

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

一個關於切割影片以產生單一/多重場景背景之研究

A Study on Single/Multiple Sprite Generation and Partition for Videos

研 究 生：郭萓聖

指導教授：陳玲慧 教授

中 華 民 國 九 十 七 年 七 月

一個關於切割影片以產生單一/多重場景背景之研究

A Study on Single/Multiple Sprite Generation and Partition for Videos

研 究 生：郭萓聖 Student：I-Sheng Kuo

指導教授：陳玲慧 Advisor：Ling-Hwei Chen

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

i

一 個 關 於 切 割 影 片 以 產 生 單 一 / 多 重 場 景 背 景 之 研 究

學生：郭萓聖

指導教授：陳玲慧 教授

國立交通大學資訊科學與工程研究所博士班

摘 要

以物件為基礎編碼的 MPEG-4 採用了一種創新的場景背景編碼方式，該

方法可以提高背景部分的編碼效率。MPEG-4 所提出的場景背景產生系統，

使用算數平均將所有影像疊合以產生場景背景影像，然而這樣的方式會使

得產生出的場景背景影像中某些區域變得模糊，特別是曾經被移動物件佔

據過的位置。為了防止產生背景模糊的狀況，MPEG-4 建議使用者提供一個

物件分割遮罩，標示畫面中屬於移動物件的位置，以避免物件被混入場景

背景之中。我們依照 MPEG-4 所提出的架構，建立一個場景背景產生系統。

但手動產生所有畫面的物件分割遮罩是不切實際的，因此在所建立的系統

中，我們提出一個自動化物件分割遮罩產生方法。該方法先以不使用物件

遮罩的方式產生粗糙場景背景，而後以粗糙背景為參考影像產生物件分割

遮罩，最後再以所產生的遮罩重新產生較佳的場景背景。實驗結果顯示所

提的系統產生之場景背景，具有良好的視覺品質。

自動化影像分割方法所產生的物件分割遮罩，不可能非常完美的將所有

移動物件與背景區分。未正確區分的物件分割遮罩，會使得部分移動物件

被混合入背景影像之中。導致所產生的場景背景影像中，出現如鬼影般的

移動物件殘骸。為了解決這個問題，我們將提出一個不需要物件分割遮罩

的場景背景產生系統。所提出的系統包含兩個新方法：均勻化特徵點擷取

方法與智慧型影像疊合方法。提出的特徵點擷取方法估計背景的運動向

量，利用該向量將特徵點中屬於移動物件的點予以排除。同時以均勻化的

擷取方式平均分散所有特徵點的位置。提出的智慧型影像疊合方法使用一

種計數方法，使得只有屬於背景的點被混合入場景背景影像之中。實驗結

果顯示所提出的均勻化特徵點擷取方法能有效的提高全域運動估計的準確

ii

性，因而提高場景背景影像之品質。提出的智慧型影像疊合方法則能夠將

物件排除在疊合過程以外，使得以提出之方法產生的場景背景影像，不存

在分割失誤可能導致的鬼影現象。其視覺品質接近使用人工產生之物件分

割遮罩產生的場景背景影像，並優於 Smolic et al.提出之使用自動化物件分

割之場景背景產生方法。

場景背景產生系統中，應用了幾何轉換將非參考畫面轉換至參考畫面的

座標系統。進行幾何轉換會使轉換後畫面，以及根據轉換後畫面疊合的場

景背景影像變的歪曲。這使得場景背景影像所需要的儲存空間增加，同時

亦限制了場景背景影像所能夠涵蓋的視角。對此 Farin et al.提出了使用多重

場景背景的方式解決問題。使用多張場景背景影像所需的儲存空間總和，

有可能較使用單一場景背景影像來的小，同時亦能涵蓋較大範圍的視角。

然而 Farin et al.所提出的方法，利用暴力搜尋法找出最佳的影片分割位置。

若有 N 個畫面，這樣的方法需要 O(N3)的執行時間與 O(N2)的儲存空間。為

了降低運算的複雜度，我們提出一個快速的多重場景背景影片分割方法。

該方法包含一個可能的分割位置選取方法以及一個快速參考畫面選擇方

法。利用測量畫面之間的移動與縮放，以找出影片中有可能的分割位置。

並由這些可能的分割位置尋得最終的分割位置，將影片分割為數個子影

片，最後每一個子影片將產生一個場景背景影像。若所提出的方法找到 M
個可能的分割位置，則所提出的方法僅需要 O(M2N)的執行時間以及

O(M2)+O(N)的儲存空間。同時所產生的數個場景背景影像的總儲存空間僅

較暴力搜尋法所產生的略高。

iii

A Study on Single/Multiple Sprite Generation and Partition for Videos

Student：I-Sheng Kuo

Advisors：Dr. Ling-Hwei Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Sprite coding, which can increase the coding efficiency of backgrounds
greatly, is a novel technology adopted in MPEG-4 object-based coding. The
sprite generator introduced in MPEG-4 blends frames by averaging blending,
this will make some places, which are ever occupied by moving objects, look
blurring. Thus, providing segmented masks for moving objects is suggested. We
build a sprite generation system based on MPEG-4’s framework, but we find
that using manual segmentation masks in a sprite generation system is
impractical. An automatic segmentation mask generation method is proposed
and is applied in the sprite generation system. The sprite generation system
produces a coarse sprite first by MPEG-4’s method without segmentation masks.
Then the coarse sprite is employed as the reference image in the proposed
segmentation mask generation method. After generating the segmentation masks,
a better sprite is re-generated again with generated segmentation masks.
Experimental results show the sprite generated by the proposed system has good
quality.

Automatic image segmentation can not produce perfect object segmentation
masks. Segmentation faults in segmentation masks causes some moving objects
being blended into a sprite. This makes some ghost-like shadows appear in a
generated sprite. To treat this problem, a sprite generation without segmentation
masks is proposed in this dissertation. The proposed sprite generator consists of
two novel methods: a balanced feature point extraction method and an

iv

intelligent blending method. The feature point extraction method estimates the
motion vector of background pixels, and excludes pixels of moving objects from
the feature points. Proposed intelligent blending method blends only background
pixels into a sprite by a simple counting schema. Experimental results show the
feature points extracted by the proposed method increases the accuracy of global
motion estimation, and the quality of generated sprites is increased. The
proposed intelligent blending method excludes pixels of moving objects directly
in the blending procedure. Thus ghost-like shadows caused by segmentation
faults is not exist in the sprite generated by our method. The visual quality of our
sprite is close to that using manually segmented masks and is better than that
generated by Smolic et al.’s method.

Due to the geometric transformation applied to each non-reference frame in
the procedure of sprite coding, the generated sprite is distorted and the available
view angles relative to the reference frame are restricted. This makes multiple
sprites used be necessary. An optimal multiple sprite generation method has
been proposed by Farin et al., but it uses an exhaustive search to find the
optimal partition and reference frames. Let N be the number of frames, Frains’
method requires O(N3) time and O(N2) space to perform the search. In order to
reduce the complexity, a fast multiple sprite partition method is proposed in this
dissertation. The proposed method includes a fast partition point finding method
and a fast reference frame finding method. The proposed partition point finding
method measures translation and scaling between frames and finds candidate
partition points by the measured values. The final partition positions are decided
from these candidate points, and reference frames of each partition are found by
the proposed fast reference frame selecting method. Let M candidate partition
points are found, the proposed method requires only O(M2N) in time and
O(M2)+O(N) in space. The total size of generated sprites is only slightly higher
than that of Farin’s method.

v

誌 謝

這篇論文能夠完成，首先要感謝指導教授陳玲慧博士的細心指導與協助。於陳教授

身上，我不僅學習到豐富的學業知識與嚴謹的研究態度，同時亦對待人接物的道理以及

為人處事應有的堅持有更深的瞭解。誠摯的感謝陳教授多年來的指導。感謝口試委員莊

仁輝教授、荊宇泰教授、陳永昇教授、張隆紋教授、鍾國亮教授、尹邦嚴教授及李建興

教授對論文與研究提供許多寶貴的指導與建議，使得本論文更加完善。

接著要謝謝自動化資訊處理實驗室一同研究的伙伴們。建興學長、遠坤學長、坤龍

學長、昭玲學姊以及瑞祥學長，學長姊們在研究過程中給予的指導與叮嚀，提供很大的

幫助。感謝博士班同學民全、文超、惠龍及俊旻，大自學術上的研討，小至生活上的閒

談，都讓我在交大的生活更加充實。瓊雪、佩瑩、立人、芳如、信嘉、薰瑩、子翔、偉

全等幾位學弟妹，有你們在，實驗室總是充滿歡樂與愉悅的氣氛。同時也要感謝系上助

理耀萱，因為她的大力幫忙，我才能夠如期完成畢業口試。

此外我也要感謝從小到大求學期間認識的好朋友們：一同通車上下學，經常能夠仗

義執言的君燦；經常聊天聊到深夜，互相通報八卦，一起想鬼點子，無話不談的好朋友

怡慧；細心體貼、總是為人著想的肚魚以及點子很多、經常帶來歡笑的世懷。特別謝謝

草莓公主，這幾年妳的關心與體諒，讓我能夠沒有壓力的完成學位。謝謝三年來陪伴在

身邊並慷慨提供自拍照於論文中的百香果。還有中山大學滋青社的社團伙伴們，讓我在

大學時期經歷許多美好的體驗與成長；經常給予我人生中許多中肯建議的韶玲老師，以

及諮商中心志工團的朋友們。

最後我要感謝一路栽培我的父母、舅舅以及兄長於生活上的諸多照料，讓我無需擔

心經濟壓力，專心攻讀博士學位。謹以最誠摯的心意將本篇論文獻給我的父母，也獻給

曾經在我的人生中給予我鼓勵及協助的每一個人。

vi

TABLE OF CONTENTS

中文摘要 ...i
ABSTRACT ..iii
誌謝 ..v
TABLE OF CONTENTS...vi
LIST OF TABLES...viii
LIST OF FIGURES...ix
ABBREVIATION...xii
CHAPTER 1 INTRODUCTION...1

1.1 Motivation ...1
1.2 Basic of Sprite Generation...3

1.2.1 Global motion estimation ...4
1.2.2 Warping ..10
1.2.3 Blending ... 11

1.3 Existing Single Sprite Generators ... 11
1.3.1 Smolić et al.’s reliability-based blending ...12
1.3.2 Watanabe and Jinzenji’s generator ...14
1.3.3 Lu et al.’s generator ..14

1.4 Geometric Distortion and Multiple sprites ..15
1.5 Farin et al.’s Optimal Partition Algorithm...20

1.5.1 Coding Costs Computing and Reference Frames Finding20
1.5.2 Optimal Partitioning ...21

1.6 The Main Problems and Current Status...22
1.6.1 Sprite Generation without Segmentation Masks ..23
1.6.2 Fast Multiple Sprites Generation..25

1.7 Synopsis of the Dissertation ..28
CHAPTER 2 AUTOMATIC GENERATION OF SEGMENTATION MASKS FOR

SPRITE GENERATION ..29
2.1 Proposed Two-Pass Sprite Generation...29

2.1.1 Object blurring effect of averaging blending ...30
2.1.2 Frame segmentation in sprite generation..31

2.2 The First Pass of Sprite Generation...32
2.3 Automatic Generation of Segmentation Masks...32
2.4 The Second Pass of Sprite Generation ..35
2.5 Experimental Results...36

CHAPTER 3 A NEW APPROACH FOR SPRITE GENERATION WITHOUT

vii

SEGMENTATION MASKS...39
3.1 Problems of Segmentation Masks ...39
3.2 The Proposed Sprite Generator ...40

3.2.1 Global motion estimation ...40
3.2.2 Feature point extraction..41
3.2.3 Intelligent blending...47

3.3 Experimental Results...53
CHAPTER 4 A NEW APPROACH FOR FAST MULTIPLE SPRITES GENERATION....61

4.1 Proposed Feasible Partition Points Selecting and Reference Frames Finding
Methods ..62

4.1.1 Analysis of Accumulated Translation...63
4.1.2 Accumulated Translation Based Feasible Partition Point Finding Method..66
4.1.3 Scaling Factor Based Feasible Partition Point Finding Method...................68

4.2 Proposed Reference Frame Finding Method...72
4.3 The Complete Algorithm...73

4.3.1 Candidate Partition Points and Reference Frames Finding..........................74
4.3.2 Reference frame validation...74
4.3.3 Sequence partition ..76

4.4 Experimental Results...77
4.5 Complexity Analysis..82

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS85
5.1 Conclusions ...85
5.2 Future Research Directions ...86

REFERENCES ...87
PUBLICATION LIST ..91

viii

LIST OF TABLES

Table 4.1 Experimental results of sequence ‘stefan’ (perspective)..78
Table 4.2 Experimental results of sequence ‘stefan’ (affine)...78
Table 4.3 Experimental results of sequence ‘tabletennis’. ..78
Table 4.4 Experimental results of sequence ‘building’. ..82
Table 4.5 Complexity comparison...84

ix

LIST OF FIGURES

Fig. 1.1 The framework of the sprite generator in MPEG-4 VM..2
Fig. 1.2 The two-stage GME schema. ...7
Fig. 1.3 Image of Hessian value of a frame...8
Fig. 1.4 Reliability mask used in the reliability-based blending. (a) Segmentation

mask. (b) Reliability mask derived from (a)..13
Fig. 1.5 Sprite coordinate system and geometric distortions of transformed frames.16
Fig. 1.6 Demonstration of geometric distorted frame due to camera rotation. (a)

Original frame A. (b) Original frame B. (c) Transformed frame B.17
Fig. 1.7 Sprites with different reference frames. (a) Rightmost frame as reference

frame. (b) Middle frame as reference frame..18
Fig. 1.8 Geometric distortions using two sprites. ..19
Fig. 1.9 Effect of camera zoom-in with the details of the reconstructed frame lost..............27
Fig. 1.10 Effect of camera zoom-out with the sprite blurred. ...28
Fig. 2.1 Object blurring effect of averaging blending. (a) Original frame. (b)

Reconstructed background of (a)..30
Fig. 2.2 The proposed two-pass sprite generator. ..31
Fig. 2.3 (Continued) The generation of a segmentation mask. (a) The original image.

(b) The reconstructed background. (c) The object pixels extracted by using
two-stage thresholding. (d) The seed image. (e) The base image. (f) The
generated segmentation mask...34

Fig. 2.3 The generation of a segmentation mask. (a) The original image. (b) The
reconstructed background. (c) The object pixels extracted by using two-stage
thresholding. (d) The seed image. (e) The base image. (f) The generated
segmentation mask. ..35

Fig. 2.4 (Continued) Generated sprites of different methods. (a) The first pass. (b)
Two pass generation with automatic generated segmentation masks. (c) MPEG-4
with manually segmented masks. ...37

Fig. 2.4 Generated sprites of different methods. (a) The first pass. (b) Two pass
generation with automatic generated segmentation masks. (c) MPEG-4 with
manually segmented masks. ...38

Fig. 2.5 Reconstructed frames of different methods. (a) The first pass. (b) Two
pass generation with automatic generated segmentation masks. (c) MPEG-4 with
manually segmented masks. ...38

Fig. 3.1 Feature point extraction based on Hessian value. (a) Original image. (b)
absolute Hessian values of (a). (c) Feature points extracted by conventional

x

methods. (d) Feature points extracted by the proposed method.43
Fig. 3.2 An example for outlier removing. (a) Detected object pixels in Fig. 3.1(d).

(b) The feature points after removing outliers from Fig. 3.1(d).46
Fig. 3.3 Two examples to show sprites generated using different feature points with the

same number. (a) The sprite generated using feature points extracted by
conventional methods. (b) The sprite generated using feature points extracted by
the proposed method. (c) A close look of the white line in (a). (d) A close look
of the white line in (b). ...47

Fig. 3.4 Segmentation errors in player’s feet. (a) Frame 255 with left foot
incompletely segmented. (b) Frame 258 with both feet incompletely segmented.49

Fig. 3.5 Two examples to show the blended sprites using different methods. (a) The
first example of the generated sprite based on the reliability-based blending. (b) The
second example of the generated sprite based on the reliability-based blending. (c)
The first example of the generated sprite based on the intelligent blending. (d) The
second example of the generated sprite based on the intelligent blending.......................49

Fig. 3.6 Flowchart of the intelligent blending. ..51
Fig. 3.7 Contrast-enhanced version of Fig. 3.5. (a) Contrast-enhanced version of Fig.

3.5(a). (b) Contrast-enhanced version of Fig. 3.5(b). (c) Contrast-enhanced
version of Fig. 3.5(c). (d) Contrast-enhanced version of Fig. 3.5(d).............................53

Fig. 3.8 (Continued) The generated sprites. (a) Sprite generated using averaging
blending without segmentation masks. (b) Sprite generated using averaging
blending based on manually segmented masks. (c) Sprite generated using
reliability-based blending. (d) Sprite generated using intelligent blending...................54

Fig. 3.8 The generated sprites. (a) Sprite generated using averaging blending without
segmentation masks. (b) Sprite generated using averaging blending based on
manually segmented masks. (c) Sprite generated using reliability-based blending.
(d) Sprite generated using intelligent blending. ...55

Fig. 3.9 The reconstructed backgrounds. (a) Averaging without segmentation masks.
(b) Averaging with manually segmented masks. (c) Reliability-based blending. (d)
Intelligent blending...56

Fig. 3.10 PSNR comparison of different blending strategies. ...58
Fig. 3.11 The generated sprite of Lu et al.’s work [21]. ..59
Fig. 3.12 (Continued) Close views of the generated sprites. (a) Part 1 of Lu et al.’s

work [21]. (b) Part 1 of the proposed method. (c) Part 2 of Lu et al.’s work [21].
(d) Part 2 of the proposed method. (e) Part 3 of Lu et al.’s work [21]. (f) Part 3
of the proposed method. ...59

Fig. 3.12 Close views of the generated sprites. (a) Part 1 of Lu et al.’s work [21]. (b)
Part 1 of the proposed method. (c) Part 2 of Lu et al.’s work [21]. (d) Part 2 of
the proposed method. (e) Part 3 of Lu et al.’s work [21]. (f) Part 3 of the

xi

proposed method. ...60
Fig. 4.1 Background displacements of ‘stefan’. (a) Global translations. (b)

Accumulated translations. ..64
Fig. 4.2 Finding feasible partition points...67
Fig. 4.3 Accumulated translations of ‘tabletennis’..69
Fig. 4.4 Frame area calculation of a geometric-transformed frame.70
Fig. 4.5 Accumulated scaling factors of ‘tabletennis’. ..71
Fig. 4.6 Generated sprites of sequence ‘stefan’ by different methods. (a) Farin et al.’s

optimal method. (b) Proposed method with normal validation. (c) Proposed method
with fast validation. ..80

Fig. 4.7 Generated sprites of sequence ‘tabletennis’ by different methods. (a) Farin et
al.’s optimal method. (b) Proposed method with normal validation. (c) Proposed
method with fast validation. ...81

Fig. 4.8 Generated sprites of sequence ‘building’ by different methods. (a) Farin et al.’s
optimal method. (b) Proposed method with fast validation..82

xii

ABBREVIATION

FPX Feasible Partition Point based on X-axis Translation

FPY Feasible Partition Point based on Y-axis Translation

FPS Feasible Partition Point based on Scaling

GME Global Motion Estimation

GMP Global Motion Parameter

MPEG Moving Picture Expert Group

MPEG-4 VM MPEG-4 Verification Model

MSE Mean-Squared Error

PSNR Peak Signal-to-Noise Ratio

1

CHAPTER 1
INTRODUCTION

1.1 Motivation

MPEG-4 [1] had adopted a novel technique to code a series of backgrounds belonging to

a scene into a single panoramic image, which is often denoted as a ‘sprite’ or a ‘background

mosaic’ [2-6]. The constructed sprite and some specified parameters are transmitted to the

receiver, and then a decoder can reconstruct the series of backgrounds by the transmitted

information. Since the sprite is transmitted only once, this technique can achieve very low

bit-rate with good quality. Aside from the high coding efficiency of sprite coding, the

generated sprite is also useful for segmenting moving objects [7-11]. The extracted moving

objects and the sprite itself can be used in video summarization [12].

A sprite is constructed in the encoder by a sequence of complex algorithms called a

‘sprite generator’. MPEG-4 VM [13-14] has provided a framework of sprite generator as

shown in Fig. 1.1. The framework contains three parts: global motion estimation (GME),

frame warping and frame blending. The GME aims at finding the spatial location variation,

which is caused by the camera motion, of the background in the current frame relative to the

current sprite. The camera motion can be represented by parameters of some geometric

models often denoted as global motion parameters (GMP). Gradient descent based algorithms

[15-17] are widely used in the estimator. These algorithms usually need a good initial guess to

2

avoid the solution being local optimum, and an error function is required to evaluate the

performance of different GMPs. The squared error between the current frame and the current

sprite is usually employed as the error function. In order to raise speed, only some points are

selected as feature points and involved in the computation of the error function [18-21]. The

selection of feature points decides the estimation accuracy, especially when the number of

feature points is small. Thus, how to select few representative feature points is an important

issue. Most existing methods [18-21] take those points with higher variations in spatial or

temporary domain; this will lose some important ones with moderate variations and will

include some moving object points with higher variations. To avoid this disadvantage, in this

dissertation, a balanced feature point extractor is provided to increase the estimation precision

for GMPs.

Fig. 1.1 The framework of the sprite generator in MPEG-4 VM.

After obtaining GMPs, the current frame is first geometrically transformed (also called

warped) to a warped one with the same camera view as the current sprite. The warped frame

3

is then blended into the current sprite by a blending strategy. In MPEG-4’s framework,

averaging blending is employed as the blending function. This will make some places, which

are ever occupied by moving objects, blurred. To avoid the disadvantage, providing

manually-segmented masks have been suggested. The segmentation masks are used to

distinguish moving objects from background such that moving objects will not be involved in

blending and the quality of the generated sprite can be significantly improved. However,

segmenting moving objects manually from the video frames is impractical. In this dissertation,

two approaches will be provided to increase the blending quality. The first approach generates

these segmentation masks from a coarsely generated sprite without these masks. Then a better

sprite is generated using the automatically generated masks. The second approach tries to get

rid of the segmentation masks by developing a new blending method that excludes moving

objects from being blended into the sprite.

The video sequence is inputted frame by frame into the sprite generator. The sprite buffer

holds the sprite generated so far and provides the current sprite to the GME process as the

reference image.

1.2 Basic of Sprite Generation

As Fig. 1.1 shows, a sprite generator can be divided into three parts. The global motion

estimation registers pixels between two frames and estimates the camera motion between two

4

frames. The warping transforms a frame into another frame’s coordinate according to the

camera motion estimated in the global motion estimation. Finally, the blending process blends

the transformed frames and merges them into a single sprite. These parts will be introduced as

followings.

1.2.1 Global motion estimation

The aim of global motion estimation is to obtain an accurate estimation of background

motion between the current frame and a reference image, which is often the previous frame or

the current sprite. Many global motion estimation methods have been proposed [22-26].

Before estimating the background motion, a motion model must be chosen to describe the

motion of background [27]. Affine transformation and perspective transformation are widely

used as the motion model in the generation of a sprite. Then an image registration method [28]

is applied to find corresponding pixel pairs that belong to the same location of background in

both images, and the global motion parameters are estimated by iterative minimization

methods.

1.2.1.1 Motion model selection

The motion of background comes from camera motion, like zooming, panning, and

rotation. These motions can be modeled by a geometric transformation. One of the two

5

transformations is often chosen as the camera motion model: the affine transformation and the

perspective transformation. Both of them are defined by two equations with a set of

parameters and as follows:

 Affine Transformation:
⎩
⎨
⎧

++=
++=

654

321

'
'

mymxmy
mymxmx

 (1.1)

 Perspective Transformation:

⎪
⎪
⎩

⎪⎪
⎨

⎧

++
++

=

++
++

=

1
'

1
'

87

654

87

321

ymxm
mymxm

y

ymxm
mymxm

x
 (1.2)

where (x,y) and (x’,y’) denote the coordinates of a pixel before and after the camera motion

respectively. m1,m2,…,m8 are the transformation parameters also referred as global motion

parameters (GMPs). We can see that the affine transformation with six parameters is a special

case of the perspective transformation with m7=m8=1. The perspective transformation can

describe more complicated camera motions. However, the higher computational complexity

of the perspective transformation limits its usability. The affine transformation is quite simple,

but it has a lower accuracy. Both of them are adopted as standard tools in MPEG-4. In most of

sprite generators, the perspective transformation is selected since the sprite is usually

generated first before coding the video sequence itself and real-time processing is not

required.

6

1.2.1.2 Parameter estimation

By using the selected transformation, the global motion estimation can be converted to a

minimization problem:

),',(minarg*
PP

TIIEP = (1.3)

where I and I' are the current frame and the reference image respectively. TP is the

transformation function with global motion parameters P. P* is the estimated parameters.

E(I,I',TP) is an error function defined by user. The estimation registers pixels in the current

frame into the reference image by finding the parameters which minimize the error between

the current frame and the reference image. In this dissertation, the squared error is chosen as

the error function, that is,

 ()∑
∈

−=
Iyx

PP yxTIyxITIIE
,

2)),(('),(),',((1.4)

Due to the complication of global motion parameters, Least-Mean-Square minimization

method is used to find the parameters P*. For example, the Levenberg-Marquardt algorithm

[15] based on the gradient descent method can be used. Gradient descent based methods

search for better parameters around the current parameters, and refine the parameters

iteratively. Thus they have a risk of being trapped into a local minimum. A starting point

called an ‘initial guess’ must be provided. A good initial guess can reduce the risk of being

trapped into a local minimum and can also speed up the refinement process.

In order to provide a good and robust initial guess, global motion estimation is usually

7

processed in two stages [18]. To generate a sprite from a video sequence, the first frame in the

sequence is copied into the sprite directly. Then camera motions between the following frames

and the first frame must be estimated by the global motion estimation. In the beginning of the

sequence, it is easy to find a good initial guess because the camera does not move too far. It

becomes hard to find a good initial guess when the camera motion of the current frame

relative to the current sprite is large. This problem is solved by a two-stage GME schema

shown in Fig. 1.2. The first stage estimates the motion parameters called the local parameters

between the current frame and its previous frame, i.e., the frame before the current frame.

Finding an initial guess of the local parameters is easy because the variation of camera motion

between two successive frames is small. Based on the estimated local parameters, the initial

guess of global motion parameters can be computed in the second stage by combining the

local parameters and the global motion parameters of the previous frame. Then the gradient

descent method is employed to estimate the global motion parameters.

Fig. 1.2 The two-stage GME schema.

8

1.2.1.3 Feature points selection

The iterative minimization of the gradient descent method is time consuming. To reduce

the time complexity, only some selected feature points in the current frame are employed

while computing the registration error [18]. In order to avoid the aperture problem [29], the

Hessian value [30], defined by

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

22

2

2

2

2),(),(),(),(
dxdy

yxId
dy

yxId
dx

yxIdyxH (1.5)

is employed to find feature pixels in many previous researches [18-21, 23-24]. Those points

with Hessian values being local maximum or minimum are considered as feature points. An

example of using Hessian value to extract feature points is shown in Fig. 1.3. The grayscale of

each pixel in Fig. 1.3(b) represents the absolute Hessian value of the corresponding pixel in

Fig. 1.3(a).

 (a) (b)

Fig. 1.3 Image of Hessian value of a frame.

9

Except for speeding up the iterative minimization, feature points can be carefully

selected to avoid pixels of moving objects from affecting the parameter estimation. If

segmentation masks are provided by the user, it is simple to exclude the pixels of moving

objects according to the information in the masks. However, if the segmentation masks are not

provided, a sprite generator should detects pixels of moving objects and excludes them

automatically.

1.2.1.4 Feature points and minimization

Each feature point (x,y) in the current frame and its corresponding point (x',y') in the

reference image form a feature point pair, which are used to find the initial guess for camera

motion. The corresponding point is defined to be the motion-estimated point of the feature

point, i.e., (x',y')=(x+dx,y+dy), where (dx,dy) is the motion vector.

As mentioned previously, the perspective transformation expressed in Eq. (1.2) has eight

parameters m1,m2,…m8. By substituting each pair of (x,y) and (x',y') into Eq. (1.2) respectively,

two equations will be built. Thus, four feature point pairs are sufficient to solve the eight

parameters. However, in practical, the corresponding points found by motion estimation are

not precise enough to provide a correct solution. Instead of using four feature point pairs, all

feature point pairs found are applied to form an over-determined set of equations. A least

10

Mean-Square-Error minimization method is employed here. The error function required in the

gradient descent method, is slightly different from Eq. (1.4). Only the errors of the feature

points are counted in the error function, that is,

 ()∑
∈

−=
intsfeature_po),(

2)),(('),(),',(
yx

PP yxTIyxITIIE . (1.6)

The gradient descent method is applied in the estimation of the local parameters and the

global parameters. While estimating the local parameters, the reference image is defined as

the previous frame. And the reference image is defined as the current sprite in the case of

estimating the global parameters.

1.2.2 Warping

The current frame is warped toward the sprite coordinate using the camera model

selected and the parameters estimated in the global motion estimation. Let I be the current

frame, the warped frame IW can be found by geometric transforming the current frame as

)),((),(yxTIyxI PFW = (1.7)

where T is the transformation and P is the estimated global motion parameters. Since the

transformed coordinates are not integers, bilinear interpolation [31] is applied while

generating the warped frame. Since the frame is warped toward the sprite coordinate, the

warped frame can be blended directly into the current sprite.

11

1.2.3 Blending

The warped frame is blended into the current sprite. The simplest blending method is the

averaging blending. Let X, SC and SU are the intensities of the current frame, the current sprite

and the updated sprite respectively. The averaging blending can be expressed as:

1

*
+
+

=
C

CC
U N

XSNS (1.8)

where NC is the number of pixels blended in the current sprite.

Since the averaging blending simply blends every pixel into the sprite, pixels of moving

objects must be excluded from attending the averaging blending. Similar to the selection of

feature points, excluding these object pixels is easy if segmentation masks are provided. If

these object pixels are not fully excluded and some object pixels are blended into the sprite,

the blended object pixels will leave some shadows in the generated sprite.

1.3 Existing Single Sprite Generators

Many sprite generators [18-20, 32-35] have been proposed. Most of them are based on a

framework provided by MPEG-4 VM [14]. Among these existing sprite generators, the

generator proposed by Smolić et al. [18] is a milestone. They proposed a hierarchal long-term

global motion estimator and a reliability-based blending strategy to generate a sprite. The

reliability-based blending tries to prevent the segmentation faults in segmentation masks from

affecting the generated sprite by introducing a warning zone between objects and background.

12

1.3.1 Smolić et al.’s reliability-based blending

 The traditional sprite generation methods produce the sprite by warping and averaging

all frames of the video sequence. However, pixels belonging to the foreground objects will

also be blended into the generated sprite. Using segmentation masks can resolve this problem.

However, automatically generated segmentation masks are always not perfect, and

segmentation faults always exist. These segmentation faults makes some pixels of moving

objects be blended into the sprite and makes the generated sprite blur.

Reliability-based blending is developed to recover the segmentation faults. A

segmentation mask is split into reliable, unreliable and undefined regions to form a reliability

mask. The object pixels in the segmentation mask are defined as undefined region. The

background pixels near an object pixel or the boundary of the frame are defined as unreliable

region. The rest of background pixels are defined as reliable region. Fig. 1.4 shows a

segmentation mask and its reliability mask. The reliable, unreliable and undefined regions are

colored black, gray and white in Fig. 1.4(b), respectively.

Pixels in the undefined region belong to the moving objects, and definitely must not be

blended into a sprite. Pixels in the reliable region are the background pixels, which are safe to

be blended into a sprite. Pixels in the unreliable region are special. They are denoted as

background pixels in the segmentation mask. However, due to the possibility of segmentation

13

faults, background pixels near an object pixel have a higher possibility of being wrongly

classified. Thus these pixels, which belong to the unreliable region, should be treated

carefully.

 (a) (b)

Fig. 1.4 Reliability mask used in the reliability-based blending.
(a) Segmentation mask. (b) Reliability mask derived from (a).

While blending a pixel into the current sprite, the reliable level is also recorded. The

reliable level of the current pixel is compared to the reliable level of the current sprite. If the

reliable level of the current pixel is lower than the sprite, the current pixel will not be blended

into the sprite and will be discarded. If the reliable levels of both pixels are identical, the

current pixel is blended into the current sprite by averaging blending. If the reliable level of

the current pixel is higher than the sprite, the sprite pixel is discarded and is replaced by the

current pixels. The discard and replace strategy ensures only pixels with highest reliable level

are blended into the sprite.

14

1.3.2 Watanabe and Jinzenji’s generator

Watanabe and Jinzenji [34] presented a sprite generator with two-passed blending and

automatic foreground object extraction. In the first pass of sprite blending, a provisional sprite

is constructed using the temporal median. Then the foreground objects are extracted

automatically based on the provisional sprite. A difference image of the current frame from

the provisional sprite is calculated, it is used to classify the pixels of the current frame into

foreground and background ones. Then the current frame is divided into blocks, and each

block is classified as either a foreground one or a background one according to the number of

foreground pixels inside the block. The foreground blocks are excluded in the second pass of

sprite blending. There are two disadvantages. One is that getting a perfect segmentation is

impossible due to that a good threshold is needed in block classification and that block used

as the classification unit will make segmentation roughly. The other is that the additional pass

doubles the blending time.

1.3.3 Lu et al.’s generator

Lu et al. [19-21] used a more precise segmentation method proposed by Meier and Ngan

[36] to obtain moving object masks. Based on the obtained masks, a modified

reliability-based blending strategy inspired from Smolić et al. [18] work is developed to

15

generate sprite. However, the qualities of generated sprites of these methods are still relying

on the precision of segmentation masks.

1.4 Geometric Distortion and Multiple sprites

The performance of a sprite generator is also limited to the perspective motion model

applied in the global motion estimation. The perspective model projects each frame of a video

sequence into a planar reference coordinate system, which is usually the coordinate system of

the first frame. Theoretically, the perspective model employed in MPEG-4 VM can cover 180

degrees of view. However, the useable viewing angle is much smaller in practice, since the

geometric distortion increases rapidly as the camera rotates away from the reference frame.

Fig. 1.5 illustrates the effect of geometric distortion. The focal length of the camera is f

and the reference imaging coordinate system for a sprite is assumed to be the first frame that

is denoted as frame A in Fig. 1.5. All the following frames must be projected to this reference

system by geometric transformation. As the camera rotates, transformed frames are

geometrically distorted, this phenomenon can be found between frame B and transformed

frame B. If camera rotation continues, from Fig. 1.5, we can see that frame C can not be

projected to the reference system.

Fig. 1.6 shows a geometric distorted frame. Frame A which shown in Fig. 1.6(a) is

employed as reference frame of the sprite coordinate system. Fig. 1.6(b) shows a frame B, and

16

the transformed frame B relative to frame A is shown in Fig. 1.6(c). On can see that the

transformed frame B is geometric distorted and its size is larger than the original frames. The

distortion causes the frames away from the reference frame are forced to be recorded by

extremely large resolution, but this resolution is useless because the sprite must be scaled

down to display by the decoder. This useless large resolution increases the memory usage and

storage space required to hold the sprite.

Fig. 1.5 Sprite coordinate system and geometric distortions of transformed frames.

In order to overcome the resolution-increasing effect, Massey and Bender proposed a

method using the middle frame of a video sequence as the reference frame [37]. The

generated sprite will be much symmetric and the boundary area of the generated sprite

becomes much smaller if the background of the frames in the video sequence pans toward

only one direction. On the other hand, this method only slows down the increasing effect of

frame A transformed frame B on sprite

frame C

f

sprite coordinate system

camera

frame B

camera rotation

17

the sprite size, but the range of view angle is not extended.

 (a) (b)

(c)

Fig. 1.6 Demonstration of geometric distorted frame due to camera rotation.
(a) Original frame A. (b) Original frame B. (c) Transformed frame B.

Fig. 1.7 shows two sprites generated from the same portion of sequence ‘stefan’. Fig.

1.7(a) uses the rightmost frame as the reference frame, and Fig. 1.7(b) uses the middle frame

as the reference frame. One can see that the geometric distortion gets worse in the left part of

sprite in Fig. 1.7(a) since the left part is away to the reference frame. The geometric distortion

18

in Fig. 1.7(b) is evenly spread to both left and right part of the sprite. It is obviously that the

sprite using the middle frame as the reference frame is smaller than that using the rightmost

frame.

(a)

(b)

Fig. 1.7 Sprites with different reference frames.
(a) Rightmost frame as reference frame. (b) Middle frame as reference frame.

A technique using multiple sprites was proposed by Farin et al. [38] to solve the problem.

In their works, the background of a scene is stored by multiple sprites. In order to fit the

MPEG-4 standard, a video sequence is divided into several subsequences, and sprites of all

subsequences are generated independently.

Fig. 1.8 shows the geometric distortions using two sprites. In contrast to the geometric

19

distortion using only one sprite shown in Fig. 1.5, the geometric distortion of frame B in

sprite #2 becomes smaller. Furthermore, frame C, which is unable to be projected into sprite

#1 can be projected into sprite #2 now. Full 360 degrees of camera view can be covered if

more sprites are used. Note that any single sprite must not cover 90 degree or more of camera

rotation over any direction to prevent an effect called ‘degeneration’ [39].

Fig. 1.8 Geometric distortions using two sprites.

Farin et al. [38] have shown that using multiple sprites not only benefits the wider range

of camera view angles but also reduces storage for the generated sprites. This means that

storage required for multiple sprites is smaller than that for only one sprite. However, the

Farin et al.’s method uses exhaustive searches to find the partition points of sub-sequences

and the reference frame of each sub-sequence. The exhaustive searches make the method very

frame A (and transformed A on sprite #1
transformed B on sprite #2

transformed C on sprite #2

reference coordinate of sprite #1

camera

reference coordinate
of sprite #2

frame C

frame B

20

time-consuming.

Some sprite generators are proposed to employ the multiple sprite technique. Chen et. al.

intergrates a frame skipping techniques and the multiple sprite to speed up the overall

computation time of sprite generation [40-41]. Kunter et al. proposed a experimental

framework [42] to employ multiple sprite into H.264/AVC. None of them is discussing to

speed up the multiple sprite partition.

1.5 Farin et al.’s Optimal Partition Algorithm

In order to find the optimal partition of a video sequence, an evaluation of partition

results must be selected. In order to reduce the computational complexity, the area of the

bounding box around a sprite is chosen to be the evaluation cost function in Farin et al.’s

work. Their optimal partition algorithm is divided into two steps. The first step computes the

minimal costs for coding sprites of all possible sub-sequences and finds the optimal reference

frames of every possible sub-sequence. The second step decides the optimal partition

positions which minimize the coding costs computed in the first step. In the following, we

will give a brief review for their optimal partition algorithm.

1.5.1 Coding Costs Computing and Reference Frames Finding

A coding cost matrix holding the coding costs of all possible combinations of

21

sub-sequences are computed in this step. For a sub-sequence beginning at frame i and ending

at frame k, a sprite r
kiS ; can be generated for a reference frame r with kri ≤≤ . The coding

cost for coding r
kiS ; is denoted as r

kiS ; . r
kiS ; of all possible combination of i, k, and r are

computed. The number of possible combinations is huge and this computation will take a lot

of time. After computing all r
kiS ; , the optimal reference frame *

;kir of a sub-sequence

beginning at frame i and ending at frame k can be selected by

 r
kirki Sr ;

*
; minarg= . (1.9)

The minimized coding cost of this sub-sequence, r
kirki SS ;; min= , is also kept.

The optimal reference frames for every possible sub-sequences are found and stored in

upper triangular matrixes indexed by i and k.

1.5.2 Optimal Partitioning

In order to obtain the optimal partition, not only the starting frame (partition position) of

each sub-sequence but also the number of sub-sequences must be decided. If the video is

partitioned into n sub-sequences, n-1 starting frames need to be decided since the first

sub-sequence always starts at frame 1. For a video with N frames, a partition for the video can

be represented by

)},(),...,1,(),1,(),1,1{(132211 NppppppP n−−−−= , (1.10)

where pi is the starting frame of sub-sequence i+1. The sprite coding cost of a video sequence

22

using a partition P is the summation of sprite coding costs of all partitioned sub-sequences,

and the optimal partition P* is selected as

 ∑
∈

=
Pki

kiP
SP

),(
;

* minarg . (1.11)

The minimization problem is solved efficiently. If the video contains only the first frame,

there is only 1 possible partition)}1,1{(=P and the optimal sprite coding cost of the video is

1;1S which is denoted as c1. If the video contains more than one frame, the remaining frames

are then added one by one. When adding frame k, the optimal sprite coding cost ck for the

sequence ending at frame k can be calculated as

{ }

{ },minarg

min

;1],1[

;1],1[

kiikik

kiikik

Scp

Scc

+=

+=

−∈

−∈ (1.12)

where c0 is set to zero. The frame pk is the best partition point to obtain the minimal cost for

each frame k.

After calculating cN which is the minimal sprite coding cost for the entire sequence, the

optimal partition can be obtained by back tracking the stored p-values from pN. That is, the

entire sequence is best partitioned at frame pN to form two sub-sequences)1,1(−Np and

),(NpN . The former sub-sequence is further divided at)1(−Npp , which is the best partition

point of sub-sequence)1,1(−Np , and so on.

1.6 The Main Problems and Current Status

23

The main problems that this dissertation tries to address are based on the

above-mentioned segmentation masks related problems and the time complexity problem of

multiple sprites generating. These will be described in the following.

In this dissertation, we will propose methods to deal with the problems of single and

multiple sprite generation. For the traditional single sprite generation, a new generation

method without using segmentation masks will be proposed to avoid the segmentation faults

from affecting the generated sprite. For the multiple sprite generation, a fast generation

method will be proposed to increase the search speed of sub-sequences and selecting of

reference frames.

1.6.1 Sprite Generation without Segmentation Masks

The framework of MPEG-4 VM shown in Fig. 1.1 requires segmentation masks while

generating sprites. Segmentation masks are binary maps indicating whether a pixel belongs to

moving objects or not. In order to avoid sprite being blurred, pixels of moving objects must be

excluded from being blended into the sprite. If the segmentation is perfect, the averaging

blending provided in MPEG-4 can achieve excellent quality; otherwise, the generated sprite

will be blurred around moving object boundary due to that some pixels of moving objects are

considered as background.

The segmentation masks can be manually provided before the sprite generation or

24

generating automatically during the sprite generation process. No matter how the

segmentation masks are provided, they must be generated automatically to makes the sprite

generation practical. However, it is almost impossible to generate segmentation masks

perfectly automatically. Thus segmentation faults always exist, and the generated sprite

always looks blurry.

On the purpose of reducing the blur caused by segmentation faults, precise segmentation

methods [36] are employed [34] and a new blending strategy denoted as reliability-based

blending [18] is developed. The reliability-based blending is adopted by several sprite

generators [18-21]. In the reliability-based blending strategy, a frame is divided into reliable,

unreliable, and undefined regions according to the segmented masks. Pixels denoted as

objects in the segmented masks are classified as undefined pixels, and pixels near mask

borders or frame borders (within a given distance) are classified as unreliable ones. The rest

of pixels are classified as reliable ones. The reliable and unreliable pixels are average-blended

separately, and the blended pixels with the highest reliability are chosen into the sprite. The

undefined pixels do not contribute to the sprite blending. The given distance from the mask

border must be large enough to cover all segmentation faults, or the generated sprite will have

ghost-like shadows in some places. However, it is hard to decide the distance automatically.

Thus ghost-like shadows still can be found in the generated sprite. In order to overcome this

problem, in this dissertation, we try to develop a novel blending strategy without using

25

segmentation masks.

Segmentation masks are not only used in the blending process, but also in the global

motion estimation process. The global motion estimation uses segmentation masks to avoid

objects affecting the accuracy of generated global motion parameters. For removing the usage

of segmentation masks completely from the entire sprite generation process, the global motion

estimation must also be modified.

1.6.2 Fast Multiple Sprites Generation

The perspective model employed in the global motion estimation process makes the

transformed frames geometric distorted, as Fig. 1.6 shows. This distortion become more

seriously as the camera view of frame away from the reference frame. Frames away from the

reference frame are forced to be recorded by extremely large resolution, but this resolution is

useless because the sprite must be scaled down to display by the decoder.

Massey and Bender proposed to use the middle frame of a video sequence as the

reference frame to overcome the resolution-increasing effect. The generated sprite will be

much symmetric and the boundary area of the generated sprite becomes much smaller if the

background of the frames in the video sequence pans toward only one direction. However,

this method only slows down the increasing effect of the sprite size, but the range of view

angle is not extended.

26

Using multiple sprites can solve this problem. Before generating multiple sprites, a video

sequence must be divided into several subsequences. Each frame in the video sequence can be

a partition position from which the video sequence is divided into subsequences. Thus, a

partition algorithm is needed. For a video sequence with N frames, there will be 2N-1

combinations of partitions. Not only the partition position but also the reference frame of each

subsequence must be selected by the partition algorithm. The selection of reference frames

greatly affects the size of generation sprites. Each frame in a subsequence can be selected as

the reference frame of the subsequence. If the sequence is divided into K subsequences, each

subsequence has Mi frames, where i is the index of a subsequence. There will be ∏
=

K

i
iM

1

selections for reference frames. Farin et al. proposed an optimal multiple sprite partition

algorithm. A cost function representing the total area of all generated sprites was defined, and

a smart exhaustive search through the entire partition positions and reference frame

possibilities was proposed. Since the partition algorithm is an exhaustive search, it finds the

optimal solution. However, it is very time-consuming.

Apart from the geometric distortion, the effect of camera zoom-in and zoom-out will

highly affect the generated sprite and the reconstructed frames [38]. Fig. 1.9 illustrates how

camera zoom-in operation affects generated sprite and reconstructed frame. Since the

reference coordinate system is based on the reference frame, the zoomed-in frame has to be

scaled down in order to be merged into the sprite. Details of the zoomed-in frame are lost

27

forever during the down-sampling and the reconstructed frame is degraded.

Fig. 1.9 Effect of camera zoom-in with the details of the reconstructed frame lost.

In contrast to the camera zoom-in, the camera zoom-out operation makes the generated

sprite looks blur after the zoomed-out frame is blended into the sprite. As Fig. 1.10 shows, the

zoomed-out frame has to be up-sampled before blending into the sprite. This will make the

blended sprite blurred. Furthermore, the up-sampled frame will occupy a very large area in

the sprite. This causes the area of generated sprite being expanded rapidly.

In this dissertation, we try to develop a fast multiple sprites partition method and fast

reference frame selection method with acceptable total sprite areas.

zoomed-in frame

reconstructed zoomed-in frame

reference frame

down-sampling

up-sampling

28

Fig. 1.10 Effect of camera zoom-out with the sprite blurred.

1.7 Synopsis of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 describes the proposed

sprite generation method with automatically generated segmentation masks. In Chapter 3, the

proposed sprite generation method without using segmentation masks will be introduced. The

fast multiple sprite partition and reference frame selection methods are proposed in Chapter 4.

Some conclusions and future research directions are drawn in Chapter 5.

zoomed-out frame

reference frame

up-sampling

29

CHAPTER 2
AUTOMATIC GENERATION OF SEGMENTATION MASKS

FOR SPRITE GENERATION

In this chapter, we will propose a sprite generator with an automatic generation of

segmentation masks. The generation process contains two passes. The first pass generates a

coarse sprite by conventional averaging blending method. Then we generate segmentation

masks of every frame automatically from the coarse sprite. In the second pass of sprite

generation, the final sprite is generated with the generated segmentation masks to reduce the

effect of moving objects. The details of the proposed generator are described as follows.

2.1 Proposed Two-Pass Sprite Generation

As Fig. 1.1 shows, MPEG-4’s sprite generation framework requires auxiliary

segmentation masks to reduce the effect of moving objects. Segmentation masks are used in

global motion estimation to raise the estimation accuracy. These masks can also be used to

avoid moving objects attending the sprite blending. It is impractical to build these masks

manually. Thus an automatic generation of segmentation masks is necessary. Since the sprite

is a merged background in the video sequence, it can be used as a reference background for

moving object detection.

30

2.1.1 Object blurring effect of averaging blending

The averaging blending used in sprite generation has a blurring effect to every pixel in

the sprite. If there does not have segmentation masks, the averaging blending blends pixels of

moving objects and background together. In case of enough frames are blended, the moving

objects will be blurred and only shadows of objects are left in a generated sprite. Fig. 2.1

demonstrates the blurring of moving objects. Figs. 2.1(a) and (b) are an original frame and its

reconstructed background from generated sprite, respectively. One can see that the moving

player is blended into the sprite, and leave white shadows in the reconstructed background.

Although the quality of reconstructed background is degraded by these shadows, the

backgrounds in the original frame are still visible in the reconstructed background.

 (a) (b)

Fig. 2.1 Object blurring effect of averaging blending.
(a) Original frame. (b) Reconstructed background of (a).

31

2.1.2 Frame segmentation in sprite generation

Since reconstructed backgrounds in a sprite generated by averaging blending without

segmentation masks are only blurred by moving objects, the reconstructed backgrounds can

be used as reference backgrounds to detect moving objects. A two-pass sprite generation with

automatic segmentation masks generation is proposed and shown in Fig. 2.2.

Fig. 2.2 The proposed two-pass sprite generator.

In the first pass of the proposed generator, a coarse sprite is generated first by the

MPEG-4’s sprite generator without segmentation masks. The coarse sprite will contain

shadows of moving objects definitely. Then the reconstructed backgrounds of the coarse sprite

are employed as reference backgrounds to detect the moving objects in the video and generate

32

segmentation masks automatically. Finally the sprite is re-generated in the second pass by the

MPEG-4’s sprite generator with the generated segmentation masks.

2.2 The First Pass of Sprite Generation

The first pass of sprite generation is almost identical to the MPEG-4’s framework. In the

global motion estimation, some feature points are extracted by selecting the pixels with larger

Hessian value. Then global motion parameters are estimated by a least mean-square-error

minimization method, the Levenberg-Marquardt algorithm. An averaging blending method is

employed as the blending method. No segmentation masks are applied in this pass of sprite

generation. Thus moving objects will be blended and the generated coarse sprite will be

blurred. The coarse sprite will be used to extract the segmentation masks automatically.

2.3 Automatic Generation of Segmentation Masks

Despite of the blurred areas, the reconstructed backgrounds still carry most of

background information. By subtracting the original frame by the reconstructed background,

we can get an image of the moving objects. In order to remove the effect of peak noise, the

block difference is applied instead of the pixel difference.

The pixel difference D is defined as the magnitude of the difference between the original

frame I and the reconstructed background R, i.e. RID −= . A threshold t1 is set to find out

33

the candidates of object pixels. Pixels with D value larger than t1 are considered as candidates.

For each candidate, a 5×5 block B centered on the candidate is taken. The block difference DB,

is defined as

 ∑
∈

=
Bji

B jiDD
),(

),(. (2.1)

The candidate with block difference larger than a preset threshold t2 is considered as an object

pixel. The two-stage thresholding technique computes the block differences only for those

pixels with higher possibility to be objects. It reduces the complexity of computing block

difference for each pixel.

There are two problems while extracting the object pixels. First, the object regions are

often ill-shaped with holes. Second, there are some small-sized regions which are

misclassified as objects. These problems can be solved using morphological processing and

region selecting. Let O be a binary image representing the results of thresholding in the

previous step. Pixels judged as objects will be set to one and others will be set to zero. Two

binary images called seed and base images are computed. The seed image is produced by

applying morphological erosion to O using a disk shaped structure element of radius 2, and

the base image is produced by applying morphological dilation to O using the same shaped

structure element of radius 5. The region selecting is applied on the base image. An object

region is selected if any of its pixels have a value of one in the seed image. The segmentation

mask is defined as the union of all regions selected.

34

Fig. 2.3 gives an example of generating a segmentation mask. The original frame and the

reconstructed background of the frame are shown in Figs. 2.3(a) and (b) respectively. By

subtracting the original frame by the reconstructed background and performing the two-stage

thresholding, the image of the extracted object pixels is shown in Fig. 2.3(c). The seed image

shown in Fig. 2.3(d) and the base image shown in Fig. 2.3(e) are generated by applying the

morphological processing to Fig. 2.3(c). Finally, the segmentation mask is produced by

region selecting and shown in Fig. 2.3(f). The object regions are colored black.

 (a) (b)

 (c) (d)

Fig. 2.3 (Continued) The generation of a segmentation mask. (a) The original image.
(b) The reconstructed background. (c) The object pixels extracted by using two-stage

thresholding. (d) The seed image. (e) The base image.
(f) The generated segmentation mask.

35

 (e) (f)

Fig. 2.3 The generation of a segmentation mask. (a) The original image.
(b) The reconstructed background. (c) The object pixels extracted by using two-stage

thresholding. (d) The seed image. (e) The base image.
(f) The generated segmentation mask.

Most part of the moving objects was extracted correctly, except two unclassified parts:

the upper part of bat and the player’s legs. The upper part of bat is nearly transparent hence

the background is visible through the bat; the legs of the player have similar intensities to the

background. Thus, both misclassified parts do not affect the blending result. Moreover, the top

and right borders are also classified as object; this will eliminate the black line shadows in the

generated sprite. Note that the tennis ball is also classified as an object. These generated

segmentation masks will be employed in the second pass of sprite generation.

2.4 The Second Pass of Sprite Generation

The generated segmentation masks are employed in the second pass of sprite generation.

The second pass sprite generation is similar to the first pass with some modifications. The

36

automatically generated segmentation masks are employed in the global motion estimation

and the blending process. These modifications remove the effect caused by considering the

object pixels as background, and increase the fidelity of the generated sprite.

In the global motion estimation, the generated segmentation masks are employed as a

classification of object pixels. All feature points are checked with the masks. Feature points

which are classified as moving objects in the masks are removed from the feature points.

Then the global motion parameters are also estimated by the Levenberg-Marquardt algorithm.

The accuracy of estimated parameters should be increased since the effect of object pixels is

reduced.

The sprite is then blended using the newly estimated parameters. Since generated

segmentation masks are available in the second pass, the reliability-based blending is adopted

instead of the averaging blending employed in the first pass. The reliability-based blending

prevents some of moving objects that not segmented correctly from being blended into the

final sprite. The generated sprite in the second pass is outputted as the final sprite.

2.5 Experimental Results

Fig. 2.4 shows the generated sprite of the video sequence ‘stefan’ by different methods.

Fig. 2.4(a) is generated by the MPEG-4’s method without using segmentation masks, that is

also the coarse sprite generated from the first pass of sprite generation. The masks used to

37

generate Fig. 2.4(b) are obtained automatically by the proposed segmentation schema.

Fig. 2.5 shows one of the reconstructed frames by different methods respectively. Like

we stated before, the sprite generated without using masks contains shadows, which are

circled in Fig. 2.4(a), caused by wrongly blending the player into sprite. These shadows are

successfully removed in the sprite generated using the masks generated automatically by our

method. Manually segmented masks are employed in Fig. 2.4(c) and Fig. 2.5(c) for

comparisons. Both sprites generated using automatically or manually segmented masks are

perceptually the same by human eyes.

(a)

Fig. 2.4 (Continued) Generated sprites of different methods. (a) The first pass.
(b) Two pass generation with automatic generated segmentation masks.

(c) MPEG-4 with manually segmented masks.

38

(b)

(c)

Fig. 2.4 Generated sprites of different methods. (a) The first pass.
(b) Two pass generation with automatic generated segmentation masks.

(c) MPEG-4 with manually segmented masks.

 (a) (b) (c)

Fig. 2.5 Reconstructed frames of different methods. (a) The first pass.
(b) Two pass generation with automatic generated segmentation masks.

(c) MPEG-4 with manually segmented masks.

39

CHAPTER 3
A NEW APPROACH FOR SPRITE GENERATION WITHOUT

SEGMENTATION MASKS

In this chapter, we will propose a sprite generator without using segmentation masks. It

consists of a modified feature point selection method and a novel intelligent blending method.

3.1 Problems of Segmentation Masks

To avoid sprite being blurred, pixels of moving objects must be excluded from being

blended into the sprite. If the segmentation is perfect, the averaging blending provided in

MPEG-4 can achieve excellent quality. Otherwise, the generated sprite will be blurred around

moving object boundary due to that some pixels of moving objects are considered as

background. However, a perfect segmentation is impossible, conventional sprite generation

methods often use a reliability-based blending concept provided in [18] to solve this problem.

In the reliability-based blending strategy, a frame is divided into reliable, unreliable, and

undefined regions according to the segmented masks. Pixels denoted as objects in the

segmented masks are classified as undefined pixels, and pixels near mask borders or frame

borders (within a given distance) are classified as unreliable ones. The rest of pixels are

classified as reliable ones. The reliable and unreliable pixels are average-blended separately,

and the blended pixels with the highest reliability are chosen into the sprite. The undefined

pixels do not contribute to the sprite blending. The given distance from the mask border must

40

be large enough to cover all segmentation faults, or the generated sprite will have ghost-like

shadows in some places. However, it is hard to decide the distance automatically. In this

dissertation, we will provide a sprite generator to avoid above-mentioned problems.

The proposed method is based on the MPEG-4’s framework shown in Fig. 1.1, but the

demand of segmentation masks is removed. A balanced feature point extractor with object

point removing is proposed. With the proposed feature points, the precision of estimated

global motion parameters are increased significantly. A new blending strategy that does not

need segmentation masks is also proposed. The moving objects are excluded from blending

by a counting schema. The proposed method provides higher visual quality of the generated

sprite than those existing methods, and the average PSNR of reconstructed backgrounds is

increased slightly.

3.2 The Proposed Sprite Generator

In the proposed sprite generator, a two-stage GME is provided with a novel feature point

extraction method to get accurate global motion parameters. With the estimated parameters,

each input frame is warped. An intelligent blending strategy is then presented to blend the

warped frame to form a sprite. The details of the proposed generator are described as follows.

3.2.1 Global motion estimation

41

The aim of global motion estimation is to obtain an accurate estimation of camera

motion between the current frame and a reference image, e.g. the current sprite. In this

dissertation, we take the perspective transformation to model camera motion as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

++
++

=

++
++

=

1
'

1
'

87

654

87

321

ymxm
mymxm

y

ymxm
mymxm

x
, (3.1)

where (x,y) and (x',y') denote the coordinates of a pixel before and after the camera motion

respectively. m1,m2,…m8 are the transformation parameters referred as global motion

parameters.

The global motion parameter is estimated by the two-stage GME schema described in

Section 1.2.1. The minimization problem described in Section 1.2.1.2 is solved by the

Levenberg-Marquardt algorithm [15]. In order to increase the estimation speed, only selected

feature points are attending the minimization. Pixels of moving objects should be avoided to

be selected into the feature points. Since we want to propose a sprite generator that do not

need segmentation masks, a novel feature point selection method that excludes the pixels of

moving objects must be developed.

3.2.2 Feature point extraction

The iterative minimization of the gradient descent method is time consuming. To reduce

the time complexity, only some selected feature points in the current frame are employed

42

while computing the registration error. Like other sprite generation methods, our method

selects feature points according to their Hessian values defined by

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

22

2

2

2

2),(),(),(),(
dxdy

yxId
dy

yxId
dx

yxIdyxH . (3.2)

Those points with Hessian values being local maximum or minimum are considered as feature

points. An example of using Hessian value to extract feature points is shown in Fig. 3.1. The

grayscale of each pixel in Fig. 3.1(b) represents the absolute Hessian value of the

corresponding pixel in Fig. 3.1(a).

Conventional methods choose pixels with largest absolute Hessian values as feature

points. However, the distribution of pixels with large absolute Hessian values does not spread

uniformly, as shown in Fig. 3.1(b). Fig. 3.1(c) shows the feature points extracted by these

methods. The extracted feature points are concentrated in the half-upper of the image. This

will degrade the accuracy of the estimated parameters because the registration will be focused

only on the half-upper of the image. This degradation will become more serious, when the

number of feature points is small. The sprite generated based on these feature points is shown

in Fig. 3.1(a). Although the half-upper of the sprite looks well, the white lines in the

half-bottom of the sprite are not fitted correctly such that they look blurred (see Fig. 3.1(c));

the reason is that no white line points are considered as feature points. To overcome this

problem, the feature points must be selected uniformly. A balanced feature point extraction

43

method is proposed and described as follows.

 (a) (b)

 (c) (d)

Fig. 3.1 Feature point extraction based on Hessian value. (a) Original image.
(b) absolute Hessian values of (a). (c) Feature points extracted by conventional methods.

(d) Feature points extracted by the proposed method.

For an image of width W and height H, its border area of width B is excluded first. The

rest is divided into 256 non-overlapping blocks. For each block, the gray value variance is

calculated to test its homogeneity. The block will be classified as a homogeneous one if its

variance is smaller than a preset threshold TV. The feature points are extracted uniformly in

the non-homogeneous blocks to avoid the aperture problem. Suppose that we want to extract

44

N feature points from K non-homogenous blocks, N/K pixels with largest absolute Hessian

values are chosen in each non-homogeneous block. Feature points extracted from Fig. 3.1(a)

using the proposed method are shown in Fig. 3.1(d). In contrast to the result of using the

conventional method (see Fig. 3.1(c)), the distribution of feature points using the proposed

method is more balanced than MPEG-4’s method. Several points on the white line in the

half-bottom of the frame are extracted as feature points, this will make the white line

registered well and will significantly improve the visual quality of the generated sprite.

However, from Fig. 3.1(d), we also find some points on the player located; this will reduce the

accuracy of estimated GMPs. As mentioned previously, we should avoid taking moving

objects as feature points. Since the motions of moving objects usually differ from the motion

of background, this provides us a clue to remove these outliers.

Traditional translation-based motion estimation is applied on each feature point to find

the motion vector relative to the previous frame. In order to reduce the searching time, a

global translation is found based on some selected feature points first, then a full search

around the global translation for each feature point is preformed. A 17×17 block centered at

each selected feature point is used to find the global translation. A full-searched motion

estimation with a large search window (64×64) is proceeded on the 17×17 block. To raise up

the searching speed, only 100 pixels with the largest absolute Hessian values among all

feature points found previously are employed. The occurrences of the estimated 100 motion

45

vectors are counted, and the motion vector with the highest occurrence is considered as the

global translation. The motion vectors of all feature points are found by searching around the

global translation with a smaller search window (17×17).

Let (dx,dy) be the motion vector estimated, the feature point is considered as an outlier if

its mean-squared-error (MSE) between the original and the motion-estimated blocks is larger

than a preset threshold TO, i.e.,

 ()∑
∈

>++−
Byx

O
B

TdyydxxIyxI
N ,

2),('),(1 , (3.3)

where B is the block centered at the feature point and NB is the number of pixels in the block,

I(x,y) and I'(x,y) are the current frame and the previous frame respectively. Since objects are

assumed to have different motions from the background, their best motion vectors are usually

not around the global translation (a roughly approximation of the background motion), and

their MSEs are likely to be higher with inaccuracy motion vectors. They will be considered as

outliers in Eq. (3.3).

Fig. 3.2(a) illustrates the object pixels found from the feature points shown in Fig. 3.1(d).

The feature points on the player are detected successfully. These object pixels are removed

from the original feature points and the final feature points are shown in Fig. 3.2(b).

46

 (a) (b)

Fig. 3.2 An example for outlier removing. (a) Detected object pixels in Fig. 3.1(d).
(b) The feature points after removing outliers from Fig. 3.1(d).

Figs. 3.3(a) and (b) show the sprite generated using the conventional method and

proposed balanced feature point extraction method, respectively. The same number of feature

points is used in both methods. A close view of the white lines in Figs. 3.3(a) and (b) are

shown in Figs. 3.3(c) and (d), respectively. From the figures, we can see that those white lines

in the sprite generated by the proposed method are registered very well. While the same place

in sprite generated by conventional method looks blurred. The average PSNR of the

reconstructed backgrounds using the non-balanced and balanced feature points are both

26.25dB. Although the PSNR is the same, the proposed method achieves much better visual

quality.

47

(a)

(b)

 (c) (d)

Fig. 3.3 Two examples to show sprites generated using different feature points with the
same number.

(a) The sprite generated using feature points extracted by conventional methods.
(b) The sprite generated using feature points extracted by the proposed method.

(c) A close look of the white line in (a). (d) A close look of the white line in (b).

3.2.3 Intelligent blending

The precision of segmentation mask affects the quality of the generated sprite. Although

48

the unreliable region around segmentation mask boundary reduces the segmentation error in

the reliability-based blending, some errors still can not be covered. Fig. 3.4 shows two frames

with segmentation errors. The left foot of the player in both frames is not completely

segmented; this will leave some ghostlike shadows after blending. A close view of the

shadows in the blended sprite is shown in Fig. 3.5(a). Increasing the distance from the mask

border given in the reliability-based blending schema may solve this problem, but other

problem will occur. More segmentation errors can be covered using a larger distance, but it

also increases the number of pixels being classified as unreliable. Thus the opportunity of an

unreliable pixel being replaced by a reliable one is decreased. The reliable and unreliable

pixels are blended by averaging separately. If an unreliable pixel is not replaced by a reliable

one, the blending acts like the normal averaging. Fig. 3.5(b) shows a close view of the

blended sprite using a larger distance. We can see that the right border, which is the boundary

of reliable and unreliable regions, is blurred. Thus, how to give a suitable distance is a hard

job. To avoid this problem, an intelligent blending strategy without requiring segmentation

masks is proposed here.

49

 (a) (b)

Fig. 3.4 Segmentation errors in player’s feet. (a) Frame 255 with left foot incompletely
segmented. (b) Frame 258 with both feet incompletely segmented.

 (a) (b)

 (c) (d)

Fig. 3.5 Two examples to show the blended sprites using different methods.
(a) The first example of the generated sprite based on the reliability-based blending.

(b) The second example of the generated sprite based on the reliability-based blending.
(c) The first example of the generated sprite based on the intelligent blending.

(d) The second example of the generated sprite based on the intelligent blending.

50

The proposed intelligent blending strategy is based on a fact that for a series of pixels in

video frames corresponding to the same location of a sprite, most of these pixels will be

background; only few pixels are moving objects. Since objects are moving, those object

pixels will come from different positions of an object, or even different objects, their

intensities will have larger variation. On the contrary, intensities of those background pixels

standing for the same background point in the real world should be similar, and can be found

out by counting their occurrence.

Fig. 3.6 shows a flowchart of the proposed intelligent blending schema. Let X be the

incoming pixel, S be the current sprite pixel. A candidate pixel C is used to store a candidate

of incoming background pixel. Two counters CS and CC are used to store the number of pixels

being blended into S and C, respectively. Initially, S and C are undefined and both counters

are set as zero. A similarity check is performed on the incoming pixel by calculating two

absolute differences:

CXD
SXD

C

S

−=
−=

. (3.4)

51

Fig. 3.6 Flowchart of the intelligent blending.

In the starting of the blending, since S is undefined, it is set to be gray value of the first

incoming pixel and CS is set to one. After filling S, the similarity check is conducted. If an

incoming pixel is unlike S (i.e. DS is greater than a preset threshold T) and C is undefined, C is

set to the gray value of the incoming pixel and CC is set to one; otherwise, if DS is smaller

than T and DC, the incoming pixel is considered as a background pixel and is blended into S,

CS is increased by 1. If DC is smaller than T and DS, the incoming pixel is blended into the

candidate C, CC is increased by 1. Two counters are compared when a pixel is blended into

the candidate C. If the candidate counter is larger than the sprite counter, the sprite and the

sprite counter are replaced by the candidate and the candidate counter. Then the candidate and

its counter are reset to undefined and zero, respectively. This replacement is based on the fact

that being described before. Since the candidate appears more frequently than the current

52

sprite, the candidate is more likely to be the background.

If both DS and DC are larger than T, the candidate is replaced by the incoming pixel, and

the candidate counter is set to one. With a series of incoming object pixels, the candidate is

continuously replaced by the incoming pixels until a background pixel is replaced into the

candidate. If the background pixels appear continuously, the accumulation of candidate

counter will begin.

The boundaries of frames are often non-reliable and should be removed from blending.

In the proposed method, the affects of boundaries are eliminated by counting the boundaries

pixels once. The pixels near the frame border within a preset distance W are defined as

boundary pixels. The boundary pixels are checked and blended into the sprite or the candidate

as normal pixels, but the corresponding counter is not increased. This will ensure the

boundary pixels to be replaced quickly when normal pixels are inputted.

Two examples of the blending results using the proposed intelligent blender are shown in

Fig. 3.5(c) and 3.5(d). In contrast to the results using reliability-based blender shown in Fig.

3.5(a) and 3.5(b), the ghostlike shadows are eliminated and the sprite border is clear and sharp.

In order to examine the results easier, a contrast-enhanced version of Fig. 3.5 is provided in

Fig. 3.7.

53

 (a) (b)

 (c) (d)

Fig. 3.7 Contrast-enhanced version of Fig. 3.5. (a) Contrast-enhanced version of Fig.
3.5(a). (b) Contrast-enhanced version of Fig. 3.5(b). (c) Contrast-enhanced version of Fig.

3.5(c). (d) Contrast-enhanced version of Fig. 3.5(d).

3.3 Experimental Results

The aim of sprite generation is to reconstruct the background from the generated sprite

perfectly. The quality of the reconstructed background for each frame is often measured by

PSNR. In most cases, the PSNR is a good measurement to describe the quality. However, the

PSNR is fooled in seldom cases. A comparison in visual quality of the generated sprites is

also performed.

The GMPs are estimated using the two-staged GME with the proposed balanced feature

54

points described in Sections 3.2.1 and 3.2.2. Then sprites are mixed by different blending

strategies with the same GMPs. Backgrounds are reconstructed from the generated sprites and

their PSNRs are calculated. Pixels of moving objects are excluded when calculating the PSNR

since we are measuring the qualities of the reconstructed backgrounds. The qualities of

generated sprites are measured by computing the averaging PSNR of the reconstructed

backgrounds. The generated sprites are shown in Fig. 3.8. Fig. 3.8(a) is generated by the

averaging blending strategy employed in the MPEG-4 VM without segmentation masks. The

result using the averaging blending strategy with manually segmented masks is shown in Fig.

3.8(b). Fig. 3.8(c) shows the sprite generated using the reliability-based blending strategy

based on the rough segmentation masks extracted via the method developed by Lu et al. [19].

Finally, the sprite generated using the proposed intelligent blender is shown in Fig. 3.8(d). Fig.

3.9 shows one of the reconstructed backgrounds using three different strategies respectively.

(a)

Fig. 3.8 (Continued) The generated sprites. (a) Sprite generated using averaging blending
without segmentation masks. (b) Sprite generated using averaging blending based on

manually segmented masks. (c) Sprite generated using reliability-based blending. (d) Sprite
generated using intelligent blending.

55

(b)

(c)

(d)

Fig. 3.8 The generated sprites. (a) Sprite generated using averaging blending without
segmentation masks. (b) Sprite generated using averaging blending based on manually

segmented masks. (c) Sprite generated using reliability-based blending. (d) Sprite generated
using intelligent blending.

Since all moving objects are blended, the sprite generated by averaging blending will

have shadows in several places, which are obvious in a reconstructed frame shown in Fig.

56

3.9(a). However, if perfect manually masks are provided, the shadows are eliminated

completely and the averaging blending can achieve excellent results, as shown in Fig. 3.9(b).

Most shadows can be removed using the reliability-based blending except some ill-segmented

parts shown in the half-bottom of Fig. 3.9(c). The reconstructed background using the

proposed intelligent blending is shown in Fig. 3.9(d). We can see that the sprite generated by

our method is perceptually the same as the result using the average blending with perfect

manually masks provided.

 (a) (b)

 (c) (d)

Fig. 3.9 The reconstructed backgrounds. (a) Averaging without segmentation masks. (b)
Averaging with manually segmented masks.

(c) Reliability-based blending. (d) Intelligent blending.

57

A quantitative comparison in PSNR is performed and illustrated in Fig. 3.10. While

calculating the PSNR of a frame, only the background parts in the frame are attending the

calculation because the sprite contains only the information of backgrounds in a video

sequence. Manually segmented masks are employed to exclude object parts in the frame.

The results of the average blending with and without manually segmented masks are

plotted in dash-dotted and dotted line respectively in Fig. 3.10. The result without masks is

degraded by the shadows of moving objects and the frame borders, and has low average

PSNR of 26.23dB. With manually segmented masks, the averaging blending shows superior

results not only in the visual quality but also in the measured PSNR. The average PSNR is

28.38dB and is the best result in our tests.

The reliability-based and intelligent blending strategies are plotted in dashed line, and

normal line respectively. The reliability-based blending has average PSNRs 28.20dB. The

proposed intelligent blending has average PSNRs 28.29dB, which is slightly higher than that

of reliability-based blending and close to that of the average blending with perfect masks.

These experiments show that the proposed method can generate high visual quality sprite

without needing any segmentation mask.

58

Fig. 3.10 PSNR comparison of different blending strategies.

The result of Lu et al.’s sprite generator [21], which is shown in Fig. 3.11, is also quoted

as a comparison. In contrast to the result of the proposed generator shown in Fig. 3.8(d), the

proposed generator can generate better results. The average PSNR of Lu’s generator is 23.1dB,

which is much lower than that of the proposed generator (28.29dB). To make comparison

more clear, we take close views of three parts from the generated sprites in Fig. 3.11 and show

them in Fig. 3.12. From part 1 shown in Figs. 3.12(a) and (b), we can see that the generated

sprite using [21] skews seriously. Figs. 3.12(c) and (d) show part 2, the white lines in Fig.

3.12(d) are registered well, but in Fig. 3.12(c) are not. The above two faults are due to the

inaccuracy of the estimated GMP, and do not exist in the result of our generator. Part 3 shown

in Figs. 3.12(e) and (f) also demonstrates that our method is superior to Lu et al.’s.

59

Fig. 3.11 The generated sprite of Lu et al.’s work [21].

 (a) (b)

 (c) (d)

Fig. 3.12 (Continued) Close views of the generated sprites.
(a) Part 1 of Lu et al.’s work [21]. (b) Part 1 of the proposed method.
(c) Part 2 of Lu et al.’s work [21]. (d) Part 2 of the proposed method.
(e) Part 3 of Lu et al.’s work [21]. (f) Part 3 of the proposed method.

60

 (e) (f)

Fig. 3.12 Close views of the generated sprites.
(a) Part 1 of Lu et al.’s work [21]. (b) Part 1 of the proposed method.
(c) Part 2 of Lu et al.’s work [21]. (d) Part 2 of the proposed method.
(e) Part 3 of Lu et al.’s work [21]. (f) Part 3 of the proposed method.

61

CHAPTER 4

A NEW APPROACH FOR FAST MULTIPLE SPRITES
GENERATION

Farin et al. have proposed a novel technique denoted as multiple sprites or multi-sprites

that divides a video sequence into several sub-sequences. The backgrounds of each

sub-sequence are stored by its own sprite. Using multiple sprites reduces the geometrical

distortions and the storage required by a single large sprite. However, Farins’ technique uses

exhaustive searches to find the optimum sub-sequences and optimum reference frame of each

sub-sequence. This makes the algorithm very time-consuming.

In our dissertation, a fast multiple-sprite partition method will be proposed. The

proposed method reduces the searching time for finding an applicable partition for multiple

sprite generation, and the memory required during the searching is also decreased in contrast

to the optimal partition method. Experimental results show that the coding cost of the

generated sprites using the proposed method is near-optimum, i.e. only slightly higher than

that in the optimal method.

The proposed method consists of two algorithms: video partition algorithm and a

reference frame selection algorithm. The video partition algorithm is developed based on the

characteristics of frame translations and scaling. The frame translation, which is caused by

camera motion and also denoted as global translation, represents the movement of the

62

background of a frame in the x and y direction relative to a reference frame. The global

translations across frames are accumulated to represent the estimated position of a frame

projected in a sprite. Since the geometric distortion depends on the accumulated global

translation relative to the reference frame, the accumulated global translation provides a good

measurement on the distortion. The effect of frame scaling caused by camera zoom-in or

zoom-out can be employed in a similar way.

A reference frame selection algorithm is developed based on the idea of Messey and

Bender’s work [37]. In their work, the middle frame of a video sequence is suggested as the

reference frame, since its background has higher possibility to be located at the center of a

generated sprite. The proposed algorithm extends this idea by taking the frame with its

background most likely being at the center of the corresponding sprite as the reference frame.

4.1 Proposed Feasible Partition Points Selecting and Reference Frames Finding

Methods

Farin et al.’s method achieves optimal partition results with high computational

complexity, even if their efficient algorithm is applied. If we can reduce the possible

combinations of sub-sequences and reference frames, the computational complexity will be

reduced. In the following sections, we will first analyze the accumulated translations and

scalings. Based on the accumulated translations and scaling, some candidate partition points

63

and reference frames are then located first. Finally, a method is provided to get a near-optimal

partition with similar total sprite area to Farins’.

4.1.1 Analysis of Accumulated Translation

As mentioned previously, the geometric projection distortion comes from the camera

rotation. Farin et al.’s experiments [38] also show that the sprite area grows exponentially as

camera pan angle increases. Thus the selecting of partition frames must be highly related to

the effect of camera rotation. In order to capture the effect of camera rotation, the global

translations between video frames are calculated and analyzed.

The global translation between two frames is a measurement of background

displacements. Let frame i and frame j be the two frames to be measured and),(yxp =v be a

pixel in frame j, the displacement of pv relative to frame i is defined as

 ppTd jip
vvv

−=)(, (4.1)

where Tji is the geometric transformation applied in the frame warping which converts

locations of pixels from the coordinate of frame j to frame i. Due to the effect of geometric

transformation, the displacements of all pixels in frame j are not consistent. In order to get a

fast estimation of the frame displacement, the average of four corner displacements is used,

that is,

 ∑
∈

=
},,,{4

1
RBLBRTLTP

Pji dt
vv

, (4.2)

64

where LT, RT, LB, and RB are the left-top, right-top, left bottom, and right bottom pixel of

frame j. The jit
v

 is considered as the global translation between frame i and frame j.

The global translations of sequence ‘stefan’ are illustrated in Fig. 4.1(a). The first frame

is set to be the reference frame. The calculated translations of frames show their background

displacements relative to the reference frame. A positive translation in the x-axis represents a

frame displacement in the right direction, i.e., the frame is warped to the right side of the

reference frame. A negative translation in the x-axis denotes a displacement in the left

direction, and the y-axis translations can be denoted similarly. In Fig. 4.1(a), one can see that

the view of background moves toward the right direction in the first thirty frames. Then it

moves left and crosses the first frame in the next ninety frames. And then it moves toward the

right again until frame 205, finally it moves toward the left in the rest of frames.

0 100 200 300

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

frame number

gl
ob

al
 tr

an
sl

at
io

n

sequence 'stefan'

X-direction translation
Y-direction translation

0 100 200 300

-1000

-800

-600

-400

-200

0

200

400

frame number

ac
cu

m
ul

at
ed

 tr
an

sl
at

io
n

sequence 'stefan'

X-direction translation
Y-direction translation

 (a) (b)

Fig. 4.1 Background displacements of ‘stefan’.
(a) Global translations. (b) Accumulated translations.

65

The figure also shows that the view of background moves toward left quickly after frame

260. The magnitudes of global translations increase quickly from hundred to over ten

thousand pixels. Actually, the magnitudes can be million pixels in short frames and tend to be

infinity when a frame is unable to be projected into the first frame. The huge difference of

magnitudes between frames is the result of huge geometric distortions when projecting a

frame into the first frame with a view angle far away from the projecting frame. The huge

difference makes it difficult to analyze the effect of camera translations from the global

translations.

In order to analyze the camera translations efficiently, accumulated translation is

proposed. The accumulated translations are calculated from the local translations, which

represent the translation from one frame to its adjacent previous frame and can be denoted as

)1(−jjt
v

 in Eq. (3.6). Since local translations are less geometric-distorted than the global

translations, they can be combined into an accumulated translation, jiav , to represent a

less-distorted global translation between frame j and frame i, that is

 ∑
+=

−=
j

ik
kkji ta

1
)1(

vv . (4.3)

Note that jiav can be computed by a recursive procedure:

)1()1(−− += jjijji taa
vvv , (4.4)

where iiav is defined to be (0,0).

The accumulated translations for sequence ‘stefan’ are illustrated in Fig. 4.1(b). In

66

contrast to global translation, magnitudes of accumulated translations are limited into a

reasonable range. The details of camera movements are still preserved, and the translations of

all frames can be calculated, even for those frames that can not be projected into the first

frame.

4.1.2 Accumulated Translation Based Feasible Partition Point Finding Method

One of the goals of a multi-sprite partition algorithm is to find some partition points to

split the video sequence into several sub-sequences. Since the geometric distortions are the

major issue of using multiple sprites, camera motion must be considered first. The following

paragraph demonstrates the finding of feasible partition points, FPX, based on accumulated

translations in x-axis direction. By the similar way, we can also find the feasible partition

points, FPY, based on accumulated translation in y-axis direction.

Fig. 4.2 shows the x-axis accumulated translations which have been shown in Fig. 4.1(b).

The camera pans to the right from the first frame to frame 29, then pans to the left until frame

107. When the camera begins the left-panning, the backgrounds of frames from 29 to 69 are

going back through an area that has been recorded into the current sprite. Since the

background area already exists in the sprite, merging these frames into the sprite will not

expand the sprite area. Thus, frames from 29 to 69 must not be selected as candidate partition

points, and frames 70 to 107 are considered as candidate partition points.

67

0 100 200 300
-1000

-800

-600

-400

-200

0

200

400

frame number

ac
cu

m
ul

at
ed

 tr
an

sl
at

io
n

sequence 'stefan'

#29

#107

#204#183

#242
#245#70

Fig. 4.2 Finding feasible partition points.

Now, the camera pans to the right from frame 107 to 204, and backgrounds of frames

from 107 to 183 have been recorded, thus they will not be considered as candidate partition

points. By similar reasons, frames 204 to 244 are not considered as candidate partition points,

and frames after 245 are considered as candidates. The candidates of partition points are

illustrated by thick lines in Fig. 4.2. The candidates of partition points can be grouped into

several pieces, and each piece covers a small range of view angles. Since the covered view

angle range in a piece is small, frames in the same piece should be merged into a sprite. The

first frame in each piece is considered as a feasible partition point. If the candidates are

grouped into K pieces, there will be (K-1) feasible partition points. This will produce 2K-1

combinations of possible partitions. In Fig. 4.2, feasible partition points are frame 70, 183,

and 245. Comparing to Farin et al.’s result, which has an optimum partition point at frame

68

242, we have a feasible partition point at frame 245 which is very close to frame 242.

The above finding method is applied to both x- and y-axis directions, and two sets of

feasible partition points (x-axis and y-axis) are found. The final feasible partition points are

the union of the x- and y-axis partition points (FPX and FPY).

4.1.3 Scaling Factor Based Feasible Partition Point Finding Method

Using accumulated translation exploits the effect of camera panning to partition a

sequence. Therefore, if a sequence does not have camera panning, it will not be partitioned.

Fig. 4.3 shows the accumulated translations of sequence ‘tabletennis’ from frame 1 to 131.

The frames of the sequence are continually zoomed out with no camera panning. One can see

that the values of accumulated translations fall into a very narrow range, that is, from +4 to -6.

In this case, the accumulated translations are useless, and the effect of scaling must be

considered.

The effect of scaling between two geometric transformed frames can be directly

measured by the ratio of width or height of the transformed frames. However, due to the effect

of geometric transformation, the width ratio and height ratio of two frames are not consistent.

Instead of width or height ratio, ratio of area of two frames is chosen in this dissertation. Area

is the product of width and height, and area ratio will combine both the effect of width and

height ratio. This makes area ratio more robust than width or height ratio.

69

0 50 100
-6

-4

-2

0

2

4

frame number

ac
cu

m
ul

at
ed

 tr
an

sl
at

io
n

sequence 'tabletennis'

X-axis translation
Y-axis translation

Fig. 4.3 Accumulated translations of ‘tabletennis’.

An ordinary geometric transformed frame is illustrated in Fig. 4.4. The four corners of

the transformed frame are A, B, C, and D and the corresponding coordinates are denoted as

),(PP yx , where },,,{ DCBAP∈ . A fast approximation of the transformed frame area is to

calculate the area of its bounding box, which is illustrated in a dash-lined rectangle in Fig. 4.4.

However, one can see that the transformed frame is completely inside its bounding box. This

makes the approximated transformed frame area oversized. For the purpose of making a better

approximation, the bounding box is revised by correcting the boundaries of the bounding box

as follows:

.2/)(
2/)(
2/)(
2/)(

DC

BA

CB

DA

yybottom
yytop
xxright
xxleft

+=
+=
+=
+=

 (4.5)

The revised bounding box is shown by the solid-lined rectangle in Fig. 4.4. Clearly, the

70

revised bounding box is closer to the actual area. Now the approximated area of the

transformed frame j with frame i as a reference frame can be calculated by

)()(topbottomleftrightAREAji −×−= . (4.6)

Fig. 4.4 Frame area calculation of a geometric-transformed frame.

After obtaining the areas of the transformed frames, the scaling factor of the transformed

frame j versus the transformed frame i is defined as

 iijiji AREAAREAs /= . (4.7)

Since area is the product of width and height, a square root is applied to make the scaling

factor linear. Similar to the computation of accumulated translations, the accumulated local

scaling factors are employed to increase the robustness of scaling factors. The accumulated

scaling factor of the transformed frame j versus the transformed frame i is defined as

)1()1(
1

)1(−−
+=

− ×== ∏ jjij

j

ik
kkji sassas , (4.8)

A

B

C

D

bounding box

revised bounding box
transformed frame

71

where iias is defined to be one. The accumulated scaling factors of the sequence

‘tabletennis’ are illustrated in Fig. 4.5.

0 50 100

1

2

3

4

5

frame number

ac
cu

m
ul

at
ed

 s
ca

lin
g

fa
ct

or
sequence 'tabletennis'

#50

#76

#51

#78

Fig. 4.5 Accumulated scaling factors of ‘tabletennis’.

As mentioned previously, the quality degradation of a reconstructed frame is higher as

the scaling between the frame and its reference frame increases. Therefore, the accumulated

scaling of frames in a single sprite should be limited. This can be done by limiting the ratio of

the maximum and minimum accumulated scaling factors of frames in a sprite generated from

frame k to frame h. That is,

{ }
{ } t

hikas

hikas

iki

iki <
≤<

≤<

|min

|max
, (4.9)

where t is a threshold. According to Eq. (4.9), we process frames in a video sequence

sequentially. When Eq. (4.9) is not satisfied at a certain frame h, frame h is considered as a

72

feasible partition point. We keep processing the remaining frames with frame h as the starting

frame to find all feasible partition points based on Eq. (4.9). In our experiment, the threshold t

is set to 1.8.

The fixed threshold t in Eq. (4.9) has a disadvantage: the scaling ratio of the last partition

will be smaller than that of the other ones. In the other words, the last partition covers less

scaling range than others. This can be solved by applying an adjusted threshold

 { }L ii
Niast ≤≤=′ 1|max 1 , (4.10)

where L is the number of feasible partition points found based on Eq. (4.9) and threshold t,

and N is the number of frames in the video sequence. The feasible partition points, FPS, based

on the accumulated scaling factors are searched again by recalculating Eq. (4.9) with the

adjusted threshold t’.

Fig. 4.5 shows the feasible partition points found based on the accumulated scaling

factors. The selected feasible partition points of sequence ‘tabletennis’ are frame 51 and frame

78, which are marked by squares in Fig. 4.5. The optimal partition method [38] splits the

sequence in frame 50 and 76, which are marked by triangles in Fig. 4.5.

4.2 Proposed Reference Frame Finding Method

The second goal of a multi-sprite partition algorithm is to find a good reference frame for

each partitioned sub-sequence. In order to cover larger view angle from both directions of

73

panning, the frame with its view at the center of the view in the subsequence would be a good

reference frame. Massey and Bender [37] suggested using the middle frame in a sequence as

the reference frame, but the middle frame is not always at the center of view in a sequence.

Here, we provide a method to get the reference frame with view near center.

When a sub-sequence is partitioned, its maximum and minimum values of x-axis

accumulated translations can be found. The maximum value represents the right view

boundary, and the minimum value represents the left view boundary. The mean of the

maximum and the minimum values will represent the view center, and the frame with

accumulated translation closest to the mean value is selected as the reference frame.

4.3 The Complete Algorithm

The proposed multi-sprite partition algorithm is based on the methods described in

Sections 4.1 and 4.2. First, the accumulated translations and accumulated scaling factors are

calculated and the feasible partition points based on accumulated translations and

accumulated scaling factors are found separately. Then all feasible partition points based on

translation and scaling are considered as candidate partition points. After finding the candidate

partition points, the reference frames of all possible partitions are found. Based on these

candidate partition points and reference frames, the second step of Farin et al.’s method is

applied to obtain the final result.

74

4.3.1 Candidate Partition Points and Reference Frames Finding

Let),(YX be the size of frame i and Ti(i-1) be the geometric transformation converting

locations of pixels from the coordinates of frame i to frame 1−i . Let (1,1), (1,Y), (X,1), (X,Y)

be its four corner. Using Eqs. (4.1)-(4.2), we can obtain the local translation)1(−iit
v

. Based on

the local translation, we can get the accumulated translations using Eqs. (4.3)-(4.4).

Meanwhile, the locations of transformed corners in each transformed frame are used to find

the revised bounding box via Eq. (4.5). The approximated area and accumulated scaling

factors are calculated by applying Eqs. (4.6)-(4.8). Then three sets of feasible partition points

(FPX, FPY, and FPS) are found by the method described in Sections 4.1.2 and 4.1.3. And the

candidate partition points is set to be the union of these three sets of feasible partition points.

After obtaining the feasible partition points, the reference frames of all subsequences in

all possible partitions are found using the method described in Section 4.2.

4.3.2 Reference frame validation

Although the reference frames are obtained in the previous section, the selected reference

frame may have 1-3 frames away from the reference frame found by Farin et al.. Since the

size of a generated sprite is heavily affected by its reference frame, to get more accurate

reference frame, the neighboring frames of the selected reference frame are checked. If any of

75

them achieves better result than the selected reference frame, the reference frame will be

replaced by it.

Here, two methods using different validations for sprite area are proposed to find better

reference frames. The first method is called normal validation. The bounding box of the

corresponding sprite using each neighboring frame is calculated. Then the neighboring frame

resulting in a minimal size of bounding box is selected as the validated reference frame. Since

every frame in the current sub-sequence must be geometrically transformed toward each

neighboring frame, this validation step achieves better performance with higher computational

complexity.

The second method called fast validation tries to take a shortcut. Four boundary frames

in the current sub-sequence are selected according to their accumulated translations: the

frames with maximum and minimum values of x-axis translation, and the frames with

maximum and minimum values of y-axis translation. For each neighboring frame, only these

four boundary frames are geometric transformed toward the neighboring frame. Then a

bounding box covering these four transformed frames is found. The neighboring frame

resulting in the corresponding bounding box with minimum area is taken as the validated

reference frame.

76

4.3.3 Sequence partition

In order to find the proper partition points, the optimal partition algorithm [38] described

in Section 1.5.2 is applied. The algorithm is originally developed to find the optimal partition

from a coding-cost matrix made up by costs of all combinations of possible sub-sequences. In

our method, the sequence is partitioned only in the candidate partition points found in Section

4.3.1. Therefore, a much smaller coding-cost matrix can be made up.

Assume that M candidate partition points },...,{ 1 Mvv are found in Section 4.3.1. The

first and the last frame N are added by setting 10 =v and 11 +=+ NvM to form a node set

},...,{ 10 += MvvV of size M+2. The area of bounding box bi;j of sub-sequence)1,(−ji vv

beginning at frame vi and ending at frame vj-1 for all possible Vvv ji ∈, and ji < can be

obtained from the minimal area bounding box (the bounding box with validated reference

frame) found in Section 4.2.

An upper triangle coding-cost matrix C with size)2()2(+×+ MM can be made up by

assigning

⎩
⎨
⎧ <

=
otherwise

jif ib
c ji

ji 0
;

; , (4.11)

where i and j are indices of two elements in V.

The matrix C is applied to Eq. (1.9) as the sprite coding-cost matrix kiS ; . Then based

on Eqs. (1.11) and (1.12), the partition of sequence can be found using the method described

in Section 1.5.2.

77

4.4 Experimental Results

Identical global motion parameters of testing sequences should be used in all competitive

methods to show the performance. However, the estimated global motion parameters will be

different according to various estimation methods, different feature points and initial guesses

used in the gradient descent algorithm. Since it is impossible to acquire the same estimated

global motion parameters as those in Farins’ paper, we choose to implement their optimal

method. The global motion parameters are generated in advance by the sprite generator with

intelligent blending proposed in Section 2, and the same parameters are used in both the

proposed and the optimal methods. The testing platform is an IBM laptop with mobile

PentiumIII 800MHz CPU and 640MB of RAM. Both methods are implemented and

simulated by Matlab. The results of using a single sprite are also included as a comparison.

Table 4.1 and Table 4.2 show the results of sequence ‘stefan’ using perspective and affine

motion model respectively. Table 4.3 shows the results of sequence ‘tabletennis’ in

perspective model. Note that the experimental results of the optimal method are different from

the results described in their paper [38] because the global motion parameters of sequences

are not the same. In all tables, we can see that Farins’ optimal method achieves excellent

performance. The total sprite sizes of all sequences by the optimal method are superior to the

sizes of using a single sprite. The performance of using multiple sprites is obvious. Results

78

also show that using affine motion model slightly reduces execution time because the affine

transformation is a bit faster than perspective transformation, but the execution time of the

optimal method is still very slow.

Table 4.1 Experimental results of sequence ‘stefan’ (perspective).

 Partitions (reference frames) Total sprite size
(bytes)

Executing time
(seconds)

Using a single sprite
(frame 1~250) - 2,862,240 -

Farin et al.’s optimal
method 1-242 (57), 243-300 (265) 766,350 780

Proposed method with
normal validation 1-244 (60), 245-300 (266) 777,160 44

Proposed method with
fast validation 1-244 (53), 245-300 (265) 793,529 4.1

Table 4.2 Experimental results of sequence ‘stefan’ (affine).

 Partitions (reference frames) Total sprite size
(bytes)

Executing time
(seconds)

Using a single sprite
(frame 1~300) - 1,450,446 -

Farin et al.’s optimal
method 1-245 (81), 246-300 (283) 604,214 766

Proposed method with
normal validation 1-244 (58), 245-300 (261) 608,685 44

Proposed method with
fast validation 1-244 (57), 245-300 (259) 633,953 4.1

Table 4.3 Experimental results of sequence ‘tabletennis’.

 Partitions (reference frames) Total sprite size
(bytes)

Executing time
(seconds)

Using a single sprite - 620,044 -
Farin et al.’s optimal

method 1-49 (48), 50-75 (52), 76-131 (76) 177,766 95

Proposed method with
normal validation 1-51 (9), 52-77 (57), 78-131 (83) 190,150 9.3

Proposed method with
fast validation 1-51 (4), 52-77 (52), 78-131 (78) 220,964 2.7

79

The results of the proposed method with normal validation and fast validation are also

listed in tables. The proposed method divides the sequence ‘stefan’ into partitions at frame

245 and divides the sequence ‘tabletennis’ into three partitions at frame 52 and 78. The

partition points of the proposed method are very close to the partition points of using the

optimal method, which is frame 243 in ‘stefan’ and frames 50 and 76 in ‘tabletennis’.

The total sprite sizes using the proposed method are only slightly higher than those using

the optimal method, but the executing time of the proposed method are greatly reduced. The

total sprite sizes of two testing sequences using the proposed method with normal validation

are 777,160 and 190,150 pixels respectively, which are only 1.41% and 6.97% higher than

total sprite sizes of using the optimal method. The executing times are reduced from 780

seconds to 44 seconds, and 95 seconds to 9.3 seconds. The execution speed is increased over

10 times. If the fast validation method is applied, the executing times can be further decreased

to 4.1 and 2.7 seconds, which is 35-190 times fast than that of the optimal method. In contrast

to the reduction of executing time, the total sprite size of using fast validation method is not

increased much.

The generated sprites of sequence ‘stefan’ by the optimal method and the proposed

methods are shown in Fig. 4.6 respectively. We can see that the generated sprites are

perceptually similar, excepting for the dimensions of sprites. The effects of geometric

distortions are lightened and the qualities of generated sprites are preserved. The generated

80

sprites of sequence ‘tabletennis’ by different methods are shown in Fig. 4.7.

(a)

(b)

(c)

Fig. 4.6 Generated sprites of sequence ‘stefan’ by different methods.
(a) Farin et al.’s optimal method. (b) Proposed method with normal validation.

(c) Proposed method with fast validation.

81

 (a)

 (b)

 (c)

Fig. 4.7 Generated sprites of sequence ‘tabletennis’ by different methods.
(a) Farin et al.’s optimal method. (b) Proposed method with normal validation.

(c) Proposed method with fast validation.

The experimental results of sequence ‘building’ are listed in Table 4.4. The sequence

consists of wide camera movements in y-axis direction and continuous panning in x-axis

direction. From Table 4.4, one can see that the proposed method works well. Fig. 4.8 shows

the generated sprites of the sequence.

82

Table 4.4 Experimental results of sequence ‘building’.

 Partitions (reference frames) Total sprite size
(bytes)

Executing time
(seconds)

Farin et al.’s optimal
method 1-12 (10), 13-39 (31), 40-65 (56) 607,265 22

Proposed method with
fast validation 1-29 (10), 30-41 (37), 42-65 (56) 614,052 2.2

 (a)

 (b)

Fig. 4.8 Generated sprites of sequence ‘building’ by different methods.
(a) Farin et al.’s optimal method. (b) Proposed method with fast validation.

4.5 Complexity Analysis

Complexity can be discussed in two different ways: time and space. Both complexities of

the proposed and optimal method are discussed.

The complexity of Farins’ optimal method is divided into two parts: the building of

coding cost matrix described in Section 1.5.1, and the optimal partition algorithm described in

83

Section 1.5.2. While building the cost matrix, the coding cost of all sub-sequences beginning

at frame i and ending at frame k with reference frame r must be computed. Suppose that the

sequence has N frames, the time and space complexity of building a cost matrix will be N3.

However, they had developed a method to reduce the space required to N2. The optimal

partition algorithm using Eq. (1.12) to find the best partition frame-by-frame takes N2 time.

The proposed method calculates the accumulated translation and scaling first, and both

of them take linear time. The finding of candidate partition points is also linear time because it

only observes the changes of accumulated translation and scaling once. Let M be the number

of candidate partition points found in Section 4.3.1, finding reference frame for all possible

sub-sequences takes M2×N time. Finally, the Farins’ optimal partition is applied. Since only M

candidate partition points are involved, it takes only M2 time. The accumulated translations

and scalings must be hold in memory and the coding-cost matrix must be generated. These

will need 2N+M2 space.

Table 4.5 shows the complexity of both methods. The proposed method takes

22 MNMNN +×++ time, i.e.)(2 NMO × in time and)()(2 NOMO + in space. Since

M is usually very small in contrast to N in practical, for example, M=9 and N=300 in the

sequence ‘stefan’, this makes the complexity of the proposed method better than the optimal

method.

84

Table 4.5 Complexity comparison.

 Time Space

Farin et al.’s optimal
method O(N3) O(N2)

Proposed method O(M2N) O(M2)+O(N)

85

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5.1 Conclusions

An effective sprite generator without segmentation masks is proposed. The method is

based on MPEG-4’s framework. A balanced feature point extraction with object removing is

introduced to increase the precision of estimated global motion parameters. In order to

remove the demand of segmentation masks, an intelligent blending strategy is proposed. It

counts the occurrence of pixels and chooses the pixels with higher count to be blended into

the sprite. The ghostlike shadows in the sprite generated by conventional reliability-based

blending are eliminated, and the average PSNR is increased slightly.

An efficient and fast method for generating multiple sprites is also proposed. In contrast

to the conventional sprite generating method that using a single sprite, using multiple sprites

reduces the storage space of sprites. Conventional multiple sprite generation method uses an

exhaustive search to find the optimal subsequence partition and optimal reference frame of

each partition. However, the exhaustive search costs a lot of time. The proposed method

consists of a sub-sequence partition algorithm and a fast reference frame selection algorithm,

which are developed based on the frame accumulated translations and scalings. By using the

proposed methods, a video sequence can be partitioned and reference frame can be selected in

a very short time. In order to increase the performance of selected reference frames, two

86

reference frame validation methods are also proposed. The proposed validation methods

searches frames close to the result of the fast reference frame selection method and check if

better reference frame exists. The experimental results also show that the proposed method

greatly increases the executing speed from 10 to 190 times in contrast to the Farins’ optimal

method, the total sprite size is slightly higher and the qualities of generated sprites are

preserved.

5.2 Future Research Directions

A sprite is a ‘pure’ background generated from a video sequence. This makes generated

sprites very useful. For example, in a change-detection-mask based video object detection

system, a sprite can be applied as the reference background instead of previous frames to

achieve better results. We will work on the moving object detection methods based on

generated sprites.

87

REFERENCES

[1] ISO/IEC MPEG Video Group, “MPEG-4 video international standard with amd. 1,”

ISO/IEC 14496-2, Jul. 2000.

[2] F. Dufaux and F. Moschieni, “Background mosaicking for low bit rate coding,” Proc.
IEEE Int. Conf. Image Processing, vol. 1, Sept. 1996, pp.673-676.

[3] M. Irani and P. Anandan, ”Video indexing based on mosaic representations,” Proc.
IEEE, 16(5) , pp. 905-921, May 1998.

[4] R. Szeliski, “Video mosaics for virtual environments,” IEEE Computer Graphics and
Applications, 16(2) , pp. 22-30, Mar. 1996.

[5] R. Szeliski and H. Y. Shum, “Creating full view panoramic mosaics and environment
maps,” Proc. ACM Conf. SIGGRAPH 97, Aug. 1997, pp. 251-258.

[6] M. Kourogi, T. Kurata, J. Hoshino and Y. Muraoka, “Real-time image mosaicing from
a video sequence,” IEEE International Conference on Image Processing (ICIP'99), Oct.
1999, pp. 133-137.

[7] S. Ji and H.W. Park, “Moving object segmentation with adaptive sprite for DCT-based
video coder,” IEEE International Conference on Image Processing, Oct. 2001, pp.
566-569.

[8] Y. Lu, W. Ga and F. Wu, “Automatic video segmentation using a novel background
model,” IEEE International Symposium on Circuits and Systems. (ISCAS), May 2002,
pp. 807-810.

[9] S.Y. Chien, Y.W. Huang, B.Y. Hsieh, S.Y. Ma, and L.G. Chen, “Fast video
segmentation algorithm with shadow cancellation, global motion compensation, and
adaptive threshold techniques,” IEEE Transactions on Multimedia, vol. 6, no. 5, Oct.
2004, pp. 732–748.

[10] D. Farin, P.H.N. de With, and W. Effelsberg, “Video-object segmentation using
multi-sprite background subtraction,” IEEE International Conference on Multimedia
and Expo, ICME ‘04, pp. 343-346, Jun. 2004.

[11] A. Krutz, M. Kunter, T. Sikora, M. Mandal and M. Frater, ”Motion-based object
segmentation using sprites and anisotropic diffusion,” International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS), Jun. 2007, pp. 35-38.

[12] S. Kopf, T. Haenselmann, D. Farin, and W. Effelsberg, “Automatic generation of video
summaries for historical films,” IEEE International Conference on Multimedia and
Expo, ICME ‘04, pp. 2067-2070, Jun. 2004.

88

[13] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 7, no. 1, Feb. 1997, pp. 19-31.

[14] ISO/IEC MPEG Video Group, “MPEG-4 video verification model version 18.0,”
N3908, Jan. 2001.

[15] J.J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer
Verlag, pp. 105-116, 1977.

[16] S. Umeyama, “Least-squares estimation of transformation parameters between two
point patterns, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no.
4, Apr. 1991, pp. 376–380.

[17] G.B. Rath and A. Makur, “Iterative least squares and compression based estimations
for a four-parameter linear global motion model and global motion compensation,”
IEEE Trans. on Circuits and System for Video Technology, vol. 9, no. 7, Oct. 1999,
pp.1075-1099.

[18] A. Smolić, T. Sikora, and J-R. Ohm, “Long-term global motion estimation and its
application for sprite coding, content description, and segmentation,” IEEE Trans.
Circuits and system for video technology, vol. 9, pp. 1227-1242, Dec. 1999.

[19] Y. Lu, W. Gao, and F. Wu, “Fast and robust sprite generation for MPEG-4 video
coding,” Proc. IEEE Pacific-Rim Conf. Multimedia, Beijing, China, pp. 118-125, Oct.
2001.

[20] Y. Lu, W. Gao, and F. Wu, “Sprite generation for frame-based video coding,” Proc.
IEEE Int. Conf. Image Processing, vol. 3, Thessaloniki, Greece, pp. 473-476, Oct.
2001.

[21] Y. Lu, W. Gao, and F. Wu, “Efficient background video coding with static sprite
generation and arbitrary-shape spatial prediction techniques,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 13, no. 5, pp. 394-405, May 2003.

[22] F. Dufaux and J. Konrad, “Efficient, robust and fast global motion estimation for video
coding,” IEEE Trans. on Image Processing, vol. 9, no. 3, Mar. 2000, pp. 497-501.

[23] A. Smolić and J-R. Ohm, “Robust global motion estimation using a simplified
M-estimator approach,” International Conference on Image Processing (ICIP), Sep.
2000, pp. 868-871.

[24] H. Richter, A. Smolić, B. Stabernack and E. Müller, “Real time global motion
estimation for an MPEG-4 video encoder,” Proceedings of Picture Coding Symposium
(PCS ’01), Apr. 2001, pp. 401-404.

89

[25] Y. Keller and A. Averbuch, “Fast gradient methods based on global motion estimation
for video compression,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 13, no. 4, Apr. 2003, pp.300-309.

[26] H, Alzoubi and W.D. Pan, “Reducing the complexity of MPEG-4 global motion
estimation using pixel subsampling,” Electronics Letters, vol. 44, Jan. 2008, pp.20-22.

[27] A. Smolić, K. Müller and J.-R. Ohm, “Global motion compensation and video
mosaicing using different 2-D motion models,” Proceedings of Picture Coding
Symposium (PCS ’01), Apr. 2001, pp. 331-334.

[28] L.G. Brown, “A survey of image registration techniques,” ACM Computing Surveys,
vol. 24, no. 4, Dec.1992, pp. 325-376.

[29] E.C. Hildreth, “The analysis of visual motion: from computational theory to neural
mechanisms,” Annual Review of Neuroscience 10, Dec. 1986, pp. 477-533.

[30] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland, “Visually controlled
graphics,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, Jun. 1993, pp. 602-605.

[31] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” 2nd Edition, Prentice
Hall, Jan. 2002.

[32] N. Grammalidis, D. Beletsiotis and M.G. Strintzis, ” Sprite generation and coding in
multiview image sequences,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 10, no. 2, Mar. 2000, pp. 302-311.

[33] C.T. Hsu and Y.C. Tsan, “Mosaics of video sequences with moving objects,”
International Conference on Image Processing 2001, Oct. 2001, pp.387-390.

[34] H. Watanabe and K. Jinzenji, “Sprite Coding in Object-based Video Coding Standard:
MPEG-4,” World Multiconference on Systemics, Cybernetics and Informatics (SCI)
2001, Proc. Vol.XIII, pp.420-425, Jul. 2001.

[35] H.K. Cheung, W.C. Siu, “Robust global motion estimation and novel updating strategy
for sprite generation,” IET Image Processing, vol. 1, no. 1, Mar. 2007, pp. 13-20.

[36] T. Meier and K.N. Ngan, “Video segmentation for content-based coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 9, no. 8, Dec. 1999,
pp. 1190–1203.

[37] M. Massey and W. Bender, “Salient stills: Process and practice,” IBM Systems Journal,
vol.35, no. 3-4, 1996, pp.557-573.

[38] D. Farin, P.H.N. de With, W. Effelsberg, “Minimizing MPEG-4 Sprite Coding-Cost
Using Multi-Sprites,” SPIE Visual Communications and Image Processing, Vol. 5308,
pp. 234-245, Jan. 2004.

90

[39] D. Farin and P.H.N. de With, “Enabling arbitrary rotational camera motion using
multisprites with minimum coding cost,” IEEE Trans. Circuits and system for video
technology, vol. 16, no. 4, pp.492-506, Apr. 2006.

[40] S.Y. Chen, C.Y. Chen, Y.W. Huang and L.G. Chen, “Multiple sprites and frame
skipping techniques for sprite generation with high subjective quality and fast speed,”
IEEE International Conference on Multimedia and Expo 2002 (ICME ’02), Aug. 2002,
pp. 785-788.

[41] S.Y. Chen, C.Y. Chen; W.M. Chao, C.W. Hsu, Y.W Huang and L.G. Chen, “A fast and
high subjective quality sprite generation algorithm with frame skipping and multiple
sprites techniques,” International Conference on Image Processing. 2002 (ICIP ’02),
vol. 1, Sep. 2002, pp. 193-196.

[42] M. Kunter, A. Krutz, M. Drose, M. Frater and T. Sikora, “Object-based multiple sprite
coding of unsegmented videos using H.264/AVC,” International Conference on Image
Processing 2007 (ICIP ’07), Sep. 2007, pp. 65-68.

91

PUBLICATION LIST

We summarize the publication status of the proposed methods and our research status in

the following.

(1) I-Sheng Kuo and Ling-Hwei Chen, “High Visual Quality Sprite Generator using
Automatic Segmentation and Intelligent Blending,” Visual Communications & Image
Processing 2005 (VCIP ‘05), Proceedings of the SPIE, vol. 5960, Jul. 2005, pp. 2128-2139.

(2) I-Sheng Kuo and Ling-Hwei Chen, “A High Visual Quality Sprite Generator using
Intelligent Blending without Segmentation Masks,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 20, no. 8, Dec. 2006, pp. 1139–1158.

(3) I-Sheng Kuo and Ling-Hwei Chen, “A Fast Multi-Sprite Generator with
Near-Optimum Coding Bit-Rate,” accepted by International Journal of Pattern Recognition
and Artificial Intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

