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Abstract—In this paper, admission control by a fuzzy Q-learning technique is proposed for WCDMA/WLAN heterogeneous networks

with multimedia traffic. The fuzzy Q-learning admission control (FQAC) system is composed of a neural-fuzzy inference system (NFIS)

admissibility estimator, an NFIS dwelling estimator, and a decision maker. The NFIS admissibility estimator takes essential system

measures into account to judge how each reachable subnetwork can support the admission request’s required QoS and then output

admissibility costs. The NFIS dwelling estimator considers the Doppler shift and the power strength of the requested user to assess

his/her dwell time duration in each reachable subnetwork and then output dwelling costs. Also, in order to minimize the expected

maximal cost of the user’s admission request, a minimax theorem is applied in the decision maker to determine the most suitable

subnetwork for the user request or to reject. Simulation results show that FQAC can always maintain the system QoS requirement up

to a traffic intensity of 1.1 because it can appropriately admit or reject the users’ admission requests. Also, the FQAC can achieve lower

blocking probabilities than conventional JSAC proposed in [20] and can significantly reduce the handoff rate by 15-20 percent.

Index Terms—Fuzzy Q-learning, admission control, handoff, heterogeneous network.
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1 INTRODUCTION

THE interworking functionality in heterogeneous envir-
onments has become an essential part for the next

generation wireless communication systems. Services in the
coming wireless heterogeneous communication systems
may have more than one suitable network and spectrum
opportunity to select according to the user preference and
the air link conditions. The advantage of heterogeneous
networks is the complementary flexibility of designs
including the coverage, system resource management, and
services support. For example, the wireless local area
network (WLAN) [1] is suitable for indoor, LAN-based
applications because of its high throughput and small
coverage. The cellular system, such as the third generation
(3G) WCDMA system, provides better support in high-
mobility, low-latency services but it has lower data rate. The
3rd Generation Partnership Project (3GPP) has released a
quite complete specification for WLAN interworking [2].
IEEE Task Group u is also standardizing the details of
interworking with external networks [3].

Admission control is the first step of the system resource
management in WCDMA/WLAN heterogeneous networks
because it directly determines whether the call with
multimedia traffic is allowed to enter the system. A lot of
researches and approaches of admission control for
WCDMA only [4] or WLAN only [5] have been proposed
to increase the system capacity while maintaining the
quality of service (QoS) guarantee. However, these ap-
proaches for a single system may not be suitable for
heterogeneous systems because they did not consider the
other system’s situations and vertical handoff problems. A
call admission request may have more than one option to
search for a better spectrum opportunity and utilize one or
more links in the heterogeneous networks. Nevertheless,
the original QoS has to be maintained when call requests
have to change their access networks.

The vertical handoff with network selection is a good
start point for the admission control in the heterogeneous
networks. In this case, a new call can be regarded as a
virtual handoff call from a “null” cell. Zhu and McNair [6]
used a weighted cost function for each candidate network
and formulated an optimization problem with criteria such
as requirements of bandwidth, delay, and transmission
power. Zhang [7] proposed a vertical handoff decision
method by using multiple attributes, which was further
solved by the fuzzy logic technique. Chen and Shu [8]
proposed an active application oriented mechanism, which
made the handoff decision according to a utility function.
Song and Jamalipour [9] proposed a gray relational analysis
scheme to rank the most suitable destination network in the
vertical handoff process. These approaches considered
advanced traffic type of multimedia services and formu-
lated the vertical handoff problem as a best decision
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selection, which outperforms traditional signal strength-
based methods [10]. In addition, the factor of mobility,
which combined the use of position-assisted and mobility
prediction, was also considered for call admission control
(CAC) in the work of Ye et al. [11]. However, these papers
did not consider realistic dynamics of radio channels and
network capabilities, which are essential to determine if the
selected target cell is capable of providing service continuity
for vertical handoff calls.

Some recent research also considered more comprehen-
sive network selection problems in heterogeneous environ-
ments. Maldonado et al. [12] raised the issue about the
cognitive radio, which has a higher flexibility of using the
spectrum opportunity and provides a more balanced
system loading. Chan et al. [13] proposed a utility-based
economic model to solve the resource allocation and the
network selection problems in heterogeneous networks.
Song et al. [14] investigated the WLAN-first call admission
scheme for the cellular/WLAN interworking environment,
which can achieve the maximum overall resource utiliza-
tion. Suri and Narahari [15] proposed a novel auction
algorithm for procuring wireless channel in heterogeneous
networks. All of these works in [13], [14], [15] also focused
on only the decision of a homogeneous system for new
connections in the heterogeneous networks.

On the other hand, in order to take good advantage of
both systems in WCDMA/WLAN interworking, integrated
and efficient mechanisms of admission control for new and
handoff calls were proposed to consider overall conditions
in such heterogeneous environments. Lai and Tsai [16]
studied three measurement-based CAC algorithms in
heterogeneous environments. Service requirements are
compared with measured system resource constrains to
decide if the service request is admissible. Later, Huang and
Ho [17] proposed a straightforward CAC for heterogeneous
personal communications service (PCS). Two traffic types,
real-time (RT) and non-real-time (NRT), were considered.
The amounts of RT traffic and NRT traffic are compared
with a predetermined channel occupancy threshold and the
NRT buffer threshold, respectively, to determine the
admission results. Song and Zhuang [18] proposed an
admission control method for voice and data traffic in
cellular and WLAN networks with their derived admission
regions to select possible service coverages. The policies of
admission control considered the different support ability
of QoS in cellular and WLAN systems, and some admission
strategies are given to maximize the overall system
utilization. Niyato and Hossain [19] proposed a cooperative
method to consider three systems, IEEE 802.11 WLAN,
CDMA cellular wireless access, and IEEE 802.16 WMAN, to
provide a high bandwidth service to the new connection.
The estimated result of bandwidth distribution in each
network was also referred to the system admission control.
But the mobility was not considered and the solution, the
Shaply value in the core region, was not necessarily optimal
under the criteria of system throughput, load balancing, or
utilization. Yu and Krishnamurthy [20] proposed joint
session admission control (JSAC) to optimize the utilization
of radio resources in integrated WLAN and CDMA net-
works. The QoS of WLAN (throughput and packet delay)
and the QoS of CDMA (outage probability of signal-to-
interference ratio (SIR)) were used to formulate the
admission control problem as a semi-Markov decision

process (SMDP). With a linear programming method, the
admission decision is made according to the QoS state.
However, the JSAC does not consider the service types, the
rapid state changes caused by channel variation, and the
user mobility in such a stochastic-based method.

These mentioned works considered the essential QoS
requirements such as data rate, delay bound, and packet
loss rate, to establish the cost functions for decision making
of vertical handoffs. Unfortunately, parameters for the
decision were based on either the instant and single channel
sounding or the long-term stochastic results. The former
could have the risk to make an improper admission
decision due to some occasional channel variations, and
the later would have the drawback of slower reactions in
environment changes. Although the methods with long-
term stochastic results can avoid some unnecessary hand-
offs if the channel states change rapidly, the slower
response of the handoff or admission decisions could cause
higher forced termination rate and more serious problem
with signal deterioration. Therefore, in heterogeneous
networks, effective call admission control should periodi-
cally monitor system status such as the number of users,
interference in WCDMA, network busy periods in WLAN,
etc. Also, it has to be aware of QoS requirements of
multimedia traffic and mobility of users to make the most
proper decision for a user’s admission request.

In this paper, we propose fuzzy Q-learning admission
control (FQAC) for WCDMA/WLAN heterogeneous net-
works. The FQAC considers not only QoS requirements but
also multiple system measures such as interferences from
home cells and other adjacent cells, the numbers of real-
time and non-real-time users in the system, and user’s
mobility. In order to put all the system measures and QoS
requirements together for an admission request, the FQAC
is designed to contain an admissibility estimator, a dwelling
estimator, and a decision maker. The FQAC adopts a fuzzy
Q-learning (FQL) method [21], [22] for estimation and a
minimax theorem [23] for decision making, where the FQL
integrates the neural-fuzzy inference system (NFIS) [24],
[25] with the online Q-learning algorithm. The Q-learning
has been proven to converge to a global optimum in the
Markov decision process with simplicity of iteratively
computational demands [21]. With the system measures
and the user’s profile, the NFIS will take an action, which is
the estimated cost of the admission request, for each
reachable network. Then, the decision maker collects the
costs and makes a final admission/rejection decision by
using the minimax theorem. The possible actions taken by
the NFIS are tuned by FQL, which can simplify the
reinforcement learning procedure and increase the feasi-
bility and scalability in real implementation. Without the
knowledge of system state-transition probability, the FQL
can iteratively and adaptively adjust the relations between
system states and actions by reinforcement learning signals
feedbacked from the system. The complexity of FQAC is
low, which is feasible and will be a great advantage in
reducing the vertical handoff latency.

Simulation results show that FQAC performs more
aggressive admission control than JSAC in [20] when the
traffic intensity is low, and FQAC turns to be more prudential
when the traffic intensity grows high. Hence, FQAC has
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lower new and handoff user blocking rates and higher
system utilization while maintaining the QoS requirements.
It is because FQAC has features to intelligently estimate
user’s admissibility and dwelling time. FQAC also achieves
lower handoff rate than JSAC for the reason that the admitted
(cell) subnetwork would be the one in which the user may
dwell longer. Moreover, once the initial training is com-
pleted, the online convergence rate of FQAC is fast, which is
about 11 episodes (about 850 milliseconds) in average and is
feasible for real implementation and applications.

The organization of this paper is as follows: In Section 2,
the system model for a WCDMA/WLAN heterogeneous
network is described, and the essential system measures are
selected. Section 3 presents the proposed approach of
FQAC. Section 4 illustrates simulation results. Finally,
Section 5 draws the conclusions.

2 SYSTEM MODEL

Fig. 1 shows the WCDMA/WLAN heterogeneous network
with FQAC, which is installed in the radio network controller
(RNC). Each WCDMA or WLAN system is a subnetwork of
the heterogeneous network. Generally speaking, the subnet-
work is deployed with its strategy of topology, and these
subnetworks could be overlapped with each other.

Denote SS as a set of all reachable subnetworks of a call
request of a mobile user. This implies that the pilot or the
beacon of the nth subnetwork in SS, denoted by Sn and
Sn 2 SS, can be recognized by the mobile user. As a wireless
environment considered, a radio signal suffers effects of
path loss including attenuation, fading, shadowing, inter-
ference, and noise [26]. The most commonly used processes
of fading and shadowing are in Rayleigh and log-normal
distributions, respectively, which reflect influences from
user’s movement and geographical obstacles [27], [28].

2.1 WCDMA System Measures

According to specifications of PHY and MAC in the
WCDMA system [29], [30], there are a dedicated physical
data channel (DPDCH) and a dedicated physical control
channel (DPCCH) to carry data and control information,
respectively. The admission request of a user is issued to the
base station (BS) through a physical random-access channel
(PRACH) to ask one DPCCH and none or several DPDCHs.

A frame length is 10 ms with spreading factor of 256 in
DPCCH and 4-256 in DPDCH. In WCDMA subnetwork Sn,
a four-tuple vector of essential system measures, denoted
byMn, is appropriately chosen for admissibility estimation
of a call request. The Mn is given by

Mn ¼ IH;n; IO;n; NR;n; NN;n

� �
; ð1Þ

where IH;n (IO;n) is the home-cell (other-cell) interference,
and NR;n (NN;n) is the total number of real-time (non-real-
time) users. Notice that the WCDMA is an interference-
constraint system. If the interference is larger, the existing
system load is higher and the available system capacity is
lower. Therefore, IH;n and IO;n are chosen to evaluate the
residual system capability for the WCDMA system. NR;n

and NN;n can further reflect the current system loading
directly. These measures can always be obtained according
to 3GPP standards such as TS 25.215, TS 25.225, and TS
25.922 [31], [32], [33].

2.2 WLAN System Measures

Major standards of the WLAN system [1], [34], [35] define
PHY, MAC, and amendments protocols over 2.4 GHz and
5 GHz bands. In the paper, the infrastructure mode is
assumed; the beacon interval (BI) is set to 20 ms, which
contains a contention free period (CFP) and a contention
period (CP). Usually, the CFP is used by real-time users and
applies a polling method to avoid collision and control
delay. The CP is used by non-real-time users and applies
carrier sense multiple access/collision avoidance (CSMA/
CA) with binary exponential backoff strategy. Since the
deployment of the heterogeneous network is tightly
coupled [2], [36], the admission request of a user for RNC
is also through the PRACH to determine to use CFP or CP
of the WLAN subnetwork. Similarly, in WLAN subnetwork
Sn, a four-tuple vector of essential system measures Mn is
appropriately selected for admissibility estimator of a call
request. The Mn is given by

Mn ¼ ðJP;n; JC;n; NP;n; NC;nÞ; ð2Þ

where JP;n is the percentage of busy period in CFP per BI,
JC;n is the ratio between the period of successful
transmission and the busy period in CP per BI, and NP;n

(NC;n) is the total number of users in CFP (CP). Notice that
JP;n and JC;n can somewhat represent the existing loading
of the WLAN system in CFP and CP, respectively. JC;n

also includes the collision characteristic of WLAN in CP. If
JC;n is low, it means that there is a lot of unsuccessful
transmissions due to collisions or other errors. NP;n and
NC;n are another information to judge the current system
loading. All these measures can be obtained by means of
signal/power detection and computation, accumulating
the valid number of association ID, or the available
methods in the standards of IEEE 802.11k/D13.0 [37]
and IEEE P802.11.2/D1.01 [38].

2.3 Admission Request

Assume that each mobile user is equipped with dual
modules of WCDMA and WLAN. The admission request
issued by a new or handoff user contains its QoS
requirements and mobility measures. Before sending out
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the admission request, the user should explore the reachable
subnetworks nearby. A reachable subnetwork is the one that
satisfies the constraints of signal strength of pilot or beacon.
The user detects the signal strength of pilot or beacon
around. If the detected pilot or beacon strength of subnet-
work n, denoted by ~Pn, exceeds a given minimum thresh-
old, the subnetwork is called reachable.

Besides, a mobile user usually has two thresholds to
trigger the handoff process [39] in order to prevent the ping-
pong effect. When the average received power is lower than
the first threshold but higher than the second one, the user
will start to explore the reachable subnetworks. If the
average received power is lower than the second threshold,
the handoff request (with admission request) will be issued.

The QoS requirements in the admission request include
the minimum data rate (R�), the maximum delay (D�),
and the maximum bit error rate (��). The mobility
measures in the admission request for Sn originally
choose the received pilot (beacon) strength, ~Pn, and the
detected Doppler shift, ~fn. If ~Pn is large (small), it denotes
that the location of user is near the BS (cell boundary).
The ~fn is equal to ðv cos �nÞ=�n [26], where v is the velocity
of the user, �n is the angle between the user’s moving
direction and the straight line from user to the BS of Sn,
and �n is the wavelength of carrier frequency in Sn. If the
measured ~fn is positive (negative), it denotes that cos �n is
positive (negative) and the user is approaching (leaving)
BS. Thus, it can be concluded that the detected Doppler
shift can represent the relative, geographical movement
relationship between the user and the BS. This Doppler
shift, ~fn, with ~Pn can estimate the possible dwelling
duration of user in Sn. Therefore, a two-tuple vector of
measures for dwelling duration estimation, denoted by
MðvÞ

n , is given by

MðvÞ
n ¼ ð~fn; ~PnÞ: ð3Þ

3 DESIGN OF FQAC

The FQAC system, as shown in Fig. 1, consists of two NFISs
for admissibility estimator and dwelling estimator and a
decision maker. Every NFIS is configured by a five-layered
structure for fuzzy logics, and adopts an FQL method [21],
[22], [40] for its neural network tuning. The FQL can
establish an adaptive self-learner and adjust the most proper
actions (admission costs) taken by NFIS with respect to
system states including those measures mentioned in (1), (2),
(3), and QoS requirements. Its advantage is that the Bellman
optimality in the learning process can be achieved without
knowing the state-transition behaviors [21]. The FQAC can
determine the most suitable subnetwork among all reach-
able subnetworks for a mobile user’s call admission request.

3.1 Fuzzy Q-Learning Method

In the FQL method, there are a set of state vectors, denoted
by � ¼ f�i; i ¼ 1; 2; . . . ;Mg, and a set of actions, denoted by
AA ¼ fAj; j ¼ 1; 2; . . . ; Ng. Also, each fuzzy inference rule is
made by the form of

IF input state vector x is �i,

THEN the action is Aj with qð�i; AjÞ,

where qð�i; AjÞ is the Q-value of the state-action pair
ð�i; AjÞ; 1 � i �M; 1 � j � N . The policy to select an action
for each rule could be select-max or other exploration
strategies [24], [41], [42]. To defuzzify the M fuzzy rules,
the inferred action for x, denoted by V ðxÞ, is defined as

V ðxÞ ¼
PM

i¼1 wiAiPM
i¼1 wi

; ð4Þ

where wi is the truth value of rule corresponding to �i.
According to [21], the Q-value of ðx; V ðxÞÞ, denoted by
Qðx; V ðxÞÞ, is to reflect the action’s fitness with respect to x.
The Qðx; V ðxÞÞ is defined by

Q x; V ðxÞð Þ ¼
PM

i¼1 wi � qð�i; AiÞPM
i¼1 wi

: ð5Þ

A reinforcement signal, denoted by rðx; V ðxÞÞ, is used to
reflect the difference between the current and the desired
results. It is used to adjust the action behaviors in the NFIS
when an action is taken. Also the system state will change to
a new input state x̂. If the new state-action pair (x̂; V ðx̂Þ) is
the optimal result, it must satisfy the optimal next-step Q-
value defined by

Q� x̂; V ðx̂Þð Þ ¼
PM

i¼1 wi � qð�i; A�i ÞPM
i¼1 wi

; ð6Þ

where

A�i ¼ arg max
Aj

qð�i; AjÞ
� �

: ð7Þ

Then, the Q-value will be updated by

qð�i; AiÞ ¼ qð�i; AiÞ þ ��qð�i; AiÞ; ð8Þ

where

�qð�i; AiÞ ¼
wiPM
h¼1 wh

� rðx; V ðxÞÞ þ �Q�ðx̂; V ðx̂ÞÞð

�Qðx; V ðxÞÞÞ;
ð9Þ

� 2 ½0; 1� is the learning rate, and � 2 ½0; 1� is the discount
factor used for the reinforcement signal rðx; V ðxÞÞ. The FQL
can converge to a global optimum for a given optimization
problem on the inferred action V ðxÞ [21], [22], [40]. The
FQAC method has the capability to iteratively approximate
the unknown optimal V ðxÞ between inputs and outputs and
to track time variations of input statistics. It takes a balanced
position between the learning convergence speed and the
convergence accuracy. In addition, FQL has the simplicity
of implementation by software or hardware.

3.2 NFIS Admissibility Estimator

The NFIS admissibility estimator is designed to investigate
how much the admittance of the new or handoff user’s call
admission request affects the QoS of existing connections.
It evaluates the admissibility of the user with QoS
requirements including data rate (R�), delay (D�), and bit
error rate (��) in the subnetwork Sn; 8Sn 2 SS. For Sn, the
input state vector x of the NFIS admissibility estimator is
designated to be Mn and Mn ¼ ðIH;n; IO;n; NR;n; NN;nÞ
given in (1) if Sn belongs to WCDMA system or Mn ¼
ðJP;n; JC;n; NP;n; NC;nÞ given in (2) if Sn belongs to WLAN
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system. The output action V ðxÞ for Sn, denoted by CA;n, is

the admissibility cost if the call request is accepted by Sn.

The lower CA;n implies the higher admissibility of the call

request by Sn. There are four input linguistic variables

from Mn. Each linguistic variable, Ln 2 Mn, assumes an

identical fuzzy term set defined as TðLnÞ ¼ {very low (VL),

low (L), high (H), very high (VH)}. Accordingly, the

dimension of the rule base jTðLnÞj4 ¼ 256. The fuzzy term

set of CA;n is defined as TðCA;nÞ ¼ {strong reject (SRE),

reject (RE), fair (FA), accept (AC), strong accept (SAC)}.

Besides, the reinforcement learning signal, rðx; V ðxÞÞ, for

FQL of the NFIS admissibility estimator is defined as

rðx; V ðxÞÞ ¼ rðMn; CA;nÞ

¼ ðR� � ~RðMn; CA;nÞÞþ

R�

� �2

þ ð ~DðMn; CA;nÞ �D�Þþ

D�

� �2

þ ð~�ðMn; CA;nÞ � ��Þþ

��

� �2

;

ð10Þ

where ðaÞþ represents the operation maxða; 0Þ, ~RðMn; CA;nÞ,
~DðMn; CA;nÞ, and ~�ðMn; CA;nÞ are the values of data rate,

delay, and bit error rate measured from system statistics

under the state-action pair ðMn; CA;nÞ, respectively. R�, D�,

and �� are the QoS requirements of the call request. We

construct a five-layered NFIS admissibility estimator for

subnetwork Sn. As shown in Fig. 2, the function of each layer

of the NFIS admissibility estimator is described as follows.
Layer 1 is the input layer with four input linguistic nodes.

Every node is a bell shaper of Ln with four identity outputs

to the next layer. Hence, there are total 16 outputs, which

are expressed as

OA;1;i ¼ exp
�ðLn � �Þ2

2�2

( )
; 8Ln 2 Mn; i ¼ 1; 2; . . . ; 16; ð11Þ

where � is a constant for bias given by every subnetwork.

Note that nodes 1-4 (5-8) (9-12) (13-16) are for the entity IH;n

(IO;n) (NR;n) (NN;n) in WCDMA systems or the entity JP;n

(JC;n) (NP;n) (NC;n) in WLAN systems.
Layer 2 is the term node layer with 16 nodes for TðLnÞ, as

shown in Fig. 2. Each node i, with input OA;1;i, plays the role

of the membership function in the NFIS. The membership

function in node i applies the trapezoid function, which is

given by

GiðmÞ ¼

m�mi;1

mi;2 �mi;1
; mi;1 � m � mi;2;

1; mi;2 � m � mi;3;
mi;4 �m
mi;4 �mi;3

; mi;3 � m � mi;4;

0; otherwise;

8>>>>><
>>>>>:

ð12Þ

where mi;1 and mi;4 (mi;2 and mi;3) represent two terminals

of the lower (upper) parallel sides of the trapezoid. Thus,

the output of node i can be expressed as

OA;2;i ¼ Gi OA;1;i

� �
; i ¼ 1; 2; . . . ; 16: ð13Þ

Layer 3 is the rule node layer. This layer implements the

truth value of NFIS with a fuzzy-AND operator, and node i

represents the behavior of rule i with preconditioned

involvement of node j over Layer 2. Since the NFIS

admissibility estimator has four input linguistic variables,

each node over this layer has four inputs. With product

operation, the output of node i can be expressed as

OA;3;i ¼
Y
fOA;2;jg; i ¼ 1; 2; . . . ; 256; ð14Þ

where j is the node index over layer 2 that is used in the

ith rule.
Layer 4 is the output layer. Each node in this layer is an

action-select node which represents the consequence part of

the ith fuzzy rule. Based on the action selection policy and

Q-values of the possible action candidates in TðCA;nÞ, the

node is to choose an appropriate action. In order to obtain a

better learning result due to improper initial setting of fuzzy

rules, the semiuniform distributions strategy in [24], [42] is

employed to explore the set of all possible actions. There-

fore, the node i; i ¼ 1; 2; . . . ; 256 over this layer will first

select an action Ai for the ð�i; AiÞ pair with the probability

given by

P ð�i; AiÞ ¼
P �ð�i; A�i Þ þ

1� P �ð�i; A�i Þ
jTðCA;nÞj

; if Ai ¼ A�i ;

1� P �ð�i; A�i Þ
jTðCA;nÞj

; otherwise;

8>><
>>: ð15Þ

where A�i can be obtained by (7), P �ð�i; A�i Þ is a predefined

probability that the best action A�i is selected, and jTðCA;nÞj
is the number of terms in TðCA;nÞ. If there are more than one

best actions, one of them will be selected randomly. This

semiuniform distributions method provides a simple,

undirected rule from pure exploration (P �ð�i; A�i Þ ¼ 0) to

pure exploitation (P �ð�i; A�i Þ ¼ 1). Then, the node i will

generate two outputs with normalization, which can be

expressed by
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OA;4;i ¼
OA;3;i �AiP256

‘¼1 OA;3;‘

; ð16Þ

and

ÔA;4;i ¼
OA;3;i � qð�i; AiÞP256

‘¼1 OA;3;‘

: ð17Þ

Equations (16) and (17) are the action-weighted and Q-value-
weighted consequences of fuzzy rule i for the next layer.

Layer 5 decides the admissibility cost of Sn; CA;n, and the
Q-value of the state-action vector pair ðx; V ðxÞÞ; Qðx; V ðxÞÞ.
They are accomplished by a center of area (COA) defuzzi-
fication method [24]. The outputs are given by

OA;5 ¼ CA;n ¼
X256

i¼1

OA;4;i ð18Þ

and

ÔA;5 ¼ QðMn; CA;nÞ ¼
X256

i¼1

ÔA;4;i: ð19Þ

Afterward, the ~RðMn;CA;nÞ, ~DðMn;CA;nÞ, and ~�ðMn;CA;nÞ
in (10) can be measured, the reinforcement signal rðx; V ðxÞÞ
can be obtained, and the corresponding Q-value in (8) and (9)
can be updated. Notice that the NFIS admissibility estimator
can be regarded as a single-agent learner. Each single
subnetwork has its own database of the Q-value update and
action selection probability for every mobile user. Therefore,
its learning will be converged with rate and precision affected
by learning rate � and the exploration strategy.

3.3 NFIS Dwelling Estimator

The NFIS dwelling estimator is to evaluate the possible
dwelling time duration of the user’s call admission request
in the subnetwork Sn; 8Sn 2 SS. For Sn, the input state vector
x of the NFIS dwelling estimator is designated to beMðvÞ

n ¼
ð~fn; ~PnÞ which is given in (3). The output action V ðxÞ is a
dwelling cost, denoted by CD;n. If the dwelling time duration
is longer, the dwelling cost is lower. The two input
linguistic variables are with fuzzy term sets designed
respectively as Tð~fnÞ ¼ {negative high (NH), negative
medium (NM), small change (SC), positive medium (PM),
positive high (PH)}, and Tð ~PnÞ ¼ {very low (VL), low (L),
high (H), very high (VH)}. Accordingly, the dimension of
the rule base is jTð~fnÞj � jTð ~PnÞj ¼ 20. The inferred output
action CD;n is with the fuzzy term set defined as
TðCD;nÞ ¼ {very low cost (VLC), low cost (LC), medium
cost (MC), high cost (HC), very high cost (VHC)}. Besides,
the reinforcement learning signal, rðx; V ðxÞÞ, for FQL is
designed as

rðx; V ðxÞÞ ¼ r
�
MðvÞ

n ; CD;n
�

¼
�
c	 � 


�
MðvÞ

n ; CD;n
��þ

c	

" #2

;
ð20Þ

where 
ðMðvÞ
n ; CD;nÞ is the actual average dwell time of

users measured under ðMðvÞ
n ; CD;nÞ pair, 	 is the maximum

handoff delay bound defined by the system, and c > 1 is a
constant. Therefore, c	 is the preferred minimal dwell time
for mobile users. This can ensure the mobile user in some Sn

to have dwell time long enough to launch the next handoff

and prevent from too frequent handoffs.
Also, as shown in Fig. 3, a five-layered NFIS dwelling

estimator is constructed for subnetwork Sn. The function of

each layer of the NFIS dwelling estimator is similar to that

of the NFIS admissibility estimator. For its detailed design,
please refer to [43]. With the reinforcement signal in (20),

the learning update for action selection in the NFIS

dwelling estimator can be calculated by (8) and (9). In the

design, each single subnetwork has its own database of the

Q-value update and action selection probability for every
type of service. Similarly, the learning rate � and the

exploration strategy would influence the convergence

performance of Q-learning.

3.4 The Decision Maker

The decision maker in the FQAC system, shown in Fig. 1,

makes the admission decision based on a minimax theorem

[23]. The minimax theorem is an optimal approach for mixed

strategies in the statistical decision theory and the zero-sum
game theory proved by Jonas von Neumann in 1928.

According to the minimax theorem, the expected maximum

costs of all reachable subnetworks, which is represented by

the admissibility and dwelling costs, can be minimized for

the admission decision. Therefore, the optimally chosen

subnetwork m for the new or handoff user has to satisfy

m� ¼ arg min
m
fmaxfCA;m; CD;mgg: ð21Þ

If there are multiple results in m, then an arbitrary one will

be selected. If the reachable subnetwork does not exist, or

the result cost of the chosen subnetwork m is equal to one, it

implies that the subnetwork cannot support the required
QoS or mobility. Therefore, the FQAC system will reject the

user’s admission request.
The ultimately selected subnetwork is the one with the

minimal cost among all possible maximal costs. The

decision will lead the FQAC to behave more aggressive
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Fig. 3. A five-layered NFIS dwelling estimator for subnetwork Sn.



when the overall load is light and more prudential when
the overall load is heavy to ensure QoS guarantee.

4 SIMULATION RESULTS

4.1 Simulation Environment

The simulations consider a WCDMA system containing
7� 7 hexagonal and wrap-around WCDMA cells for
simulations. The longest distance between the BS and
the cell boundary is 1 kilometer. The channel of the
WCDMA system suffers intercell MAI, intracell MAI,
AWGN noise, log-normal shadowing [44], and multipath
fading [45]. The path-loss exponent is 4.35 [27], and the
spreading factor is from 4 to 256. Perfect power control is
used in the system. As shown in Fig. 4, the WLAN
subnetworks are overlapped over the WCDMA networks.
A WLAN subnetwork group consists of 3� 3 round QoS
basic service sets (QBSSs). The centers of WLAN subnet-
work groups are located at the same place of WCDMA’s
BSs and the cross point of three WCDMA cells’ bound-
aries. The radius of each QBSS is 100 meters, and any two
adjacent QBSSs are assumed to use different channel
frequencies. Both Rayleigh and log-normal fading channel
models are also considered. The WLAN system para-
meters are based on those in [34], [35], where the SIFS,
PIFS, and DIFS are assumed to be 10, 20, and 40 �s,
respectively; a beacon interval is 20 ms; the maximum
duration of CFP is 15 ms; and a slot time (aSlotTime) of
PHY is 9 �s. The value of 	 and constant c in (20) are
500 ms and 3, respectively. In order to eliminate the
handoff latency of the handoff request contention in the
WLAN system, the fast handoff protocol in [46] is adopted
to provide efficient inter-AP transitions.

The arrival of new calls in each WCDMA cell is modeled
as a Poisson process with a mean arrival rate �. The traffic
intensity is defined as the product of the mean arrival rate
and the mean session time of a call. There are four types of
traffic in the WCDMA/WLAN heterogeneous network:
real-time voice, real-time video stream, non-real-time data,
and best effort. In the simulations, a new call could be a
voice call, video call, data call, and best effort call with the
possibility of 30, 20, 40, and 10 percent, respectively. Users
are also assumed to be uniformly distributed in cells, and a
random-walk model is used to simulate the mobility of
every user. Four kinds of mobility, fixed, pedestrian,
medium velocity, and high velocity, are modeled with

mean speed 0, 5, 40, and 80 kilometers per hour in
distribution 35, 35, 20, and 10 percent, respectively.
Similarly, all mobile users in WLAN are located randomly
and activated in a saturation mode of that their access
transmissions are always on. The system QoS requirements
are listed in Table 1. Since the requirements can be
supported in both WCDMA and WLAN systems, there
would be no data rate problem to handoff vertically from
WLAN (higher bandwidth) to WCDMA (lower bandwidth).
Also, the simulations are based on the Monte Carlo method,
and the design of the FQAC is implemented with referring
to the Reinforcement Learning Toolbox [47].

4.2 Simulation Results

Fig. 5 depicts the mean QoS guarantee ratios of the
proposed FQAC and the JSAC in [20] for all services versus
the traffic intensity, where the 95 percent confidence
intervals are also provided at traffic intensity 0.8 and 1.0.
It can be found that the FQAC can maintain almost all
services’ QoS requirements when the traffic intensity is as
high as 1.1. The reasons are that FQAC adopts the
combination of fuzzy logic and neural network with Q-
learning to provide the capability to adapt to system
dynamics, also FQAC chooses significant system measures
and appropriately makes decision to admit or reject the
admission requests by the intelligent FQL method and the
minimax theorem. The JSAC, however, has a few QoS
violations at high traffic intensity, and has apparent
degradation performance when the traffic becomes very
intense. It is because some short-term system state varia-
tions cannot be reflected in its CAC method and the
improper admission decisions might occur.

Fig. 6 depicts the new call blocking rates of four service
types versus the average traffic intensity, where the
95 percent confidence intervals at traffic intensity 0.8 and
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Fig. 4. The topology of WCDMA/WLAN heterogeneous networks for

simulations.

TABLE 1
QoS Requirements

Fig. 5. Mean QoS guarantee ratio.



1.0 are also included. It can be found that FQAC has lower
average new call blocking rate lower than JSAC. The reason
is that the FQAC considers more realistic, essential system
measures and user mobility in both WCDMA and WLAN
systems. The system states can be reflected to the admission
decisions. In addition, the FQL method is capable of
adapting to system variation with the self-learning ability.
Therefore, the system with FQAC will be able to accom-
modate more users and make better admission decisions
while maintaining QoS guarantee. However, when the
traffic intensity is extremely high, the slope of new call
blocking rate of FQAC will become sharp, which represents
that the FQAC becomes prudential to reject the new call to
prevent system overflow and keep QoS guaranteed. JSAC,
however, uses statistical parameters as the basis of admis-
sion control, it might not be able to catch the short-term
system changes and result in some improper admission
decisions. In order to keep the ratio, the QoS guarantee as
high as possible, JSAC has to leave a margin to mitigate the
influence of channel variation and user mobility; this would
sacrifice the precision of CAC and system capacity.

Fig. 7 shows the handoff call blocking rates for four
service types versus the traffic intensity and the 95 percent
confidence intervals at 0.8 and 1.0. In order to lower the
forced termination rate of on-going calls, it is necessary to
design the system with the handoff call blocking rate lower
than the new call blocking rate. It can be found that FQAC
can generally attain the handoff blocking rate smaller than
JSAC in the QoS services of voice, video, and data. This
implies that FQAC would have lower forced termination

rate for these QoS services. The most important reason is
that FQAC is designed with an NFIS dwelling estimator to
avoid high-velocity users entering small-coverage subnet-
works and select the suitable subnetwork in which the
mobile user dwell time is longer. There are some overlaps of
confidence intervals in these figures, where FQAC may
attain handoff call blocking rate larger than JSAC. However,
the probabilities that FQAC performs worse than JSAC in
those overlapping areas are below 0.1 percent except in
Figs. 7b and 7c with traffic intensity 1.0, in which the
probabilities are about 10 percent.

We can also see from Fig. 8 that FQAC has the smallest
handoff rate. With the NFIS dwelling estimator, the
number of handoff in FQAC can be significantly reduced
by 15-20 percent as compared to JSAC and FQAC if
without dwelling estimator. This is a great advantage to
improve the user experience when using voice or video
streaming services. Meanwhile, the systems’ overhead of
dealing with the handoff process can be decreased. It is
because FQAC without dwelling estimator cannot prevent
a high-velocity or mobile-through user to be admitted to a
small subnetwork. Also, JSAC does not consider the
realistic channel variation and user mobility conditions.

Finally, we also observe the convergence performance of
FQAC in the simulations. The initial training requires about
98 iterations in average to converge. Once the initial training
is finished, the online learning takes 11 iterations at most to
converge. The convergence time is about 850 milliseconds,
which is quick enough for the online learning of an
admission controller.

1476 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 8, NO. 11, NOVEMBER 2009

Fig. 6. New call blocking rate for the service of (a) voice, (b) video, (c) data, and (d) best effort.



5 CONCLUSIONS

In this paper, we propose FQAC for multimedia traffic in

WCDMA/WLAN heterogeneous networks. The FQAC

system adopts a NFIS with Q-learning (FQL) method for

admissibility estimator and dwelling estimator. Generally,

the fuzzy logic technology can provide a robust mathema-

tical method for admission control in realistic environ-

ments, especially when the mathematical model of the

process is too complicated to find. The combination of fuzzy

logic and neural network with Q-learning further provides

the ability to adapt to system dynamics because it can

automatically adjust the relations between system states

and actions which exist in the fuzzy rules. Also, the FQAC

system considers essential system measures as input
linguistic variables, such as the number of mobile users,
the interference in WCDMA systems, and the busy period
in WLAN systems. Meanwhile, the QoS requirements and
the mobility of the user’s admission request are taken into
account. According to these linguistic variables, FQAC
would generate the admissibility cost and dwelling cost of
each reachable subnetwork to reflect the impact of these
subnetworks by the user’s admission request. In order to
minimize the expected maximal impact (cost) of the mobile
user’s admission request, the decision maker in the FQAC
system adopts the minimax theorem to jointly estimate the
mixed cost and decides the most suitable subnetwork or
reject the mobile user request.

Simulation results show that FQAC performs more
aggressive admission control than JSAC when the traffic
intensity is low. However, whenever the traffic intensity
grows high, FQAC turns to be more prudential to avoid
QoS violations. Hence, FQAC has lower new and handoff
user blocking rates, while maintaining the QoS. Also, the
FQAC can significantly reduce the average number of
handoff by 15-20 percent as compared to JSAC. The FQAC
system would be capable to adapt to the fluctuation of
traffic dynamics and should be one of the best choices for
heterogeneous networks.
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Fig. 8. Number of handoff per minute.

Fig. 7. Handoff call blocking rate for the service of (a) voice, (b) video, (c) data, and (d) best effort.
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