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一 個 關 於 切 割 影 片 以 產 生 單 一 / 多 重 場 景 背 景 之 研 究 

學生：郭萓聖 

 

指導教授：陳玲慧  教授 
 
 

國立交通大學資訊科學與工程研究所博士班 

摘 要       

以物件為基礎編碼的 MPEG-4 採用了一種創新的場景背景編碼方式，該

方法可以提高背景部分的編碼效率。MPEG-4 所提出的場景背景產生系統，

使用算數平均將所有影像疊合以產生場景背景影像，然而這樣的方式會使

得產生出的場景背景影像中某些區域變得模糊，特別是曾經被移動物件佔

據過的位置。為了防止產生背景模糊的狀況，MPEG-4 建議使用者提供一個

物件分割遮罩，標示畫面中屬於移動物件的位置，以避免物件被混入場景

背景之中。我們依照 MPEG-4 所提出的架構，建立一個場景背景產生系統。

但手動產生所有畫面的物件分割遮罩是不切實際的，因此在所建立的系統

中，我們提出一個自動化物件分割遮罩產生方法。該方法先以不使用物件

遮罩的方式產生粗糙場景背景，而後以粗糙背景為參考影像產生物件分割

遮罩，最後再以所產生的遮罩重新產生較佳的場景背景。實驗結果顯示所

提的系統產生之場景背景，具有良好的視覺品質。 

自動化影像分割方法所產生的物件分割遮罩，不可能非常完美的將所有

移動物件與背景區分。未正確區分的物件分割遮罩，會使得部分移動物件

被混合入背景影像之中。導致所產生的場景背景影像中，出現如鬼影般的

移動物件殘骸。為了解決這個問題，我們將提出一個不需要物件分割遮罩

的場景背景產生系統。所提出的系統包含兩個新方法：均勻化特徵點擷取

方法與智慧型影像疊合方法。提出的特徵點擷取方法估計背景的運動向

量，利用該向量將特徵點中屬於移動物件的點予以排除。同時以均勻化的

擷取方式平均分散所有特徵點的位置。提出的智慧型影像疊合方法使用一

種計數方法，使得只有屬於背景的點被混合入場景背景影像之中。實驗結

果顯示所提出的均勻化特徵點擷取方法能有效的提高全域運動估計的準確
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性，因而提高場景背景影像之品質。提出的智慧型影像疊合方法則能夠將

物件排除在疊合過程以外，使得以提出之方法產生的場景背景影像，不存

在分割失誤可能導致的鬼影現象。其視覺品質接近使用人工產生之物件分

割遮罩產生的場景背景影像，並優於 Smolic et al.提出之使用自動化物件分

割之場景背景產生方法。 

場景背景產生系統中，應用了幾何轉換將非參考畫面轉換至參考畫面的

座標系統。進行幾何轉換會使轉換後畫面，以及根據轉換後畫面疊合的場

景背景影像變的歪曲。這使得場景背景影像所需要的儲存空間增加，同時

亦限制了場景背景影像所能夠涵蓋的視角。對此 Farin et al.提出了使用多重

場景背景的方式解決問題。使用多張場景背景影像所需的儲存空間總和，

有可能較使用單一場景背景影像來的小，同時亦能涵蓋較大範圍的視角。

然而 Farin et al.所提出的方法，利用暴力搜尋法找出最佳的影片分割位置。

若有 N 個畫面，這樣的方法需要 O(N3)的執行時間與 O(N2)的儲存空間。為

了降低運算的複雜度，我們提出一個快速的多重場景背景影片分割方法。

該方法包含一個可能的分割位置選取方法以及一個快速參考畫面選擇方

法。利用測量畫面之間的移動與縮放，以找出影片中有可能的分割位置。

並由這些可能的分割位置尋得最終的分割位置，將影片分割為數個子影

片，最後每一個子影片將產生一個場景背景影像。若所提出的方法找到 M
個可能的分割位置，則所提出的方法僅需要 O(M2N)的執行時間以及

O(M2)+O(N)的儲存空間。同時所產生的數個場景背景影像的總儲存空間僅

較暴力搜尋法所產生的略高。 
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ABSTRACT 

Sprite coding, which can increase the coding efficiency of backgrounds 
greatly, is a novel technology adopted in MPEG-4 object-based coding. The 
sprite generator introduced in MPEG-4 blends frames by averaging blending, 
this will make some places, which are ever occupied by moving objects, look 
blurring. Thus, providing segmented masks for moving objects is suggested. We 
build a sprite generation system based on MPEG-4’s framework, but we find 
that using manual segmentation masks in a sprite generation system is 
impractical. An automatic segmentation mask generation method is proposed 
and is applied in the sprite generation system. The sprite generation system 
produces a coarse sprite first by MPEG-4’s method without segmentation masks. 
Then the coarse sprite is employed as the reference image in the proposed 
segmentation mask generation method. After generating the segmentation masks, 
a better sprite is re-generated again with generated segmentation masks. 
Experimental results show the sprite generated by the proposed system has good 
quality. 

Automatic image segmentation can not produce perfect object segmentation 
masks. Segmentation faults in segmentation masks causes some moving objects 
being blended into a sprite. This makes some ghost-like shadows appear in a 
generated sprite. To treat this problem, a sprite generation without segmentation 
masks is proposed in this dissertation. The proposed sprite generator consists of 
two novel methods: a balanced feature point extraction method and an 
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intelligent blending method. The feature point extraction method estimates the 
motion vector of background pixels, and excludes pixels of moving objects from 
the feature points. Proposed intelligent blending method blends only background 
pixels into a sprite by a simple counting schema. Experimental results show the 
feature points extracted by the proposed method increases the accuracy of global 
motion estimation, and the quality of generated sprites is increased. The 
proposed intelligent blending method excludes pixels of moving objects directly 
in the blending procedure. Thus ghost-like shadows caused by segmentation 
faults is not exist in the sprite generated by our method. The visual quality of our 
sprite is close to that using manually segmented masks and is better than that 
generated by Smolic et al.’s method. 

Due to the geometric transformation applied to each non-reference frame in 
the procedure of sprite coding, the generated sprite is distorted and the available 
view angles relative to the reference frame are restricted. This makes multiple 
sprites used be necessary. An optimal multiple sprite generation method has 
been proposed by Farin et al., but it uses an exhaustive search to find the 
optimal partition and reference frames. Let N be the number of frames, Frains’ 
method requires O(N3) time and O(N2) space to perform the search. In order to 
reduce the complexity, a fast multiple sprite partition method is proposed in this 
dissertation. The proposed method includes a fast partition point finding method 
and a fast reference frame finding method. The proposed partition point finding 
method measures translation and scaling between frames and finds candidate 
partition points by the measured values. The final partition positions are decided 
from these candidate points, and reference frames of each partition are found by 
the proposed fast reference frame selecting method. Let M candidate partition 
points are found, the proposed method requires only O(M2N) in time and 
O(M2)+O(N) in space. The total size of generated sprites is only slightly higher 
than that of Farin’s method. 
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CHAPTER 1  
INTRODUCTION 

 

1.1  Motivation 

MPEG-4 [1] had adopted a novel technique to code a series of backgrounds belonging to 

a scene into a single panoramic image, which is often denoted as a ‘sprite’ or a ‘background 

mosaic’ [2-6]. The constructed sprite and some specified parameters are transmitted to the 

receiver, and then a decoder can reconstruct the series of backgrounds by the transmitted 

information. Since the sprite is transmitted only once, this technique can achieve very low 

bit-rate with good quality. Aside from the high coding efficiency of sprite coding, the 

generated sprite is also useful for segmenting moving objects [7-11]. The extracted moving 

objects and the sprite itself can be used in video summarization [12]. 

A sprite is constructed in the encoder by a sequence of complex algorithms called a 

‘sprite generator’. MPEG-4 VM [13-14] has provided a framework of sprite generator as 

shown in Fig. 1.1. The framework contains three parts: global motion estimation (GME), 

frame warping and frame blending. The GME aims at finding the spatial location variation, 

which is caused by the camera motion, of the background in the current frame relative to the 

current sprite. The camera motion can be represented by parameters of some geometric 

models often denoted as global motion parameters (GMP). Gradient descent based algorithms 

[15-17] are widely used in the estimator. These algorithms usually need a good initial guess to 
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avoid the solution being local optimum, and an error function is required to evaluate the 

performance of different GMPs. The squared error between the current frame and the current 

sprite is usually employed as the error function. In order to raise speed, only some points are 

selected as feature points and involved in the computation of the error function [18-21]. The 

selection of feature points decides the estimation accuracy, especially when the number of 

feature points is small. Thus, how to select few representative feature points is an important 

issue. Most existing methods [18-21] take those points with higher variations in spatial or 

temporary domain; this will lose some important ones with moderate variations and will 

include some moving object points with higher variations. To avoid this disadvantage, in this 

dissertation, a balanced feature point extractor is provided to increase the estimation precision 

for GMPs. 

 

 

Fig. 1.1  The framework of the sprite generator in MPEG-4 VM. 

 

After obtaining GMPs, the current frame is first geometrically transformed (also called 

warped) to a warped one with the same camera view as the current sprite. The warped frame 
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is then blended into the current sprite by a blending strategy. In MPEG-4’s framework, 

averaging blending is employed as the blending function. This will make some places, which 

are ever occupied by moving objects, blurred. To avoid the disadvantage, providing 

manually-segmented masks have been suggested. The segmentation masks are used to 

distinguish moving objects from background such that moving objects will not be involved in 

blending and the quality of the generated sprite can be significantly improved. However, 

segmenting moving objects manually from the video frames is impractical. In this dissertation, 

two approaches will be provided to increase the blending quality. The first approach generates 

these segmentation masks from a coarsely generated sprite without these masks. Then a better 

sprite is generated using the automatically generated masks. The second approach tries to get 

rid of the segmentation masks by developing a new blending method that excludes moving 

objects from being blended into the sprite. 

The video sequence is inputted frame by frame into the sprite generator. The sprite buffer 

holds the sprite generated so far and provides the current sprite to the GME process as the 

reference image. 

 

1.2  Basic of Sprite Generation 

As Fig. 1.1 shows, a sprite generator can be divided into three parts. The global motion 

estimation registers pixels between two frames and estimates the camera motion between two 
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frames. The warping transforms a frame into another frame’s coordinate according to the 

camera motion estimated in the global motion estimation. Finally, the blending process blends 

the transformed frames and merges them into a single sprite. These parts will be introduced as 

followings. 

 

1.2.1  Global motion estimation 

The aim of global motion estimation is to obtain an accurate estimation of background 

motion between the current frame and a reference image, which is often the previous frame or 

the current sprite. Many global motion estimation methods have been proposed [22-26]. 

Before estimating the background motion, a motion model must be chosen to describe the 

motion of background [27]. Affine transformation and perspective transformation are widely 

used as the motion model in the generation of a sprite. Then an image registration method [28] 

is applied to find corresponding pixel pairs that belong to the same location of background in 

both images, and the global motion parameters are estimated by iterative minimization 

methods. 

 

1.2.1.1  Motion model selection 

The motion of background comes from camera motion, like zooming, panning, and 

rotation. These motions can be modeled by a geometric transformation. One of the two 
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transformations is often chosen as the camera motion model: the affine transformation and the 

perspective transformation. Both of them are defined by two equations with a set of 

parameters and as follows: 
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where (x,y) and (x’,y’) denote the coordinates of a pixel before and after the camera motion 

respectively. m1,m2,…,m8 are the transformation parameters also referred as global motion 

parameters (GMPs). We can see that the affine transformation with six parameters is a special 

case of the perspective transformation with m7=m8=1. The perspective transformation can 

describe more complicated camera motions. However, the higher computational complexity 

of the perspective transformation limits its usability. The affine transformation is quite simple, 

but it has a lower accuracy. Both of them are adopted as standard tools in MPEG-4. In most of 

sprite generators, the perspective transformation is selected since the sprite is usually 

generated first before coding the video sequence itself and real-time processing is not 

required. 
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1.2.1.2  Parameter estimation 

By using the selected transformation, the global motion estimation can be converted to a 

minimization problem: 

 ),',(minarg*
PP

TIIEP =  (1.3) 

where I and I' are the current frame and the reference image respectively. TP is the 

transformation function with global motion parameters P. P* is the estimated parameters. 

E(I,I',TP) is an error function defined by user. The estimation registers pixels in the current 

frame into the reference image by finding the parameters which minimize the error between 

the current frame and the reference image. In this dissertation, the squared error is chosen as 

the error function, that is, 

 ( )∑
∈

−=
Iyx

PP yxTIyxITIIE
,

2)),(('),(),',(  (1.4) 

Due to the complication of global motion parameters, Least-Mean-Square minimization 

method is used to find the parameters P*. For example, the Levenberg-Marquardt algorithm 

[15] based on the gradient descent method can be used. Gradient descent based methods 

search for better parameters around the current parameters, and refine the parameters 

iteratively. Thus they have a risk of being trapped into a local minimum. A starting point 

called an ‘initial guess’ must be provided. A good initial guess can reduce the risk of being 

trapped into a local minimum and can also speed up the refinement process. 

In order to provide a good and robust initial guess, global motion estimation is usually 
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processed in two stages [18]. To generate a sprite from a video sequence, the first frame in the 

sequence is copied into the sprite directly. Then camera motions between the following frames 

and the first frame must be estimated by the global motion estimation. In the beginning of the 

sequence, it is easy to find a good initial guess because the camera does not move too far. It 

becomes hard to find a good initial guess when the camera motion of the current frame 

relative to the current sprite is large. This problem is solved by a two-stage GME schema 

shown in Fig. 1.2. The first stage estimates the motion parameters called the local parameters 

between the current frame and its previous frame, i.e., the frame before the current frame. 

Finding an initial guess of the local parameters is easy because the variation of camera motion 

between two successive frames is small. Based on the estimated local parameters, the initial 

guess of global motion parameters can be computed in the second stage by combining the 

local parameters and the global motion parameters of the previous frame. Then the gradient 

descent method is employed to estimate the global motion parameters. 

 

 

Fig. 1.2  The two-stage GME schema. 
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1.2.1.3  Feature points selection 

The iterative minimization of the gradient descent method is time consuming. To reduce 

the time complexity, only some selected feature points in the current frame are employed 

while computing the registration error [18]. In order to avoid the aperture problem [29], the 

Hessian value [30], defined by 
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is employed to find feature pixels in many previous researches [18-21, 23-24]. Those points 

with Hessian values being local maximum or minimum are considered as feature points. An 

example of using Hessian value to extract feature points is shown in Fig. 1.3. The grayscale of 

each pixel in Fig. 1.3(b) represents the absolute Hessian value of the corresponding pixel in 

Fig. 1.3(a). 

 

   

 (a) (b) 

Fig. 1.3  Image of Hessian value of a frame. 
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Except for speeding up the iterative minimization, feature points can be carefully 

selected to avoid pixels of moving objects from affecting the parameter estimation. If 

segmentation masks are provided by the user, it is simple to exclude the pixels of moving 

objects according to the information in the masks. However, if the segmentation masks are not 

provided, a sprite generator should detects pixels of moving objects and excludes them 

automatically. 

 

1.2.1.4  Feature points and minimization 

Each feature point (x,y) in the current frame and its corresponding point  (x',y') in the 

reference image form a feature point pair, which are used to find the initial guess for camera 

motion. The corresponding point is defined to be the motion-estimated point of the feature 

point, i.e., (x',y')=(x+dx,y+dy), where (dx,dy) is the motion vector. 

As mentioned previously, the perspective transformation expressed in Eq. (1.2) has eight 

parameters m1,m2,…m8. By substituting each pair of (x,y) and (x',y') into Eq. (1.2) respectively, 

two equations will be built. Thus, four feature point pairs are sufficient to solve the eight 

parameters. However, in practical, the corresponding points found by motion estimation are 

not precise enough to provide a correct solution. Instead of using four feature point pairs, all 

feature point pairs found are applied to form an over-determined set of equations. A least 
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Mean-Square-Error minimization method is employed here. The error function required in the 

gradient descent method, is slightly different from Eq. (1.4). Only the errors of the feature 

points are counted in the error function, that is, 

 ( )∑
∈

−=
intsfeature_po),(

2)),(('),(),',(
yx

PP yxTIyxITIIE . (1.6) 

The gradient descent method is applied in the estimation of the local parameters and the 

global parameters. While estimating the local parameters, the reference image is defined as 

the previous frame. And the reference image is defined as the current sprite in the case of 

estimating the global parameters. 

 

1.2.2  Warping 

The current frame is warped toward the sprite coordinate using the camera model 

selected and the parameters estimated in the global motion estimation. Let I be the current 

frame, the warped frame IW can be found by geometric transforming the current frame as 

 )),((),( yxTIyxI PFW =  (1.7) 

where T is the transformation and P is the estimated global motion parameters. Since the 

transformed coordinates are not integers, bilinear interpolation [31] is applied while 

generating the warped frame. Since the frame is warped toward the sprite coordinate, the 

warped frame can be blended directly into the current sprite. 
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1.2.3  Blending 

The warped frame is blended into the current sprite. The simplest blending method is the 

averaging blending. Let X, SC and SU are the intensities of the current frame, the current sprite 

and the updated sprite respectively. The averaging blending can be expressed as: 

  
1

*
+
+

=
C

CC
U N

XSNS  (1.8) 

where NC is the number of pixels blended in the current sprite. 

Since the averaging blending simply blends every pixel into the sprite, pixels of moving 

objects must be excluded from attending the averaging blending. Similar to the selection of 

feature points, excluding these object pixels is easy if segmentation masks are provided. If 

these object pixels are not fully excluded and some object pixels are blended into the sprite, 

the blended object pixels will leave some shadows in the generated sprite. 

 

1.3  Existing Single Sprite Generators 

Many sprite generators [18-20, 32-35] have been proposed. Most of them are based on a 

framework provided by MPEG-4 VM [14]. Among these existing sprite generators, the 

generator proposed by Smolić et al. [18] is a milestone. They proposed a hierarchal long-term 

global motion estimator and a reliability-based blending strategy to generate a sprite. The 

reliability-based blending tries to prevent the segmentation faults in segmentation masks from 

affecting the generated sprite by introducing a warning zone between objects and background. 
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1.3.1  Smolić et al.’s reliability-based blending 

 The traditional sprite generation methods produce the sprite by warping and averaging 

all frames of the video sequence. However, pixels belonging to the foreground objects will 

also be blended into the generated sprite. Using segmentation masks can resolve this problem. 

However, automatically generated segmentation masks are always not perfect, and 

segmentation faults always exist. These segmentation faults makes some pixels of moving 

objects be blended into the sprite and makes the generated sprite blur. 

Reliability-based blending is developed to recover the segmentation faults. A 

segmentation mask is split into reliable, unreliable and undefined regions to form a reliability 

mask. The object pixels in the segmentation mask are defined as undefined region. The 

background pixels near an object pixel or the boundary of the frame are defined as unreliable 

region. The rest of background pixels are defined as reliable region. Fig. 1.4 shows a 

segmentation mask and its reliability mask. The reliable, unreliable and undefined regions are 

colored black, gray and white in Fig. 1.4(b), respectively. 

Pixels in the undefined region belong to the moving objects, and definitely must not be 

blended into a sprite. Pixels in the reliable region are the background pixels, which are safe to 

be blended into a sprite. Pixels in the unreliable region are special. They are denoted as 

background pixels in the segmentation mask. However, due to the possibility of segmentation 
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faults, background pixels near an object pixel have a higher possibility of being wrongly 

classified. Thus these pixels, which belong to the unreliable region, should be treated 

carefully. 

 

   

 (a) (b) 

Fig. 1.4  Reliability mask used in the reliability-based blending.   
(a) Segmentation mask.  (b) Reliability mask derived from (a). 

 

While blending a pixel into the current sprite, the reliable level is also recorded. The 

reliable level of the current pixel is compared to the reliable level of the current sprite. If the 

reliable level of the current pixel is lower than the sprite, the current pixel will not be blended 

into the sprite and will be discarded. If the reliable levels of both pixels are identical, the 

current pixel is blended into the current sprite by averaging blending. If the reliable level of 

the current pixel is higher than the sprite, the sprite pixel is discarded and is replaced by the 

current pixels. The discard and replace strategy ensures only pixels with highest reliable level 

are blended into the sprite. 
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1.3.2  Watanabe and Jinzenji’s generator 

Watanabe and Jinzenji [34] presented a sprite generator with two-passed blending and 

automatic foreground object extraction. In the first pass of sprite blending, a provisional sprite 

is constructed using the temporal median. Then the foreground objects are extracted 

automatically based on the provisional sprite. A difference image of the current frame from 

the provisional sprite is calculated, it is used to classify the pixels of the current frame into 

foreground and background ones. Then the current frame is divided into blocks, and each 

block is classified as either a foreground one or a background one according to the number of 

foreground pixels inside the block. The foreground blocks are excluded in the second pass of 

sprite blending. There are two disadvantages. One is that getting a perfect segmentation is 

impossible due to that a good threshold is needed in block classification and that block used 

as the classification unit will make segmentation roughly. The other is that the additional pass 

doubles the blending time. 

 

1.3.3  Lu et al.’s generator 

Lu et al. [19-21] used a more precise segmentation method proposed by Meier and Ngan 

[36] to obtain moving object masks. Based on the obtained masks, a modified 

reliability-based blending strategy inspired from Smolić et al. [18] work is developed to 
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generate sprite. However, the qualities of generated sprites of these methods are still relying 

on the precision of segmentation masks. 

 

1.4  Geometric Distortion and Multiple sprites 

The performance of a sprite generator is also limited to the perspective motion model 

applied in the global motion estimation. The perspective model projects each frame of a video 

sequence into a planar reference coordinate system, which is usually the coordinate system of 

the first frame. Theoretically, the perspective model employed in MPEG-4 VM can cover 180 

degrees of view. However, the useable viewing angle is much smaller in practice, since the 

geometric distortion increases rapidly as the camera rotates away from the reference frame. 

Fig. 1.5 illustrates the effect of geometric distortion. The focal length of the camera is f 

and the reference imaging coordinate system for a sprite is assumed to be the first frame that 

is denoted as frame A in Fig. 1.5. All the following frames must be projected to this reference 

system by geometric transformation. As the camera rotates, transformed frames are 

geometrically distorted, this phenomenon can be found between frame B and transformed 

frame B. If camera rotation continues, from Fig. 1.5, we can see that frame C can not be 

projected to the reference system.  

Fig. 1.6 shows a geometric distorted frame. Frame A which shown in Fig. 1.6(a) is 

employed as reference frame of the sprite coordinate system. Fig. 1.6(b) shows a frame B, and 
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the transformed frame B relative to frame A is shown in Fig. 1.6(c). On can see that the 

transformed frame B is geometric distorted and its size is larger than the original frames. The 

distortion causes the frames away from the reference frame are forced to be recorded by 

extremely large resolution, but this resolution is useless because the sprite must be scaled 

down to display by the decoder. This useless large resolution increases the memory usage and 

storage space required to hold the sprite. 

 

 

 

Fig. 1.5  Sprite coordinate system and geometric distortions of transformed frames. 

 

In order to overcome the resolution-increasing effect, Massey and Bender proposed a 

method using the middle frame of a video sequence as the reference frame [37]. The 

generated sprite will be much symmetric and the boundary area of the generated sprite 

becomes much smaller if the background of the frames in the video sequence pans toward 

only one direction. On the other hand, this method only slows down the increasing effect of 

frame A transformed frame B on sprite 

frame C 

f 

sprite coordinate system 

camera 

frame B 
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the sprite size, but the range of view angle is not extended. 

 

   

 (a) (b) 

 

(c) 

Fig. 1.6  Demonstration of geometric distorted frame due to camera rotation. 
(a) Original frame A. (b) Original frame B. (c) Transformed frame B. 

 

Fig. 1.7 shows two sprites generated from the same portion of sequence ‘stefan’. Fig. 

1.7(a) uses the rightmost frame as the reference frame, and Fig. 1.7(b) uses the middle frame 

as the reference frame. One can see that the geometric distortion gets worse in the left part of 

sprite in Fig. 1.7(a) since the left part is away to the reference frame. The geometric distortion 
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in Fig. 1.7(b) is evenly spread to both left and right part of the sprite. It is obviously that the 

sprite using the middle frame as the reference frame is smaller than that using the rightmost 

frame. 

 

 

(a) 

 
(b) 

Fig. 1.7  Sprites with different reference frames.   
(a) Rightmost frame as reference frame.  (b) Middle frame as reference frame. 

 

A technique using multiple sprites was proposed by Farin et al. [38] to solve the problem. 

In their works, the background of a scene is stored by multiple sprites. In order to fit the 

MPEG-4 standard, a video sequence is divided into several subsequences, and sprites of all 

subsequences are generated independently. 

Fig. 1.8 shows the geometric distortions using two sprites. In contrast to the geometric 
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distortion using only one sprite shown in Fig. 1.5, the geometric distortion of frame B in 

sprite #2 becomes smaller. Furthermore, frame C, which is unable to be projected into sprite 

#1 can be projected into sprite #2 now. Full 360 degrees of camera view can be covered if 

more sprites are used. Note that any single sprite must not cover 90 degree or more of camera 

rotation over any direction to prevent an effect called ‘degeneration’ [39]. 

 

 

Fig. 1.8  Geometric distortions using two sprites. 

 

Farin et al. [38] have shown that using multiple sprites not only benefits the wider range 

of camera view angles but also reduces storage for the generated sprites. This means that 

storage required for multiple sprites is smaller than that for only one sprite. However, the 

Farin et al.’s method uses exhaustive searches to find the partition points of sub-sequences 

and the reference frame of each sub-sequence. The exhaustive searches make the method very 
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time-consuming. 

Some sprite generators are proposed to employ the multiple sprite technique. Chen et. al. 

intergrates a frame skipping techniques and the multiple sprite to speed up the overall 

computation time of sprite generation [40-41]. Kunter et al. proposed a experimental 

framework [42] to employ multiple sprite into H.264/AVC. None of them is discussing to 

speed up the multiple sprite partition. 

 

1.5  Farin et al.’s Optimal Partition Algorithm 

In order to find the optimal partition of a video sequence, an evaluation of partition 

results must be selected. In order to reduce the computational complexity, the area of the 

bounding box around a sprite is chosen to be the evaluation cost function in Farin et al.’s 

work. Their optimal partition algorithm is divided into two steps. The first step computes the 

minimal costs for coding sprites of all possible sub-sequences and finds the optimal reference 

frames of every possible sub-sequence. The second step decides the optimal partition 

positions which minimize the coding costs computed in the first step. In the following, we 

will give a brief review for their optimal partition algorithm. 

 

1.5.1  Coding Costs Computing and Reference Frames Finding 

A coding cost matrix holding the coding costs of all possible combinations of 
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sub-sequences are computed in this step. For a sub-sequence beginning at frame i and ending 

at frame k, a sprite r
kiS ;  can be generated for a reference frame r with kri ≤≤ . The coding 

cost for coding r
kiS ;  is denoted as r

kiS ; . r
kiS ;  of all possible combination of i, k, and r are 

computed. The number of possible combinations is huge and this computation will take a lot 

of time. After computing all r
kiS ; , the optimal reference frame *

;kir  of a sub-sequence 

beginning at frame i and ending at frame k can be selected by 

 r
kirki Sr ;

*
; minarg= . (1.9) 

The minimized coding cost of this sub-sequence, r
kirki SS ;; min= , is also kept. 

The optimal reference frames for every possible sub-sequences are found and stored in 

upper triangular matrixes indexed by i and k. 

 

1.5.2  Optimal Partitioning 

In order to obtain the optimal partition, not only the starting frame (partition position) of 

each sub-sequence but also the number of sub-sequences must be decided. If the video is 

partitioned into n sub-sequences, n-1 starting frames need to be decided since the first 

sub-sequence always starts at frame 1. For a video with N frames, a partition for the video can 

be represented by 

 )},(),...,1,(),1,(),1,1{( 132211 NppppppP n−−−−= , (1.10) 

where pi is the starting frame of sub-sequence i+1. The sprite coding cost of a video sequence 
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using a partition P is the summation of sprite coding costs of all partitioned sub-sequences, 

and the optimal partition P* is selected as 

 ∑
∈

=
Pki

kiP
SP

),(
;

* minarg . (1.11) 

The minimization problem is solved efficiently. If the video contains only the first frame, 

there is only 1 possible partition )}1,1{(=P  and the optimal sprite coding cost of the video is 

1;1S  which is denoted as c1. If the video contains more than one frame, the remaining frames 

are then added one by one. When adding frame k, the optimal sprite coding cost ck for the 

sequence ending at frame k can be calculated as 
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where c0 is set to zero. The frame pk is the best partition point to obtain the minimal cost for 

each frame k. 

After calculating cN which is the minimal sprite coding cost for the entire sequence, the 

optimal partition can be obtained by back tracking the stored p-values from pN. That is, the 

entire sequence is best partitioned at frame pN to form two sub-sequences )1,1( −Np  and 

),( NpN . The former sub-sequence is further divided at )1( −Npp , which is the best partition 

point of sub-sequence )1,1( −Np , and so on. 

 

1.6  The Main Problems and Current Status 
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The main problems that this dissertation tries to address are based on the 

above-mentioned segmentation masks related problems and the time complexity problem of 

multiple sprites generating. These will be described in the following. 

In this dissertation, we will propose methods to deal with the problems of single and 

multiple sprite generation. For the traditional single sprite generation, a new generation 

method without using segmentation masks will be proposed to avoid the segmentation faults 

from affecting the generated sprite. For the multiple sprite generation, a fast generation 

method will be proposed to increase the search speed of sub-sequences and selecting of 

reference frames. 

 

1.6.1  Sprite Generation without Segmentation Masks 

The framework of MPEG-4 VM shown in Fig. 1.1 requires segmentation masks while 

generating sprites. Segmentation masks are binary maps indicating whether a pixel belongs to 

moving objects or not. In order to avoid sprite being blurred, pixels of moving objects must be 

excluded from being blended into the sprite. If the segmentation is perfect, the averaging 

blending provided in MPEG-4 can achieve excellent quality; otherwise, the generated sprite 

will be blurred around moving object boundary due to that some pixels of moving objects are 

considered as background. 

The segmentation masks can be manually provided before the sprite generation or 
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generating automatically during the sprite generation process. No matter how the 

segmentation masks are provided, they must be generated automatically to makes the sprite 

generation practical. However, it is almost impossible to generate segmentation masks 

perfectly automatically. Thus segmentation faults always exist, and the generated sprite 

always looks blurry. 

On the purpose of reducing the blur caused by segmentation faults, precise segmentation 

methods [36] are employed [34] and a new blending strategy denoted as reliability-based 

blending [18] is developed. The reliability-based blending is adopted by several sprite 

generators [18-21]. In the reliability-based blending strategy, a frame is divided into reliable, 

unreliable, and undefined regions according to the segmented masks. Pixels denoted as 

objects in the segmented masks are classified as undefined pixels, and pixels near mask 

borders or frame borders (within a given distance) are classified as unreliable ones. The rest 

of pixels are classified as reliable ones. The reliable and unreliable pixels are average-blended 

separately, and the blended pixels with the highest reliability are chosen into the sprite. The 

undefined pixels do not contribute to the sprite blending. The given distance from the mask 

border must be large enough to cover all segmentation faults, or the generated sprite will have 

ghost-like shadows in some places. However, it is hard to decide the distance automatically. 

Thus ghost-like shadows still can be found in the generated sprite. In order to overcome this 

problem, in this dissertation, we try to develop a novel blending strategy without using 
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segmentation masks. 

Segmentation masks are not only used in the blending process, but also in the global 

motion estimation process. The global motion estimation uses segmentation masks to avoid 

objects affecting the accuracy of generated global motion parameters. For removing the usage 

of segmentation masks completely from the entire sprite generation process, the global motion 

estimation must also be modified. 

 

1.6.2  Fast Multiple Sprites Generation 

The perspective model employed in the global motion estimation process makes the 

transformed frames geometric distorted, as Fig. 1.6 shows. This distortion become more 

seriously as the camera view of frame away from the reference frame. Frames away from the 

reference frame are forced to be recorded by extremely large resolution, but this resolution is 

useless because the sprite must be scaled down to display by the decoder. 

Massey and Bender proposed to use the middle frame of a video sequence as the 

reference frame to overcome the resolution-increasing effect. The generated sprite will be 

much symmetric and the boundary area of the generated sprite becomes much smaller if the 

background of the frames in the video sequence pans toward only one direction. However, 

this method only slows down the increasing effect of the sprite size, but the range of view 

angle is not extended. 
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Using multiple sprites can solve this problem. Before generating multiple sprites, a video 

sequence must be divided into several subsequences. Each frame in the video sequence can be 

a partition position from which the video sequence is divided into subsequences. Thus, a 

partition algorithm is needed. For a video sequence with N frames, there will be 2N-1 

combinations of partitions. Not only the partition position but also the reference frame of each 

subsequence must be selected by the partition algorithm. The selection of reference frames 

greatly affects the size of generation sprites. Each frame in a subsequence can be selected as 

the reference frame of the subsequence. If the sequence is divided into K subsequences, each 

subsequence has Mi frames, where i is the index of a subsequence. There will be ∏
=

K

i
iM

1

 

selections for reference frames. Farin et al. proposed an optimal multiple sprite partition 

algorithm. A cost function representing the total area of all generated sprites was defined, and 

a smart exhaustive search through the entire partition positions and reference frame 

possibilities was proposed. Since the partition algorithm is an exhaustive search, it finds the 

optimal solution. However, it is very time-consuming. 

Apart from the geometric distortion, the effect of camera zoom-in and zoom-out will 

highly affect the generated sprite and the reconstructed frames [38]. Fig. 1.9 illustrates how 

camera zoom-in operation affects generated sprite and reconstructed frame. Since the 

reference coordinate system is based on the reference frame, the zoomed-in frame has to be 

scaled down in order to be merged into the sprite. Details of the zoomed-in frame are lost 
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forever during the down-sampling and the reconstructed frame is degraded. 

 

 
 

Fig. 1.9  Effect of camera zoom-in with the details of the reconstructed frame lost. 

 

In contrast to the camera zoom-in, the camera zoom-out operation makes the generated 

sprite looks blur after the zoomed-out frame is blended into the sprite. As Fig. 1.10 shows, the 

zoomed-out frame has to be up-sampled before blending into the sprite. This will make the 

blended sprite blurred. Furthermore, the up-sampled frame will occupy a very large area in 

the sprite. This causes the area of generated sprite being expanded rapidly. 

In this dissertation, we try to develop a fast multiple sprites partition method and fast 

reference frame selection method with acceptable total sprite areas. 

 

zoomed-in frame 

reconstructed zoomed-in frame 

reference frame 

down-sampling 

up-sampling 
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Fig. 1.10  Effect of camera zoom-out with the sprite blurred. 

 

1.7  Synopsis of the Dissertation 

The rest of the dissertation is organized as follows. Chapter 2 describes the proposed 

sprite generation method with automatically generated segmentation masks. In Chapter 3, the 

proposed sprite generation method without using segmentation masks will be introduced. The 

fast multiple sprite partition and reference frame selection methods are proposed in Chapter 4. 

Some conclusions and future research directions are drawn in Chapter 5. 

 

zoomed-out frame 

reference frame 

up-sampling 
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CHAPTER 2  
AUTOMATIC GENERATION OF SEGMENTATION MASKS 

FOR SPRITE GENERATION 

 

In this chapter, we will propose a sprite generator with an automatic generation of 

segmentation masks. The generation process contains two passes. The first pass generates a 

coarse sprite by conventional averaging blending method. Then we generate segmentation 

masks of every frame automatically from the coarse sprite. In the second pass of sprite 

generation, the final sprite is generated with the generated segmentation masks to reduce the 

effect of moving objects. The details of the proposed generator are described as follows. 

 

2.1  Proposed Two-Pass Sprite Generation 

As Fig. 1.1 shows, MPEG-4’s sprite generation framework requires auxiliary 

segmentation masks to reduce the effect of moving objects. Segmentation masks are used in 

global motion estimation to raise the estimation accuracy. These masks can also be used to 

avoid moving objects attending the sprite blending. It is impractical to build these masks 

manually. Thus an automatic generation of segmentation masks is necessary. Since the sprite 

is a merged background in the video sequence, it can be used as a reference background for 

moving object detection. 

 



30 
 

2.1.1  Object blurring effect of averaging blending 

The averaging blending used in sprite generation has a blurring effect to every pixel in 

the sprite. If there does not have segmentation masks, the averaging blending blends pixels of 

moving objects and background together. In case of enough frames are blended, the moving 

objects will be blurred and only shadows of objects are left in a generated sprite. Fig. 2.1 

demonstrates the blurring of moving objects. Figs. 2.1(a) and (b) are an original frame and its 

reconstructed background from generated sprite, respectively. One can see that the moving 

player is blended into the sprite, and leave white shadows in the reconstructed background. 

Although the quality of reconstructed background is degraded by these shadows, the 

backgrounds in the original frame are still visible in the reconstructed background. 

 

   

 (a) (b) 

Fig. 2.1  Object blurring effect of averaging blending.  
(a) Original frame.  (b) Reconstructed background of (a). 
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2.1.2  Frame segmentation in sprite generation 

Since reconstructed backgrounds in a sprite generated by averaging blending without 

segmentation masks are only blurred by moving objects, the reconstructed backgrounds can 

be used as reference backgrounds to detect moving objects. A two-pass sprite generation with 

automatic segmentation masks generation is proposed and shown in Fig. 2.2. 

 

 

Fig. 2.2  The proposed two-pass sprite generator. 

 

In the first pass of the proposed generator, a coarse sprite is generated first by the 

MPEG-4’s sprite generator without segmentation masks. The coarse sprite will contain 

shadows of moving objects definitely. Then the reconstructed backgrounds of the coarse sprite 

are employed as reference backgrounds to detect the moving objects in the video and generate 
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segmentation masks automatically. Finally the sprite is re-generated in the second pass by the 

MPEG-4’s sprite generator with the generated segmentation masks. 

 

2.2  The First Pass of Sprite Generation 

The first pass of sprite generation is almost identical to the MPEG-4’s framework. In the 

global motion estimation, some feature points are extracted by selecting the pixels with larger 

Hessian value. Then global motion parameters are estimated by a least mean-square-error 

minimization method, the Levenberg-Marquardt algorithm. An averaging blending method is 

employed as the blending method. No segmentation masks are applied in this pass of sprite 

generation. Thus moving objects will be blended and the generated coarse sprite will be 

blurred. The coarse sprite will be used to extract the segmentation masks automatically. 

 

2.3  Automatic Generation of Segmentation Masks 

Despite of the blurred areas, the reconstructed backgrounds still carry most of 

background information. By subtracting the original frame by the reconstructed background, 

we can get an image of the moving objects. In order to remove the effect of peak noise, the 

block difference is applied instead of the pixel difference. 

The pixel difference D is defined as the magnitude of the difference between the original 

frame I and the reconstructed background R, i.e. RID −= . A threshold t1 is set to find out 
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the candidates of object pixels. Pixels with D value larger than t1 are considered as candidates. 

For each candidate, a 5×5 block B centered on the candidate is taken. The block difference DB, 

is defined as 

 ∑
∈

=
Bji

B jiDD
),(

),( . (2.1) 

The candidate with block difference larger than a preset threshold t2 is considered as an object 

pixel. The two-stage thresholding technique computes the block differences only for those 

pixels with higher possibility to be objects. It reduces the complexity of computing block 

difference for each pixel. 

There are two problems while extracting the object pixels. First, the object regions are 

often ill-shaped with holes. Second, there are some small-sized regions which are 

misclassified as objects. These problems can be solved using morphological processing and 

region selecting. Let O be a binary image representing the results of thresholding in the 

previous step. Pixels judged as objects will be set to one and others will be set to zero. Two 

binary images called seed and base images are computed.  The seed image is produced by 

applying morphological erosion to O using a disk shaped structure element of radius 2, and 

the base image is produced by applying morphological dilation to O using the same shaped 

structure element of radius 5.  The region selecting is applied on the base image. An object 

region is selected if any of its pixels have a value of one in the seed image. The segmentation 

mask is defined as the union of all regions selected. 
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Fig. 2.3 gives an example of generating a segmentation mask. The original frame and the 

reconstructed background of the frame are shown in Figs. 2.3(a) and (b) respectively. By 

subtracting the original frame by the reconstructed background and performing the two-stage 

thresholding, the image of the extracted object pixels is shown in Fig. 2.3(c). The seed image 

shown in Fig. 2.3(d) and the base image shown in Fig. 2.3(e) are generated by applying the 

morphological processing to Fig. 2.3(c).  Finally, the segmentation mask is produced by 

region selecting and shown in Fig. 2.3(f). The object regions are colored black. 

 

   

 (a) (b) 

   

 (c) (d) 

Fig. 2.3  (Continued) The generation of a segmentation mask.  (a) The original image.   
(b) The reconstructed background.  (c) The object pixels extracted by using two-stage 

thresholding.  (d) The seed image.  (e) The base image.   
(f) The generated segmentation mask. 
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 (e) (f) 

Fig. 2.3  The generation of a segmentation mask.  (a) The original image.   
(b) The reconstructed background.  (c) The object pixels extracted by using two-stage 

thresholding.  (d) The seed image.  (e) The base image.   
(f) The generated segmentation mask. 

 

Most part of the moving objects was extracted correctly, except two unclassified parts: 

the upper part of bat and the player’s legs. The upper part of bat is nearly transparent hence 

the background is visible through the bat; the legs of the player have similar intensities to the 

background. Thus, both misclassified parts do not affect the blending result. Moreover, the top 

and right borders are also classified as object; this will eliminate the black line shadows in the 

generated sprite. Note that the tennis ball is also classified as an object. These generated 

segmentation masks will be employed in the second pass of sprite generation. 

 

2.4  The Second Pass of Sprite Generation 

The generated segmentation masks are employed in the second pass of sprite generation. 

The second pass sprite generation is similar to the first pass with some modifications. The 
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automatically generated segmentation masks are employed in the global motion estimation 

and the blending process. These modifications remove the effect caused by considering the 

object pixels as background, and increase the fidelity of the generated sprite. 

In the global motion estimation, the generated segmentation masks are employed as a 

classification of object pixels. All feature points are checked with the masks. Feature points 

which are classified as moving objects in the masks are removed from the feature points. 

Then the global motion parameters are also estimated by the Levenberg-Marquardt algorithm. 

The accuracy of estimated parameters should be increased since the effect of object pixels is 

reduced. 

The sprite is then blended using the newly estimated parameters. Since generated 

segmentation masks are available in the second pass, the reliability-based blending is adopted 

instead of the averaging blending employed in the first pass. The reliability-based blending 

prevents some of moving objects that not segmented correctly from being blended into the 

final sprite. The generated sprite in the second pass is outputted as the final sprite. 

 

2.5  Experimental Results 

Fig. 2.4 shows the generated sprite of the video sequence ‘stefan’ by different methods.  

Fig. 2.4(a) is generated by the MPEG-4’s method without using segmentation masks, that is 

also the coarse sprite generated from the first pass of sprite generation. The masks used to 
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generate Fig. 2.4(b) are obtained automatically by the proposed segmentation schema. 

Fig. 2.5 shows one of the reconstructed frames by different methods respectively. Like 

we stated before, the sprite generated without using masks contains shadows, which are 

circled in Fig. 2.4(a), caused by wrongly blending the player into sprite.  These shadows are 

successfully removed in the sprite generated using the masks generated automatically by our 

method. Manually segmented masks are employed in Fig. 2.4(c) and Fig. 2.5(c) for 

comparisons. Both sprites generated using automatically or manually segmented masks are 

perceptually the same by human eyes. 

 

 

(a) 

Fig. 2.4  (Continued) Generated sprites of different methods.  (a) The first pass.   
(b) Two pass generation with automatic generated segmentation masks.   

(c) MPEG-4 with manually segmented masks. 
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(b) 

 

(c) 

Fig. 2.4  Generated sprites of different methods.  (a) The first pass.   
(b) Two pass generation with automatic generated segmentation masks.   

(c) MPEG-4 with manually segmented masks. 

    

 (a) (b) (c) 

Fig. 2.5  Reconstructed frames of different methods.  (a) The first pass.   
(b) Two pass generation with automatic generated segmentation masks.   

(c) MPEG-4 with manually segmented masks. 
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CHAPTER 3  
A NEW APPROACH FOR SPRITE GENERATION WITHOUT 

SEGMENTATION MASKS 

 

In this chapter, we will propose a sprite generator without using segmentation masks. It 

consists of a modified feature point selection method and a novel intelligent blending method. 

 

3.1  Problems of Segmentation Masks 

To avoid sprite being blurred, pixels of moving objects must be excluded from being 

blended into the sprite. If the segmentation is perfect, the averaging blending provided in 

MPEG-4 can achieve excellent quality. Otherwise, the generated sprite will be blurred around 

moving object boundary due to that some pixels of moving objects are considered as 

background. However, a perfect segmentation is impossible, conventional sprite generation 

methods often use a reliability-based blending concept provided in [18] to solve this problem. 

In the reliability-based blending strategy, a frame is divided into reliable, unreliable, and 

undefined regions according to the segmented masks. Pixels denoted as objects in the 

segmented masks are classified as undefined pixels, and pixels near mask borders or frame 

borders (within a given distance) are classified as unreliable ones. The rest of pixels are 

classified as reliable ones. The reliable and unreliable pixels are average-blended separately, 

and the blended pixels with the highest reliability are chosen into the sprite. The undefined 

pixels do not contribute to the sprite blending. The given distance from the mask border must 
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be large enough to cover all segmentation faults, or the generated sprite will have ghost-like 

shadows in some places. However, it is hard to decide the distance automatically. In this 

dissertation, we will provide a sprite generator to avoid above-mentioned problems. 

The proposed method is based on the MPEG-4’s framework shown in Fig. 1.1, but the 

demand of segmentation masks is removed. A balanced feature point extractor with object 

point removing is proposed. With the proposed feature points, the precision of estimated 

global motion parameters are increased significantly. A new blending strategy that does not 

need segmentation masks is also proposed. The moving objects are excluded from blending 

by a counting schema. The proposed method provides higher visual quality of the generated 

sprite than those existing methods, and the average PSNR of reconstructed backgrounds is 

increased slightly. 

 

3.2  The Proposed Sprite Generator 

In the proposed sprite generator, a two-stage GME is provided with a novel feature point 

extraction method to get accurate global motion parameters. With the estimated parameters, 

each input frame is warped. An intelligent blending strategy is then presented to blend the 

warped frame to form a sprite. The details of the proposed generator are described as follows. 

 

3.2.1  Global motion estimation 
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The aim of global motion estimation is to obtain an accurate estimation of camera 

motion between the current frame and a reference image, e.g. the current sprite. In this 

dissertation, we take the perspective transformation to model camera motion as follows: 
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where (x,y) and (x',y') denote the coordinates of a pixel before and after the camera motion 

respectively. m1,m2,…m8 are the transformation parameters referred as global motion 

parameters. 

The global motion parameter is estimated by the two-stage GME schema described in 

Section 1.2.1. The minimization problem described in Section 1.2.1.2 is solved by the 

Levenberg-Marquardt algorithm [15]. In order to increase the estimation speed, only selected 

feature points are attending the minimization. Pixels of moving objects should be avoided to 

be selected into the feature points. Since we want to propose a sprite generator that do not 

need segmentation masks, a novel feature point selection method that excludes the pixels of 

moving objects must be developed. 

 

3.2.2  Feature point extraction 

The iterative minimization of the gradient descent method is time consuming. To reduce 

the time complexity, only some selected feature points in the current frame are employed 
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while computing the registration error. Like other sprite generation methods, our method 

selects feature points according to their Hessian values defined by 
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Those points with Hessian values being local maximum or minimum are considered as feature 

points. An example of using Hessian value to extract feature points is shown in Fig. 3.1. The 

grayscale of each pixel in Fig. 3.1(b) represents the absolute Hessian value of the 

corresponding pixel in Fig. 3.1(a). 

Conventional methods choose pixels with largest absolute Hessian values as feature 

points. However, the distribution of pixels with large absolute Hessian values does not spread 

uniformly, as shown in Fig. 3.1(b). Fig. 3.1(c) shows the feature points extracted by these 

methods. The extracted feature points are concentrated in the half-upper of the image. This 

will degrade the accuracy of the estimated parameters because the registration will be focused 

only on the half-upper of the image. This degradation will become more serious, when the 

number of feature points is small. The sprite generated based on these feature points is shown 

in Fig. 3.1(a). Although the half-upper of the sprite looks well, the white lines in the 

half-bottom of the sprite are not fitted correctly such that they look blurred (see Fig. 3.1(c)); 

the reason is that no white line points are considered as feature points. To overcome this 

problem, the feature points must be selected uniformly. A balanced feature point extraction 
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method is proposed and described as follows. 

 

   

 (a) (b) 

   

 (c)  (d) 

Fig. 3.1  Feature point extraction based on Hessian value.  (a) Original image.  
(b) absolute Hessian values of (a).  (c) Feature points extracted by conventional methods.  

(d) Feature points extracted by the proposed method. 

 

For an image of width W and height H, its border area of width B is excluded first. The 

rest is divided into 256 non-overlapping blocks. For each block, the gray value variance is 

calculated to test its homogeneity. The block will be classified as a homogeneous one if its 

variance is smaller than a preset threshold TV. The feature points are extracted uniformly in 

the non-homogeneous blocks to avoid the aperture problem. Suppose that we want to extract 
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N feature points from K non-homogenous blocks, N/K pixels with largest absolute Hessian 

values are chosen in each non-homogeneous block. Feature points extracted from Fig. 3.1(a) 

using the proposed method are shown in Fig. 3.1(d). In contrast to the result of using the 

conventional method (see Fig. 3.1(c)), the distribution of feature points using the proposed 

method is more balanced than MPEG-4’s method. Several points on the white line in the 

half-bottom of the frame are extracted as feature points, this will make the white line 

registered well and will significantly improve the visual quality of the generated sprite. 

However, from Fig. 3.1(d), we also find some points on the player located; this will reduce the 

accuracy of estimated GMPs. As mentioned previously, we should avoid taking moving 

objects as feature points. Since the motions of moving objects usually differ from the motion 

of background, this provides us a clue to remove these outliers. 

Traditional translation-based motion estimation is applied on each feature point to find 

the motion vector relative to the previous frame. In order to reduce the searching time, a 

global translation is found based on some selected feature points first, then a full search 

around the global translation for each feature point is preformed. A 17×17 block centered at 

each selected feature point is used to find the global translation. A full-searched motion 

estimation with a large search window (64×64) is proceeded on the 17×17 block. To raise up 

the searching speed, only 100 pixels with the largest absolute Hessian values among all 

feature points found previously are employed. The occurrences of the estimated 100 motion 
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vectors are counted, and the motion vector with the highest occurrence is considered as the 

global translation. The motion vectors of all feature points are found by searching around the 

global translation with a smaller search window (17×17).  

Let (dx,dy) be the motion vector estimated, the feature point is considered as an outlier if 

its mean-squared-error (MSE) between the original and the motion-estimated blocks is larger 

than a preset threshold TO, i.e., 
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where B is the block centered at the feature point and NB is the number of pixels in the block, 

I(x,y) and I'(x,y) are the current frame and the previous frame respectively. Since objects are 

assumed to have different motions from the background, their best motion vectors are usually 

not around the global translation (a roughly approximation of the background motion), and 

their MSEs are likely to be higher with inaccuracy motion vectors. They will be considered as 

outliers in Eq. (3.3). 

Fig. 3.2(a) illustrates the object pixels found from the feature points shown in Fig. 3.1(d). 

The feature points on the player are detected successfully. These object pixels are removed 

from the original feature points and the final feature points are shown in Fig. 3.2(b). 
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 (a) (b) 

Fig. 3.2  An example for outlier removing.  (a) Detected object pixels in Fig. 3.1(d).  
(b) The feature points after removing outliers from Fig. 3.1(d). 

 

Figs. 3.3(a) and (b) show the sprite generated using the conventional method and 

proposed balanced feature point extraction method, respectively. The same number of feature 

points is used in both methods. A close view of the white lines in Figs. 3.3(a) and (b) are 

shown in Figs. 3.3(c) and (d), respectively. From the figures, we can see that those white lines 

in the sprite generated by the proposed method are registered very well. While the same place 

in sprite generated by conventional method looks blurred. The average PSNR of the 

reconstructed backgrounds using the non-balanced and balanced feature points are both 

26.25dB. Although the PSNR is the same, the proposed method achieves much better visual 

quality. 
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(a) 

 

(b) 

   

 (c) (d) 

Fig. 3.3  Two examples to show sprites generated using different feature points with the 
same number.  

(a) The sprite generated using feature points extracted by conventional methods.  
(b) The sprite generated using feature points extracted by the proposed method.  

(c) A close look of the white line in (a).  (d) A close look of the white line in (b). 

 

3.2.3  Intelligent blending 

The precision of segmentation mask affects the quality of the generated sprite. Although 
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the unreliable region around segmentation mask boundary reduces the segmentation error in 

the reliability-based blending, some errors still can not be covered. Fig. 3.4 shows two frames 

with segmentation errors. The left foot of the player in both frames is not completely 

segmented; this will leave some ghostlike shadows after blending. A close view of the 

shadows in the blended sprite is shown in Fig. 3.5(a). Increasing the distance from the mask 

border given in the reliability-based blending schema may solve this problem, but other 

problem will occur. More segmentation errors can be covered using a larger distance, but it 

also increases the number of pixels being classified as unreliable. Thus the opportunity of an 

unreliable pixel being replaced by a reliable one is decreased. The reliable and unreliable 

pixels are blended by averaging separately. If an unreliable pixel is not replaced by a reliable 

one, the blending acts like the normal averaging. Fig. 3.5(b) shows a close view of the 

blended sprite using a larger distance. We can see that the right border, which is the boundary 

of reliable and unreliable regions, is blurred. Thus, how to give a suitable distance is a hard 

job. To avoid this problem, an intelligent blending strategy without requiring segmentation 

masks is proposed here. 
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 (a) (b) 

Fig. 3.4  Segmentation errors in player’s feet.  (a) Frame 255 with left foot incompletely 
segmented.  (b) Frame 258 with both feet incompletely segmented. 

 

   

 (a) (b) 

   

 (c) (d) 

Fig. 3.5  Two examples to show the blended sprites using different methods. 
(a) The first example of the generated sprite based on the reliability-based blending. 

(b) The second example of the generated sprite based on the reliability-based blending. 
(c) The first example of the generated sprite based on the intelligent blending. 

(d) The second example of the generated sprite based on the intelligent blending. 
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The proposed intelligent blending strategy is based on a fact that for a series of pixels in 

video frames corresponding to the same location of a sprite, most of these pixels will be 

background; only few pixels are moving objects. Since objects are moving, those object 

pixels will come from different positions of an object, or even different objects, their 

intensities will have larger variation. On the contrary, intensities of those background pixels 

standing for the same background point in the real world should be similar, and can be found 

out by counting their occurrence. 

Fig. 3.6 shows a flowchart of the proposed intelligent blending schema. Let X be the 

incoming pixel, S be the current sprite pixel. A candidate pixel C is used to store a candidate 

of incoming background pixel. Two counters CS and CC are used to store the number of pixels 

being blended into S and C, respectively. Initially, S and C are undefined and both counters 

are set as zero. A similarity check is performed on the incoming pixel by calculating two 

absolute differences: 

 
CXD
SXD

C

S

−=
−=

. (3.4) 
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Fig. 3.6  Flowchart of the intelligent blending. 

 

In the starting of the blending, since S is undefined, it is set to be gray value of the first 

incoming pixel and CS is set to one. After filling S, the similarity check is conducted. If an 

incoming pixel is unlike S (i.e. DS is greater than a preset threshold T) and C is undefined, C is 

set to the gray value of the incoming pixel and CC is set to one; otherwise, if DS is smaller 

than T and DC, the incoming pixel is considered as a background pixel and is blended into S, 

CS is increased by 1. If DC is smaller than T and DS, the incoming pixel is blended into the 

candidate C, CC is increased by 1. Two counters are compared when a pixel is blended into 

the candidate C. If the candidate counter is larger than the sprite counter, the sprite and the 

sprite counter are replaced by the candidate and the candidate counter. Then the candidate and 

its counter are reset to undefined and zero, respectively. This replacement is based on the fact 

that being described before. Since the candidate appears more frequently than the current 
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sprite, the candidate is more likely to be the background. 

If both DS and DC are larger than T, the candidate is replaced by the incoming pixel, and 

the candidate counter is set to one. With a series of incoming object pixels, the candidate is 

continuously replaced by the incoming pixels until a background pixel is replaced into the 

candidate. If the background pixels appear continuously, the accumulation of candidate 

counter will begin. 

The boundaries of frames are often non-reliable and should be removed from blending. 

In the proposed method, the affects of boundaries are eliminated by counting the boundaries 

pixels once. The pixels near the frame border within a preset distance W are defined as 

boundary pixels. The boundary pixels are checked and blended into the sprite or the candidate 

as normal pixels, but the corresponding counter is not increased. This will ensure the 

boundary pixels to be replaced quickly when normal pixels are inputted. 

Two examples of the blending results using the proposed intelligent blender are shown in 

Fig. 3.5(c) and 3.5(d). In contrast to the results using reliability-based blender shown in Fig. 

3.5(a) and 3.5(b), the ghostlike shadows are eliminated and the sprite border is clear and sharp. 

In order to examine the results easier, a contrast-enhanced version of Fig. 3.5 is provided in 

Fig. 3.7. 
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 (a) (b) 

   

 (c) (d) 

Fig. 3.7  Contrast-enhanced version of Fig. 3.5.  (a) Contrast-enhanced version of Fig. 
3.5(a).  (b) Contrast-enhanced version of Fig. 3.5(b).  (c) Contrast-enhanced version of Fig. 

3.5(c).  (d) Contrast-enhanced version of Fig. 3.5(d). 

  

3.3  Experimental Results 

The aim of sprite generation is to reconstruct the background from the generated sprite 

perfectly. The quality of the reconstructed background for each frame is often measured by 

PSNR. In most cases, the PSNR is a good measurement to describe the quality. However, the 

PSNR is fooled in seldom cases. A comparison in visual quality of the generated sprites is 

also performed. 

The GMPs are estimated using the two-staged GME with the proposed balanced feature 
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points described in Sections 3.2.1 and 3.2.2. Then sprites are mixed by different blending 

strategies with the same GMPs. Backgrounds are reconstructed from the generated sprites and 

their PSNRs are calculated. Pixels of moving objects are excluded when calculating the PSNR 

since we are measuring the qualities of the reconstructed backgrounds. The qualities of 

generated sprites are measured by computing the averaging PSNR of the reconstructed 

backgrounds. The generated sprites are shown in Fig. 3.8. Fig. 3.8(a) is generated by the 

averaging blending strategy employed in the MPEG-4 VM without segmentation masks. The 

result using the averaging blending strategy with manually segmented masks is shown in Fig. 

3.8(b). Fig. 3.8(c) shows the sprite generated using the reliability-based blending strategy 

based on the rough segmentation masks extracted via the method developed by Lu et al. [19]. 

Finally, the sprite generated using the proposed intelligent blender is shown in Fig. 3.8(d). Fig. 

3.9 shows one of the reconstructed backgrounds using three different strategies respectively. 

 
(a) 

Fig. 3.8  (Continued) The generated sprites.  (a) Sprite generated using averaging blending 
without segmentation masks.  (b) Sprite generated using averaging blending based on 

manually segmented masks. (c) Sprite generated using reliability-based blending.  (d) Sprite 
generated using intelligent blending. 
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(b) 

 
(c) 

 
(d) 

Fig. 3.8  The generated sprites.  (a) Sprite generated using averaging blending without 
segmentation masks.  (b) Sprite generated using averaging blending based on manually 

segmented masks. (c) Sprite generated using reliability-based blending.  (d) Sprite generated 
using intelligent blending. 

 

Since all moving objects are blended, the sprite generated by averaging blending will 

have shadows in several places, which are obvious in a reconstructed frame shown in Fig. 
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3.9(a). However, if perfect manually masks are provided, the shadows are eliminated 

completely and the averaging blending can achieve excellent results, as shown in Fig. 3.9(b). 

Most shadows can be removed using the reliability-based blending except some ill-segmented 

parts shown in the half-bottom of Fig. 3.9(c). The reconstructed background using the 

proposed intelligent blending is shown in Fig. 3.9(d). We can see that the sprite generated by 

our method is perceptually the same as the result using the average blending with perfect 

manually masks provided. 

 

   

 (a) (b) 

   

 (c) (d) 

Fig. 3.9  The reconstructed backgrounds.  (a) Averaging without segmentation masks.  (b) 
Averaging with manually segmented masks. 

(c) Reliability-based blending.  (d) Intelligent blending. 
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A quantitative comparison in PSNR is performed and illustrated in Fig. 3.10. While 

calculating the PSNR of a frame, only the background parts in the frame are attending the 

calculation because the sprite contains only the information of backgrounds in a video 

sequence. Manually segmented masks are employed to exclude object parts in the frame. 

The results of the average blending with and without manually segmented masks are 

plotted in dash-dotted and dotted line respectively in Fig. 3.10. The result without masks is 

degraded by the shadows of moving objects and the frame borders, and has low average 

PSNR of 26.23dB. With manually segmented masks, the averaging blending shows superior 

results not only in the visual quality but also in the measured PSNR. The average PSNR is 

28.38dB and is the best result in our tests. 

The reliability-based and intelligent blending strategies are plotted in dashed line, and 

normal line respectively. The reliability-based blending has average PSNRs 28.20dB. The 

proposed intelligent blending has average PSNRs 28.29dB, which is slightly higher than that 

of reliability-based blending and close to that of the average blending with perfect masks. 

These experiments show that the proposed method can generate high visual quality sprite 

without needing any segmentation mask. 
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Fig. 3.10  PSNR comparison of different blending strategies. 

 

The result of Lu et al.’s sprite generator [21], which is shown in Fig. 3.11, is also quoted 

as a comparison. In contrast to the result of the proposed generator shown in Fig. 3.8(d), the 

proposed generator can generate better results. The average PSNR of Lu’s generator is 23.1dB, 

which is much lower than that of the proposed generator (28.29dB). To make comparison 

more clear, we take close views of three parts from the generated sprites in Fig. 3.11 and show 

them in Fig. 3.12. From part 1 shown in Figs. 3.12(a) and (b), we can see that the generated 

sprite using [21] skews seriously. Figs. 3.12(c) and (d) show part 2, the white lines in Fig. 

3.12(d) are registered well, but in Fig. 3.12(c) are not. The above two faults are due to the 

inaccuracy of the estimated GMP, and do not exist in the result of our generator. Part 3 shown 

in Figs. 3.12(e) and (f) also demonstrates that our method is superior to Lu et al.’s. 
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Fig. 3.11  The generated sprite of Lu et al.’s work [21]. 

 

   

 (a) (b) 

   

 (c) (d) 

Fig. 3.12  (Continued) Close views of the generated sprites.  
(a) Part 1 of Lu et al.’s work [21].  (b) Part 1 of the proposed method.  
(c) Part 2 of Lu et al.’s work [21].  (d) Part 2 of the proposed method.  
(e) Part 3 of Lu et al.’s work [21].  (f) Part 3 of the proposed method. 
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 (e) (f) 

Fig. 3.12  Close views of the generated sprites.  
(a) Part 1 of Lu et al.’s work [21].  (b) Part 1 of the proposed method.  
(c) Part 2 of Lu et al.’s work [21].  (d) Part 2 of the proposed method.  
(e) Part 3 of Lu et al.’s work [21].  (f) Part 3 of the proposed method. 
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CHAPTER 4  

A NEW APPROACH FOR FAST MULTIPLE SPRITES 
GENERATION 

 

Farin et al. have proposed a novel technique denoted as multiple sprites or multi-sprites 

that divides a video sequence into several sub-sequences. The backgrounds of each 

sub-sequence are stored by its own sprite. Using multiple sprites reduces the geometrical 

distortions and the storage required by a single large sprite. However, Farins’ technique uses 

exhaustive searches to find the optimum sub-sequences and optimum reference frame of each 

sub-sequence. This makes the algorithm very time-consuming. 

In our dissertation, a fast multiple-sprite partition method will be proposed. The 

proposed method reduces the searching time for finding an applicable partition for multiple 

sprite generation, and the memory required during the searching is also decreased in contrast 

to the optimal partition method. Experimental results show that the coding cost of the 

generated sprites using the proposed method is near-optimum, i.e. only slightly higher than 

that in the optimal method. 

The proposed method consists of two algorithms: video partition algorithm and a 

reference frame selection algorithm. The video partition algorithm is developed based on the 

characteristics of frame translations and scaling. The frame translation, which is caused by 

camera motion and also denoted as global translation, represents the movement of the 
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background of a frame in the x and y direction relative to a reference frame. The global 

translations across frames are accumulated to represent the estimated position of a frame 

projected in a sprite. Since the geometric distortion depends on the accumulated global 

translation relative to the reference frame, the accumulated global translation provides a good 

measurement on the distortion. The effect of frame scaling caused by camera zoom-in or 

zoom-out can be employed in a similar way. 

A reference frame selection algorithm is developed based on the idea of Messey and 

Bender’s work [37]. In their work, the middle frame of a video sequence is suggested as the 

reference frame, since its background has higher possibility to be located at the center of a 

generated sprite. The proposed algorithm extends this idea by taking the frame with its 

background most likely being at the center of the corresponding sprite as the reference frame. 

 

4.1  Proposed Feasible Partition Points Selecting and Reference Frames Finding 

Methods 

Farin et al.’s method achieves optimal partition results with high computational 

complexity, even if their efficient algorithm is applied. If we can reduce the possible 

combinations of sub-sequences and reference frames, the computational complexity will be 

reduced. In the following sections, we will first analyze the accumulated translations and 

scalings. Based on the accumulated translations and scaling, some candidate partition points 
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and reference frames are then located first. Finally, a method is provided to get a near-optimal 

partition with similar total sprite area to Farins’. 

 

4.1.1  Analysis of Accumulated Translation 

As mentioned previously, the geometric projection distortion comes from the camera 

rotation. Farin et al.’s experiments [38] also show that the sprite area grows exponentially as 

camera pan angle increases. Thus the selecting of partition frames must be highly related to 

the effect of camera rotation. In order to capture the effect of camera rotation, the global 

translations between video frames are calculated and analyzed. 

The global translation between two frames is a measurement of background 

displacements. Let frame i and frame j be the two frames to be measured and ),( yxp =v  be a 

pixel in frame j, the displacement of pv  relative to frame i is defined as 

 ppTd jip
vvv

−= )( , (4.1) 

where Tji is the geometric transformation applied in the frame warping which converts 

locations of pixels from the coordinate of frame j to frame i. Due to the effect of geometric 

transformation, the displacements of all pixels in frame j are not consistent. In order to get a 

fast estimation of the frame displacement, the average of four corner displacements is used, 

that is, 

 ∑
∈

=
},,,{4

1
RBLBRTLTP

Pji dt
vv

, (4.2) 
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where LT, RT, LB, and RB are the left-top, right-top, left bottom, and right bottom  pixel of 

frame j. The jit
v

 is considered as the global translation between frame i and frame j. 

The global translations of sequence ‘stefan’ are illustrated in Fig. 4.1(a). The first frame 

is set to be the reference frame. The calculated translations of frames show their background 

displacements relative to the reference frame. A positive translation in the x-axis represents a 

frame displacement in the right direction, i.e., the frame is warped to the right side of the 

reference frame. A negative translation in the x-axis denotes a displacement in the left 

direction, and the y-axis translations can be denoted similarly. In Fig. 4.1(a), one can see that 

the view of background moves toward the right direction in the first thirty frames. Then it 

moves left and crosses the first frame in the next ninety frames. And then it moves toward the 

right again until frame 205, finally it moves toward the left in the rest of frames. 
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 (a) (b) 

Fig. 4.1  Background displacements of ‘stefan’. 
(a) Global translations.  (b) Accumulated translations. 
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The figure also shows that the view of background moves toward left quickly after frame 

260. The magnitudes of global translations increase quickly from hundred to over ten 

thousand pixels. Actually, the magnitudes can be million pixels in short frames and tend to be 

infinity when a frame is unable to be projected into the first frame. The huge difference of 

magnitudes between frames is the result of huge geometric distortions when projecting a 

frame into the first frame with a view angle far away from the projecting frame. The huge 

difference makes it difficult to analyze the effect of camera translations from the global 

translations. 

In order to analyze the camera translations efficiently, accumulated translation is 

proposed. The accumulated translations are calculated from the local translations, which 

represent the translation from one frame to its adjacent previous frame and can be denoted as 

)1( −jjt
v

 in Eq. (3.6). Since local translations are less geometric-distorted than the global 

translations, they can be combined into an accumulated translation, jiav , to represent a 

less-distorted global translation between frame j and frame i, that is 

 ∑
+=

−=
j

ik
kkji ta

1
)1(

vv . (4.3) 

Note that jiav  can be computed by a recursive procedure: 

 )1()1( −− += jjijji taa
vvv , (4.4) 

where iiav  is defined to be (0,0). 

The accumulated translations for sequence ‘stefan’ are illustrated in Fig. 4.1(b). In 
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contrast to global translation, magnitudes of accumulated translations are limited into a 

reasonable range. The details of camera movements are still preserved, and the translations of 

all frames can be calculated, even for those frames that can not be projected into the first 

frame. 

 

4.1.2  Accumulated Translation Based Feasible Partition Point Finding Method 

One of the goals of a multi-sprite partition algorithm is to find some partition points to 

split the video sequence into several sub-sequences. Since the geometric distortions are the 

major issue of using multiple sprites, camera motion must be considered first. The following 

paragraph demonstrates the finding of feasible partition points, FPX, based on accumulated 

translations in x-axis direction. By the similar way, we can also find the feasible partition 

points, FPY, based on accumulated translation in y-axis direction. 

Fig. 4.2 shows the x-axis accumulated translations which have been shown in Fig. 4.1(b). 

The camera pans to the right from the first frame to frame 29, then pans to the left until frame 

107. When the camera begins the left-panning, the backgrounds of frames from 29 to 69 are 

going back through an area that has been recorded into the current sprite. Since the 

background area already exists in the sprite, merging these frames into the sprite will not 

expand the sprite area. Thus, frames from 29 to 69 must not be selected as candidate partition 

points, and frames 70 to 107 are considered as candidate partition points. 
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Fig. 4.2  Finding feasible partition points. 

 

Now, the camera pans to the right from frame 107 to 204, and backgrounds of frames 

from 107 to 183 have been recorded, thus they will not be considered as candidate partition 

points. By similar reasons, frames 204 to 244 are not considered as candidate partition points, 

and frames after 245 are considered as candidates. The candidates of partition points are 

illustrated by thick lines in Fig. 4.2. The candidates of partition points can be grouped into 

several pieces, and each piece covers a small range of view angles. Since the covered view 

angle range in a piece is small, frames in the same piece should be merged into a sprite. The 

first frame in each piece is considered as a feasible partition point. If the candidates are 

grouped into K pieces, there will be (K-1) feasible partition points. This will produce 2K-1 

combinations of possible partitions. In Fig. 4.2, feasible partition points are frame 70, 183, 

and 245. Comparing to Farin et al.’s result, which has an optimum partition point at frame 
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242, we have a feasible partition point at frame 245 which is very close to frame 242. 

The above finding method is applied to both x- and y-axis directions, and two sets of 

feasible partition points (x-axis and y-axis) are found. The final feasible partition points are 

the union of the x- and y-axis partition points (FPX and FPY). 

 

4.1.3  Scaling Factor Based Feasible Partition Point Finding Method 

Using accumulated translation exploits the effect of camera panning to partition a 

sequence. Therefore, if a sequence does not have camera panning, it will not be partitioned. 

Fig. 4.3 shows the accumulated translations of sequence ‘tabletennis’ from frame 1 to 131. 

The frames of the sequence are continually zoomed out with no camera panning. One can see 

that the values of accumulated translations fall into a very narrow range, that is, from +4 to -6. 

In this case, the accumulated translations are useless, and the effect of scaling must be 

considered. 

The effect of scaling between two geometric transformed frames can be directly 

measured by the ratio of width or height of the transformed frames. However, due to the effect 

of geometric transformation, the width ratio and height ratio of two frames are not consistent. 

Instead of width or height ratio, ratio of area of two frames is chosen in this dissertation. Area 

is the product of width and height, and area ratio will combine both the effect of width and 

height ratio. This makes area ratio more robust than width or height ratio. 
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Fig. 4.3  Accumulated translations of ‘tabletennis’. 

 

An ordinary geometric transformed frame is illustrated in Fig. 4.4. The four corners of 

the transformed frame are A, B, C, and D and the corresponding coordinates are denoted as 

),( PP yx , where },,,{ DCBAP∈ . A fast approximation of the transformed frame area is to 

calculate the area of its bounding box, which is illustrated in a dash-lined rectangle in Fig. 4.4. 

However, one can see that the transformed frame is completely inside its bounding box. This 

makes the approximated transformed frame area oversized. For the purpose of making a better 

approximation, the bounding box is revised by correcting the boundaries of the bounding box 

as follows: 

 

.2/)(
2/)(
2/)(
2/)(

DC

BA

CB

DA

yybottom
yytop
xxright
xxleft

+=
+=
+=
+=

 (4.5) 

The revised bounding box is shown by the solid-lined rectangle in Fig. 4.4. Clearly, the 
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revised bounding box is closer to the actual area. Now the approximated area of the 

transformed frame j with frame i as a reference frame can be calculated by 

 )()( topbottomleftrightAREAji −×−= . (4.6) 

 

 

 

Fig. 4.4  Frame area calculation of a geometric-transformed frame. 

 

After obtaining the areas of the transformed frames, the scaling factor of the transformed 

frame j versus the transformed frame i is defined as 

 iijiji AREAAREAs /= . (4.7) 

Since area is the product of width and height, a square root is applied to make the scaling 

factor linear. Similar to the computation of accumulated translations, the accumulated local 

scaling factors are employed to increase the robustness of scaling factors. The accumulated 

scaling factor of the transformed frame j versus the transformed frame i is defined as 

 )1()1(
1

)1( −−
+=

− ×== ∏ jjij

j

ik
kkji sassas , (4.8) 
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bounding box 
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where iias  is defined to be one. The accumulated scaling factors of the sequence 

‘tabletennis’ are illustrated in Fig. 4.5. 
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Fig. 4.5  Accumulated scaling factors of ‘tabletennis’. 

 

As mentioned previously, the quality degradation of a reconstructed frame is higher as 

the scaling between the frame and its reference frame increases. Therefore, the accumulated 

scaling of frames in a single sprite should be limited. This can be done by limiting the ratio of 

the maximum and minimum accumulated scaling factors of frames in a sprite generated from 

frame k to frame h. That is, 

 
{ }
{ } t

hikas

hikas

iki

iki <
≤<

≤<

|min

|max
, (4.9) 

where t is a threshold. According to Eq. (4.9), we process frames in a video sequence 

sequentially. When Eq. (4.9) is not satisfied at a certain frame h, frame h is considered as a 
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feasible partition point. We keep processing the remaining frames with frame h as the starting 

frame to find all feasible partition points based on Eq. (4.9). In our experiment, the threshold t 

is set to 1.8. 

The fixed threshold t in Eq. (4.9) has a disadvantage: the scaling ratio of the last partition 

will be smaller than that of the other ones. In the other words, the last partition covers less 

scaling range than others. This can be solved by applying an adjusted threshold 

 { }L ii
Niast ≤≤=′ 1|max 1 , (4.10) 

where L is the number of feasible partition points found based on Eq. (4.9) and threshold t, 

and N is the number of frames in the video sequence. The feasible partition points, FPS, based 

on the accumulated scaling factors are searched again by recalculating Eq. (4.9) with the 

adjusted threshold t’. 

Fig. 4.5 shows the feasible partition points found based on the accumulated scaling 

factors. The selected feasible partition points of sequence ‘tabletennis’ are frame 51 and frame 

78, which are marked by squares in Fig. 4.5. The optimal partition method [38] splits the 

sequence in frame 50 and 76, which are marked by triangles in Fig. 4.5. 

 

4.2  Proposed Reference Frame Finding Method 

The second goal of a multi-sprite partition algorithm is to find a good reference frame for 

each partitioned sub-sequence. In order to cover larger view angle from both directions of 
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panning, the frame with its view at the center of the view in the subsequence would be a good 

reference frame. Massey and Bender [37] suggested using the middle frame in a sequence as 

the reference frame, but the middle frame is not always at the center of view in a sequence. 

Here, we provide a method to get the reference frame with view near center. 

When a sub-sequence is partitioned, its maximum and minimum values of x-axis 

accumulated translations can be found. The maximum value represents the right view 

boundary, and the minimum value represents the left view boundary. The mean of the 

maximum and the minimum values will represent the view center, and the frame with 

accumulated translation closest to the mean value is selected as the reference frame. 

 

4.3  The Complete Algorithm 

The proposed multi-sprite partition algorithm is based on the methods described in 

Sections 4.1 and 4.2. First, the accumulated translations and accumulated scaling factors are 

calculated and the feasible partition points based on accumulated translations and 

accumulated scaling factors are found separately. Then all feasible partition points based on 

translation and scaling are considered as candidate partition points. After finding the candidate 

partition points, the reference frames of all possible partitions are found. Based on these 

candidate partition points and reference frames, the second step of Farin et al.’s method is 

applied to obtain the final result. 
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4.3.1  Candidate Partition Points and Reference Frames Finding 

Let ),( YX  be the size of frame i and Ti(i-1) be the geometric transformation converting 

locations of pixels from the coordinates of frame i to frame 1−i . Let (1,1), (1,Y), (X,1), (X,Y) 

be its four corner. Using Eqs. (4.1)-(4.2), we can obtain the local translation )1( −iit
v

. Based on 

the local translation, we can get the accumulated translations using Eqs. (4.3)-(4.4). 

Meanwhile, the locations of transformed corners in each transformed frame are used to find 

the revised bounding box via Eq. (4.5). The approximated area and accumulated scaling 

factors are calculated by applying Eqs. (4.6)-(4.8). Then three sets of feasible partition points 

(FPX, FPY, and FPS) are found by the method described in Sections 4.1.2 and 4.1.3. And the 

candidate partition points is set to be the union of these three sets of feasible partition points. 

After obtaining the feasible partition points, the reference frames of all subsequences in 

all possible partitions are found using the method described in Section 4.2. 

 

4.3.2  Reference frame validation 

Although the reference frames are obtained in the previous section, the selected reference 

frame may have 1-3 frames away from the reference frame found by Farin et al.. Since the 

size of a generated sprite is heavily affected by its reference frame, to get more accurate 

reference frame, the neighboring frames of the selected reference frame are checked. If any of 
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them achieves better result than the selected reference frame, the reference frame will be 

replaced by it. 

Here, two methods using different validations for sprite area are proposed to find better 

reference frames. The first method is called normal validation. The bounding box of the 

corresponding sprite using each neighboring frame is calculated. Then the neighboring frame 

resulting in a minimal size of bounding box is selected as the validated reference frame. Since 

every frame in the current sub-sequence must be geometrically transformed toward each 

neighboring frame, this validation step achieves better performance with higher computational 

complexity. 

The second method called fast validation tries to take a shortcut. Four boundary frames 

in the current sub-sequence are selected according to their accumulated translations: the 

frames with maximum and minimum values of x-axis translation, and the frames with 

maximum and minimum values of y-axis translation. For each neighboring frame, only these 

four boundary frames are geometric transformed toward the neighboring frame. Then a 

bounding box covering these four transformed frames is found. The neighboring frame 

resulting in the corresponding bounding box with minimum area is taken as the validated 

reference frame. 
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4.3.3  Sequence partition 

In order to find the proper partition points, the optimal partition algorithm [38] described 

in Section 1.5.2 is applied. The algorithm is originally developed to find the optimal partition 

from a coding-cost matrix made up by costs of all combinations of possible sub-sequences. In 

our method, the sequence is partitioned only in the candidate partition points found in Section 

4.3.1. Therefore, a much smaller coding-cost matrix can be made up. 

Assume that M candidate partition points },...,{ 1 Mvv  are found in Section 4.3.1. The 

first and the last frame N are added by setting 10 =v  and 11 +=+ NvM  to form a node set 

},...,{ 10 += MvvV  of size M+2. The area of bounding box bi;j of sub-sequence )1,( −ji vv  

beginning at frame vi and ending at frame vj-1 for all possible Vvv ji ∈,  and ji <  can be 

obtained from the minimal area bounding box (the bounding box with validated reference 

frame) found in Section 4.2. 

An upper triangle coding-cost matrix C with size )2()2( +×+ MM  can be made up by 

assigning 

 
⎩
⎨
⎧ <

=
otherwise

jif ib
c ji

ji 0
;

; , (4.11) 

where i and j are indices of two elements in V. 

The matrix C is applied to Eq. (1.9) as the sprite coding-cost matrix kiS ; . Then based 

on Eqs. (1.11) and (1.12), the partition of sequence can be found using the method described 

in Section 1.5.2. 
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4.4  Experimental Results 

Identical global motion parameters of testing sequences should be used in all competitive 

methods to show the performance. However, the estimated global motion parameters will be 

different according to various estimation methods, different feature points and initial guesses 

used in the gradient descent algorithm. Since it is impossible to acquire the same estimated 

global motion parameters as those in Farins’ paper, we choose to implement their optimal 

method. The global motion parameters are generated in advance by the sprite generator with 

intelligent blending proposed in Section 2, and the same parameters are used in both the 

proposed and the optimal methods. The testing platform is an IBM laptop with mobile 

PentiumIII 800MHz CPU and 640MB of RAM. Both methods are implemented and 

simulated by Matlab. The results of using a single sprite are also included as a comparison. 

Table 4.1 and Table 4.2 show the results of sequence ‘stefan’ using perspective and affine 

motion model respectively. Table 4.3 shows the results of sequence ‘tabletennis’ in 

perspective model. Note that the experimental results of the optimal method are different from 

the results described in their paper [38] because the global motion parameters of sequences 

are not the same. In all tables, we can see that Farins’ optimal method achieves excellent 

performance. The total sprite sizes of all sequences by the optimal method are superior to the 

sizes of using a single sprite. The performance of using multiple sprites is obvious. Results 
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also show that using affine motion model slightly reduces execution time because the affine 

transformation is a bit faster than perspective transformation, but the execution time of the 

optimal method is still very slow. 

 

Table 4.1  Experimental results of sequence ‘stefan’ (perspective). 

 Partitions (reference frames) Total sprite size
(bytes) 

Executing time 
(seconds) 

Using a single sprite 
(frame 1~250) - 2,862,240 - 

Farin et al.’s optimal 
method 1-242 (57), 243-300 (265) 766,350 780 

Proposed method with 
normal validation 1-244 (60), 245-300 (266) 777,160 44 

Proposed method with 
fast validation 1-244 (53), 245-300 (265) 793,529 4.1 

 

Table 4.2  Experimental results of sequence ‘stefan’ (affine). 

 Partitions (reference frames) Total sprite size
(bytes) 

Executing time 
(seconds) 

Using a single sprite 
(frame 1~300) - 1,450,446 - 

Farin et al.’s optimal 
method 1-245 (81), 246-300 (283) 604,214 766 

Proposed method with 
normal validation 1-244 (58), 245-300 (261) 608,685 44 

Proposed method with 
fast validation 1-244 (57), 245-300 (259) 633,953 4.1 

 

Table 4.3  Experimental results of sequence ‘tabletennis’. 

 Partitions (reference frames) Total sprite size
(bytes) 

Executing time 
(seconds) 

Using a single sprite - 620,044 - 
Farin et al.’s optimal 

method 1-49 (48), 50-75 (52), 76-131 (76) 177,766 95 

Proposed method with 
normal validation 1-51 (9), 52-77 (57), 78-131 (83) 190,150 9.3 

Proposed method with 
fast validation 1-51 (4), 52-77 (52), 78-131 (78) 220,964 2.7 
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The results of the proposed method with normal validation and fast validation are also 

listed in tables. The proposed method divides the sequence ‘stefan’ into partitions at frame 

245 and divides the sequence ‘tabletennis’ into three partitions at frame 52 and 78. The 

partition points of the proposed method are very close to the partition points of using the 

optimal method, which is frame 243 in ‘stefan’ and frames 50 and 76 in ‘tabletennis’. 

The total sprite sizes using the proposed method are only slightly higher than those using 

the optimal method, but the executing time of the proposed method are greatly reduced. The 

total sprite sizes of two testing sequences using the proposed method with normal validation 

are 777,160 and 190,150 pixels respectively, which are only 1.41% and 6.97% higher than 

total sprite sizes of using the optimal method. The executing times are reduced from 780 

seconds to 44 seconds, and 95 seconds to 9.3 seconds. The execution speed is increased over 

10 times. If the fast validation method is applied, the executing times can be further decreased 

to 4.1 and 2.7 seconds, which is 35-190 times fast than that of the optimal method. In contrast 

to the reduction of executing time, the total sprite size of using fast validation method is not 

increased much. 

The generated sprites of sequence ‘stefan’ by the optimal method and the proposed 

methods are shown in Fig. 4.6 respectively. We can see that the generated sprites are 

perceptually similar, excepting for the dimensions of sprites. The effects of geometric 

distortions are lightened and the qualities of generated sprites are preserved. The generated 
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sprites of sequence ‘tabletennis’ by different methods are shown in Fig. 4.7. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4.6  Generated sprites of sequence ‘stefan’ by different methods. 
(a) Farin et al.’s optimal method. (b) Proposed method with normal validation. 

(c) Proposed method with fast validation. 
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Fig. 4.7  Generated sprites of sequence ‘tabletennis’ by different methods. 
(a) Farin et al.’s optimal method. (b) Proposed method with normal validation. 

(c) Proposed method with fast validation. 

 

The experimental results of sequence ‘building’ are listed in Table 4.4. The sequence 

consists of wide camera movements in y-axis direction and continuous panning in x-axis 

direction. From Table 4.4, one can see that the proposed method works well. Fig. 4.8 shows 

the generated sprites of the sequence. 
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Table 4.4  Experimental results of sequence ‘building’. 

 Partitions (reference frames) Total sprite size
(bytes) 

Executing time 
(seconds) 

Farin et al.’s optimal 
method 1-12 (10), 13-39 (31), 40-65 (56) 607,265 22 

Proposed method with 
fast validation 1-29 (10), 30-41 (37), 42-65 (56) 614,052 2.2 

 

    
  (a) 

    

  (b) 

Fig. 4.8  Generated sprites of sequence ‘building’ by different methods. 
(a) Farin et al.’s optimal method. (b) Proposed method with fast validation. 

 

4.5  Complexity Analysis 

Complexity can be discussed in two different ways: time and space. Both complexities of 

the proposed and optimal method are discussed. 

The complexity of Farins’ optimal method is divided into two parts: the building of 

coding cost matrix described in Section 1.5.1, and the optimal partition algorithm described in 
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Section 1.5.2. While building the cost matrix, the coding cost of all sub-sequences beginning 

at frame i and ending at frame k with reference frame r must be computed. Suppose that the 

sequence has N frames, the time and space complexity of building a cost matrix will be N3. 

However, they had developed a method to reduce the space required to N2. The optimal 

partition algorithm using Eq. (1.12) to find the best partition frame-by-frame takes N2 time. 

The proposed method calculates the accumulated translation and scaling first, and both 

of them take linear time. The finding of candidate partition points is also linear time because it 

only observes the changes of accumulated translation and scaling once. Let M be the number 

of candidate partition points found in Section 4.3.1, finding reference frame for all possible 

sub-sequences takes M2×N time. Finally, the Farins’ optimal partition is applied. Since only M 

candidate partition points are involved, it takes only M2 time. The accumulated translations 

and scalings must be hold in memory and the coding-cost matrix must be generated. These 

will need 2N+M2 space. 

Table 4.5 shows the complexity of both methods. The proposed method takes 

22 MNMNN +×++  time, i.e. )( 2 NMO ×  in time and )()( 2 NOMO +  in space. Since 

M is usually very small in contrast to N in practical, for example, M=9 and N=300 in the 

sequence ‘stefan’, this makes the complexity of the proposed method better than the optimal 

method. 
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Table 4.5  Complexity comparison. 

 Time Space 

Farin et al.’s optimal 
method O(N3) O(N2) 

Proposed method O(M2N) O(M2)+O(N) 
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CHAPTER 5  

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

5.1  Conclusions 

An effective sprite generator without segmentation masks is proposed. The method is 

based on MPEG-4’s framework. A balanced feature point extraction with object removing is 

introduced to increase the precision of estimated global motion parameters. In order to 

remove the demand of segmentation masks, an intelligent blending strategy is proposed. It 

counts the occurrence of pixels and chooses the pixels with higher count to be blended into 

the sprite. The ghostlike shadows in the sprite generated by conventional reliability-based 

blending are eliminated, and the average PSNR is increased slightly.  

An efficient and fast method for generating multiple sprites is also proposed. In contrast 

to the conventional sprite generating method that using a single sprite, using multiple sprites 

reduces the storage space of sprites. Conventional multiple sprite generation method uses an 

exhaustive search to find the optimal subsequence partition and optimal reference frame of 

each partition. However, the exhaustive search costs a lot of time. The proposed method 

consists of a sub-sequence partition algorithm and a fast reference frame selection algorithm, 

which are developed based on the frame accumulated translations and scalings. By using the 

proposed methods, a video sequence can be partitioned and reference frame can be selected in 

a very short time. In order to increase the performance of selected reference frames, two 
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reference frame validation methods are also proposed. The proposed validation methods 

searches frames close to the result of the fast reference frame selection method and check if 

better reference frame exists. The experimental results also show that the proposed method 

greatly increases the executing speed from 10 to 190 times in contrast to the Farins’ optimal 

method, the total sprite size is slightly higher and the qualities of generated sprites are 

preserved. 

 

5.2  Future Research Directions 

A sprite is a ‘pure’ background generated from a video sequence. This makes generated 

sprites very useful. For example, in a change-detection-mask based video object detection 

system, a sprite can be applied as the reference background instead of previous frames to 

achieve better results. We will work on the moving object detection methods based on 

generated sprites. 
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