge collapsing of UV ecol−→ U. 9

2.4 The accuracy vs. mesh size plot results from a mesh simplification [35]. 10

2.5 Incremental error is propagated onto per-face bounding box for the total error

evaluation [14, 15]. 14

3.1 Texture distortion introduced by geometry simplification. 21

3.2 Texture distortion introduced by edge collapses. 22

3.3 Texture mapping progressive meshes with texture adaptation. 22

3.4 Mesh parameterizations before and after an edge collapse. 25

3.5 The nearest pair of points Ai and Ai−1 of two edges, one edge UN is from level

i and another is from level i−1. 26

3.6 Edges overlay in the one-ring neighborhood of u (left), and the edges partition

the neighborhood into 9 cells (right). 26

3.7 Cell correspondence between partitions of T i (left) and T i−1 (right). 27

3.8 Accelerate texture adaptation by triangle-fan and triangle strip setups. 28

3.9 Blurred artifacts introduced by texture adaptation (left) and minimized by in-

dexing mapping (right). 28

3.10 Each texel on indexing map is the texture coordinate referring to the texel on

original map. 29

3.11 Indexing mapping. 29

ix

3.12 Use one single indexing map to access to all the original maps. 30

3.13 Performance difference of indexing map in 8-bit (center) and 16-bit (left) pre-

cision. 30

3.14 Textured images of parasaur head model. Top row of (b),(c),(d): simplified by

QEM of 5D without texture adaptation, middle row: by APS without texture

adaptation, bottom row: by QEM of 5D with texture adaptation. 33

3.15 Normal mapped parasaur head. left: 7685 polygons, center: 499 polygons, and

right: 499 polygons with texture adaptation. 34

3.16 Textured images of horse model. Left: original model of 8160 polygons with

parameterized texture map, center: simplified model of 800 polygons without

texture adaptation, right: simplified model of 800 polygons with texture adap-

tation. 34

3.17 Left: original model of 17483 polygons, center: simplified model of 500 poly-

gons without texture adaptation, right: simplified model of 500 polygons with

texture adaptation. 35

3.18 From left to right, mesh with swirled texture coordinates and its color texture

map, original mesh (7688 polygons), simplified mesh (399 polygons), and the

same simplified mesh with texture adaptation. 35

3.19 (a) The top image is the original mesh, and the bottom image is the mesh that

has been applied three iterations of both fine-to-coarse and coarse-to-fine trans-

formation with the texture adaptation. (b) The zoomed images, on the left is the

original mesh and on the right is the resulting mesh. 36

4.1 The correspondence of xi and xi−1 is established via the cell correspondence. . 40

4.2 xn is adapted to xi by a sequence of texture adaptations In → In−1 → ·· · → Ii. . 42

4.3 The geometric error of simplified models without texture adaptation (measured

by Metro). 44

4.4 The simplified parasaur head model without texture adaptation (polygon count:

7685 → 500) by QEM, APS and the new error metric. 44

x

4.5 The simplified bunny head model without texture adaptation (polygon count:

17483 → 500) by QEM, APS and the new error metric. 45

4.6 The simplified zebra model without texture adaptation (polygon count: 8160 →

800) by QEM, APS and the new error metric. 45

4.7 The geometric error of the simplified models with texture adaptation (measured

by Metro). 46

4.8 The error distribution (in percentage) of the simplified parasaur head with tex-

ture adaptation, QEM: dark blue, APS: pink, and the new error metric: yellow. . 47

4.9 The simplified parasaur head model with texture adaptation (polygon count:

7685 → 500) by QEM, APS and the new error metric. 47

4.10 The simplified bunny head model with texture adaptation (polygon count: 17483→

500) by QEM, APS and the new error metric. 48

4.11 The simplified zebra model with texture adaptation (polygon count: 8160 →

800) by QEM, APS and the new error metric. 48

5.1 Preprocessing. 54

5.2 The maximum self-occluding error occurs at the position V ′. 56

5.3 The derivations of SVMesh (a) and MVMesh (b). 58

5.4 (a) is the original mesh (65,491 polygons) of a bunny viewed at one cell away

(cell size 50), and (b-d) are SVMeshes for the bunny at 7 (259 polygons), 8

(254), and 9 (239) cells away. The upper-right bunnies are the projected images. 59

5.5 Testing depth variation. 59

5.6 (a) is the original mesh (65,491 polygons) of a bunny viewed at one cell away

(cell size 50), (b-g) are MVMeshes of the bunny at 1 (1,605 polygons), 2 (945),

3 (554), 4 (392), 5 (330), 6 (306) cells away. The upper-right indicates actual

projected images. 62

5.7 Regional back-face culling. 63

5.8 Repeat clustering. 64

5.9 Run-time phase. 65

xi

5.10 Re-projection from source to destination image, T1 and T2 are the camera matrix

of source image I1 and destination image I2, respectively. 68

5.11 The cached image is a part of a source image. 68

5.12 The smaller angle is, the more accurate result is. 70

5.13 Popping effects occur during the transition between view cells. 70

5.14 Bird’s eye view of the 8M-scene. 72

5.15 Distribution of SVMesh and MVMesh for the scenes 4M-50-Ts-4.5. 74

5.16 MVMeshes of bunny for different Tl . 74

5.17 Rendered images by configuration B and C. 77

5.18 Rendered images by configuration B and C at another view. 78

5.19 Run-time statistics of configuration C on scene 8M-50-5-4.5: The frame rates

with prefetching under a cold cache and a warm cache, and without prefetching. 80

5.20 Run-time statistics of configuration C on scene 8M-50-5-4.5: The polygon

count, texture requirements, and image quality. 81

5.21 Cases of cell transition. 83

xii

Abstract

Real time rendering has been a kernel technology for interactive applications such as game,

virtual reality (VR), and visual simulation. Real time rendering technologies can be geometry-

based, image-based, or hybrid. In this thesis, we first present two novel techniques in geometry-

based rendering and then propose a hybrid rendering framework. Among several key technolo-

gies in geometry-based real time rendering, level-of-detail (LOD) modeling has been a vital

representation and a very popular technique in real-time applications. We develop a novel,

simple, and effective texture adaptation scheme to eliminate the texture distortion commonly

observed in mapping textures to progressive meshes. Based on this scheme, we propose a new

surface-to-surface error metric, aiming to offer a simplification error measurement that is com-

petitive to or even better than the existing methods. Hybrid rendering has been proven to be

a very useful supplement to geometry-based technologies used in game and VR. We present

a hybrid rendering scheme that explores the locality of visibility at the cost of extra storage

and prefetching, and makes a tradeoff between image quality and rendering efficiency by using

textured LOD meshes.

To support texture mapping progressive meshes (PM), we usually allow the whole PM sequence

to share a common texture map. Such a common texture map can be derived by using appro-

priate mesh parameterizations that may consider the minimization of geometry stretch, texture

stretch, or even the texture deviation introduced by edge collapses. We have found that even

with a well parameterized texture map, the texture mapped PM still reveals apparent texture

distortion due to geometry changes and the nature of linear interpolation used by texture map-

ping hardware. In this dissertation, we propose a novel, simple, and efficient approach that

adapts texture content for each edge collapse, aiming to eliminate texture distortion. A texture

adaptation and its reverse operation are local and incremental operations that can be fully sup-

ported by graphics hardware. We also propose the mechanism of indexing mapping to reduce

blurred artifacts due to the under-sampling that might be introduced by the texture adaptation.

Experimental results have demonstrated that texture distortion is almost eliminated in tested ex-

amples. Based on the texture adaptation scheme, we propose a new mapping-based error metric

that is able to provide much more accurate measurement of simplification error than APS or

even QEM in the presence of badly parameterized texture maps. From the experimental results,

we have observed that the proposed error metric outperforms the well-known error metric APS,

and is better than or almost similar to QEM, depending on either maximum, mean, or RMS

error used in measuring the approximation error.

In the proposed hybrid rendering framework, the object space is first subdivided into cells. For

each cell, inside objects are rendered as normal while outside objects are rendered as textured

LOD meshes using projective texture mapping. The textured LOD meshes is object based and

derived from the original mesh based on the captured depth images viewed at the centers of the

cell and its adjacent cells. With this textured LOD mesh, problems commonly found in hybrid

rendering, such as hole problems due to occlusion among objects and the gap problems due

to resolution mismatch, can be avoided. Moreover, the size of holes due to self-occlusion is

constrained to be within a user-specified tolerance. Several scenes with millions of polygons

have been tested and higher than 600 FPS has been achieved with a little loss of image quality.

ii

Chapter 1

Introduction

For last decades, computer graphics has become more widely used in many applications, in-

cluding visualization, surgical simulation, military training, virtual shopping, movie creation,

and 3D games. Not only because the graphics hardware becomes more and more powerful and

cheaper, but also many techniques have been developed to eliminate the difficulty in achieving

realistic and real-time rendering.

Despite tremendous strides in graphics hardware, the demand of realism seems to grow faster

than the advance of graphics hardware. To achieve realism, very complex 3D scenes may be

necessary. Such complex scenes, however, may be too complex to be rendered in realtime with

any available graphics hardware to date. On the other hand, from a laser scans of real objects

to procedurally generated geometries, the input models can be too complex to be rendered in

realtime. In fact, many polygons in a model are redundant since these polygons are projected to

a portion of a screen pixel and do not help much in improving rendering quality. One possible

answer to above question is the level-of-detail modeling, known as LOD in short, which aims to

provide satisfactory rendering quality with less number of polygons. Although LOD modeling

has been studied for about 30 years (the most remarkable paper can be tracked back to the work

of James Clark [10]), LOD modeling still is an important research topic in computer graphics.

Texture mapping is a simple and efficient method for recovering surface details of a simplified

1

model. Applying texture maps onto simplified meshes, however, often encounters some serious

texture distortion. Many approaches have been proposed to minimize such a distortion, but all

fail to solve it successfully. In this dissertation, we address the texture distortion problem and

investigate what are the sources of the texture distortion, and propose a novel and simple texture

adaptation scheme, to eliminate the texture distortion.

In LOD modeling, meshes are simplified by a sequence of simplification operations. Usually,

the sequence is ordered by the cost of the simplification operation, which measures the error

between the meshes before and after simplification. The use of an accurate error metric can in

general lead to a simplification that performs better in preserving geometric features and shape.

While often producing satisfactory simplification results, the quadric error metric (QEM) pro-

posed by Garland and Heckbert [29] is not geometrically accurate. On the other hand, the

appearance preserving simplification (APS) proposed by Cohen et al. [15] is more geometri-

cally accurate, but its accuracy often suffers from the incorrect mapping introduced by badly

parameterized texture maps. A more accurate error metric that is efficient and performs better

than current well known error metrics is desirable. Based on the texture adaptation scheme, we

introduce a new mapping-based error metric which is a variant of APS but much more accurate

than APS.

Although LOD modeling techniques reduce the complexity of polygonal meshes, it may still

not be able to render an extreme complex scene with acceptable quality at a real-time frame rate.

Other approaches, including visibility culling and image-based rendering, can be integrated to

further speed up the rendering. While some important visual features such as silhouettes can

only be known at run-time and better preserved by view-dependent LOD techniques, a pre-

computed view-cell dependent LOD might be a compromise between the view independent

and view dependent LOD. We develop a view-cell dependent textured LOD modeling for all

objects outside a view cell. The construction of the viewcell dependent textured LOD mod-

eling takes into account hybrid rendering, silhouette preserving, back-face culling, and even

occlusion culling. We introduce a hybrid rendering system that is based on view-cell dependent

2

textured LOD modeling and space subdivision, and is able to exploit the spatial and tempo-

rary coherence. The proposed system successfully is capable of rendersing complex scenes in

realtime with only little image-quality loss.

1.1 Main Contributions

The main contributions of this dissertation research are the following:

• Propose a novel, simple, and effective texture adaptation scheme to eliminate the texture

distortion often observed in texture mapped simplified meshes. It provides a very useful

and automatic tool for model artists to design models and textures without concerning

the texture distortion in mapping textures to simplified meshes. Moreover, the proposed

indexing map successfully reduces the blurred artifacts introduced by the texture adapta-

tion.

• Propose a new mapping-based error metric that is able to accurately measure the simpli-

fication error even in the presence of badly parameterized texture maps. The mapping of

two points on two consecutive levels of mesh is established via the operation of texture

adaptation. Such a mapping can be easily extended to the mapping between the origi-

nal mesh and the simplified mesh by using the indexing map. Experiments have shown

that the proposed total/incremental maximum error metric performs better than APS, and

better than or almost similar to QEM, depending on how the approximation error is mea-

sured.

• Propose a hybrid rendering scheme that successfully adapts advantages of both image-

and geometry-based rendering techniques. It is able to render extremely complex scenes

at a real-time frame rate while preserving silhouettes and surface details of objects. An

object-based textured LOD mesh representation is proposed to represent closer objects

as well as distant scene in a unified representation. Compared to the environment-based

mesh approach that is designed for distant scene. our approach has less popping effects

3

introduced in the transition between different representations. The proposed representa-

tion not only successfully removes the folding problems, gap problems, and rubber-sheet

artifacts, but also limits the hole problem due to self occlusion. Moreover, the proposed

representation together with scene subdivision is easily integrated with visibility culling

techniques to exploit spatial coherence.

1.2 Dissertation Organization

We give an overview and related works of LOD modeling and hybrid rendering in Chapter 2.

The texture distortion and texture adaptation are described in detail in Chapter 3. In Chapter 4

a new mapping-based error metric for mesh simplification is presented and comparison to some

well-known error metrics is discussed. The proposed hybrid rendering scheme is described in

Chapter 5. Finally, a conclusion and possible future work are stated in Chapter 6.

4

Chapter 2

Related Work

2.1 Real-Time Rendering

There are extensive researches in the field of real-time rendering, ranging from LOD modeling,

visibility culling, image-based rendering, and hybrid rendering.

LOD modeling simplifies geometric meshes of unnecessary complexity into appropriate sim-

plified meshes that are suitable for some viewing conditions for the efficiency of rendering and

processing. However, it is difficult to attain visual fidelity in general.

Visibility culling techniques cull out polygons that are invisible from the current view before

entering the graphics rendering pipeline. The task includes back-face culling that culls out

back-facing polygons, view-frustum culling that culls out polygons or objects outside the view

frustum, and occluding culling that culls out polygons occluded by other objects.

The image-based rendering approaches use the current view image under some constraint to

generate new view image when a viewer changes his or her viewpoint. It has the advantages of

that its rendering cost is independent on the scene complexity, and of that its potential to pro-

duce photo-realistic rendering images. However, it suffers from the problem of limited viewing

degree of freedom, which is trivial to geometry-based rendering. On the other hand, LOD

5

modeling alone often reveals the problem of losing surface details. Thus, several hybrid render-

ing schemes have been proposed to combine traditional geometric and image-based rendering

techniques to retain advantages of both rendering scheme.

2.2 Mesh Simplification

The geometric meshes created by geometry modeling, e.g. CAD design tools, and laser scan-

ning systems [17] are rarely optimized for rendering efficiency. The input models may be too

complex to be rendered efficiently and may be in unnecessarily high detail for some viewing

conditions. These complex models require simplification process to reduce complexity for effi-

cient rendering or further processing. Mesh simplification already has been studied intensively

in the last decade. Its ultimate goal is to reduce the complexity of a geometric mesh at the cost

of undetectable visual difference, and to provide a tradeoff between fidelity (image quality) and

speed (rendering efficiency).

Luebke et al. [43] gave a complete and intensive review of model simplification. Additional

comprehensive surveys on LOD modeling can also be found in [11, 12, 28, 34, 45]. Here, we

review the works that address the reduction of texture distortion resulting from model simplifi-

cation and address issues of some popular error metrics.

2.2.1 Level-of-detail modeling

The technique that generates multi-resolution representations of a model and select a repre-

sentation of appropriate resolution for a particular viewing condition is called level-of-detail

modeling. For example, a detailed mesh is used when the viewer is close to the object, and

a coarser approximation is substituted when the viewer is distant from the object. The multi-

resolution representation can be derived in preprocessing or at run time. The former is termed

view independent LOD modeling and the latter is called view-dependent LOD modeling. View-

independent LOD modeling usually generates a set of meshes of different levels, each of which

6

has resolution reduced by a factor of two from the mesh of upper level. In total, the LOD

modeling for a model requires only twice as much storage space as the model.

For view-independent LOD modeling, instantaneous switching between two successive levels

of detail may lead to perceptible popping effects. Popping effects can in general be minimized

by blending or morphing. The blending employs alpha-blending to fade between the two suc-

cessive levels of detail. Both of two successive representations are rendered, and the rendered

images are alpha-blended according to the distance to the viewing position [46]. Such blending

requires extra cost on rendering two successive representations of the same object, and may still

have some blending artifacts if two representations differ at the silhouettes. On the other hand,

the morphing gradually changes the shape between two successive levels of detail. It requires

the knowledge of the vertex correspondence between two successive representations. Turk [56]

proposed a method to have such correspondence by mutual tessellating the two successive lev-

els of detail. Hoppe [35] presented a more elegant approach referred as geomorph that has more

smooth transition between levels of detail. The detail description is given in the next subsection.

2.2.2 Progressive meshes

Hoppe [35] proposed a continuous level-of-detail representation, called progressive mesh or PM

in short. The term of “continuous” emphasizes the ability to have smooth transition between two

successive levels. By limiting the difference between two successive levels to a local region,

it is easy to establish the vertex correspondence required for morphing. While discrete LOD

modeling can provide only discrete approximation, PM is capable of providing a continuous

representation that has less popping effects.

PM simplifies an initial mesh M = M
n to a coarse mesh M

0 by applying a series of n edge

collapses:

M = M
n

ecoln−1−→ ·· · ecol1−→ M
1 ecol0−→ M

0 .

As shown in Figure 2.1, an edge-collapse operation collapses two adjacent vertices U and V

7

into a single vertex V′. Verteices U and V, edge UV, and adjacent faces 4UVL and 4VUR

vanish after the collapse. When the new vertex V′ differs from U and V, this operation, denotedPSfrag replacements

U V

LL

RR

V′
ecol

Figure 2.1: Illustration of the full edge collapse UV ecol−→ V′.

as UV ecol−→ V′, is referred to as a full-edge collapse. Contrarily, a half-edge collapse operation

collapses edge UV to either vertex V or vertex U, and is denoted as

UV ecol−→ V

or

UV ecol−→ U,

respectively. The half edge collapse operation collapses U to V, and also removes one vertex,

three edges, and two faces from a mesh (see Fig. 2.2). Although full-edge collapse can po-

PSfrag replacements

U VV

ecol

Figure 2.2: Half-edge collapsing of UV ecol−→ V.

tentially produce a better approximation of the original model under the same polygon count,

it needs to modify the vertex buffer and obstructs the vertex caching for hardware accelera-

tion [48]. As a consequence, many descendent works use the half-edge collapse in practice

because its simplicity in implementation and its efficiency in rendering.

The inverse operation of an edge collapse is the vertex split that splits a vertex into two vertices

and forms a new edge. By applying a series of n vertex splits, the coarse mesh M
0 can be refined

8

to the initial mesh M:

M
0 vsplit0−→ M

1 vsplit1−→ ·· · vsplitn−1−→ M
n = M .

Under a network environment, the latency can be greatly reduced by transmitting the coarse ver-

sion of a mesh at the very beginning and then progressively transmitting the remaining details.

One can see a progressively refined approximations to the model as data is being incrementally

received.

Before introducing the error metrics that evaluate the error introduced by an edge-collapse oper-

ation and guide the mesh simplification process, we briefly describe the conventional framework

for mesh simplification.

To construct a PM for a polygonal mesh, the mesh is gradually simplified by a sequence of

edge collapses in an order of increasing cost, evaluated by a specific error metric. This is

supported by constructing a priority queue in an increasing cost for all the edges of the mesh

and then the edge with the lowest cost will be popped out from the priority queue for each edge

collapse operation. Since the cost of edge collapsing is directional, collapsing U to V will have

different cost from collapsing V to U; see the difference between Figure 2.2 and Figure 2.3.

Moreover, since a vertex U can only be collapsed to one of its one-ring neighboring vertices, it

is not necessary to put all of its one-ring neighboring edges into the priority queue. Instead, we

put only the directional edge that has the smallest cost among the neighboring edges into the

priority queue. In practice, an infinite cost is usually assigned to a candidate edge UV ecol−→ V

that violates some constraints such as face flip and parametric flip.

PSfrag replacements

UU V

ecol

Figure 2.3: Half-edge collapsing of UV ecol−→ U.

For each edge collapse operation, the edge UV with the lowest cost (error) is popped out from

9

the priority queue and collapsed to V. After collapsing edge UV to V, the cost of V’s one-

ring neighbors should be re-evaluated and the priority queue should be updated accordingly.

For efficiency consideration, one can postpone the evaluation until necessary. It is called lazy

evaluation, proposed in [13], in which the cost of a directional edge in the priority queue is not

re-evaluated until it is popped from the priority queue with a TRUE lazy flag set at the time

one of its neighbors was collapsed. The lazy evaluation scheme has been reported to reduces

the number of edge cost evaluation to about a factor of 3.2 [14] with only a little sacrifice in

accuracy.

2.2.3 Error metric

The sequence of edge collapses for producing progressive meshes must be chosen carefully

since it determines the quality of the approximating mesh M
i, for 0 ≤ i < n. Figure 2.4 shows

the plot for the accuracy of simplified meshes in different polygon counts. A good simplification

algorithm is expected to produce meshes that have a curve close to the optimal curve in dashed

line.

Figure 2.4: The accuracy vs. mesh size plot results from a mesh simplification [35].

However, it has been proven that finding the optimal edge collapse sequence is NP-hard for both

convex polytopes [20] and polyhedral terrains [1]. Many greedy approaches have been proposed

to approximate the optimal solution as much as possible by using priority queue strategy and a

good error metric to guide the mesh simplification.

10

The simplest error metric is the vertex-to-plane distance. If the equation of a given plane p is

represented by

p =

[

a b c d

]T

and the position of vertex V is

V =

[

x y z 1

]T

,

then the vertex-to-plane distance is

VT p = ax+by+ cz+d.

The squared vertex-to-plane distance is then derived as

(VT p)2 = (VT p)(pT V) = VT (ppT)V = VT KpV,

where

Kp = ppT =





















a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2





















.

The sum of squared distance from vertex V to a set of planes P is then

∑
p∈P

VT KpV = VT (∑
p∈P

Kp)V.

Garland and Heckbert [29] introduced the quadric error metric (QEM) for measuring vertex-to-

plane distance and provided a scheme to compute the total vertex-to-plane error For a vertex U,

we store the matrix QU that is the sum of Kp over all one-ring neighboring planes P of U, i.e.,

QU = ∑
p∈P

Kp,

where P is the set of planes neighboring to U. The vertex-to-plane error for a vertex V to the

11

set of planes P is simply defined as

VT QUV.

When applying a full-edge collapse UV ecol−→ V′, the plane sets of vertices U and V are propa-

gated to the collapsed vertex V′ and in consequence

QV′ = QV +QU.

If the set of one-ring neighboring planes of U and V are disjoint, the plane set propagation is

equivalent to a union. Otherwise, each overlapped plane is counted multiple times. In fact,

a plane is counted at most three times since it contributes only to the vertices of its defining

triangle. QEM has a problem that we gets different squared distance under different triangula-

tions. In general, densely tesselated mesh gets larger squared distance than sparsely tesselated

one. This may be a problem for the mesh that has different tessellation densities from region to

region.

In addition to geometric error, human eye may be more sensitive on other attributes, such as col-

ors, normals, textures, and etc. Garland and Heckbert extended their previous work to meshes

with attributes by extending the quadric error metric from 3D to higher dimensions [30]. For

the case of a mesh with a texture map, the dimension of Q is five, two for additional s and t

coordinates. However, the Cartesian distance in geometry space may not be equivalent to the

distance in texture coordinate space.

While it is easy to compute the vertex-to-plane distance, the surface-to-surface distance is more

likely to be able to reveal the true error introduced in mesh simplification. Bajaj and Schikore [3]

proposed a method to evaluate surface-to-surface error. Both of the one-ring neighboring edges

of V′ (on M
i−1) and the one-ring neighboring faces of UV (on M

i) are mapped to a projection

plane using a planar projection. The projection plane is the average plane of the one-ring neigh-

boring faces of V. To have a less distorted mapping, the proportion of the projected edge length

is constrained to be preserved in the mapping. It is shown that the maximum surface-to-surface

in the local region is at one of the intersections of the projected one-ring neighboring edges of

12

V′ and UV. Therefore, finding the maximum surface-to-surface error amounts to finding the

maximum among these intersections. The problem of this approach is that a valid projection

may not always exist.

Cohen et al. [13] proposed a more robust method to find a valid projection for an edge col-

lapse. Their descendent work [15] uses a global parameterization as the bijective (1-to-1 and

onto) mapping between the one-ring neighboring faces of UV and the one-ring neighboring

faces of V′. It is assumed that the input is a mesh with parameterized texture maps. Since the

parametrization is a bijective mapping function

F (X) = x,

where X is a 3D position and x is its corresponding parameter in 2D, it can be used to define

point correspondence before and after collapsing an edge. Note that, an edge is in general col-

lapsed to a new vertex and, moreover, the mapping between 2D parameter and 3D surface point

will be changed after an edge collapse since such a mapping is derived by the interpolation of

triangle’s vertices. In consequence, the bijective mapping F varies while mesh M
i is simpli-

fied to M
i−1, i = n, . . . ,1. For two consecutive levels of mesh, M

i and M
i−1, an incremental

mapping-based error metric called APS is defined as the distance between two points, one on

M
i and another on M

i−1, that are mapped to the same parameter in 2D domain. That is, APS is

eincr(x) = ‖F−1
i (x)−F

−1
i−1(x)‖. (2.1)

from Fi to Fi−1. The total mapping error (distance) of a parametric point x can be defined as

etotal(x) = ‖F−1
n (x)−F

−1
i (x)‖. (2.2)

However, finding F−1
n (x) is not a trivial task. Cohen et al. proposed a evaluation scheme for

total error. Incremental error is propagated and accumulated using the per-face bounding boxes

(Figure 2.5). Although the error metric APS is geometric in natural, its projected screen distance

13

can be viewed as a measurement for the so called texture deviation. Such an extension implies

that APS takes into account not only geometric error but also texture deviation. One problem

about APS is that it relies on the mapping provided by the parameterized texture map and hence

its performance usually depends on how well the parameterization is.

Figure 2.5: Incremental error is propagated onto per-face bounding box for the total error eval-
uation [14, 15].

Lindstrom and Turk [42] proposed an image-based approach to measure the error introduced

in mesh simplification. The mean squared error of the difference between the images of the

original model and images of the simplified model is computed for a set of views. Since images

are taken into consideration, this image-driven simplification performs better than others in

preserving the texture content.

2.2.4 Incremental vs. total error metric

Although authors of [41] claimed and demonstrated that their incremental and memory-less

error metric can still output measurably good approximations, one may still need a total error

metric for error bounded simplifications needed for some applications such as medical and

scientific applications. Using the incremental error metric makes no guarantee on the error

bound between the simplified mesh and the original mesh, and may result in serious problems

in some applications.

14

On the other hand, the evaluation of the total error usually requires to maintain some infor-

mation of the original mesh throughout the mesh simplification process and therefore is more

computationally expensive than the evaluation of an incremental error.

2.2.5 Vertex-to-plane vs. surface-to-surface error

Again, surface-to-surface distance may reveal more truth than the vertex-to-plane distance for

mesh simplification. In additional to mapping-based error metric, the Hausdorff distance can

also be used to measure surface-to-surface distance. The Hausdorff distance is a distance be-

tween two point sets, said A and B, and is defined as

H(A,B) = max(h(A,B),h(B,A)),

where

h(A,B) = max
a∈A

min
b∈B

‖a−b‖.

Note that, h(A,B) 6= h(B,A). Since surface is a type of continuous point set, the Hasudorff dis-

tance is adopted by many error measuring tools to measure the surface-to-surface distance. For

example, Metro [9] measures the Hausdorff distance between two surfaces by using sampling.

2.2.6 Texture distortion

Using texture maps is the most practical and the simplest way to recover surface details for

simplified meshes. Moreover, texture mapping has a direct support from graphics hardware that

lets it be a standard in real time rendering applications. However, we often observe texture dis-

tortion in mapping textures to simplified meshes. Following is a brief review of the approaches

that have been proposed to minimize such texture distortion.

To associated attributes with vertices of a mesh surface requires a bijective mapping that is

usually derived by the parameterization [26, 27, 37, 47, 48].

15

Cignoni et al. [8] presented a method to preserve surface attributes in texture maps for each

level of detail. Requiring one texture map dedicated for each level of detail, however, implies

the need for large storage space and long processing time. APS [15] uses a texture deviation

error metric to measure the distance between two points on two consecutive levels and cor-

respond to the same texture value. Sander et al. [48] proposed a mesh papameterization that

takes into account the geometry and texture stretch as well as texture deviation introduced by

edge collapses. The texture map derived from such a parameterization is then shared by the

entire PM sequence. Kim and Wohn [38] proposed a method to minimize texture distortion by

generating a texture map that can be mapped to all levels of detail in a pre-processing stage.

A distortion metric is then used to guide the mesh simplification. Sander et al. [47] proposed

a signal-specialized parameterization to minimize texture stretch of the parameterization by al-

locating more texture samples to areas of higher signal frequency. Khodakovsky et al. [37]

proposed a globally smooth parameterization with low distortion. Xu et al. [57] proposed a tex-

ture information driven simplification in which texture image frequency distribution and texture

mapping distortion energy are combined to evaluate the simplification error.

Several papers have been proposed to minimize texture distortion problem in a coarse-to-fine

process. Eckstein et al. [25] proposed a coarse-to-fine optimization to generate a proper texture

coordinate for the newly refined vertex to support texture mapping multi-resolution meshes. It

always guarantees a solution by adding Steiner vertices. Zhou et al. [61] proposed a technique

called TextureMontage to seamlessly map multiple texture images onto an arbitrary 3D model.

One part of their work is to derive texture coordinates through optimization for all the vertices

of the original mesh from the coarse texture coordinate assignments on the base mesh. Both

texture stretch and texture color continuity are taken into account in this process.

However, all the existing approaches only minimize the texture distortion, they do not solve the

problem from the sources. In addition to the geometric error introduced in mesh simplification,

we found that the nature of the linear interpolation in hardware texture mapping is the major

source of texture distortion. We will address the problem in depth in Chapter 3.

16

2.3 Visibility Culling

For very complex scenes, visibility culling is another commonly used technique to further re-

duce the number of polygons sent to the rendering pipeline. Visibility culling, as we have been

doing in the traditional rendering pipeline, falls into two categories. The first is the back face

culling, aiming to perform the culling using the polygon clusters or its hierarchy. Kumar et al.

proposed a sub-linear algorithm for hierarchical back-facing culling [39]. Zhang et al. improved

the sub-linear algorithm by introducing normal mask which reduces the per polygon back-face

test to only one logical AND operation [58].

The second category is the occlusion culling, aiming to cull away the polygons occluded by

other objects. Occlusion culling can be done in processing or at run time. Shadow frusta [36],

hierarchical Z-buffer [33], and hierarchical occlusion map [59] are popular run-time occlusion

culling techniques. To avoid the inevitable run-time overhead, several region-based conservative

occlusion culling methods aiming to derive the so called potentially visible set of polygons have

been proposed. Cohen-Or et al. [16] proposed a preprocessing algorithm for regional occlusion

culling, but its performance depends heavily on a single strong occluder. Durand et al. [24]

proposed extended projection operations and Schaufler et al. [49] proposed blocker extension to

handle occluder fusion for multiple occluders.

2.4 Hybrid Rendering

Geometry-based rendering based on LOD modeling and visibility culling alone usually still

cannot meet interactive requirement for very complex scenes. Image-based rendering (IBR)

has been a well-known alternative. IBR takes parallax into account, and renders a scene realis-

tically by interpolating neighboring reference views [5,6,44,52]. IBR is usually efficient since

its computation cost is independent of the scene complexity. It is, however, often constrained

by the limited viewing degree of freedom, and the problems including folding, gap, and hole.

LDI [54] is a good try to eliminate hole problems due to the visibility changes. LDI structure

17

is more compact in the sense that redundant information has been reduced when several neigh-

boring reference images are composed into a single LDI. However, splatting is necessary in the

rendering to reduce to the gap problem. Lumigraph [32] and light field rendering [40] have

been proposed to reduce the 7D plenoptic function to a 4D function for static scenes. However,

both methods require large amount of storage for the extremely large number of images.

Hybrid rendering is basically a geometry-based rendering that integrates IBR techniques, aim-

ing to replace the rendering of geometry for certain scene regions or objects by the rendering of

pre-generated or cached images. In the following subsections, we describe four types of hybrid

rendering.

2.4.1 Region-based sprite

Image caching proposed in [50, 53] combines geometry-based rendering and IBR, aiming to

achieve an interactive frame rate for complex static scenes. The images of subdivided regions

are cached as planar sprites and are rendered in a back-to-front order using texture mapping. The

cached planar sprite needs to be updated if its parallax error exceeds a user-specified tolerance.

The cached texture possesses no depth and, in turns, limits its life cycle.

2.4.2 Environment-based mesh

The life cycle of the cached sprite can be longer if the so called depth mesh is used instead of

images as proposed in [18,19,55]. The depth mesh of a region or a background is derived from

the captured depth images by first triangulating the image’s pixel space using depth and then

re-projecting the 2D triangulation into the object space to represent the background or distant

scene. Such depth meshes are then rendered via pipeline. In such approaches, folding problems

and gaps resulting from the resolution changes can be eliminated; however, the hole problems

due to occlusion among objects and self-occluding still remain. Moreover, disjointed objects

18

might be rendered as a connected object. Geometric accuracy might be a problem when re-

projecting the 2D triangulation back to 3D space since depth meshes derived from the depth

images are in pixel resolution. While objects near to depth meshes are normally represented

as original geometry or LOD models, image popping due to the representation transition may

occur.

In [23], Decoret et al. proposed multi-layered impostors to constrain visibility artifacts between

objects to a given size, and a dynamic update scheme to improve the gap due to the resolution

mismatch. However, it still encounters hole problems due to self occlusion, and requires a

special hardware architecture for an efficient dynamic updated. In [2], an interactive massive

model rendering system using geometric and image-based acceleration is proposed, in which

distant objects are represented by textured depth meshes and near objects by LOD models. The

method proposed in [60] integrates LOD and visibility computation and is suitable for scenes

with high-depth complexity and very dynamic scene.

2.4.3 Object-based Textured LOD mesh

Shade et al. [54] described a paradigm in which objects could be represented by environment

map, planar sprite, sprite with depth, layered depth image (LDI), and polygonal mesh, depend-

ing on their distances to the viewer. The objects are rendered differently, but with different

image qualities. In consequence, the transition between different representations may produce

noticeable popping effects, especially for the transition between an image-based primitive and

a geometry-based primitive.

19

Chapter 3

Texture Adaptation for Progressive

Meshes

3.1 Introduction

Mesh simplification has been an active area of research in real-time graphics. The ultimate goal

of mesh simplification is to generate a simplified mesh of low polygon count that preserves the

fidelity of the original mesh. Texture mapping has been very useful in enhancing shaded images

with more surface or color details. For a given mesh and its associated texture map, there are

several possibilities of applying the texture map to the simplified meshes. One way is to have

a texture map for each simplified mesh, which requires more artist work on texture design and

more storage, especially for progressive meshes (PM). A more practical way is to have the entire

PM sequence share a common texture map; however, when applying texture mapping to PMs,

serious texture distortions are often observed. To reduce texture distortion, several schemes

have been proposed. One is to consider texture deviation as an error metric, implying that edge

collapses with higher texture deviation are more likely to be retained. This, however, cannot

prevent texture distortion introduced by edge collapses that have been performed. In addition

to using the metric of texture deviation, the texture map can be derived by using appropriate

20

parameterizations that take into account the minimization of geometry and texture stretch, as

well as the texture deviation introduced by edge collapses. It is observed that even with a

very well parameterized texture map, the texture mapped PM still reveals significant texture

distortion due to geometry changes and the nature of linear interpolation employed by texture

mapping hardware.

Let’s consider the 2D case shown in Figure 3.1, where edges AC and BC are simplified to AB.

At the bottom, T is the texture map on which A maps to 0, B maps to 1, and C maps to 0.3. On

the textured image of AB, we see the blue color shares a portion of AB that is much smaller than

expected. Figure 3.2 shows a planar polygonal mesh M = M
2 and the texture map T associated

with it. The textured images of simplified meshes M
1 and M

0 reveal serious texture distortion,

as shown in the bottom row of the figure. In this example, geometry remains the same, but the

nature of linear interpolation for texture mapping affects the textured image. Essentially, the

texture coordinate within a triangle is piecewise linear but is no longer linear when crossing

edges of the triangle. Such texture distortion has been routinely observed for texture mapping

PMs using any existing technique.

PSfrag replacements

A B

C

T

0 10.3

Figure 3.1: Texture distortion introduced by geometry simplification.

We present a novel, simple, and efficient approach that adapts texture content for each edge

collapse, aiming to effectively eliminate the texture distortion introduced by geometry changes

and the nature of linear interpolation employed by texture mapping hardware. The texture

adaptation applied for each edge collapse is local to the region affected by the edge collapse

and is applied to the adapted texture resulting from the previous edge collapse. The texture

21

PSfrag replacements

M
2 = M M

1
M

0T TT

Figure 3.2: Texture distortion introduced by edge collapses.

adaptation is invertible, that is, the backward texture adaptation can be performed for a vertex

split. Both texture adaptation and backward texture adaptation can be fully supported by texture

mapping hardware. Once the necessary correspondence in the partition of texture space is built

during the course of PM construction, the texture adaptation or its inverse can be applied on

the fly before rendering the simplified or refined model with texture map. We have observed

that the proposed texture adaptation is capable of eliminating texture distortion in a time that

is almost negligible. Figure 3.3 depicts that the textured images of M
1 and M

0 with texture

adaptation are indistinguishable from the textured image of the original mesh.

PSfrag replacements M
2 = M M

1
M

0T 2 = T T 1 T 0

Figure 3.3: Texture mapping progressive meshes with texture adaptation.

22

3.2 Texture Adaptation

3.2.1 Overview

For a given polygon model M with a texture map T , the texture adaptation locally and incre-

mentally adapts the texture map in the course of edge collapses that construct a PM of M. The

goal is to eliminate the texture distortion introduced by the edge collapses. For a PM sequence,

we then have a texture map T i associated with each reduced model M
i, that is,

M = M
n

T = T n

ecoln−1−→ ·· · ecol1−→
M

1

T 1

ecol0−→
M

0

T 0
.

The texture adaptation operation from T i to T i−1 is invertible, that is, for a T i−1 associated with

M
i−1, T i of M

i can be derived by doing the inverse of the texture adaptation that brings T i−1 to

T i, which we call backward texture adaptation. Consequently, for the sequence of vertex splits

from M
0, we have

M
0

T 0

vsplit0−→
M

1

T 1

vsplit1−→ ·· · vsplitn−1−→
M

n = M

T n = T
.

We will see that the texture adaptation and its inverse, backward texture adaptation, involve the

same operations, which can be done very efficiently by graphics hardware. And the texture

adaptation or its inverse is applied to texture map and is performed on the fly while the model

is simplified or refined, respectively.

For an edge collapse ecoli−1 that reduces M
i to M

i−1, the texture adaptation is local to the

region Ri−1 that is the neighborhood of the collapsed edge in texture space and is performed

incrementally from T i. Since the boundary of Ri−1 remains fixed, what the texture adaptation

does is basically find an appropriate texel of T i for each texel of T i−1, all in the region Ri−1.

We will see in the next subsection that the region Ri−1 can be respectively partitioned into the

same number of cells for T i and T i−1, and within each of these cells, the texture coordinates

are piecewise linear. The correspondence between texels of T i and T i−1 is then simplified to

23

the correspondence between cells of T i and T i−1. Once all pairs of corresponding cells are

found, the texture adaptation can be performed by hardware texture mapping the cell of T i to

the corresponding cell in T i−1. Since cell correspondence is identical for each texture adaptation

and its inverse, backward texture adaptation texture maps the cell of T i−1 to the corresponding

cell in T i.

Essentially, texture adaptation is a re-sampling process that might pose problems of under sam-

pling and introduce blurred artifacts. Indexing mapping is proposed to minimize these blurred

artifacts. Indexing mapping involves an additional texture map, called the indexing map, that

stores texture coordinates to the original texture map. During edge collapsing, texture adap-

tation is applied to this indexing map, leaving the original texture map alone. Only during

rendering, the original texture map is mapped to the model via texture coordinates derived from

the indexing map.

The cell partition and cell correspondence are derived while constructing the progressive meshes.

The cell partition and cell correspondence are stored along with the information for each edge

collapse and vertex split. In rendering the progressive meshes, the texture adaptation or back-

ward texture adaptation is performed on the fly while the model is simplified or refined, respec-

tively.

In the following sections, half-edge collapse is used in the illustration of the proposed method.

Extension to the full-edge collapse is straightforward.

3.2.2 Cell correspondence between two consecutive levels

For a given mesh M, its texture map T is obtained by parameterizing M onto the texture plane.

The parameterization of M is a one-to-one mapping F that maps each vertex V of M to a point v

on the texture plane. For a PM using half-edge collapse, the parameterization of M
i is a subset

of that for M. Figure 3.4 depicts the mapping of the neighborhood of an edge UV on the texture

plane, before and after UV is collapsed.

24

PSfrag replacements

M
i

M
i−1

U
VV

u

v

F i F i−1

T
Ri−1

ecoli−1

Figure 3.4: Mesh parameterizations before and after an edge collapse.

When we overlay the edges in the region Ri−1 before and after edge collapse ecoli−1 that

reduces M
i to M

i−1, edges on the overlay may intersect each other and hence partition Ri−1 into

cells, as shown in Figure 3.6, where un intersects vw at a and another pair of edges intersect at

b and Ri−1 is partitioned into 9 cells. However, the two intersecting edges on the texture plane

are generally not coplanar in 3D space. Nevertheless, for each pair of intersecting edges we can

compute the pair of nearest points, one on an edge and one on another edge. Taking the mesh in

Figure 3.6 as an example, we compute the pair of the nearest points Ai and Ai−1, see Figure 3.5,

where Ai is on UN of M
i and Ai−1 on VW of M

i−1. The points Ai and Ai−1 can be derived by

minimizing the distance of points on the two edges, which amounts to solving the linear system







~u ·~u −~v ·~u

~u ·~v −~v ·~v













αi

αi−1






=







(V−U) ·~u

(V−U) ·~v






,

where

~u = N−U,

~v = W−V.

The solution of the above system is the pair of parameters αi and αi−1, 0 < αi,αi−1 < 1. The

texture coordinate of Ai, denoted as ai, is derived by interpolating u and n, while the texture

25

coordinate of Ai−1, denoted as ai−1, is derived by interpolating v and w, as follows:

ai = u + αi(n−u),

ai−1 = v + αi−1(w−v).
(3.1)

It is apparent that ai is generally not equal to ai−1. Note that v j represents the texture coordinate

of vertex V on M
j, for j = n, . . . ,1,0, and since every vertex V of M remains fixed in the course

of half-edge collapsing, v j remains the same for all V of M. Since U is collapsed to V, we need

to find its texture coordinate ui−1 on T i−1. First, we find the point Ui−1 on Mi−1 that is nearest

to U and identify the triangle containing Ui−1. Then we compute the barycentric coordinates of

Ui−1 with respect to the triangle and finally derive the texture coordinate ui−1 from the texture

coordinates of triangle vertices using the barycentric coordinates.PSfrag replacements

U

V N

W

Ai

Ai−1

Figure 3.5: The nearest pair of points Ai and Ai−1 of two edges, one edge UN is from level i
and another is from level i−1.

PSfrag replacements u

v

a

b

n

w

Figure 3.6: Edges overlay in the one-ring neighborhood of u (left), and the edges partition the
neighborhood into 9 cells (right).

After deriving ai, ai−1, bi, bi−1, and ui−1, we move a to ai and b to bi to form the partition

for M
i and, similarly, move a to ai−1, b to bi−1, and u to ui−1 to form the partition for M

i−1.

See Figure 3.7. Two cells in these two region partitions are said to be in correspondence if

they correspond to the same cell before moving the points a, b, and u to designated texture

coordinates. For example, 4aivn and 4ai−1vn are in correspondence.

26

PSfrag replacements

u ui−1

v v

w w

n n

ai ai−1

bi bi−1

ecoli−1

vspliti−1

Figure 3.7: Cell correspondence between partitions of T i (left) and T i−1 (right).

3.2.3 Texture adaptation

After cell correspondences for all cells in Ri−1 are found, the texture adaptation from T i to

T i−1 is performed for each pair of corresponding cells. To adapt the texture from cell 4aibici

of T i to cell 4ai−1bi−1ci−1 of T i−1, we let the former be the source texture, the latter be

the target polygon, and then apply hardware texture mapping. Similarly, for the backward

texture adaptation from T i−1 to T i, 4ai−1bi−1ci−1 is the source texture, and 4aibici is the

target polygon. Care must be taken to prevent the so called parametric folding in the process of

texture adaptation by ensuring that areas of both cells 4aibici and 4ai−1bi−1ci−1 are positive.

Note that, since we maintain all Ti, i = n, . . . ,1,0, in a single physical texture map, we need a

temporary map to support the texture adaptation.

It is worth mentioning that the texture adaptation for all pairs of corresponding cells can be

accelerated by using triangle-fan and triangle strip setups, as shown in Figure 3.8. Its cost

can be further minimized by packing triangle fans and strips into arrays and using draw array

commands, such as glDrawArrays() or glDrawElements(). Moreover, it can be run in parallel

with the edge collapse operation.

3.2.4 Indexing map

Texture adaptation is basically a re-sampling process of a texture map. When a texture area of

higher frequency gets adapted to a smaller texture area, blurred artifacts due to under-sampling

27

PSfrag replacements

uu

v
v

virtual edge

Figure 3.8: Accelerate texture adaptation by triangle-fan and triangle strip setups.

of texture samples might appear, as shown in Figure 3.9. To prevent such problems, we propose

the mechanism of indexing mapping that uses an indexing map I to store in each texel the

texture coordinate referring to the original texture map T . All the texture adaptation operations

are applied to the indexing map, leaving the original texture map alone. Initially, the indexing

map In for M
n stores in each texel the coordinate itself, that is, In(x,y) = (x+0.5

w , y+0.5
h), where

w× h is the resolution of the indexing map. For texture adaptation, we derive I i−1 from Ii in

the same way as we do for deriving T i−1 from T i, for i = n, . . . ,2,1, Figure 3.10 shows the

indexing map with each texel value s and t coordinates, which is visualized as red and green

color respectively.

Figure 3.9: Blurred artifacts introduced by texture adaptation (left) and minimized by indexing
mapping (right).

Figure 3.11 illustrates an example of indexing mapping. The surface M is texture mapped

with T . When M is simplified to M
′, T is adapted to T ′ and, in this example, the texels on

T are re-sampled to two texels on T ′. As a result, one gets a blurred textured image while

28

Figure 3.10: Each texel on indexing map is the texture coordinate referring to the texel on
original map.

texture mapping T ′ onto M
′. With the proposed indexing mapping, the texel values of I ′ are the

coordinates of T , and are used to access to the original texels on T . Therefore, blurred artifacts

are reduced.
PSfrag replacements

T

T T ′ I′

M M
′

M
′

Figure 3.11: Indexing mapping.

The use of indexing map is also advantageous when more than one texture map, such as a

combination of a color map, a normal map, and a bump map, see Figure 3.12, are associated

with the model since texture adaptation is applied to the indexing map only, leaving all the maps

untouched.

Indirect accessing of a texture map is not supported by graphics APIs such as OpenGL. For-

tunately, it can be implemented using the fragment shader. Another issue is the precision of

the indexing map. In our experience, a texture map of 16-bit precision is sufficient to deliver

acceptable image quality and performance for texture adaptation. See the example shown in

Figure 3.13.

29

Figure 3.12: Use one single indexing map to access to all the original maps.

Figure 3.13: Performance difference of indexing map in 8-bit (center) and 16-bit (left) precision.

3.3 Experimental Results

In our experiments, we used a Pentium4 3.0Ghz platform with an nVIDIA GeForce 6800GT

graphics card. All test models are using a 1024×1024 16-bit floating indexing map.

We use the render-to-texture feature to avoid transferring texture maps between graphics hard-

ware and the host CPU. In our experiments, we observed that the render-to-texture setup is

the most expensive operation in texture adaptation even with the help of framebuffer objects

(FBOs). To minimize the setup cost, we simply collect texture adaptations that are applied to

disjoint regions and perform adaptations together. When we simplify the model from M j to Mi,

where j > i, we start with the set COLLECTION containing only the texture adaptation from

T j to T j−1 and the set R = {R j}. We then check, in the sequence of k = j−1, . . . , i+1, to see if

30

Rk overlays with any element of R. If not, Rk is inserted into R and the texture adaptation from

T k to T k−1 is put into COLLECTION. After doing this cycle, we perform all the texture adapta-

tions collected in COLLECTION with one common setup. We repeatedly perform the packing

of texture adaptations until all the texture adaptations are done. A similar approach is applied to

the refinement process. We have observed that 13.73 and 20.20 texture adaptations on average

are packed to share a common setup for the parasaur head and bunny head, respectively, and

such a simple approach achieves about a 13.66× speedup factor for the parasaur head model

and 17.51× for bunny head model, as depicted in Table 3.1, and the entire run-time cost is also

listed in Table 3.2. Moreover, the setup can be further shared among objects in an environment

with multiple objects.

Table 3.1: Speedup by packing texture adaptations.
w/o packing w/ packing

original simplified # of avg. # of texture avg.
model model texture time # of adaptations time speedup

model (polygons) (polygons) adaptations (ms) packs per pack (ms) factor

parasaur head 7,835 499 3,611 0.7581 263 13.73 0.0555 13.66×
bunny head 17,483 500 8,545 0.7616 423 20.20 0.0435 17.51×

Table 3.2: The entire run-time cost of simplifying PM w/ and w/o texture adaptation.
run-time cost (ms)

original model simplified model w/o texture w/ texture
model (polygons) (polygons) adaptation adaptation

parasaur head 7,835 499 52.99 253.42
bunny head 17,483 500 137.16 508.87

Experimental tests have been done on several models. For PM construction, a quadric error met-

ric (QEM) of five dimensions [30] is applied to all tested models. Figure 3.14 demonstrates the

power of texture adaptation on the parasaur head at bottom row. A comparison with QEM of 5D

without texture adaptation and APS [15] without texture adaptation is shown at top and middle

row, respectively. The texture map for the parasaur head is derived using signal-specialized pa-

rameterization [47]. Texture distortion becomes noticeable when the mesh is simplified to 2000

polygons and becomes obvious for meshes of 1000 and 499 polygons. We have observed that

texture distortion is almost eliminated by texture adaptation even in the textured image of the

31

simplified model with 499 polygons. A normal mapped parasaur head is also greatly improved

by texture adaptation in Figure 3.15.

The horse model shown in Figures 3.16 is parameterized by geometric-stretch-minimizing pa-

rameterization [48]. Texture distortion is perceivable in the simplified meshes and is almost

eliminated by using texture adaptation.

Figure 3.17 depicts the performance of texture adaptation on a bunny head model with color

map parameterized by geometric-stretch-minimizing parameterization. The bottom row shows

the parameterization and texture map. The texture distortion is visualized by texture mapping

the check board onto the model. For the textured image without texture adaptation, texture

distortion is apparent inside the enlarged image. On the other hand, texture distortion is not

noticeable in the textured image with texture adaptation.

Our last tested model is a swirl model represented by swirled texture coordinates on a curved

surface. Texture distortion is also perceived on the simplified swirl model. See Figure 3.18.

The swirl lines get straightened on the simplified mesh but are well preserved by using texture

adaptation.

3.3.1 Preprocessing time

Table 3.3 depicts the preprocessing time for constructing the entire PM sequence for the test

models w/o and w/ texture adaptation. The PM construction w/ texture adaptation requires

additional time for computing the correspondences and performing the texture adaptation oper-

ations, and it can be done in a few seconds.

3.3.2 Reversibility

Although the texture adaptation is theoretically an invertible operation, it is, in practice, applied

to the texture map of discrete texels. Repeatedly applying texture adaptation and its inverse

32

(a) Original (7685 polygons) (b) 2000 polygons

(c) 1000 polygons (d) 499 polygons

Figure 3.14: Textured images of parasaur head model. Top row of (b),(c),(d): simplified by
QEM of 5D without texture adaptation, middle row: by APS without texture adaptation, bottom
row: by QEM of 5D with texture adaptation.

33

Figure 3.15: Normal mapped parasaur head. left: 7685 polygons, center: 499 polygons, and
right: 499 polygons with texture adaptation.

Figure 3.16: Textured images of horse model. Left: original model of 8160 polygons with pa-
rameterized texture map, center: simplified model of 800 polygons without texture adaptation,
right: simplified model of 800 polygons with texture adaptation.

Table 3.3: The preprocessing time for constructing the entire PM sequence of the test models.
preprocessing time (ms)

original model simplified model w/o texture w/ texture
model (polygons) (polygons) adaptation adaptation

parasaur head 7,835 499 655.23 1,263.73
zebra 8,160 800 679.19 1,189.21
bunny head 17,483 500 1,629.11 4,120.62
swirled mesh 7,688 399 690.96 8,066.98

34

Figure 3.17: Left: original model of 17483 polygons, center: simplified model of 500 polygons
without texture adaptation, right: simplified model of 500 polygons with texture adaptation.

Figure 3.18: From left to right, mesh with swirled texture coordinates and its color texture map,
original mesh (7688 polygons), simplified mesh (399 polygons), and the same simplified mesh
with texture adaptation.

35

many times may introduce artifacts.

In our experiment, we have found that only very small and unnoticeable artifacts exist in images

resulting from several runs of fine-to-coarse simplification and coarse-to-fine refinement. Fig-

ure 3.19 shows the original mesh on top, and in the bottom the mesh results from three iterations

of both fine-to-coarse simplification and coarse-to-fine refinement.

(a)

(b)

Figure 3.19: (a) The top image is the original mesh, and the bottom image is the mesh that has
been applied three iterations of both fine-to-coarse and coarse-to-fine transformation with the
texture adaptation. (b) The zoomed images, on the left is the original mesh and on the right is
the resulting mesh.

36

3.3.3 Multiple charts

It is usually impossible to parameterize a whole model to 2D domain using available parameter-

ization technique. Meshes are often subdivided into multiple charts in order to derive disk-like

patches or to have patches with smaller parameterization stretch. The proposed texture adapta-

tion is a local operation within the same texture map. In consequence, current implementation

limits texture adaptation within a texture map. Moreover, a vertex on the chart boundary is

constrained to be merged to other vertices on the same chart boundary. Otherwise, there will be

some artifacts of texture distortion around the boundary. One possible approach to reduce such

texture distortion around chart boundaries is to straighten the chart boundaries, as done by the

method used in [48].

37

Chapter 4

A New Mapping-Based Error Metric

4.1 Introduction

As mentioned in previous chapters, the parameterization of most meshes inevitably introduces

geometric stretch. Such geometric stretch not only results in texture distortion in mapping

textures to simplified meshes but also leads to incorrect evaluation for mapping-based error

metric such as APS [15].

APS defines the texture deviation through the mapping defined by the texture map, which is

essentially a result of mesh parameterization. For an edge collapse, each point on the neighbor-

hood of the collapsed edge is mapped to a point on the simplified mesh through texture map.

That is, for each texture parameter x, as in the Equation 2.1, the texture deviation of x is de-

fined as the distance between such two points that are in correspondence through x. While APS

successfully measures the deviation of texture mapping, it leads to texture distortion in map-

ping textures to the simplified meshes and, moreover, fails to provide an accurate measurement

for geometry error introduced in the edge collapse. One way to reduce the distortion of mesh

parameterization is to dissect the given mesh into multiple charts and parameterize each chart

with less distortion. However, the charting strategy imposes several constraints in mesh simpli-

fication. For example, vertices on the chart boundary can only be collapsed to the vertices on

38

the boundary and the chart corners must be preserved.

In the last chapter, we have proposed texture adaptation approach to successfully eliminate the

texture distortion in mapping textures to simplified meshes. The next meaningful and important

goal would be the search of a better geometric error metric for simplifying textured meshes. Our

motivation is to reduce the impact of the geometric stretch introduced in mesh parameterization

and provide a meaningful geometric error metric which is far more accurate than APS, even

QEM. In this chapter, we describe a mapping-based error metric, which is a variant of APS and

based on the texture adaptation approach proposed in the previous chapter. Methods for both

maximum error and average error, and incremental error and total error will be described.

4.2 A New Mapping-Based Error Metric

Recall that, in the framework of texture distortion, we partition the texture domain correspond-

ing to the 1-ring neighborhood of the collapsed vertex into cells. The cell partition for domains

before and after the edge collapse forms an one-to-one correspondence between cells. Texture

adaptation is then performed for each pair of corresponding cells.

Let’s consider the half edge collapse U
ecoli−1−→ V that simplifies the mesh from M

i to M
i−1.

Let Ri and Ri−1 denote the 1-ring neighborhoods of the collapsed vertex U, and F
−1
i and

F
−1
i−1 represent the mapping from texture domain to 3D space, for the mesh before and after

edge collapse, respectively. Note that for a texture coordinate x in R
′
i , the texture domain

corresponding to Ri, APS defines the incremental texture deviation as

texture deviationincr(x) = ‖F−1
i (x)−F

−1
i−1(x)‖. (4.1)

Based on the texture adaptation scheme, a texture coordinate xi in the texture domain R
′
i ac-

tually corresponds to the texture coordinate xi−1 in the texture domain R
′
i−1; see Figure 4.1.

Such a correspondence is established via the cell correspondence, in which a cell in R
′
i maps

39

uniquely to a cell in R
′
i−1, and the interpolation involved in copying the texture content from

the cell to the corresponding cell. Using such an indirect mapping, we define a new incremental

error metric as follows:

eincr(xi) = ‖F−1
i (xi)−F

−1
i−1(xi−1)‖, (4.2)

where xi is the point with Barycentric coordinate (αi,βi) in celli and xi−1 is the point in celli−1

that has the same Barycentric coordinate (αi,βi) as xi, and celli and celli−1 are cells in corre-

spondence.

PSfrag replacements

M
i

M
i−1

Ri
Ri−1

u

R
′
i

R
′
i−1

xi xi−1

F
−1
i F

−1
i−1

ecoli−1

in correspondence

Figure 4.1: The correspondence of xi and xi−1 is established via the cell correspondence.

4.2.1 Maximum error

To evaluate simplification error for an edge collapse U
ecoli−1−→ V, we have two choices: maximum

error vs. average error. The maximum error is advantageous when a guaranteed error bound is

expected for some applications such as medical and scientific visualization. On the other hand,

the average error indicates the error across the entire meshes. The maximum error of the new

40

incremental error metric can be defined as

max
xi∈R

′
i

eincr(xi) = max
xi∈R

′
i

‖F−1
i (xi)−F

−1
i−1(xi−1)‖. (4.3)

Since for each pair of corresponding cells celli and celli−1, the value of eincr(xi) varies linearly

across the celli, its maximum locate on the corners of the cell. In consequence, maxxi∈R
′
i
eincr(xi)

will happen at the corners of all cells in R
′
i . Recall that the cells are derived by computing the

nearest points of two edges, one from M
i and another from Mi−1, that intersect on the texture

domain. Let Si denote the set of the collapsed vertex Ui and Ai for all pairs of the nearest points

(Ai,Ai−1) and S
′

i denote the set of ai and ui, where Ai = F
−1
i (ai) and Ui = F

−1
i (ui), for ai

and ui in Si. Consequently, we can rewrite maxxi∈R
′
i
eincr(xi) as

max
xi∈R

′
i

eincr(xi) = max
ai∈S

′
i

‖F−1
i (ai)−F

−1
i−1(ai−1)‖

= max
Ai∈Si

‖Ai −Ai−1‖.
(4.4)

The total error of the new error metric can be evaluated by propagating the incremental error

using per face bounding box approach proposed in [15].

4.2.2 Average error

To evaluate the average error, a scheme is required to sample the texture domain R
′
i and average

the derived error. To derive the corresponding texels xi and xi−1 for evaluating eincr(xi), texture

adaptation has to be performed and hence indexing map is required. In the following, we

describe how to compute eincr(xi) using indexing map. Recall that the indexing map is initially

assigned the texture coordinates of the texture map, i.e.,

In(xn) = xn,

41

where xn is the texture coordinate, which implies that the indexing map inherits the 2D to 3D

mapping imposed on the original texture maps. In consequence, the incremental error metric

remains the same as before.

In the course of texture adaptation, only the content of the indexing map is updated, leaving

the original texture maps untouched. Hence, after a sequence of texture adaptations, the value

stored in each texel xi of Ii refers to the texture coordinate in the original map that represents

the source of xi, i.e.,

Ii(xi) = xn,

where xn is adapted to xi by a sequence of texture adaptations In → In−1 → ·· · → Ii; as shown

in Figure 4.2. This property enables an effective way for the evaluation of total average error,

expressed as follows:

etotal(xi) = ‖F−1
n (xn)−F

−1
i (xi)‖

= ‖F−1
n (Ii(xi))−F

−1
i (xi)‖,

where xn is the corresponding point of xi in the original texture map. Note that, without indexing

map, finding xn for each xi may require a complicated backtracking process.
PSfrag replacements

In In−1 Ii+1 Ii

.........
xn xn−1

xi+1 xi

Figure 4.2: xn is adapted to xi by a sequence of texture adaptations In → In−1 → ·· · → Ii.

4.3 Experimental Results

We use the proposed error metric to measure the total surface-to-surface maximum error intro-

duced in mesh simplification in the following tests. The tested models are the parasaur head

42

model with 7685 polygons, the bunny head model with 17483 polygons, and the zebra model

with 8160 polygons. The test platform is a Pentium4 in 3.0Ghz with 2GB main memory and a

graphics card of nVIDIA GeForce 6800GT with 256MB video memory. We first simplify the

models without texture adaptation by QEM, APS and the new error metric, then simplify the

models with texture adaptation by QEM, APS and the new error metric.

To evaluate the geometric error, all original models are normalized to fit into a unit cube and the

geometric error is evaluated by the tool Metro [9]. The tool Metro, which is publicly available

on the internet, not only computes and stores Hausdorff distance as per-vertex pseudo color for

visualizing the mesh quality and reports histogram of error distribution, but also provides us

a fair comparison to the existing error metrics, such as QEM [30] and APS [15]. The version

of Metro we used for the following tests is V4.0.6, and the parameter for Metro is “-c -C 0.00

0.03 -s1 -u -n1000000”, i.e., the range for visualizing the geometric error is 0.00 ∼ 0.03 (color

blue means larger geometric error, red means in-between, and green means the error is close to

zero).

We firstly compare the proposed error metric to QEM in 3D and APS under mesh simplifica-

tion without texture adaptation. Figure 4.3 plots the max, mean, and RMS (from left to right)

geometric error measured by Metro, for parasaur head, bunny head, and as well as zebra model.

The new error metric is better than APS for max, mean, and RMS, and better than QEM under

max geometric error while reveal almost similar performance as QEM for mean and RMS. The

main reason is that QEM is a kind of average error metric while our new error metric mea-

sures the total surface-to-surface maximum error. The visualization of mesh quality is given in

Figure 4.4, Figure 4.5, and Figure 4.6.

Since texture mapping is essential to the visual appearance of a model, we then compare the

proposed error metric to both QEM in 5D and APS with texture adaptation applied, and the

results reported by Metro are presented in Figure 4.7. It appears that the proposed error metric

performs better than QEM and APS. Figure 4.8 depicts the error distribution of the simplified

mesh of parasaur head model in 500 polygons. It shows that, for larger errors, the proposed

43

0

0.01

0.02

0.03

0 500 1000 1500 2000 2500 3000 3500

of polygons

ge
om

et
ri

c
er

ro
r

(m
ax

)

QEM3D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0 500 1000 1500 2000 2500 3000 3500

of polygons

ge
om

et
ri

c
er

ro
r

(m
ea

n)

QEM3D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 500 1000 1500 2000 2500 3000 3500

of polygons

ge
om

et
ri

c
er

ro
r

(R
M

S)

QEM3D
APS
New metric

(a) parasaur head

0

0.005

0.01

0.015

0.02

0.025

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ax

)

QEM3D
APS
New metric

0

0.001

0.002

0.003

0.004

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ea

n)

QEM3D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

R
M

S)

QEM3D
APS
New metric

(b) bunny head

0

0.005

0.01

0.015

0.02

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ax

)

QEM3D
APS
New metric

0

0.0005

0.001

0.0015

0.002

0.0025

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ea

n)

QEM3D
APS
New metric

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

R
M

S)

QEM3D
APS
New metric

(c) zebra

Figure 4.3: The geometric error of simplified models without texture adaptation (measured by
Metro).

(a) QEM3D (b) APS (c) New error metric

Figure 4.4: The simplified parasaur head model without texture adaptation (polygon count:
7685 → 500) by QEM, APS and the new error metric.

44

(a) QEM3D (b) APS (c) New error metric

Figure 4.5: The simplified bunny head model without texture adaptation (polygon count:
17483 → 500) by QEM, APS and the new error metric.

(a) QEM3D (b) APS (c) New error metric

Figure 4.6: The simplified zebra model without texture adaptation (polygon count: 8160→ 800)
by QEM, APS and the new error metric.

45

new error metric has less percentage than QEM and APS. In addition, the visualization of mesh

quality for parasaur head, bunny head, and zebra model is given in Figure 4.9, Figure 4.10 and

4.11, respectively.

0

0.01

0.02

0.03

0.04

0 1000 2000 3000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ax

)

QEM5D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000

of polygons
ge

om
et

ri
c

er
ro

r (
m

ea
n)

QEM5D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 1000 2000 3000

of polygons

ge
om

et
ri

c
er

ro
r (

R
M

S)

QEM5D
APS
New metric

(a) parasaur head

0

0.005

0.01

0.015

0.02

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ax

)

QEM5D
APS
New metric

0

0.001

0.002

0.003

0.004

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ea

n)

QEM5D
APS
New metric

0

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000 6000 7000 8000

of polygons

ge
om

et
ri

c
er

ro
r (

R
M

S)

QEM5D
APS
New metric

(b) bunny head

0

0.005

0.01

0.015

0.02

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ax

)

QEM5D
APS
New metric

0

0.0005

0.001

0.0015

0.002

0.0025

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

m
ea

n)

QEM5D
APS
New metric

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 500 1000 1500 2000 2500 3000 3500 4000

of polygons

ge
om

et
ri

c
er

ro
r (

R
M

S)

QEM5D
APS
New metric

(c) zebra

Figure 4.7: The geometric error of the simplified models with texture adaptation (measured by
Metro).

The preprocessing time for constructing the PM sequence for the test models under different

error metric are depicts in Table 4.1 and Table 4.2, note that the new error metric has not yet

been optimized.

46

Forward

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.002 0.004 0.006 0.008 0.01 0.012

geometric error (max)

pe
rc

en
t (

%
)

QEM APS New metric

(a) Forward error histogram

Backward

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.002 0.004 0.006 0.008 0.01 0.012

geometric error (max)

pe
rc

en
t (

%
)

QEM APS New metric

(b) Backward error histogram

Figure 4.8: The error distribution (in percentage) of the simplified parasaur head with texture
adaptation, QEM: dark blue, APS: pink, and the new error metric: yellow.

(a) QEM5D (b) APS (c) New error metric

Figure 4.9: The simplified parasaur head model with texture adaptation (polygon count: 7685→
500) by QEM, APS and the new error metric.

Table 4.1: The preprocessing time for constructing the entire PM sequence w/o texture adapta-
tion under different error metrics.

preprocessing time (ms)

original model simplified model New error
model (polygons) (polygons) QEM3D APS metric

parasaur head 7,835 499 679.14 1,618.94 8,023.30
zebra 8,160 800 666.49 1,597.98 2,906.21
bunny head 17,483 500 1,557.19 4,087.67 39,814.59

47

(a) QEM5D (b) APS (c) New error metric

Figure 4.10: The simplified bunny head model with texture adaptation (polygon count:
17483 → 500) by QEM, APS and the new error metric.

(a) QEM5D (b) APS (c) New error metric

Figure 4.11: The simplified zebra model with texture adaptation (polygon count: 8160 → 800)
by QEM, APS and the new error metric.

Table 4.2: The preprocessing time for constructing the entire PM sequence w/ texture adaptation
under different error metrics.

preprocessing time (ms)

original model simplified model New error
model (polygons) (polygons) QEM5D APS metric

parasaur head 7,835 499 1,267.76 2,179.67 5,296.40
zebra 8,160 800 1,190.39 2,107.92 3,011.51
bunny head 17,483 500 4,262.25 6,322.57 41,720.19

48

Chapter 5

Hybrid Rendering Based on Viewcell

Dependent Textured LOD

5.1 Introduction

In order to achieve an immersive visual effect during the VR navigation, rendering with photo-

realistic scene images in high frame rate has been an ultimate goal of real-time rendering. In the

traditional geometry-based rendering, very complex scenes often consist of numerous polygons

that cannot be rendered at an acceptable frame rate even using a state-of-the-art hardware. Many

techniques have been proposed in last decades on reducing the polygon count while preserving

the visual realism of the complex scenes, including visibility culling, level-of-detail (LOD)

modeling, and image-based rendering (IBR). Although IBR is capable of rendering complex

scenes with photo-realistic images in the time that is independent of the scene complexity, it has

been suffered from the static lighting, the limited viewing degree of freedom, and some losses

of image quality due to gaps and holes. As a consequence, hybrid rendering that combines

geometry- and image-based technique has become a viable alternative.

As a representation for an object or a region of the scene, several image-based or hybrid rep-

resentations have been proposed. Shade et al. [54] described a paradigm in which regions

49

or objects could be represented by environment map, planar sprite, sprite with depth, layered

depth image (LDI), and polygonal mesh, depending on their distances to the viewer. Although

the scheme integrates several existing representations, each individual form has its own prob-

lems. For example, sprites in general have gap problem due to resolution mismatch, and have to

be re-computed once the viewer is outside the safe-region. LDI can only be drawn using soft-

ware rendering with splatting. Finally, transition between different representations may produce

noticeable popping effects.

To reduce gap problems due to resolution mismatch and to improve the efficiency of pixel-based

rendering, depth meshes are extracted from the sprite with depth based on depth variation. How-

ever, rubber-sheet artifacts between disjoint surfaces are often encountered, and re-projecting

pixel coordinates back to 3D coordinates may result in precision problems. The depth mesh

approach can be incorporated by space subdivision, in which, when navigating inside a cell,

distant objects are rendered using depth meshes with textures while near objects are rendered

by selected LOD models. With such approaches, the polygon count of a complex scene can be

still high and, most importantly, the transition between LOD and depth mesh with texture will

generally results in visually noticeable popping effects.

5.1.1 View-cell dependent Textured LOD Modeling

Another more uniform representation is LOD modeling, which can be incorporated with tex-

ture mapping for recovering surface details. Although most view-independent LOD techniques

claim their capability to preserve geometric shape, silhouette is explicitly preserved as part of

geometry. Moreover, view-independent LOD modeling has no control over the silhouette dur-

ing navigation. View-dependent LOD modeling, on the other hand, is able to preserve silhouette

through proper screen error test. However, it has to deal with silhouette problems at run-time by

maintaining a mesh of fine resolution along the silhouettes. Furthermore, view-dependent LOD

modeling has not been popular in real-time applications because it doesn’t fit well in the pipeline

rendering stream. Silhouette clipping that incorporates LOD modeling and normal/texture map

50

needs to extract fine silhouettes at run-time, which is in general time consuming.

An alternative to view-dependent and view-independent LOD modeling is the so called view-

cell dependent LOD modeling. View-cell dependent LOD modeling is basically a view-independent

LOD modeling but certain features of view-dependent LOD mideling are taken into account by

limiting the view within a view cell. For an object outside the view cell, polygons that are

back-facing to the cell are culled away and the remaining polygons are simplified using infor-

mation derived from the captured depth images viewed at the center of the view cell and its

adjacent cells. With such a mesh simplification, in addition to sharp edges and corners, interior

and exterior silhouette with respect to the cell can be well preserved. Moreover, at run time,

the view-cell dependent LOD models can be easily rendered by texture mapping the captured

images.

Differ to existing approaches, the representation of viewcell dependent textured LOD has the

potential to render closer object with smaller artifacts and provides a unified representation for

both nearby object and distant object. Nearby objects are represented by SVMesh or MVMesh

dependent on the self-occluding-error test for restricting the hole problem due to self occlusion,

while distant objects may be clustered together if clustered objects pass the self-occluding-

error test. Such clustering performs an implicit visibility culling as well as saves storage from

occluded cached images.

5.1.2 System overview

A hybrid rendering scheme that aims to render complex scenes in a constant and high frame

rate with only a little or an acceptable quality loss is presented in this chapter. To this end,

view space is partitioned into cells to explore the locality of visibility, and for a view cell, each

object outside the cell is represented by a LOD mesh together with textures that are derived

with respect to the view cell. All these are done in a preprocessing. In contrast with IBR

or depth mesh approach, the object-based LOD mesh derivation avoids hole problems due to

occlusion among objects. In the meantime, to reduce hole problems due to self-occluding,

51

the LOD mesh is classified into either single-view LOD mesh (termed as SVMesh) or multi-

view LOD mesh (termed as MVMesh), depending on the object’s self-occluding error (w.r.t.

the viewcell). The SVMesh is chosen if the object’s self-occluding error is smaller than a user-

specified tolerance, otherwise MVMesh is chosen. Such a condition on SVMesh ensures that

the potential holes possibly found in the images viewed from any point inside the cell will have

size less than the user-specified tolerance. Hence all the information necessary to guide the

derivation of SVMesh and the texture associated with the SVMesh come from the captured

image and captured depth image of the cell’s center. On the other hand, the MVMesh presents

geometry and texture necessary to avoid holes on images viewed from some points in the cell.

Therefore, the derivation of MVMesh and its texture associations are based on captured images

and depth images from the cell’s center as well as the centers of adjacent cells. In the proposed

scheme, prefetching is also implemented to preload the data necessary for the following cells

such that sudden drops in the frame rate at the cell transition can be avoided .

The proposed approach explores locality of visibility at the cost of extra storage and prefetching,

and makes a tradeoff between image quality and rendering efficiency by using the SVMesh and

MVMesh together with textures. Our experiments have shown that for a scene of 8 million

polygons we have achieved higher than 600 frames/s. with a little loss of image quality (average

PSNR 37.34dB). The polygons and textures require about 1260MB hard disk storage and about

287MB run-time memory on average. With such high frame rates, the overhead of prefetching

is hardly noticeable.

5.2 Hybrid Rendering Scheme

The proposed hybrid scheme consists of a preprocessing phase and a run-time phase. In the pre-

processing phase, the x-y plane of the given 3D scene is first partitioned into equal-sized hexag-

onal cells. Then for each cell, we derive object-based textured LOD meshes, called SVMesh or

MVMesh, for each object outside the cell. Note that with object-based LOD meshes, the holes

due to occlusion among objects can be avoided. Furthermore, substituting original meshes with

52

textured SVMeshes or MVMeshes allows us to make a tradeoff between image quality and

rendering efficiency. The SVMesh is a LOD mesh associated with the object whose potential

self-occluding error is within a user-specified tolerance. Such a constraint ensures that the po-

tential holes found in the image of an SVMesh viewed from any point inside the cell will have

size less than the user-specified tolerance. The MVMesh will be associated with objects who

fail to pass the self-occluding-error test. Before deriving SVMesh, those objects legitimate to

SVMesh are tested for a possible clustering operation. Such an operation clusters those objects

whose union is still legitimate to SVMesh and possesses a reduced texture size. After SVMesh

or MVMesh is derived for each object outside the cell, an optional cell-based occlusion culling

can be performed to further reduce the polygon count.

Both the SVMesh and MVMesh are derived from object’s original meshes, with emphasis on

preserving interior and exterior silhouettes. SVMesh is derived from polygons in original mesh

that are front-facing to the cell’s center while MVMesh comes from polygons that are front-

facing to the whole cell. Moreover, they also differ in how the vertex’s weights are derived for

mesh simplification using edge collapsing and how textures are associated with simplified poly-

gons. For SVMesh, the weight associated with each polygon vertex and the texture associated

with each simplified polygon are derived only from the object’s depth image viewed from the

cell’s center. On the other hand, for MVMesh, the derivation of vertex’s weight and polygon’s

textures also takes into account the depth images viewed from centers of nearby cells.

At run-time phase, window culling and view-frustum culling are performed for the whole scene,

followed by a back-facing culling for all objects inside the current navigation cell and a run-time

occlusion culling for all meshes. SVMeshes and MVMeshes with associated textures are then

texture mapped by hardware-accelerated projective texture mapping and meshes inside the cell

are rendered as normal. To reduce the overhead of loading data from secondary storage when

navigating across the cell boundary, a prefetching mechanism is applied to amortize the loading

to previous frames.

53

5.2.1 Preprocessing phase

The steps in the preprocessing phase are (see Figure 5.1):

1. Hexagonal spatial subdivision.

2. For each cell, for each object outside the cell:

(a) perform regional conservative back-face test;

(b) perform self-occluding-error test and select single-view LOD mesh (SVMesh) or

multi-view LOD mesh (MVMesh);

(c) derive SVMesh or MVMesh and texture(s) association;

(d) perform regional conservative back-face culling.

3. (Optional) Perform regional conservative occlusion culling.

���������
	��
��������� ������
��	����
�
���

����� ���"!���#�$��%�&#���'	(�

)+*�,$���"�-	��
���.�/���%��0�#12�����/�43
)+�$�'�5����&��	�*�,$���#�
�76%8�'��12���
�'�

9:���;�'	��;&���*8&���<8���&��
���;�+�=���4�

>?� ���4�=�������;�

���������"!�;�#����%�&#�
�@	(�

9:���;�'	��;&���	��
�����8�.�'	�������0�'� ���A�	(B5�
�'	��8&��'C
���
��	��;�;&��4D�4�
	���&����

EGFIH H

JKLM

N OP

��	

���=&��@�

Figure 5.1: Preprocessing.

54

Hexagonal spatial subdivision

In order to utilize the spatial locality of visibility, we subdivide the x-y plane of the scene into

N×M hexagonal cells. With the spatial subdivision, the viewpoint can be localized to cells, and,

therefore, cell-based visibility culling, back-facing and occlusion culling can be performed in

the preprocessing phase. Compared to four for rectangular subdivision, hexagonal subdivision

requires that data of only three adjacent cells need to be loaded when navigating across the

cell boundary. Table 5.1 depicts the maximum ratio of side faces that can be seen from a point

inside the hexagonal or the rectangular cell under different field of views (FOVs). We can see

that hexagonal subdivision is better than rectangular one in most cases, except that they are

equal for the 45o.

Table 5.1: Maximum ratio of side faces seen from a point inside the cell under different FOVs.
FOV(o) 120 90 60 45 30
Hexagonal 5/6 2/3 1/2 1/2 1/3
Rectangular 4/4 3/4 3/4 1/2 1/2

Self-occluding-error test

Since the SVMesh of an object represents only those polygons that are front-facing to the cell’s

center, the images derived from SVMesh for views other than the cell’s center may have holes

due to the self-occlusion. Here we describe a conservative estimation of self-occluding error.

As shown in Figure 5.2, the maximum error occurs at the farthest view position V ′ from the cell

center V . Let the cell size, i.e., the length of VV ′, be c, the distance between object and the cell

center, i.e., the length of VO, be d, and the depth of the object itself, i.e., the length of OP, be

l. The length of OC is l tanθ , the angle θ between V P and V ′P is θ = tan−1 c
d+l , and s, the

projected size of OP or OC, is

s =
AB
c

ImageRes.

55

PQ
R

R+S
T
U

V
W

X Y
θ

Figure 5.2: The maximum self-occluding error occurs at the position V ′.

Since

AB =

√
3

2 c
d

OC =

√
3

2 c
d

cl
d + l

=

√
3c2l

2d(d + l)
,

we have,

s =

√
3cl

2d(d + l)
ImageRes.

The self-occluding error of an object O, denoted as self-occluding-error(O), is approximated by

s, derived based on those polygons that are front-facing w.r.t. the cell. The self-occluding-error

test is to check if s is smaller than a predefined tolerance Ts specified in image resolution. If it

is, the object is represented by an SVMesh; otherwise by an MVMesh.

SVMesh derivation

SVMesh intends to provide a textured LOD model for the portions of an object that is front-

facing to the cell’s center. The SVMesh is derived by simplifying the object using edge col-

lapsing. The vertices are associated with weights derived from the depth variation found on the

object’s depth image captured at the cell’s center. The cost of collapsing an edge is defined as a

function of vertex’s weights as well as the local geometry. The weight assignment is designed

to distinguish important geometric features such as exterior silhouettes, interior silhouettes, and

56

sharp edges such that those features can be preserved according to their importance during the

simplification.

The derivation of the SVMesh of an object O with respect to a cell C is outlined as follows.

1. Capture the image and depth image of O using cell’s face as the window and cell’s center

as the center of projection.

2. Categorize pixels on the depth image as exterior silhouette, interior silhouette, sharp

edge, and interior, and assign each category a weight.

3. Assign weights to object’s vertices:

• vertices that are back-facing with respect to the center of C: vertex weight is 0.5.

• other vertices: vertex weight is the weight of the pixel gets projected by the vertex;

4. Perform edge collapsing in increasing order of edges’ cost.

Figure 5.3(a) presents the flowchart for the derivation of SVMesh. Figure 5.4 depicts the

SVMeshes of a bunny model.

Categorizing pixels on the depth image

Pixels on the depth image are categorized into four categories:

• Exterior silhouette: a pixel on the external silhouette, which can be extracted using con-

tour extraction techniques.

• Interior silhouette (C0-discontinuity): a pixel Z whose value differs from adjacent pix-

els over a user-specified tolerance TC0 ; that is, Zi+1 − Zi > TC0 or Zi−1 − Zi > TC0 (see

Figure 5.5).

• Sharp edge (C1-discontinuity): a pixel whose Z variation differs from Z variation of an

adjacent pixel over a user-specified tolerance TC1 ; that is, |(Zi−1−Zi)−(Zi−Zi+1)|> TC1

(see Figure 5.5).

57

Z\[�]_^�`ba�c2^.c�d8^�`baIc
e@f [8g_c

h\c8g e=ikj [8lbmb[8n�oqp
r [8n8csn;`ql=l e�j g

tvubgkcsn i l=l=[;]qw e�j g

xyc(a$^.c8d{z|c e g8}_^
ubc(a e=~ [�^ e�i8j

Z\[�]�^"`-a�csubc;]�^#}
e@f [8g_c

h\c j u_c;a i m��(c�n�^.�.w��

Zs[�^�c�g i a e�� c\] e dbc�l�w

w$^.[;a4^

c j u

(a)

�����G���-�����.�8�����_���
�=� ���-�

����� �=�8� ���_�7�8���-�
� �8�������-��� ��� �

�����4�������|� � �_�G�
� �7�� 7�=¡�� � � � � ��¢
� ��� �' ��� �0�_�

�����G���-�I� � ���;���
��� �8�-��£ ¡�¤

¥ �-�_� � �0�_� �8�
 7� ��� ¡�¦

§¨

��� �7� ��� � ��©
�8�
�

�����$�8� � � ��ª ��� � �_��� ¡
¢7� ¡

¡ ���(�"�

� �7�

« � �-��� � ���=��� ¡��=� ��� �q�
�.�������-�I��� ¡�¡
� � � �I� �0�_�-¡
�-� ¡ � ���_�� -��¡�� � � � � � � � ¡

(b)

Figure 5.3: The derivations of SVMesh (a) and MVMesh (b).

• Interior: other pixels whose Z values are different from the background Z value.

Each category corresponds to a weight. We have derived from our experience that 0.5 is for

exterior silhouette, 0.4 for interior silhouette, 0.25 for sharp edge, and 0.125 for interior.

Assigning vertex weights

The vertex weight indicates how important the vertex is, which is usually determined by the

58

(a)

(b) (c) (d)

Figure 5.4: (a) is the original mesh (65,491 polygons) of a bunny viewed at one cell away (cell
size 50), and (b-d) are SVMeshes for the bunny at 7 (259 polygons), 8 (254), and 9 (239) cells
away. The upper-right bunnies are the projected images.

Zi Zi+ 1Zi- 1

Zi- 1

Zi

Zi+ 1 Zi+ 1

Zi

Zi- 1

Figure 5.5: Testing depth variation.

local geometry and the viewing parameters. Here we propagate the weight derived for pixels

on the depth image to corresponding vertices. We first distinguish back-facing and front-facing

vertices. A vertex is back-facing (w.r.t. the cell’s center) if all polygons incident to it are back-

facing (w.r.t. the cell’s center), otherwise it is front-facing. Each back-facing vertex is assigned

with the weight 0.5 (same as that for the exterior silhouette vertex). For a front-facing vertex,

we do the projection and check to see if it is visible to the cell’s center by checking its Z-value

against the Z-value of the pixel that gets projected. If it is, the pixel’s weight is the weight of

the vertex, otherwise it is invisible and assigned with the weight 0.05, which is smaller than

vertices corresponding to the pixel category interior.

59

Edge collapsing

To perform edge collapsing [35], the cost of collapsing an edge (vi,v j) is defined as

cost(vi,v j) = (1.5−ni·n j)
2l(wi +w j),

where ni and n j are normals of vi and v j, respectively, l is the edge’s projected length with

respect to the cell’s center, and wi and w j are the weights of vi and v j, respectively.

Edges are first maintained in an increasing order according to their costs, and stored in a heap.

In each edge collapsing, the edge at top of the heap is removed and the vertex of smaller weight

gets collapsed to the other. Such an collapsing order ensures that the edge with smaller cost

gets collapsed first. The costs of some edges may be altered as a result of an edge collapsing,

and must be updated afterwards. The edge collapsing is repeated until the edge on the top of

the heap has cost higher than a user-specified value Tl , where Tl is a tolerance on the edge’s

projected length w.r.t. the cell’s center.

MVMesh derivation

The derivation of the MVMesh is an extension of that for SVMesh; as shown in Figure 5.3(b) [4].

For MVMesh, we consider those polygons that are front-facing with respect to the cell, rather

than cell’s center. Furthermore, the derivation of the vertex’s weight takes into account the cap-

tured depth images viewed at the centers of the cell and its adjacent cells. For each vertex, a

weight is obtained from each depth image as we do for the SVMesh and the vertex is assigned

with the maximum of all those weights.

In addition to the weight, each vertex is also associated with a set of views to which the vertex

is visible. The views associated with a simplified polygon is determined by the intersection of

view sets associated with the polygon’s vertices. Since the views associated with a vertex cannot

propagate in the course of edge collapsing, we place one more condition on edge collapsing.

Namely, for an edge uv, u can be collapsed to v if the weight of u is smaller than or equal to that

60

of v and both u and v are either visible to some common views or associated with empty view

sets. Note that determining polygon’s set of views based on that of vertices is not able to reflect

the cases in which the polygon is partially occluded, but its vertices are not, by other polygons.

Such exceptions should be handled carefully by considering general visibility problems.

For the cost function of an edge, we should replace l, the projected length of an edge with

respect to the cell’s center, by l ′, which is the projected length of the edge with respect to the

cell. When the object is far from the cell, we have l ≈ l ′. The edge’s projected length for a near

object, however, varies when we navigate in the cell. Figure 5.6 depicts the MVMeshes of the

bunny model.

Regional conservative back-face culling

We claim that if a polygon is back-facing to all six vertices of the cell, the polygon is back-

facing with respect to any point inside the cell. That is, a polygon P is back-facing with respect

to the cell C if

dot product(P.normal,vector(Ci,P.center)) < 0, for i = 0, . . . ,5,

where Ci’s are the corners of C. A simple proof for the 2D case is as follows: If a polygon P

is back-facing with respect to both A and B, P’s normal will be bounded in the dark green area,

as shown in Figure 5.7(a). Given a point G on the line AB, vector
−→
GP is bounded by

−→
AP and

−→
BP. As a result, P is shown to be back-facing with respect to G. An interior point I of the cell

C is on a line CiE, for some i, and E on C jC(j+1)mod6 for some j. Since P is back-facing with

respect to all corners, P is back-facing with respect to E and therefore I; see Figure 5.7(b).

61

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.6: (a) is the original mesh (65,491 polygons) of a bunny viewed at one cell away (cell
size 50), (b-g) are MVMeshes of the bunny at 1 (1,605 polygons), 2 (945), 3 (554), 4 (392), 5
(330), 6 (306) cells away. The upper-right indicates actual projected images.

62

A

B

P

G

(a)

I
Ci

Cj

C(j+ 1) m o d 6

E

P

(b)

Figure 5.7: Regional back-face culling.

Object clustering

In order to reduce the texture size associated with LOD meshes and to reduce polygon count,

objects that pass the self-occluding-error test and are close to each other can be clustered to-

gether, provided that certain conditions are satisfied. The clustering operation amounts to the

coloring problem, and itself is an NP-complete problem. Before getting into the details of the

proposed greedy approach, several terms are first described.

• Cluster-able: Object or cluster M is cluster-able with cluster C if the texture size of M∪C

is less than the sum of texture sizes of M and C, and self-occluding-error(M∪C) < Ts.

• Overlapping size: Overlapping size of an object M and a cluster C is the size of the

intersection of projected areas of M and C.

The greedy approach proceeds as follows. Firstly, objects that pass self-occluding-error test are

sorted according to the size of their projected areas. Initially no cluster is formed. Secondly, for

each object M removed from the sorted list, M itself forms a new cluster if there is no cluster

or no cluster found to be cluster-able with M. Otherwise, M is repeatedly clustered with all

the clusters that M is cluster-able with, in the order of decreasing overlapping size. As shown

in Figure 5.8(a), M is cluster-able with C1, C2 and C3 in the order of decreasing overlapping

size. M is clustered with C1 first. The result M∪C1 is, however, is no longer cluster-able with

C2; but still cluster-able with C3; see Figure 5.8(b). Finally, M is clustered with C1 and C3; see

63

Figure 5.8(c).

¬®­
¯

¬k°¬²±
(a)

³µ´{¶¸·
¶²¹¶²º

(b)

»µ¼|½7¾�¼|½²¿
½²À

(c)

Figure 5.8: Repeat clustering.

The clustering is performed after the self-occluding-error test is applied for all objects, and

before the derivation of SVMesh. The objects in the same cluster are considered as a single

object that possesses an SVMesh. The SVMesh derivation can be slightly modified to construct

an SVMesh for the clustered objects. In consequence, surfaces that are occluded by others in the

cluster will be culled out in the simplification process. Such an SVMesh derivation for clustered

objects implicitly performs occlusion culling among objects.

Regional conservative occlusion culling

Since SVMesh or MVMesh is object based and our scheme does space subdivision for utiliz-

ing view locality, it will be advantageous to do the regional conservative occlusion culling in

the preprocessing phase. Such operations will enhance the rendering efficiency, especially for

densely occluded scenes. Methods proposed recently can be used. For example, the extended

projection [24] can be easily modified to fit into our system. This extended projection can also

handle the case of multiple occluders by using occluder fusion. The selection of occluders is

based on the meshes’ projected sizes. Only those meshes whose projected sizes are larger than

a user-specified threshold are selected to be occluders.

5.2.2 Run-time phase

At the run-time phase, within the current navigation cell we first set up a lower priority thread

for prefetching the geometry and image data belonging to neighboring cells, and then do the

following steps when navigating inside the cell: (see also the flowchart in Figure 5.9.)

64

1. Ensure that the geometry and image data for the current navigation cell has been loaded

into memory.

2. Perform window culling and view-frustum culling for the whole scene.

3. (Optional) Perform a run-time occlusion culling for all meshes.

4. (Optional) Perform a run-time back-face culling for the meshes inside the current cell.

5. Render the meshes outside the current cell using projective texture mapping, followed by

rendering meshes inside the cell as normal.

6. Prefetch data for neighboring cells when the CPU load is relatively low.

ÁbÂ.Ã(Ä#Ã�Å"Æ(Ç_È@É_Ê

Ë�Ì�Æ(Í-Î4Ä.Ì�Æ(Ã�Æ(Ï-Ð0Ð@È@É_Ê
Ñ�Ò�Ó�Å"È@Ò�É-Ì(Ð
Ô

ÕÖÈ/Ék×_Ò8ØÙÆ(ÏbÐ@Ð@È/ÉbÊ Ú È@Ã(ØÛÄ�Â"Ï-Ü�Å4Ï_ÝÆ�Ï-Ð@Ð4È/É_Ê

Þ�Æ�Æ�Ð0Ï_Ü�È
Ò�É�Æ(Ï-Ð@Ð@È0É_Ê
Ñ"Ò8Ó�Å$È@Ò8É_Ì�Ð0Ô

ßàÃ(ØÛá-È@Ã(ØÖÓbÒ8È@É�Å

â�Ã(É_×_Ã(ÂqÉ-Ò�Â#ÝãÌ(Ð
Ð'ä

å�È@Ü#Í{æ
ç"Þ è Ã�Æ�Ò8É_×_Ì(Â"ä
Ü�Å"Ò8Â#Ì�Ê_Ã

â�Ã(É-×8Ã(ÂqØàç
ÓkÂ.Ò.é5Ã�Æ$ÅIÈ/á-Ã�ê?ë

ì_í�î ï@ð/ñ�òó ð/ò4ô7õ"ò
ö ö

÷ ø(ï/ð/ñ�òó ð/ò
ôqõ�ò4ö ö

Ü�Å"Ì(Â
Å

Figure 5.9: Run-time phase.

A view with an FOV sees through a fixed number of windows, which are faces of the navigating

cell. Window culling can be considered as an effective pre-calculation of the view-frustum

culling. As optional operations, the run-time back-face culling and occlusion culling can be

applied to further reduce the polygon count. Back-facing culling is performed only for objects

inside the navigation cell, while occlusion culling is applied to all meshes in the scene.

65

Prefetching scheme

One of the major problems arises in our cell-based navigation is how to achieve smooth cell

transition. When the view point moves across from one cell to its neighbors, the geometry and

textures will be switched. The prefetching is a mechanism to preload the geometry and texture

data of neighboring cells when CPU load is relative low during navigating inside the cell. It will

amortize the loading time to several inside-cell frames and hence reduce the FPS gap between

inside-cell frames and a cross-boundary frame.

The proposed scheme runs in a lower priority thread and prefetches data of neighboring cells

that will be possibly visited in a short time. We set a timestamp for the navigation system.

The timestamp is initially 0 and gets increased by 1 whenever the viewer have moved by a

predefined distance or have turned by a predefined angle. When the timestamp gets increased

by 1, we identify those cells that need to be prefetched and add them to a priority queue that

maintains those cells waiting for prefetching, and then begin the prefetching. The cell is added

to the priority queue according to its t-priority, which is the sum of the current timestamp and a

priority value. The addition of timestamp in the t-priority allows us to distinguish the freshness

of the cells in the priority queue. The priority value of a cell conceptually indicates how urgent

it is for prefetching and is in the range of [0,1). In principle, cells that are within the view

frustum get higher priorities than those outside, the cells closer to the aiming vector get higher

priorities, and cells closer to the viewpoint get higher priorities. The prefetching repeatedly

removes the cell of the highest t-priority from the priority queue and loads the cell’s data from

disk to main memory, and removes those cells which are out of date by checking if t-priority

values are smaller than the current timestamp minus 2.

Disk I/O can run in parallel; however, the system bus that loads texture data from main memory

to texture memory can hardly run in parallel. To this end, textures that have been loaded from

disk to main memory are put into a texture queue and get loaded in FIFO order. The loading

of texture from main memory to texture memory runs in main thread, in which an amount of

texture constrained by a budget is loaded before each frame. One practical concern is that the

66

size of texture varies a lot. A texture that is not the first in the texture queue and is of size larger

than the remaining budget is put back as the first in the texture queue.

Rendering of object-based LOD mesh w/ textures

After cell data is loaded the system memory, SVMesh and MVMesh are rendered by mapping

the cached images as textures using projective texture mapping [51] or the proposed projective-

alike texture mapping. The texture shifting introduced by casting the cached image onto the

simplified mesh can be reduced by blending multiple cached images that are captured at ad-

jacent view-cell centers, and the popping effects at view-cell boundary due to the change of

representation can be minimized by interpolating the rendering results from their two different

simplified meshes.

SVMeshes are simply rendered by projective texture mapping while the rendering of MVMeshes

involves texture blending as part of view-dependent projective texture mapping [21]. As men-

tioned previously in MVMesh derivation, a simplified polygon is associated with a set of views

to which it is visible. If the set is empty, normal map approach [7] can be applied to that poly-

gon. If the set contains only one view, then the polygon is rendered by standard projective

texture mapping. If the set contains three or more views, two views are chosen from the set

according to the vector defined from the viewer to the polygon. The textures corresponding

to these two views are then mapped onto the polygon using projective texture mapping with

blending.

Alternatively, we can apply the proposed projective-alike texture mapping to map the cached

images onto SVMesh or MVMesh in such a way that the coordinate of each vertex is speci-

fied in image space and the texture coordinate of each vertex is generated automatically using

graphics hardware. The re-projection from the source image coordinate to the destination image

coordinate can be done by a transformation matrix

T2T−1
1 ,

67

where T2 is the destination camera matrix and T−1
1 is the inverse of the camera matrix of the

source image. Figure 5.10) depicts the re-projection.

ù:ú�û ú ù7ü

ù7ú�û ú ù ü

ý?ú
ý ü

þ�ú
þ ü

Figure 5.10: Re-projection from source to destination image, T1 and T2 are the camera matrix
of source image I1 and destination image I2, respectively.

In most cases, an object-based LOD mesh located in part of a source image (e.g. see Fig-

ure 5.11). To minimize the storage requirement for cached images, only necessary rectangular

part of the source image is stored as a cached image.

himage

x o f f s et

w s t o r ed

Source image
(ren d ered image)C ach ed image

y o f f s et
wimage

hs t o r ed

Figure 5.11: The cached image is a part of a source image.

The texture coordinates (s, t) necessary for projective-alike texture mapping can be automat-

ically generated from image coordinate (x,y) using graphics hardware (e.g. by the standard

OpenGL API glTexGen()). The derivation is

(s, t) = ((x− xoffset)/wstored,(y− yoffset)/hstored),

68

where xoffset and yoffset are the offset of the cached image relative to the source image, and wstored

and hstored are width and height of the cached image, respectively. In consequence, we don’t

need additional memory to store texture coordinate for each vertex, and save the bandwidth

needed between CPU and graphics accelerator. Moreover, vertices of the object-based LOD

mesh are allowed to be stored in the source image coordinate space in integer precision, which

requires 16-bit unsigned integer for x and y, and 32-bit floating point for z (provides a tradeoff

between storage requirement and precision). As a result, only 8 bytes is necessarily sufficient

for each vertex, compared to 20 bytes per vertex if all x, y, and z are stored as world coordinates

as well as texture coordinates s and t. While referencing the vertex through vertex ID requires

only 4 bytes per vertex but requires its original mesh presented in the memory for reference,

storing vertices in image-space coordinate may save more memory space for distant objects,

and, moreover, poses less precision error problems for distant objects.

Since the texture maps are mapped onto the simplified meshes, there are some texture shifting

artifacts on the nearby objects. Fig. 5.12 illustrates the problem. The color of point p on the

simplified mesh can be c1 or c2, depending on which textures, casted from the reference view

V1 or V2, is used. However, the correct color of p seen from the eye position should be c. It

is obvious that one can select the reference view that forms the smallest angle with the eye

direction. Alternatively, blending multiple texture values results in less popping effects when

switching the textures. The blending equation for 2-D cases is

c′ = c1
α2

α1 +α2
+ c2

α1

α1 +α2
.

For a 3-D scene, we can use the method proposed by [22] in which blending weights are

assigned to three textures.

An object in general possess different simplified meshes for adjacent view cells. As a result,

popping effects occur during the transition between view cells. We illustrate this effect in

Fig. 5.13, where the eye position is at the cell boundary and M1 and M2 represent simplified

meshes of the same object in two adjacent cells. The object is represented by M1 when the eye

69

��������

�	
�

�
�

�
	

�
�

��������	�

�	
�
�
�

�
� �

�

Figure 5.12: The smaller angle is, the more accurate result is.

position moves to the left, and by M2 when it moves to the right. The viewing ray intersects M1

and M2 at points p1 and p2, respectively. Apparently, the blended texture values of p1 and p2

may be different. In fact, only objects that are very close to a reference view, such as V1 or V2,

would produce noticeable popping effects. For such an object, we may interpolate the rendering

results from its simplified meshes but at about double cost on rendering.

��������

�	
�

�
�

�
	�����	��

����
�����

�
�

�
�

�
�

�
�

�
�

Figure 5.13: Popping effects occur during the transition between view cells.

5.3 Experimental Results

5.3.1 Setup

The test platform is a PC with Pentium4 in 3.0Ghz CPU, 2GB main memory, and an nVIDIA

GeForce 6800GT with 256MB video memory graphics accelerator. The OS is Windows XP

Pro SP2. The output image is in a resolution of 1024×1024×32. S3’s S3TC DXT3 is used to

70

compress textures (in a ratio of 1/4).

For efficiency consideration, polygons and objects are represented by vertex IDs and object

IDs, respectively. The original meshes are loaded into main memory before the navigation.

In prefetching objects, SVMeshes, and MVMeshes, only their object IDs and vertex IDs are

loaded.

Scene statistics

The three scenes tested are statuary parks consisting of eight kinds of object that are randomly

distributed in the same area of 1650×2035. The three scenes are called 2M-scene, 4M-scene,

and 8M-scene, and have 2017700, 4188885 and 8004863 polygons, respectively. The scenes

are generated such that 2M-scene is a subset of the 4M-scene, which in turn is a subset of 8M-

scene. Table 5.2 lists data statistics for the objects that compose the scenes, including polygon

number, dimension, and distribution of polygon numbers for the scenes. A bird’s eye view of

the 8M-scene is shown in Figure 5.14.

Table 5.2: Object and scene statistics.
Object name Polygon no. Dimension (w×d×h) 2M 4M 8M
dragon 202,520 57.3×25.6×40.4 4 10 18
bunny 69,451 43.6×33.8×43.2 7 12 26
statue 35,280 11.8×13.4×23.4 13 21 40
cattle 12,398 40.0×40.8×30.7 9 19 42
horse 7,257 38.3×57.2×82.6 13 29 51
easter 4,976 12.4×10.7×30.8 6 14 22
camel 3,969 49.4×16.8×46.6 4 14 26
venus 1,396 10.2×8.4×21.9 8 13 28

Total object number 64 132 253

Settings

Performance on frame rate and image quality may vary for different settings of parameters. We

set Ts = 3, 5, or 7 pixels for self-occluding-error tolerance, Tl = 3.0, 4.5, or 6.0 for edge’s project

length tolerance, and 50 or 100 for cell size. The parameters TC0 and TC1 for pixel categorizing

71

Figure 5.14: Bird’s eye view of the 8M-scene.

are fixed in this experiment as 3.4× 10−4 and 1.28× 10−4, respectively. For simplicity, we

denote the kM-scene with cell size c, parameters Ts and Tl as kM-c-Ts-Tl; for example, the

4M-scene with cell size 50, Ts = 5, and Tl = 4.5 is denoted as 4M-50-5-4.5.

All experimental results are collected by following the navigation path shown in red in Fig-

ure 5.14 with a maximum speed of 30/s., a maximum rotation of 45o/s., and an FOV of 60o.

5.3.2 Image quality measurement

To identify how much is the quality-loss, we use the peak signal-to-noise ratio PSNR(dB) de-

fined as

PSNR = 10log10
2552

1
HW ∑W−1

x=0 ∑H−1
y=0

[

f̂ (x,y)− f (x,y)
]2 ,

where f (x,y) and f̂ (x,y) are the pixel colors of the original image and approximated image at

position (x,y), respectively, W and H are the dimensions of the image. Before applying PSNR,

the RGB color is mapped to a single luminance value Y since human eyes are more sensitive to

the changes in luminance. Such a mapping [31] is

Y = 0.299∗R+0.587∗G+0.114∗B.

72

5.3.3 Mesh simplification

Self-occluding-error tolerance

The value of self-occluding-error tolerance Ts determines the distribution of SVMesh and MVMesh.

For the scene 4M-50-Ts-4.5, where Ts = 3,5,7, Table 5.3 shows the averaged percentages of ob-

jects that are represented by SVMesh and MVMesh and their averaged polygon counts over all

cells. Larger Ts implies higher percentage of SVMesh, more objects are clustered, higher sim-

plification rate, less texture size, and finally higher frame rate. Note that numbers in the paren-

thesis under Avg. polygon count inside view frustum are Avg. polygon count for SVMesh and

MVMesh inside view frustum. Figure 5.15 depicts the distribution of SVMesh and MVMesh

for the particular cell at the scene’s center, on which MVMeshes are colored in blue, SVMeshes

from single objects are in purple, and SVMeshes from clustered objects are in other colors.

Table 5.3: Simplification performance under different self-occluding-error tolerance Ts.
4M-50-Ts-4.5 Ts = 3 Ts = 5 Ts = 7

Statistics for object’s representations and polygon counts
Avg. percentage of SVMeshes from clustered objects (%) 9.8 18.7 25.5
Avg. percentage of SVMeshes from a single object (%) 64.8 64.9 62.4
Avg. percentage of MVMeshes (%) 25.3 16.3 12.1
Avg. polygon no. inside a viewcell 9,308 9,308 9,308
Avg. polygon no. for SVMesh & MVMesh 40,742 39,981 39,360
Avg. polygon no. for a viewcell 50,050 49,290 48,669
Simplified : original 1 : 83.7 1 : 85.0 1 : 86.1

Performance statistics
Avg. FPS 1114.8 1157.0 1182.4
Avg. PSNR (dB) 39.64 39.54 39.46
Avg. texture size (KB) inside view frustum 592.0 544.1 516.6
Avg. polygon count inside view frustum 13,235 (11,532) 13,102 (11,418) 13,026 (11,367)

Projected edge-length tolerance

Through projected edge-length tolerance Tl , the edge collapsing can be tested for termination.

Figure 5.16 shows the MVMeshes of bunny derived by setting Tl = 3.0,4.5,6.0. Table 5.4

depicts the average polygon counts of SVMesh and MVMesh and simplification ratio for all

cells. As we can see, larger Tl implies higher simplification rate, larger texture size, and finally

73

(a) Ts = 3 (b) Ts = 5 (c) Ts = 7

Figure 5.15: Distribution of SVMesh and MVMesh for the scenes 4M-50-Ts-4.5.

(a) Tl = 3.0 (2,353 polygons) (b) Tl = 4.5 (1,605) (c) Tl = 6.0 (1,227)

Figure 5.16: MVMeshes of bunny for different Tl .

higher frame rate.

Cell size consideration

Setting an optimal cell size is in general difficult. To test the effect of cell size, we continue to

use the same data set and set Ts = 5 and Tl = 4.5 for cell sizes 50 and 100. Table 5.5 depicts the

average polygon counts of SVMesh and MVMesh and simplification ratio for all cells. Larger

cell size in general results in smaller simplification ratio and, in turns, lower frame rate, since

the number of polygons inside a cell may increase dramatically.

74

Table 5.4: Simplification performance under different projected edge-length tolerance Tl .
4M-50-5-Tl Tl = 3.0 Tl = 4.5 Tl = 6.0

Statistics for polygon counts
Avg. polygon no. inside a viewcell 9,308 9,308 9,308
Avg. polygon no. for SVMesh & MVMesh 46,249 39,981 35,226
Avg. polygon no. for a viewcell 55,557 49,290 44,535
Simplified : original 1 : 75.4 1 : 85.0 1 : 94.1

Performance statistics
Avg. FPS 1091.4 1157.0 1223.9
Avg. PSNR (dB) 39.98 39.54 39.13
Avg. texture size (KB) inside view frustum 538.4 544.1 545.4
Avg. polygon count inside view frustum 14,741 (13,008) 13,102 (11,418) 11,701 (10,048)

Table 5.5: 4M scene under different cell sizes 50 and 100.
Cell size 50 100
Viewcells 22×24 11×12

Statistics for polygon counts
Avg. polygon no. inside a viewcell 9,308 38,986
Avg. polygon no. for SVMesh & MVMesh 39,981 45,356
Avg. polygon no. for a viewcell 49,290 84,342
Simplified : original 1 : 85.0 1 : 49.7

Performance statistics
Avg. FPS 1157.0 1003.7
Avg. PSNR (dB) 39.54 39.62
Avg. texture size (KB) inside view frustum 544.1 387.9
Avg. polygon count inside view frustum 13,102 (11,418) 17,457 (12,319)

5.3.4 Run-time performance

The three rendering configurations used to test the performance comparison are:

• A: (Pure geometry) render the original scene geometry using the traditional graphics

pipeline.

• B: (Pure geometry with view frustum culling) same as A, but with software view frus-

tum culling.

• C: (Proposed hybrid scheme) render the scene using proposed hybrid scheme, without

regional occlusion culling, run-time back-face culling, and run-time occlusion culling.

The parameter setting for the following performance tests is Ts = 5, Tl = 4.5, and cell size 50.

All simulations follow the navigation path shown in Figure 5.14.

75

Table 5.6 lists the run-time performance of three configurations on the scene 8M-50-5-4.5.

Without regional occlusion culling, back-face culling, and run-time occlusion culling, configu-

ration C achieves 321.8 gain factor over configuration A, and 88.8 gain factor over configuration

B, with little quality-loss at PSNR 37.34dB.

Table 5.6: Performance of the three configurations on a 8M-scene.
A B C

Avg. polygon count 8,004,863 2,443,969 23,580
Avg. frame time (ms) 520.8 143.7 1.618
Avg. frame rate (FPS) 1.92 6.96 617.9
Speedup 1.00 3.63 321.8

Figure 5.17 and Figure 5.18 represent the images rendered at views that are far from the cell cen-

ter by configuration B and C. In Figs. 5.17(c) and 5.18(c), the MVMeshes are flat shaded with

gray wireframes, SVMeshes from single objects are in purple, and SVMeshes from clustered

objects in other colors.

Table 5.7 depicts the performance of configuration C for different scene complexities 2M-50-5-

4.5, 4M-50-5-4.5, and 8M-50-5-4.5. It reveals that as the scene complexity goes up from 2M,

4M, to 8M, the FPS goes down from 1816, 1157, to 618. This is due to the fact that all objects

outside a navigation cell are in the form of SVMesh or MVMesh, which have much less varied

polygon counts.

Table 5.7: Performance of configuration C under different scene complexities.
Scene complexity 2M 4M 8M

Statistics for polygon counts
Avg. polygon no. inside a viewcell 4,145 9,308 18,302
Avg. polygon no. for SVMesh & MVMesh 18,829 39,981 75,891
Avg. polygon no. for a viewcell 22,974 49,290 94,193
Simplified : original 1 : 87.8 1 : 85.0 1 : 85.0

Performance statistics
Avg. FPS 1815.7 1157.0 617.9
Avg. PSNR (dB) 44.92 39.54 37.34
Avg. texture size (KB) inside view frustum 112.4 544.1 992.4
Avg. polygon count inside view frustum 4,548 (3,991) 13,102 (11,418) 23,580 (21,735)

Figure 5.19 and Figure 5.20 show the run-time statistics of running configuration C on the scene

8M-50-5-4.5. In Figure 5.19, FPS plots are shown for different prefetching schemes. From the

76

(a) Configuration B: 5,207,350 polygons in view frustum.

(b) Configuration C: 35,216 polygons, PSNR 35.33dB, and 512.5 FPS.

(c) Configuration C: flat shaded with wireframes.

Figure 5.17: Rendered images by configuration B and C.

77

(a) Configuration B: 4,693,355 polygons in view frustum.

(b) Configuration C: 29,641 polygons, PSNR 36.39dB, and 563.2 FPS.

(c) Configuration C: flat shaded with wireframes.

Figure 5.18: Rendered images by configuration B and C at another view.

78

plot for prefetching under a cold cache, we can see that the frame rate changes rapidly after a

cell transition (illustrated by yellow vertical line) and becomes more stable frame rate after a

while. The frame rate for the prefetching under a warm cache is quite stable except some sudden

decreases appear. The suddenly decreased FPS in the plots indicates the presence of objects

inside the navigation cell. Along this particular navigation path, among 7 cells that contain

objects, two of them contain the massive models such as bunny and dragon, respectively; as

shown also in the plot for polygon count. Polygon count, texture size, and PSNR follow the

FPS plots which are shown in Figure 5.20. Note that most frames have PSNR above 37dB.

5.3.5 Discussions

On problems and potential of the proposed hybrid rendering scheme, we address the prepro-

cessing time, storage requirement and run-time loading time for very complex scenes.

Table 5.8 shows the preprocessing time for 2M-, 4M-, and 8M-scene. The most cost operations

in the preprocessing are the derivation of viewcell dep. LOD meshes and the capture of textures.

Table 5.8: Preprocessing time for different scene complexities.
Scene complexity 2M 4M 8M
Time (hours) 4.45 9.52 17.48

Since each polygon and each object are presented by vertex IDs and object ID, respectively,

original meshes must be available in main memory during navigation and meshes are prefetched

by loading their vertex IDs. Original meshes of 2M-, 4M-, and 8M-scene account for 74, 141,

and 261MB main memory, respectively. Taking into account the prefetched data as well, the

main memory requirement is 82, 153, and 287MB for 2M-, 4M-, and 8M-scene, respectively.

As shown in Table 5.9, storage requirement for 2M, 4M, and 8M scenes is 311MB, 659MB,

and 1,260MB, respectively, which are roughly 11 times that for original geometries. For each

cell, the average size of polygons and textures that needs to be in memory is 553, 1165, and

2252KB for 2M-, 4M-, and 8M-scene, respectively. Let us take as an example the hard disks

having reading speeds at 35MB/s. For the 8M-scene, the loading time for each cell requires

79

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55

F
P
S

FPS with prefetching (cold cache)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55

F
P
S

FPS with prefetching (warm cache)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55

F
P
S

Time (second)

FPS with no prefetching

Figure
5.19:R

un-tim
e

statistics
ofconfiguration

C
on

scene
8M

-50-5-4.5:T
he

fram
e

rates
w

ith
prefetching

undera
cold

cache
and

a
w

arm
cache,and

w
ithoutprefetching.

80

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35 40 45 50 55

Po
ly

go
ns

Total polygon count inside view frustum

Polygon count of SVMesh & MVMesh inside view frustum

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50 55T
ex

tu
re

 s
iz

e
(K

B
)

Texture size (KB) inside view frustum

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55

PS
N

R
(d

B
)

Time (second)

Image Quality (PSNR (dB))

Figure
5.20:R

un-tim
e

statistics
ofconfiguration

C
on

scene
8M

-50-5-4.5:T
he

polygon
count,

texture
requirem

ents,and
im

age
quality.

81

64.4ms. Under the assumption that the maximum navigation speed is 30/s. and the cell size is

50, the time between cell transitions will be 2887ms for the path 1 shown in Figure 5.21. The

ratio of the average loading time for a cell over the time between transitions is only 2.23%. On

the other hand, for the case of path 2, the ratio is 4.46%. Several implementation details can be

included to smooth out the loading time. First of all, the loading can be easily amortized into

in-cell frames without notice since disk I/O can run in parallel. Secondly, when navigating in

high speed, user perception is more sensitive to smooth frame rate than image quality. In this

case, the texture can be mapped with lower resolutions, which implies smaller size for loading.

Table 5.9: Storage and loading time under different scene complexities (Ts = 5,Tl = 4.5).
Scene complexity 2M 4M 8M

Total secondary storage requirement (MB)
SVMesh & MVMesh 101.4 218.6 408.8
Textures 209.3 440.5 850.8
Total 310.7 659.1 1,260
Original meshes 27.8 59.6 112.6

Average run-time requirement (KB) per cell
Potentially visible polygons 71.4 154.2 287.2
Textures 481.2 1,011 1,965
Total 552.6 1,165 2,252

Average loading time (ms) per cell
Hard disk (55MB/s.) 10.0 21.2 41.0
Hard disk (35MB/s.) 15.8 33.3 64.4

In the experiment, we found that textures can only be loaded from the hard disk to main memory,

and then to texture memory. Transferring data to texture memory, however, has to compete

with the data transferring between CPU and graphics accelerator. Another problem appeared is

that textures in general have size in a wide range, for example, from several bytes to hundred

kilobytes. In consequence, the prefetching of textures cannot be easily amortized effectively to

in-cell frames.

82

Path 1

Cellsize

ÿ���� � �

Figure 5.21: Cases of cell transition.

83

Chapter 6

Conclusion

We have addressed three important real-time rendering problems. First of all, we have presented

a texture adaptation scheme for mapping textures to progressive meshes, aiming to eliminate

texture distortion introduced by edge collapses. The texture adaptation applied to each edge

collapse or vertex split is a local, incremental, and invertible operation, and can be effectively

accelerated by graphics hardware. We have also proposed the mechanism of indexing mapping

to reduce blurred artifacts due to under-sampling that might be introduced in texture adapta-

tion. The experiment results have revealed that the texture adaptation scheme is capable of

eliminating texture distortion in a very efficient manner.

Secondly, based on the texture adaptation and the indexing map, we have presented a new

mapping-based error metric that is able to accurately measure the simplification error even in

the presence of badly parameterized texture maps. Maximum and average error as well as

incremental and total error are discussed in depth. The use of indexing map in the texture

adaptation enables an efficient and simple evaluation of total average error. The proposed new

error metric together with the texture adaptation scheme outperforms well-known error error

metric QEM and APS in terms of the geometric and appearance preserving in mapping textures

to progressive meshes. We also observed that the proposed total maximum error metric alone

performs better than APS and almost the same as QEM.

84

Finally, we have presented a hybrid scheme for real-time rendering of complex scenes. The

scheme partitions the model space into cells, thus explores the locality of visibility based on

which the objects outside a cell are rendered as textured LOD meshes and inside objects are

rendered as normal. Such a hybrid representation allows us to avoid problems that are com-

monly found in image-based rendering; such as the gap problem due to resolution mismatch

and the hole problem due to occlusion among objects. The representation also constrains the

hole due to self-occlusion to be within a user-specified tolerance. A prefetching mechanism

has also been proposed to predict data of which neighboring cells will be needed shortly and

how the loading can be amortized to frames before crossing the cell boundary. In the proposed

scheme, acceleration techniques such as regional occlusion culling, back-facing culling, and

run-time occlusion culling can be easily integrated. We have demonstrated our system on sev-

eral scenes consisting of millions of polygons and observed very encouraging results. For a

scene of 8 millions of polygons, we have achieved higher than 600 frames per second with a

little loss of image quality (average PSNR 37.34dB) on the current graphics hardware. The

polygons and textures require about 1260MB secondary storage space and about 294MB main

memory on average.

Several problems along this research direction require further study. Although the texture adap-

tation operation is theoretically invertible, in practice artifact may appear after several runs of

edge collapses and vertex splits. Such artifact stems from the discrete nature of texture map-

ping. Although current testing results revealed that only very small or invisible artifacts were

found, however, we need to look into this problem and see how serious the problem could be in

practice. Due to the success in eliminating texture distortion, the proposed texture adaptation

scheme points out to a possible way of re-parameterizing a mesh. The proposed mapping-based

error metric has demonstrated its capability to outperform APS and work about the same as

QEM when it is formulated in the form of maximum error. We will study the sampling strategy

that is required for evaluating the average error and expect to have an error metric that is more

competent than QEM.

85

Bibliography

[1] P. K. Agarwal and S. Subhash. Surface Approximation and Geometric Partitions. In

Proceedings of 5th ACM-SIAM Symposium on Discrete Algorithms, pages 24–33, 1994.

[2] D. Aliaga, J. D. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. Hoff, T. Hudson,

W. Stuerzlinger, R. Bastos, M. Whitton, F. Brooks, and D. Manocha. MMR: An Interactive

Massive Model Rendering System Using Geometric and Image-Based Acceleration. In

Proceedings of 1999 ACM Symposium on Interactive 3D Graphics, pages 199–206, 1999.

[3] C. Bajaj and D. Schikore. Error-Bounded Reduction of Triangle Meshes with Multivariate

Data. SPIE, 2656:34–45, 1996.

[4] C.-C. Chen and J.-H. Chuang. Viewcell-Dependent Geometry Simplification Using Depth.

In Computer Graphics Workshop 2002, June 2002.

[5] S. E. Chen. Quicktime VR - an image-based approach to virtual environment navigation.

In R. Cook, editor, Proc. SIGGRAPH ’95, pages 29–38, August 1995.

[6] S. E. Chen and L. Williams. View Interpolation for Image Synthesis. In J. T. Kajiya,

editor, Computer Graphics (SIGGRAPH ’93 Proceedings), pages 279–288, August 1993.

[7] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. A General Method for Recovering

Attribute Values on Simplified Meshes. In Proceedings of IEEE Visualization ’98, pages

59–66, October 1998.

86

[8] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini. Preserving Attribute

Values on Simplified Meshes by Resampling Detail Textures. The Visual Computer,

15(10):519–539, 1999.

[9] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring Error on Simplified Surfaces.

Computer Graphics Forum, 17(2):167–174, 1998.

[10] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. Communica-

tions of the ACM, 19(10):547–554, October 1976.

[11] J. D. Cohen. Concepts and Algorithms for Polygonal Simplification. In SIGGRAPH 99

Course Tutorial #20, pages C1–C34, 1999.

[12] J. D. Cohen and D. Manocha. The Visualization Handbook, chapter 20. Model Simplifi-

cation, pages 393–411. Elsevier, 2005.

[13] J. D. Cohen, D. Manocha, and M. Olano. Simplifying Polygonal Models Using Successive

Mappings. In Proceedings of IEEE Visualization ’97, pages 395–402, October 1997.

[14] J. D. Cohen, D. Manocha, and M. Olano. Successive Mappings: An Approach to Polygo-

nal Mesh Simplification with Guaranteed Error Bounds. International Journal of Compu-

tational Geometry and Applications, 13(1):61–94, February 2003.

[15] J. D. Cohen, M. Olano, and D. Manocha. Appearance-Preserving Simplification. In Proc.

SIGGRAPH ’98, pages 115–122, New York, NY, USA, 1998. ACM Press.

[16] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative Visibility and Strong

Occlusion for Viewspace Partitioning of Densely Occluded Scenes. Computer Graphics

Forum, 17(3):243–253, 1998.

[17] B. Curless and M. Levoy. A volumetric method for building complex models from range

images. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 303–312, New York, NY, USA, 1996. ACM

Press.

87

[18] L. Darsa, B. Costa, and A. Varshney. Walkthroughs of Complex Environments using

Image-based Simplification. Computers & Graphics, 22(1):55–69, 1998.

[19] L. Darsa, B. C. Silva, and A. Varshney. Navigating Static Environments Using Image-

Space Simplification and Morphing. In Proceedings of 13th Symposium on Interactive 3D

Graphics, pages 25–34, 1997.

[20] G. Das and D. Joseph. The Complexity of Minimum Convex Nested Polyhedra. In Pro-

ceedings of 2nd Canadian Conference on Computational Geometry, pages 296–301, 1990.

[21] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and Rendering Architecture from

Photographs: A hybrid geometry- and image-based approach. In H. Rushmeier, editor,

Proc. SIGGRAPH ’96, pages 11–20, August 1996.

[22] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient View-Dependent Image-Based

Rendering with Projective Texture-Mapping. In Eurographics Rendering Workshop, pages

105–116, June 1998.

[23] X. Decoret, G. Schaufler, F. X. Sillion, and J. Dorsey. Multi-Layered Impostors for Ac-

celerated Rendering. Computer Graphics Forum, 18(3):61–73, September 1999.

[24] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative Visibility Preprocessing

using Extended Projections. In Kurt Akeley, editor, Computer Graphics (SIGGRAPH

2000 Proceedings), pages 239–248, July 2000.

[25] I. Eckstein, V. Surazhsky, and C. Gotsman. Texture Mapping with Hard Constraints.

Computer Graphics Forum, 20(3):95–104, 2001.

[26] M. S. Floater. Parametrization and Smooth Approximation of Surface Triangulations.

Computer Aided Geometric Design, 14(4):231–250, 1997.

[27] M. S. Floater. Mean Value Coordinates. Computer Aided Geometric Design, 20(1):19–27,

2003.

88

[28] M. Garland. Multiresolution Modeling: Survey & Future Opportunites. In Eurographics

’99 – State of the Art Reports, pages 111–131, 1999.

[29] M. Garland and P. S. Heckbert. Surfaces Simplification Using Quadric Error Metrics. In

Proc. of SIGGRAPH ’97, pages 209–216, 1997.

[30] M. Garland and P. S. Heckbert. Simplifying Surfaces with Color and Texture Using

Quadric Error Metrics. In Proceedings of IEEE Visualization ’98, pages 263–269, Oc-

tober 1998.

[31] R. C. Gonzalez and R. E. Woods. Digital Image Processing, chapter 4, page 228. Addison-

Wesley, September 1993.

[32] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. In H. Rush-

meier, editor, Proc. SIGGRAPH ’96, pages 43–54. ACM SIGGRAPH, Addison Wesley,

August 1996.

[33] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. In J. T. Kajiya, editor,

Computer Graphics (SIGGRAPH ’93 Proceedings), pages 231–238, August 1993.

[34] P. Heckbert and M. Garland. Survey of Surface Simplification Algorithms. In SIGGRAPH

’97, Multiresolution Surface Modeling, Course Notes No. 25. ACM SIGGRAPH, 1997.

[35] H. Hoppe. Progressive Meshes. In H. Rushmeier, editor, Proc. SIGGRAPH ’96, pages

99–108, August 1996.

[36] T. Hudson, D. Manocha, J. D. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated Occlu-

sion Culling using Shadow Frusta. In Proceedings of 13th Symposium on Computational

Geometry, pages 1–10, 1997.

[37] A. Khodakovsky, N. Litke, and P. Schröder. Globally Smooth Parameterizations with Low

Distortion. Proc. SIGGRAPH 2003, ACM Trans. on Graphics, 22(3):350–357, 2003.

[38] H. Kim and K. Wohn. Multiresolution Model Generation with Geometry and Texture. In

Seventh International Conference on Virtual Systems and Multimedia (VSMM’01), pages

89

780–789. IEEE, Oct 2001.

[39] S. Kumar, D. Manocha, B. Garrett, and M. Lin. Hierarchical Back-face Culling. In 7th

Eurographics Workshop on Rendering, pages 231–240, 1996.

[40] M. Levoy and P. Hanrahan. Light Field Rendering. In H. Rushmeier, editor, Proc. SIG-

GRAPH ’96, pages 31–42, August 1996.

[41] P. Lindstrom and G. Turk. Fast Memory Efficient Polygonal Simplification. In Proceed-

ings of IEEE Visualization ’98, pages 279–286, 1998.

[42] P. Lindstrom and G. Turk. Image-Driven Simplification. ACM Trans. on Graphics,

19(3):204–241, July 2000.

[43] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney. Level of Detail for 3D

Graphics. Elsevier Science Inc., New York, NY, USA, 2002.

[44] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering System. In

R. Cook, editor, Proc. SIGGRAPH ’95, pages 39–46. ACM SIGGRAPH, Addison Wesley,

August 1995.

[45] E. Puppo and R. Scopigno. Simplification, LOD, and Multiresolution - Principles and

Applications. In Eurographics ’97 Tutorial Notes, 1997.

[46] J. Rohlf and J. Helman. IRIS Performer: A High Performance Multiprocessing Toolkit for

Real-Time 3D Graphics. In SIGGRAPH ’94: Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, pages 381–394, New York, NY, USA,

1994. ACM Press.

[47] P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe. Signal-Specialized Parametrization. In

EGRW ’02: Proceedings of the 13th Eurographics workshop on Rendering, pages 87–98,

Aire-la-Ville, Switzerland, 2002. Eurographics Association.

[48] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture Mapping Progressive Meshes.

In Proc. SIGGRAPH 2001, pages 409–416, New York, NY, USA, 2001. ACM Press.

90

[49] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative Volumetric Visibility

with Occluder Fusion. In Kurt Akeley, editor, Computer Graphics (SIGGRAPH 2000

Proceedings), pages 229–238, July 2000.

[50] G. Schaufler and W. Stürzlinger. A Three-Dimensional Image Cache for Virtual Reality.

In Proceedings of Eurographics ’96, pages 227–236, August 1996.

[51] M. Segal, C. Korobkin, R. Widenfelt, J. Foran, and P. Haeberli. Fast Shadows and Lighting

Effects Using Texture Mapping. In Computer Graphics (SIGGRAPH ’92 Proceedings),

pages 249–252, July 1992.

[52] S. M. Seitz and C. R. Dyer. View Morphing. In H. Rushmeier, editor, Proc. SIGGRAPH

’96, pages 21–30, August 1996.

[53] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hierarchical Image

Caching for Accelerated Walkthroughs of Complex Environments. In H. Rushmeier, edi-

tor, Proc. SIGGRAPH ’96, pages 75–82, August 1996.

[54] J. W. Shade, S. J. Gortler, L.-W. He, and R. Szeliski. Layered Depth Images. In Proc.

SIGGRAPH ’98, pages 231–242, July 1998.

[55] F. Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor Manipulation for Real-Time

Visualization of Urban Scenery. In Proceedings of Eurographics’97, pages 207–218, Bu-

dapest, Hungary, September 1997.

[56] G. Turk. Re-Tiling Polygonal Surfaces. In SIGGRAPH ’92: Proceedings of the 19th

annual conference on Computer graphics and interactive techniques, pages 55–64, New

York, NY, USA, 1992. ACM Press.

[57] A. Xu, S. Sun, and K. Xu. Texture Information Driven Triangle Mesh Simplification.

In M.H. Hamza, editor, Computer Graphics and Imaging - CGIM2005, pages 73–77,

Honolulu, Hawaii, Aug 2005. ACTA Press.

91

[58] H. Zhang and K. E. Hoff III. Fast Backface Culling Using Normal Masks. In Proceedings

of 13th Symposium on Interactive 3D Graphics, pages 103–106, 1997.

[59] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility Culling Using Hierarchical

Occlusion Maps. In Computer Graphics, volume 31, pages 77–88, 1997.

[60] M. Zhang, Z. Pan, and P.-A. Heng. A Near Constant Frame-rate Rendering Algorithm

Based on Visibility Computation and Model Simplification. In Proceedings of VSMM

2002, pages 387–398, 2002.

[61] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y. Shum. TextureMontage:

Seamless Texturing of Arbitrary Surfaces From Multiple Images. Proc. SIGGRAPH 2005,

ACM Trans. on Graphics, 24(3):1148–1155, 2005.

92

