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Abstract: Driving is one of the most common attention-demanding tasks 
in daily life. Driver’s fatigue, drowsiness, inattention, and distraction are 

reported a major causal factor in many traffic accidents. Due to the drivers 
lost their attention, they had markedly reduced the perception, recognition and 

vehicle control abilities. In recent years, many computational intelligent technolo-
gies were developed for preventing traffic accidents caused by driver’s inattention. 

Driver’s drowsiness and distraction related studies had become a major interest research 
topic in automotive safety engineering. Many researches had investigated the driving cog-

nition in cognitive neuro-engineering, but how to utilize the main findings of driving-related 
cognitive researches in traditional cognitive neuroscience and integrate with computational intel-

ligence technologies for augmenting driving performance will become a big challenge in the inter-
disciplinary research area. For this reason, we attempt to integrate the driving cognition for real life 

application in this study. The implications of the driving cognition in cognitive neuroscience and compu-
tational intelligence for daily applications are also demonstrated through two common attention-related 

driving studies: (1) cognitive-state monitoring of the driver performing the realistic long-term driving tasks in 
a simulated realistic-driving environment; and (2) to extract the brain dynamic changes of driver’s distraction 

effect during dual-task driving. Experimental results of these studies provide new insights into the understanding of 
complex brain functions of participants actively performing ordinary tasks in natural body positions and situations 

within real operational environments.

1. Introduction

Driving is one of the most common attention-de-

manding tasks in daily life. Driver’s fatigue, drowsi-

ness, inattention, and distraction are reported a 

major causal factor in many traffic accidents. Due to 

the drivers lost their attention, they had markedly reduced the 

perception, recognition and vehicle control abilities. In recent 

years, many computational intelligent technologies were 

developed for preventing traffic accidents caused by losing 

driver’s attention. Driver’s drowsiness and distraction related 

studies had become a major interest research topic in auto-

motive safety engineering. Physiological changes such as eye 

activity measures, heart rate variability (HRV) and particularly 

electroencephalogram (EEG) activities are known to be asso-

ciated with these cognitive changes. In the past, there are 

many driving-related studies which had investigated the driv-

ing performance in human factors or in cognitive neurosci-

ence. Recently, some studies had attempted to apply 

computational intelligence to estimate driver’s cognitive state, 

but there are still fewer studies to investigate driving cogni-

tion and its application at the same time. Consequently, how 

to utilize the main findings of driving-related cognitive 

researches in traditional cognitive neuroscience and integrate 

with computational intelligence technologies for augmenting 

driving performance will become a big challenge in the inter-

disciplinary research area between cognitive neuroscience and 

computational intelligence. 

For this reason, we attempt to integrate the driving cog-

nition for real life application in this study. In the begin-

ning, we had constructed the simulated realistic-driving 

environment for the volunteer subjects performing driving-

related cognitive experiments. We then measure driver’s 

physiological signals in this environment and study their 

fundamental physiological changes in the performing driv-

ing tasks. The only possible physiological modality fulfilling 
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the measurement limitation in real-life application is elec-

troencephalography (EEG). EEG is a powerful non-invasive 

tool widely used for both medical diagnosis and neurobio-

logical research because it can provide high temporal reso-

lution in milliseconds which directly reflects the dynamics 

of the generating cell assemblies. EEG is also the only brain 

imaging modality that can be performed without fixing the 

head/body. After understanding the brain dynamic changes 

on driving cognition, we then develop some computational 

intelligence technologies based on these physiological phe-

nomena to investigate brain computer interaction. 

For any application involving EEG one of the essential 

and important steps is to remove artifacts due factors such 

as eye-blinking, muscle noise, and heart signals. One of the 

commonly used techniques for cleaning of such noises is 

Independent Component analysis (ICA). However, neuro-

scientists usually select the useful independent components 

manually by looking at the scalp-plot. Consequently such 

approaches are not useful for real-time such as drowsiness 

detection in drivers, games based on brain computer inter-

face (BCI). Hence, we propose a family of algorithms 

based on neural networks and support vector machines for 

automatic identification of useful independent compo-

nents. The utility of the proposed approaches is demon-

strated using 10-fold cross validation. We have also used 

fusion methods to improve the detection accuracy further. 

We have found that when we use a majority voting princi-

ple it is not necessarily true that higher vote corresponds 

to better decisions. This counterintuitive behavior may be 

because of the subjective variability in the EEG data. This 

study also suggests that it is possible to developing a “uni-

versal” machine for artifact removal in EEG. At last, the 

implications of the driving cognition in cognitive neuro-

science and computational intelligence for daily applica-

tions are also demonstrated through two common 

attention-related driving studies: (1) cognitive-state moni-

toring of the driver performing the realistic long-term 

driving tasks in a simulated realistic-driving environment; 

and (2) to extract the brain dynamic changes of driver’s 

distraction effect during dual-task driving. The experimen-

tal results of these studies provide new insights into the 

understanding of complex brain functions of participants 

actively performing ordinary tasks in natural body posi-

tions and situations within real operational environments.

2. Materials and Methods
This study would investigate how to augment driving perfor-

mance due to driver’s fatigue and attention have been implicated 

as the causal factors in many accidents. The development of 

human cognitive state monitoring system 

for the drivers to prevent accidents behind 

the steering wheel has become a major 

focus in the field of safety driving. Hence, 

we in public call for volunteer subjects to 

perform the driving-related cognitive exper-

iments and simultaneously measure their physiological signals 

and mental information in the constructed simulated realistic-

driving environment for the driving safety issue. In the follow-

ing sections, we will briefly introduce the physiological signals 

recording equipment, signal preprocessing and the experimen-

tal environment.

2.1 Physiological Data Acquisition
In this study, all volunteer subjects performed the driving-related 

cognitive experiments until reaching the satisfactory perfor-

mance after the placement of the EEG cap and electrodes. 

During the experiments, subjects were instructed to continu-

ously perform the tasks as best as they could. No intervention 

was made when the subjects was occasionally fell asleep and 

stopped responding. After such non-responsive periods subjects 

resumed task performance without experimenter intervention. 

The onset of each deviation and the subject’s reaction time 

were recorded at the rate of 60 Hz via a synchronous pulse 

marker train that was recorded in parallel by the EEG acquisi-

tion system for the further off-line analysis. Each subject at least 

had to complete one 60-minute session in all driving-related 

cognitive experiments in this study.

Subjects were with a movement-proof electrode cap with 

32 sintered Ag/AgCl electrodes for measuring the electrical 

activates of the brain and that is the electroencephalogram 

(EEG). Electrodes were placed according to the standard 

international 10–20 system. Active sites were referenced to 

linked left and right mastoids. EEG signals were recorded and 

amplified by the Scan NuAmps Express system (Compumed-

ics Ltd., VIC, Australia) with a sampling rate at 250 Hz and 

16-bit precision. All channels were referenced to the right 

mastoid with input impedance lower than 5 kV. At the end 

of each completely session, the location of the electrodes were 

digitized with the 3D digitizer (Polhemus 3 space eastrak). 

The recorded EEG data were preprocessed using a simple 

low-pass filter and a high-pass filter with cut-off frequency 

above 50 Hz and below 0.5 Hz, respectively, to remove 60 Hz 

line noise, high-frequency artifacts and electro-galvanic signals 

before further analysis. Then these preprocessed EEG signals 

were fed to independent component analysis (ICA) to 

decompose EEG signals into various temporally statistical 

independent activations.

2.2 Independent Component Analysis
Independent component analysis (ICA) [1–3] is a signal pro-

cessing technique and uses a measure of statistical indepen-

dence to separate mixed signals that are generated by 

distinct sources but are recorded as a linearly mixed signal. 

ICA finds the signal components that are maximally independent. 

ICA is used to separate mixed signals composed of 
several distinct sources (such as EEG) in which the 
signal components are maximally independent.
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Hence, it can be used to denoise EEG 

signal when it is mixed with different 

artifacts such as blinking of eyes. Let 

X 1 t 2 5 1x1 1 t 2 , x2 1 t 2 , c, xn 1 t 2 2
T be an n-

dimensional data vector observed at time 

t and S 1 t 2 5 1 s1 1 t 2 , s2 1 t 2 , c, sn 1 t 2 2
Tbe the 

vector of independent source signals. The 

ICA assumes a data model X 1 t 2 5 AS 1 t 2 , where A is an 

n 3 n mixing matrix. The ICA finds the A and hence when 

A has full rank then using A-1 we can find the unmixed (or 

independent) source signals. The ICA algorithm makes an 

assumption the aggregation of signals from different EEG 

sources is linear and instantaneous (no time delay). In gener-

al, for given data set X, an ICA algorithm produces both A 

and S. The EEGLAB [4] provides a tool for the visualization 

of a column of A21, which is known as the component scalp 

map. Therefore, the independent components are generated 

using the EEGLAB developed in MATLAB (The Math 

Works, R2007a).

The ICA methods were extensively applied to blind source 

separation problem since 1990s [5–8]. Subsequent technical 

reports [9–12] demonstrated that ICA was a suitable solution 

to the problem of EEG source segregation, identification, and 

localization. In this study, we used an extended version of infor-

max algorithm of Bell and Sejnowski [2] that can separate 

sources with either super- or sub-Gaussian distributions, to 

decompose distinct brain activities. It has also been used in our 

previous studies [19–21].

2.3 Experimental and Simulated 
Realistic-Driving Environment
Most driving-related cognitive experiments were adopted to 

measure the physiological or psychophysical responses while 

participants performed a computer-simulated driving task in a 

well-controlled laboratory in which driving controls were a 

joystick or a steering wheel in front of a computer screen. In 

such studies, behavioral data such as reaction time to perform 

sudden braking or turning maneuvers are often measured. 

However, participants are never provided with kinesthetic 

input or sensation during these experiments. The lack of 

multi-sensory (visual, auditory, kinesthetic and tactile) infor-

mation presented to participants limits the assessment and 

interpretation of the complicated relationships between such 

information and the motor actions of the participants. The 

ideal experimental condition would 

measure physiological signals in an actual 

automobile on the road. However, inves-

tigating driving perception in an actual 

driving environment would be subject 

to several limitations. First, ethical con-

cerns would prohibit exposing subjects 

to physical danger of attention lapse 

while driving an automobile. Second, 

appropriate data acquisition and moni-

toring devices are needed to study the 

rapid physiological responses of kinesthetic stimuli. Simulators 

provide simple and repeatable stimulation to control the 

parameters of the experiment. Third, objective evaluation of 

driving performance and putative level of alertness may be dif-

ficult to assess on the road. 

To overcome such limitation of investigating kinesthetic 

perceptions during driving, a realistic simulator is the best 

alternative for driving-related research [13–16]. Hence, we had 

established an experimental and simulated realistic-driving 

environment as a test platform for studying the EEG dynamics 

[16–23] associated with cognitive-state changes during driving 

in this study. Our past study [22] also demonstrated the differ-

ence of brain dynamics with and without kinesthetic stimuli 

and sensation in the simulated realistic-driving environment. 

The environment can provide visual, auditory and, most 

importantly, kinesthetic and tactile stimulation either separate-

ly or jointly to volunteer subjects, which are not available in 

conventional EEG laboratories. This dynamic driving simula-

tor enables systematic testing of the limitations of normal 

human performance in sustained-attention tasks in a safe yet 

realistic environment.

This environment is consisted of an actual automobile 

mounted on a 6-degree-of-freedom (DOF) Stewart platform 

(Figure 1(a)) and 3608 surrounded  virtual-reality (VR) based 

driving scenes projected by seven projectors (Figure 1(b)). The 

6-DOF motion platform is controlled by six hydraulic linear 

actuators to generate translational and rotational movement as 

well as vibratory feedback to simulate actual driving conditions. 

The 3608 projection of driving scenery is updated synchro-

nously with deviations caused by wheel/paddle movement by 

the subjects or by road conditions such that subjects feel the car 

moving as if they are driving in real-world conditions. The 

motion platform also provides physiological and behavioral 

response recordings to not only to evaluate driving perfor-

mance and behavior but also to examine the brain dynamics 

in response to the kinesthetic stimulation generated by the 

motion platform. Therefore, this test environment provides an 

(a) (b)

FIGURE 1 (a) The driving cabin simulator mounted on a 6-DOF dynamic Stewart motion 
platform. (b) The simulated realistic-driving environment.

To overcome such limitation of investigating 
kinesthetic perceptions during driving, a simulated 
realistic driving environment is the best alternative for 
driving cognition research.
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 interactive, safe and realistic environment at very low cost, and 

the outcomes of this study should be highly applicable to real-

life driving safety research.

3. An Automatic Classification System 
for Useful Brain Sources Selection
For any application involving EEG signals, one of the essential 

and important steps is to remove artifacts such as eye-blinking, 

muscle noise, and heart signals. One of the commonly used tech-

niques for cleaning of such noises is ICA which is briefly 

described in the above section. However, some neuroscientists 

and psychologists usually select the useful independent compo-

nents, called useful brain sources, manually by looking at the 

scalp-plot. Consequently such approaches are not useful for real-

time applications such as drowsiness detection in drivers, games 

based on brain computer interface (BCI). Here in this section, we 

propose a family of algorithms based on neural networks and 

support vector machines for automatic identification of useful 

independent components. The utility of the proposed approaches 

is demonstrated using 10-fold cross validation. We have also used 

fusion methods to improve the detection accuracy further. Based 

on the experimental results, we found that when we use a major-

ity voting principle, it was not necessarily true that higher vote 

corresponded to better decisions. This counterintuitive behavior 

might be because of the subjective variability in the EEG data. 

This study also suggests that it is possible to develop a “universal” 

machine for artifact removal in EEG.

Among the different methods of artifacts removal, ICA, [24] 

is a frequently used method. ICA methods generally assume that 

the signals recorded on the scalp are mixtures of time courses of 

temporally independent cerebral and non-cerebral sources. The 

potentials generated by different parts of the brain, scalp, and 

body are linearly summed at the recording electrodes. ICA also 

assumes that the propagation delays are not significant. Many 

investigations have demonstrated that ICA could separate the 

artifacts and raw EEG signals [24–31]. Jung et al. in [31] proposed 

a method for isolating and removing different types of EEG arti-

facts by linear decomposition using an extension of the Bell & 

Sejnowski,’s information-maximization ICA algorithm [2–3]. 

The extended algorithm [3] can separate sources with either 

super-Gaussian or sub-Gaussian amplitude distributions. This 

enables one to remove line noises efficiently. The algorithm does 

not require reference channels for the artifact sources. The meth-

od first finds the independent time courses of different cerebral 

and artifact sources and then the cleaned EEG signals are 

obtained by eliminating the contributions of the artifact sources.

Authors in [27–30] have used ICA to remove the effect of 

eye-blinking. Electrooculography (EOG) signals can be used to 

record the artifacts caused by eye-blinking in EEG signal. Then 

a linear combination of EOG signal recorded 

at different sampling time can be subtracted 

to find the artifact free EEG. Also, the EOG 

signal can be compared with the independent 

components to identify independent compo-

nents relating to EOG related artifacts [30]. 

Researchers have investigated the problem of removing the 

effect of eye-blinking removal for a long time. Among various 

approaches such as Average Artifact Subtraction (AAS) [32] and 

Principle Component Analysis (PCA) [31], ICA is found to do 

a better job of removing artifacts. The AAS method finds similar 

artifact peaks and averages these artifacts to generate a subtrac-

tion model. This is then subtracted from the noisy EEG to get 

the clean EEG signals [33–34]. But this method does not rule 

out the possibility of including some useful actual EEG signal in 

the subtraction model, and hence it may induce distortions on 

scalp maps. The PCA method translates the original data into 

some important components, which could preserve most vari-

ability of the original signal in a lower dimension. PCA based 

methods result in components where a single component may 

contain too much information (signal). The artifact components 

extracted from ICA are generally found to exhibit stronger cor-

relation with the actual artifacts than that by the PCA artifact 

components [31]. Furthermore, because PCA usually mixes the 

EEG and artifacts, if a component is removed, the cleaned EEG 

signal may contain less EEG signal for the analysis. Moreover, 

McKeown et al. [35] made an interesting comparison between 

PCA and ICA which had shown that ICA performed better. All 

these have motivated us to consider ICA based artifact removal 

from EEG signals. For these reasons, we chose the ICA method 

to remove the artifacts.

This study attempts to demonstrate that it is feasible to 

develop such a “universal” machine. Here, we use four machine 

learning tools, the usual multilayer perceptron (MLP) architec-

ture with hyperbolic tangent signal function (MLPTAN) and 

MLP architecture with redial basis function signal function 

(MLPRBF), the radial basis function neural network (RBFNN), 

and the support vector machine with radial basis kernel func-

tion (SVMRBF). Some experimental results have been report-

ed in references [36–37]. To demonstrate the performance of 

proposed automatic component selection system, we use a 

10-fold cross validation protocol to check the consistency of 

training data which are collected by 25 volunteer subjects, and 

apply to the testing data from other 10 volunteer subjects to 

evaluate the classification accuracy.

3.1 Experimental Data Collection and Feature Extraction
For this study, we have generated the EEG data using a simulat-

ed realistic-driving environment [16–23] established in the 

Brain Research Center of the National Chiao Tung University. 

The EEG data are collected when each subject performs an 

hour long-term driving task, which is subjected to the experi-

mental driving-related cognitive tasks. Each subject is instructed 

to respond to the experimental tasks and maintain a good 

 driving performance on the road. As shown in this study, these 

ICA are widely used to remove the artifact EEG signals 
such as eye-blinking, muscle noise, and heart signals in 
many biomedical researches.
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driving-related cognitive tasks are like 

drowsiness, distraction and motion sickness 

driving. In this study, although we used 

32-ch international 10–20 system for EEG 

signal recording, we will get 28 channels 

EEG signals except four channels such as the 

reference, ground, FP1 and FP2 channels. The electrode loca-

tions of FP1 and FP2 are closed to eye movement which will 

easily affect clean EEG signals. Hence, we ignore the recording 

signals from these areas. In the experiments, we have used 35 

volunteer subjects. Of these 35, data on 25 subjects were col-

lected earlier and develop a global automatic scheme for useful 

independent components selection from 

these 25 subjects, called training data. For 

the evaluation performance of this auto-

matic scheme, we used other EEG data-

sets acquired from another 10 subjects as 

the testing data.

For each subject, we have 28 indepen-

dent components extracted by 28 EEG 

channels and hence 28 scale-maps(SM), 

SM1, SM2 . . . and SM28. We use some 

well experienced neuroscientists who 

can interpret/analyze EEG to label 

each scalp map as signal (useful com-

ponent with label 1) or as artifact (not 

useful with label 0). Figure 2 displays 

the 28 scalp maps extracted by a single 

subject. In Fig. 2, we have labeled the 

useful components as good and the 

remaining ones as bad. For example, 

the 1st, 6th and 18th components are 

labeled as bad as these possibly corre-

spond to eye blinking. We emphasize 

that there may be some scalp-maps 

on which the well experienced neu-

roscientists may not agree about clas-

sifying the maps as artifacts or not. 

In this study, we use totally 980 weighting vectors from 

different 35 subjects including training and testing data, 

each vector representing a corresponding independent 

component.

3.2 The Automatic Classification System
As mentioned in above, we developed an automatic compo-

nent classification system in this study. To demonstrate the per-

formance of the proposed system, we use a 10-fold cross 

validation protocol to check the consistency of training data 

and apply to the testing data to evaluate the classification accu-

racy. Figure 3 is showing the 10-fold cross-validation of train-

ing algorithm structure. In this study, the training data collected 

from 25 subjects which can totally generate 700 training com-

ponents. These ICA components are partitioned randomly into 

10 folds with equal size. We leave one of the 10 folds out for 

validation performance and the reaming 9 folds are used to 

train an automatic scheme for useful component selection. In 

the kernel of supervised training method, we use the support 

vector machine with RBF kernel (SVMRBF) and three types 

of neural network (MLPTAN, MLPRBF and RBFNN) to 

develop the automatic component selection. The RBF and MLP 

networks are the two most widely used neural networks for 

C1 Bad C2 Good Good Bad C5 Good C6 BadC3 C4

C7 Good C8 Good Good Good C11 Good C12 BadC9 C10

C13 Good C14 Good Good Good C17 Bad C18 BadC15 C16

C19 Good C20 Bad Good Bad C23 Bad C24 BadC21 C22

C25 Bad C26 Bad Bad BadC27 C28

FIGURE 2 A set of illustrative ICA scalp component map labeled by well experienced neuroscientists.
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FIGURE 3 Ten-fold cross-validation of training algorithm structure.

It is feasible to apply computational intelligence 
to develop a “universal” machine for artifact removal 
in EEG signals.
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 pattern recognition application [38]. We have used the back-

propagation algorithm for training MLP networks with single 

hidden layer. The MLPTAN and MLPRBF both are multilayer 

perceptron networks. Both of them use the log-sigmoid transfer 

 function at the output layer. The only difference between the 

two networks is in the signal function of the  hidden layer. The 

MLPTAN uses hyperbolic tangent signal function while 

the MLPRBF uses the radial basis function.

Figure 4 shows the testing algorithm through ten-fold 

cross validation training classifiers. To evaluate the training 

algorithm performance, another 10 subjects EEG datasets were 

applied ICA to extract the testing components. Each subject 

also has 28 components in each session. 

Then we fill the 28 components from 

each subject to the 10 classifiers which 

is constructed by 10-fold cross valida-

tion of the training algorithm. In this 

way, we get 10 different classifiers 

Ck, k 5 1, c, 10. Each of these classi-

fiers is designed based on the training 

data from the 25 subjects. Now each of 

these 10 classifiers is tested on the testing 

data obtained from the 10 new subjects. 

Each classifier generates a value 0 or 1. 

However, we use the majority vote from 

the results of these ten classifiers to make 

the decision but it may be not necessari-

ly correct. It might be better to use a threshold to help making 

the decision. A decision with a higher threshold usually will 

indicate more confidence on the decision.

3.3 Experimental Results and Discussion
In cross validation results of training data, Table 1 reports the 

average accuracy and standard deviation through four different 

machine learning models. We can clearly find that the SVMRBF 

performs the best accuracy about 92.6%. The second better per-

forming model is RBFNN whose accuracy can reach about 

90.6%. The other two neural networks, MLPTAN and MLPRBF 

perform similar accuracy. In addition, we can see that the stan-

dard deviations of these models are very low and consistent (not 

reach 1%). It means that the training models had been trained as 

a good structure with the optimal parameters. Therefore, the 

training experimental results are shown that it might be possible 

to have automatic systems for useful independent component 

selection. It is a strong indicator of the fact that with adequate 

training data it may be possible to design a “universal machine” 

for selection of good/useful independent components. Such sys-

tems would be extremely useful for real-time applications.

As for real-life applications, we individually test the accu-

racy performance of each subject. Figure 5 plots the average 

accuracy of testing datasets from 10 subjects via different 

threshold score. Different color dotted lines mean the average 

accuracy of testing datasets using different training structures 

with thresholds from 0.1 to 0.9. Short vertical lines on each 

threshold point mean the standard deviation of average accu-

racy from 10 subjects. According to the Figure 5 results, we 

have two major findings. One is that the classification accura-

cy of four different models are increasing while the threshold 

is also increasing from 0.1 to 0.6 and then decreasing. Conse-

quently, RBFNN model performs the best testing accuracy 

(92.5%) under threshold 0.6 and the local optimum threshold 

values 0.6 and 0.7 will lead to the better classification perfor-

mance. Moreover, we collect the classification accuracy of 

each subject under threshold 0.6 in Table 2. The numerator 

value in brackets means the number of correct classified 

 components and the denominator value means the totally 28 

extracted components. The other finding is that SVMRBF 

TABLE 1 Ten-fold cross validation accuracy of training datasets.

SUPERVISED METHODS
ACCURACY RATE 6 
STANDARD DEVIATION

MLPTAN 83.5% 6 0.0082
MLPRBF 83.8% 6 0.0133
RBFNN 90.6% 6 0.0085
SVMRBF 92.6% 6 0.0037
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FIGURE 4 Testing algorithm through ten-fold cross validation training classifiers.
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(the black line) performs the more stable classi-

fication performance. All classification accura-

cies of 10 different thresholds are over 85%. 

Therefore, if we can not find the global opti-

mum value of the threshold, we can use 

SVMRBF to be a general model of useful com-

ponents  selection. It can guarantee the classifi-

cation performance is 85% at least. In other words, 85% 

accuracy means that there are four misclassified components 

in 28 components.

In summary of training and testing results, we suggest that 

RBFNN model will be the better model for the automatic 

scheme of useful component selection. It can also perform the 

better predictive performance for real-life application. Regard-

ing the optimal threshold of RBFNN model, we suggest set-

ting value at 0.6 is enough to have better performance. Since 

the number of good components is much smaller than the bad 

components, the training process may give more importance to 

the noise components. We plan to explore the utility of data 

replication as well as generation of additional data through 

rotation or negation in the future investigation. In addition, we 

had applied the automatic classification system to the below 

case studies of driving cognition to automatically select the 

useful brain sources/independent components.

4. Case Studies: Driver’s Drowsiness 
Estimation in Long-term Driving
It has been widely accepted that the variation of human alertness, 

revealed on the changes of behavioral performance, was involved 

in alterations of the oscillatory brain activities in some specific 

brain regions (e.g. central, parietal and occipital areas etc.) and 

such fatigue related changes on brain rhythms can be assessed in 

terms of the electroencephalogram with Fourier methods and 

time-frequency analysis. Though abundant results in the litera-

tures have shown that EEG traces could reflect changes of the 

alertness, EEG correlates of fluctuations in alertness from differ-

ent experiments are still quite diverse. Specifically, the intensity of 

the alpha [39–40] or theta [41–43] band power was found 

respectively increased with the degradation of behavioral perfor-

mance in different experiments. However, some studies reported 

that both theta and alpha band power were increased with the 

deleterious of the subjects’ performance [44–46]. Our previous 

studies also observed that the EEG frequency components per-

forming the highest correlations with the long-term driving per-

formance were subject-dependent [19–21]. These discrepancies 

may due to the observed subjects’ drowsiness levels were not 

identical. For example, in a series of study investigating the corre-

lations of human performance and alertness, subjects with 

increased theta activities performed longer response time [42–43] 

than the periods with augmented alpha activities [39]. Therefore, 

the aim of this study was to continuously assess the changes of 

the EEG rhythms from alertness to drowsiness for elucidating the 

exactly nature of the fatigue related EEG dynamics.

4.1 Subjects Performing in the Lane Keeping Driving Task
Ten right-handed healthy (nine males, 18–28 years old) vol-

unteers with normal or corrected to normal vision were paid 

to participate the lane keeping experiment. All subjects were 

free from neurological or psychological diseases and without 

drug or alcohol abuse. No subjects reported with sleep depri-

vation at one day before the experiment. Subjects were 

required to have lunch at one hour before the experiment 

since it has been know that the drowsiness easily occurred 

during early morning, mid-afternoon, late nights and especial-

ly after meal times [47]. Furthermore, it is also reported that 

the alertness is easily diminished within one-hour monoto-

nous working during the above periods [48–49]. An informed 

consent was obtained from every subject before the experi-

ment and the experiment protocol was approved by the Insti-

tutional Review Broad of Taipei Veterans General Hospital.

Each subject performed the experiment in the simulated 

realistic-driving environment. The four-lanes road of the VR 

scene were separated by a median strip and the distance 

between the left and right sides of the road was equally divided 

into 250 points (digitized into values 0–250), where the width 

of each lane and the car was 60 and 32 units, respectively. The 

refresh rate of highway scene was set at 60 Hz which can prop-

erly emulate a car driving at a fixed speed of 100 km/hr on the 

highway. All scenes were updated according to the displacement 

of the car and the subject’s wheel handling. The car was 

 randomly drifted away from the center of the cruising lane, 

TABLE 2 Testing classification accuracy of each subject under threshold 0.6.

SUBJECTS S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVERAGE

MLPTAN 85.7%
(24/28)

89.3%
(25/28)

85.7%
(24/28)

96.4%
(27/28)

78.6%
(22/28)

100%
(28/28)

89.3%
(25/28)

92.9%
(26/28)

92.9%
(26/28)

82.1%
(23/28)

89.3%
(250/280)

MLPRBF 82.1%
(23/28)

89.3%
(25/28)

85.7%
(24/28)

92.9%
(26/28)

85.7%
(24/28)

89.3%
(25/28)

89.3%
(25/28)

89.3%
(25/28)

92.9%
(26/28)

92.9%
(25/28)

88.9%
(249/280)

RBFNN 92.9%
(26/28)

89.3%
(25/28)

89.3%
(25/28)

96.4%
(27/28)

82.1%
(23/28)

96.4%
(27/28)

92.9%
(26/28)

100%
(28/28)

92.9%
(26/28)

92.9%
(26/28)

92.5%
(259/280)

SVMRBF 82.1%
(23/28)

92.9%
(26/28)

89.3%
(25/28)

89.3%
(25/28)

85.7%
(24/28)

92.9%
(26/28)

82.1%
(23/28)

89.3%
(25/28)

89.3%
(25/28)

89.3%
(25/28)

88.2%
(247/280)

RBFNN performs the best accuracy for the automatic 
scheme of useful component selection. SVM with 
RBF kernel can be as a general model due to its 
stable accuracy.



40    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2009

which was controlled and triggered from the WTK program, to 

mimic the consequences of a non-ideal road surface. The inter-

deviation intervals were varied from 5 to 10 sec and the car was 

deviated to either left or right side with the equal chance. This 

task required subjects to compensate the drifting by manipulat-

ing the steering to keep the car on the center of third cruising 

lane (counted from left to right).

4.2 Brain Dynamics Changes 
from Alertness to Drowsiness
All subjects showed several periods of the fluctuated driving 

performances from small to large local driving errors (LDE), 

sometime even abandoning control of the steering during the 

100-min driving task. Figure 6(A) showed that several fluctua-

tions occurred in the typical LDE trajectory during the single 

session of subject 10. The sorted LDE curve of the single sub-

ject (Fig. 6(B)) showed that LDE values were distributed from 

0 to 70 and the majority of the LDE values were 

ranged between 0 and 30. Since only limited trails 

were with LDE values over 30 across 10 subjects, 

therefore, only trials with LDE values below 30 

were selected for further analyzing. The responses 

to the drifting event were ranged from 500 to 

6000 ms, which corresponded to the values of the 

LDE between 0 and 30. Thus, the LDE values lower than 3 

indirectly indicated the subject was alert.

Ten subject’s cumulative percentage plots of the LDE with 

values from 0 to 30 showed in Fig. 6(C). Though the percent-

age of the different drowsiness levels were varied across sub-

jects, all subjects exhibited cognitive status from alertness to 

drowsiness. Figure 7 shows the grand means of the LDE sort-

ed power spectra and the detail changes at the alpha- and the-

ta-band spectra at the occipital (Fig. 7(A)), parietal (Fig. 7(B)) 

and frontal (Fig. 7(C)) IC clusters. In the occipital IC cluster, 

the dominant frequency band is shifted from alpha to theta 

band along with increases of the LDE indexes. For characteriz-

ing the temporal changes of the LDE-related power spectra at 

the alpha- and theta-band in details, the temporal profile of the 

power changes at alpha- and theta-band are plotted against 

the LDE indexes shown at Fig. 7(D), 7(G). The changes of 

the alpha-band power show a non-monotonic profile along 

with the decreases of the alertness. Spe-

cifically, the alpha-band power is linearly 

increased for the LDE index lower than 

20 and then the power is slightly 

decreased for the LDE indexes between 

20 and 30. The theta-band power shows 

a linearly increased from low LDEs to 

high LDEs. Similar changes on the LDE-

sorted spectra are also observer at the 

parietal IC cluster but the variations of 

the EEG activities is weaker than that 

observed at the occipital IC cluster (as 

shown in Fig. 7(B)).

The peak intensities of the alpha- and 

theta-band power were significantly 
1P , 0.05 2  lower than those observed at 

the occipital IC cluster (alpha: 1.2 vs 2.1; 

theta: 0.8 vs 1.5). Additionally, the rate of 

the spectral power increases at the alpha- 

and theta- band power are lower than 

those at the occipital cluster (alpha: 8 vs 

5; theta: 13 vs 10). As for the frontal clus-

ter, a significant power increase is showed 

around the 5 Hz at higher LDE values in 

the LDE-related spectra. Similar to the 

occipital and parietal clusters, the theta-

band power is linearly increased with the 

increases of the LDEs. The alpha-band 

power is only increasing slightly along 

with the decreases of alertness at the 

frontal cluster. According to these results, 
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FIGURE 6 (a) The time course of the local driving error during a sample one-hour session 
(S10). (b) Sorted local driving error values. (c) The cumulative percentage plots of LDE from 10 
subjects showing all subjects exhibited different performance periods from alertness to drowsi-
ness. Each color trace represented the cumulative percentage plot from a single subject.

Adaptive feature selection mechanism (AFSM) can 
automatically select effective EEG features and 
ICAFNN can accurately estimate driver’s individual 
alertness level.
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we used the alpha- and theta-band 

power as the EEG features from the 

occipital and parietal components and 

then applied to an adaptive feature selec-

tion and ICA-Mixture-Model-based 

Fuzzy Neural Networks (ICAFNN) [50]

to estimate the driver’s drowsiness level.

4.3 EEG-Based ICAFNN for Driver’s 
Drowsiness Estimation
In order to automatically select the 

drowsiness related features, an adaptive 

feature selection mechanism based on the 

correlation coefficients between log 

bandpower of the drowsiness related 

components and subject’s alertness level 

index (SALI) was proposed in this study. 

We use the correlation spectra to 

illustrate the proposed adaptive feature 

selection mechanism (AFSM) [21]. After 

feature selection process, ICAFNN 

which was performed as the alertness 

level estimator in the study is a novel 

fuzzy neural network (FNN) and it can 

construct itself with an economic net-

work size, and the learning speed as well 

as the modeling ability [50].

Experiment results shown in Table 3 

are the selected features from 5 different 

subjects. The features selected by the 

method in [19] are also included in 

Table 3 for comparison. As can be seen, 

two methods might select different 

components. In general, the drowsiness-

related regions are mainly in the parietal 

and occipital lobes. Optimal frequency 

bands were selected according to the 
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FIGURE 7 The grand mean of the local driving error sorted EEG spectra of the occipital IC (a), 
(d), and (g); parietal IC (b), (e), and (h); and frontal IC (c), (f), and (i). Upper: the grand mean 
of the error sorted power spectra normalized by subtracting the mean spectrum of the alert 
zero-error performance in each subject. Middle: The grand of the error sorted alpha-band 
power spectra of the three ICs across 10 subjects. The top insets showed the average scalp 
maps of the three ICs. Lower: The grand of the error sorted alpha-band power spectra of the 
three ICs across 10 subjects. Solid lines: The grand mean of the sorted alpha and theta-band 
power spectra. Dash lines: The grand mean plus the standard error of the sorted alpha and 
theta-band power spectra. Black horizontal thick line segments: alpha- and theta bands exhibit-
ed significant ( p , 0.01) drowsy spectral power increases. Numbers indicated the correspond-
ed local driving error values, which were the onsets of the drowsy spectral power significantly 
increased at the alpha and theta bands for the three ICs.

TABLE 3 Compared features with the method in [19] and the AFSM corresponding to different subjects.

SUBJECT1 SUBJECT2 SUBJECT3 SUBJECT4 SUBJECT5
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correlation coefficients between ICA power spectra and 

drowsiness index and iteratively testing by the linear regres-

sion model (LRM) [19].

In order to compare the performance of these two feature 

selection methods, the features are used as inputs of the linear 

regression models for driver’s alertness level estimation, as 

shown in Table 4. The mean correlation between actual alert-

ness level time series and within-session estimation by using 

the features selected by AFSM is 90%, whereas the mean corre-

lation coefficient between actual alertness level and cross- 

session estimation is 86.6%. The average performance of the 

AFSM is closed to the performance using the optimal features. 

It can also be found that some testing results are better than the 

performance of the training sessions due to the repeatedly test-

ing procedure. In addition, we fed the features selected by 

AFSM into the ICAFNN for subject’s alertness level estima-

tion. The ICA weight matrices obtained from the training ses-

sions were used to spatially filter the features in the testing 

sessions so that training/testing data were processed in the same 

way before feeding to the estimation models for the same sub-

ject. Table 4 (bottom row) summarizes the performance of 

alertness level estimation obtained by the ICAFNN model 

across ten sessions of five subjects. The mean correlation 

between actual and estimated alertness level time series is 

98.2 6 1.0%, whereas the mean correlation coefficient in 

cross-session testing is 91.3 6 2.7%.

5. Case Studies: Driver’s Distraction 
Effect Extraction in Dual-task Driving
Distraction and inattention of drivers have been identified as 

the main leading causes of car accidents and often affects 

driver’s attention ability. The U.S. National Highway Traffic 

Safety Administration has identified driver distraction as a 

high priority area about 20–30% [51]. Distraction during 

driving by whatever cause was a significant contributor to 

road traffic accidents [52–53]. Driving is a complex task in 

which several skills and abilities are involved simultaneously. 

Reasons of distractions found during driv-

ing were quite widespread, including eat-

ing, drinking, talking with passengers, using 

cell phones, reading, feeling fatigue, prob-

lem-solving, and using in-car equipment. 

Recently, commercial vehicle operators 

with complex in-car technologies are also 

at increased risk since drivers may become increasingly dis-

tracted in the years to come [54]. Some literatures studied the 

behavioral effect of driver’s distraction in car. It was shown by 

[55] based on measurement of the static completion time of 

an in-vehicle task. Similarly, the distraction effects caused by 

cellular phones during driving have been a focal point of 

recent in-car applications [56–57]. Experimental studies have 

been conducted to assess the impact of specific types of driver 

distraction on driving performance. Though these studies 

generally reported significant driving impairment [58], but 

simulator studies cannot provide information about the 

impact of these decrements of crashes resulting in hospital 

attendance of drivers. Therefore, in order to provide informa-

tion before the occurrence of crashes, the drivers’ physiologi-

cal responses were investigated. But to monitor drivers’ 

attention-related brain resources is still a challenge for 

researchers and practitioners in the field of cognitive brain 

research and human–machine interaction.

The main goal of this section was to investigate the brain 

dynamics related to distraction by using EEG and VR-based 

realistic driving environment. Unlike the previous studies, 

the designed experiment has three main characteristics. First, 

the SOA experimental design with the different appearance 

time of dual tasks (mathematical questions and unexpected 

car deviation) has the benefits to investigate the driver’s 

behavioral and physiological response under multiple condi-

tions and multiple distracted levels. Second, the ICA-based 

advanced analysis methods were used to extract the artifact-

free brain responses and related cortical location related to 

the single/dual task. Third, compared with single task, the 

interaction and effects of dual-task-related brain activities 

were also investigated.

5.1 Subjects Performing in the Dual-Task Driving Task
Fifteen healthy participants (15 males), between 20 and 28 

years of age, were recruited from the university population. 

They had normal or corrected-to-normal vision, were right 

TABLE 4 Comparisons of different alertness level estimation approaches including linear regression models (LRM) using the features 
selected by the method in [19], by AFSM, and the ICAFNN model using the features selected by AFSM for five different subjects.

SUBJECT 1 2 3 4 5 AVERAGE %

MANUAL 1
LRM IN [2220]

TRAINING 77% 91% 93% 80% 90% 86.2 6 7.2
TESTING 91% 89% 92% 89% 80% 88.2 6 4.8

AFSM 1 LRM TRAINING 92% 91% 93% 84% 90% 90.0 6 3.6
TESTING 91% 88% 92% 82% 80% 86.6 6 5.4

AFSM 1 ICAFNN TRAINING 97% 98.9% 97% 99% 99% 98.2 6 1.0
TESTING 93% 94% 91% 92% 87% 91.3 6 2.7

Reasons of driver’s distraction during driving were quite 
widespread, including eating, drinking, talking with 
passengers, using cell phones, reading, feeling fatigue, 
problem-solving, and using in-car equipment. 
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handed, with driver’s license, and reported 

being free of psychiatric or neurological 

disorders. Written informed consent was 

obtained prior to the study. Each subject 

participated in four simulated work ses-

sions. In each session, the subject sat in 

front of the monitor with their hands on the steering wheel 

to control the car to stay in the center of the third lane (from 

the most left lane).

This section will investigate the distraction effects in 

dual-task conditions, two tasks including the unexpected 

car deviations and the mathematical questions were 

designed. In the driving task (car deviations), the car was 

constantly and randomly drifted from the center of the 

third lane. In this condition, the subjects needed to turn the 

steering wheel to let the car go back to the third land. It 

was for the sake of mimicking the consequences of driving 

on a non-ideal road surface. In the math task (mathematical 

questions), two-digit addition equations were presented in 

front of the subjects. The answers of the equations were 

designed to be either right or wrong. The subjects were 

asked to press the right or left button on the steering wheel 

when the equation was correct or wrong respectively. 

Moreover, the allotment ratios of correct or wrong equa-

tions were both 50% and 50%. Especially, to investigate the 

effect of SOA between single- and dual- task conditions, 

the combinations of these two tasks were designed to pro-

vide different distracting conditions to the subjects as shown 

in Fig. 8. Five cases were developed to 

study the interaction of the two tasks. 

The bottom insets showed the onset 

sequences of two tasks.

5.2 Independent 
Component Clustering
EEG epochs were extracted from the 

recorded EEG signals. Then, the ICA 

was utilized to decompose the indepen-

dent brain sources from EEG signals. 

Based on distraction effects, plenty of 

brain sources were involved in this 

experiment. For example, the motor 

component would be active when the 

 subjects were trying to control the car 

with the steering wheel. In the mean-

while, activations in the frontal compo-

nent would appear and be related to 

attention. Therefore, ICA components 

including frontal and motor were 

selected for IC clustering based on their 

EEG characteristics.

At the first, IC clustering grouped 

massive components from multiple ses-

sions and subjects into several signifi-

cant clusters. The cluster analysis, 

k-means, was applied to the normalized scalp topographies 

and power spectrum of all 450 (30 channels 3 15 subjects) 

components from the 15 subjects. Then, it identified at least 

7 clusters of components having similar power spectrum and 

scalp projections. These 7 distinct component clusters 

accounted for frontal, central midline, parietal, left/right 

motor and left/right occipital, respectively. In this paper, 

frontal and left motor components were applied to analyze 

the distraction effects. Figure 9 showed the scalp maps and 

equivalent dipole source locations for two IC clusters, fontal 

and left motor. Based on this figures, the EEG sources of dif-

ferent subjects in the same cluster were from the same physi-

ological component.

5.3 Brain Dynamics Changes in Distraction Driving
The cross-subject averaged ERSP in the frontal cluster corre-

sponding to the five cases were shown in Fig. 10(a). Significant 
1p , 0.01 2  power increases related to the math-task were 

observed in this figure. It demonstrated that the power increas-

es in the frontal cluster were related to math task. The theta 

power increases in the three dual cases including case 1–3 

were slightly different to each other. Comparing to single 
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FIGURE 8 The illustration showed the relationship between the deviation onset and math 
occurred. D: deviation onset. M: math question onset. (a) Case 1: math was presented at 
400 ms before the deviation onset. (b) Case 2: math and deviation occurred at the same time. 
(c) Case 3: math presented at 400 ms after the deviation onset. (d) Case 4: only math pre-
sented. (e) Case 5: only deviation occurred. The bottom insets showed the onset sequences 
of two tasks.

For cross-subjects analysis, ICA component clustering 
will be used to find the statistical and consistent 
phenomena based on EEG characteristics.
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math task (case 4), the power in dual-task cases were stronger. 

Especially, the power increase in case1 was the strongest. In 

addition, the beta power increases which appeared only in the 

math-task and time-locked to mathematics onsets were 

induced by mathematical equations. The comparisons of the 

latency and total power in the four cases in Fig. 10(b) were 

given in Fig. 10(c). It demonstrated that the latency of power 

increases in both frequency bands were different with different 

time of SOA. The shortest latencies of power increases in both 

bands occurred in case 1. The longest latency of power 

increase in theta band occurred in case 4. It also demonstrated 

that the amount of power increases in theta band were differ-

ent with different time of SOA. The most significant power 

increase occurred in case 1.

6. Discussions
Noise removal in EEG signal is an essential and important 

step in any application of EEG. If independent component 

analysis is used for this purpose, then selection of useful 

independent components is the most crucial step. Typically 

this selection is done by human experts who decide looking 

at the scalp maps. This manual intervention not only makes 

it dependent on the availability and subjectivity of experts, 

but also it becomes a stumbling block in BCI and in any 

other real-time applications involving EEG. In this investiga-

tion, we have demonstrated that machine learning approach-

es can solve this problem to a great extent. In particular, we 

have used four machine learning models to construct the 

 automatic scheme for useful components selection. Al -

though all of them are quite effective, RBFNN model will 

be the better model for the automatic scheme of useful 

component selection. It can also perform the better predic-

tive performance for real-life application. Our investigation 

also indicates that the performance of a trained system on 

different subjects could be different, but this effect is not 

very severe and can be eliminated using fusion. Normally in 

a fusion scheme, decisions are made based on majority vot-

ing.  In our investigation, using a simple threshold score 

function we have found that higher vote does not necessari-

ly mean better performance of a classifier system. Our inves-

tigation indicates that it is possible to design a “universal 

system” for such job, given adequate training data. So far, 

there is no precise standard method to “automatically” 

select/reject the useful/artifact components and neuroscien-

tists and psychologists always manually remove the noise 

components. When they are using EEGLAB open source 

toolbox, they are often confusing how to select the useful 

components and manually repeat the selection many times. 

Besides, EEGLAB has been “downloaded” at least 48,000 

times and “applied” for many EEG-related studies. There-

fore, such automatic selection system will be very useful for 

neuroscientists and psychologists to do the scientific research 

related to ICA application.

With the automatic brain sources classification system, we 

then investigated the neuro-physiological correlates of cogni-

tive state changes using EEG and their relation to declining 

of performance during lane keeping driving task. In Fig. 7, 

the EEG a and u rhythm during periods of high error were 

significant stronger than during periods of low error. In 

detailed, the onset of the significant alpha-band power 

increases at three clusters was a little earlier than the theta-

band power. These results would be suggested that previous 

controversial results may be partially caused by the different 

drowsiness levels between volunteers. Applying an adaptive 

EEG-based drowsiness estimation technology that combines 

the ICA, power spectrum analysis, adaptive feature selection 

mechanism (AFSM) and ICAFNN is also proposed to con-

tinuously, indirectly estimate/predict fluctuations in human 

alertness level indexed by alertness level measurement, 

expressed as deviation between the center of the vehicle and 

the center of the cruising lane in a virtual-reality based driv-

ing environment. The AFSM can automatically select effec-

tive features based on the correlation analysis between the 

power spectra of drowsiness related components and the 

driving errors. The proposed ICAFNN can accurately esti-

mate driver’s individual alertness level using ten sub-band 

power spectra of two ICA components selected by AFSM. 

The computational methods developed in this study can lead 

to on-line monitoring of human operators’ cognitive state in 

attention-critical settings.

Besides, we also investigated the effects of driver’s distraction 

in which different levels depends on the SOA experimental 

(a) (c)

(b) (d)

FIGURE 9 The scalp maps and equivalent dipole source locations 
after IC clustering for (a) the frontal components, (b) the left motor 
components, across 15 subjects. There were 14 subjects in the fron-
tal cluster and 11 subjects in the left motor cluster. The bigger scalp 
map was the mean of the total component maps in the correspond-
ing component cluster. The smaller maps were the individual scalp 
maps in the corresponding component cluster. The right panels (c) 
and (d) showed the 3-D dipole source locations (colored spheres) 
and their projections onto average brain images. The colored source 
locations were corresponding to its scalp map.
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design. Cross-subject analysis was applied 

to prove that the appeared features were 

not restricted to specific subject or exper-

iment. First, two main cortical areas 

including frontal area (which involved 

processing of mental tasks), somatosensory 

area (mu suppression phenomenon) were 

discussed. These cortical areas which had 

the difference between single- and dual-

task cases would be selected to infer the 

relationship to the distraction effects. 

Then, the brain dynamic with behavior 

 performance would be discussed to com-

pare different distraction levels. The 

experimental results showed that behav-

ioral and physiological (EEG) responses 

under multiple cases and multiple dis-

tracted levels. The theta power increases in 

frontal area were higher in dual tasks than 

in single task. The phasic changes around 

the theta band for the case, which the 

math presented at 400 ms before the 

deviation onset, showed the strongest 

increase among all dual-task cases. This 

was because there was a first processing 

task in brain and subjects needed more 

brain source to manage the second task 

presented after the first task at 400 ms. 

Also, the latencies of the theta power 

increases were shifted along with the 

onset of math presented. The latency for 

the case, which the math presented at 400 

ms before deviation, appeared was the 

shortest. In the beta band, the power 

increases were induced by the onsets of 

the math. In conclusion, the results also 

suggested that the power increases of the frequency band, 4,7.8 Hz, 

in frontal area could be used as the index for early detecting 

driver’s distraction in the real driving.

7. Conclusion
This study had demonstrated that it is possible to develop-

ing a “universal” machine for artifact removal in EEG sig-

nals. Thus we applied such computational intelligence 

technology to investigate the brain computer interaction 

on driving cognition. Its implications for daily applications 

are also demonstrated through two common attention-re-

lated driving studies: (1) cognitive-state monitoring of the 

driver performing the realistic long-term driving tasks; and 

(2) to extract the brain dynamic changes of driver’s distrac-

tion effect during dual-task driving. The experimental 

results showed above of these studies will provide new 

insights into the understanding of complex brain functions 

of participants actively performing ordinary tasks in real-

life applications, especially on driving cognition. They may 

also be applied in future studies to elucidate the limitations 

of normal human performance in repetitive task environ-

ments and may inspire more detailed study of changes in 

cognitive dynamics in brain-damaged, diseased or geneti-

cally abnormal individuals. Furthermore, the applications 

on driving cognition would have many potential diverse 

research fields in the operational environment such as com-

putational intelligence, cognitive neuroscience, human fac-

tors and brain computer interfaces.
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