
Computers & Operations Research 36 (2009) 3031 -- 3040

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Scheduling of a two-stage differentiation flowshop to minimize weighted sum of
machine completion times

T.C.E. Chenga, B.M.T. Linb,∗, Y. Tianb

aDepartment of Logistics and Maritimes Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
bInstitute of Information Management, Department of Information and Finance Management, National Chiao Tung University, Hsinchu 300, Taiwan

A R T I C L E I N F O A B S T R A C T

Available online 20 February 2009

Keywords:
Flowshop
Machine completion time
Approximation algorithm
Performance ratio

This paper considers the problem of scheduling a two-stage flowshop that consists of a common crit-
ical machine in stage one and two independent dedicated machines in stage two. All the jobs require
processing first on the common critical machine. Each job after completing its critical operation in stage
one will proceed to the dedicated machine of its type for further processing in stage two. The objective
is to minimize the weighted sum of stage-two machine completion times. We show that the problem
is strongly NP-hard, and develop an O(n3) polynomial time algorithm to solve the special case where
the sequences of both types of jobs are given. We also design an approximation algorithm with a tight
performance ratio of 4

3 for the general case.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Flowshop scheduling is one of the most widely studied topics
in the scheduling literature [6,23]. This broad topic contains many
different settings and special cases, reflecting a wide range of appli-
cations. In this paper, we consider a special kind of the two-stage
flowshop, where all the products require processing first on a com-
mon critical machine in the first stage, after which each product
proceeds to a dedicated machine for further processing in the sec-
ond stage. We call this model the two-stage differentiation flowshop
and present the msachine configuration of such a flowshop model in
Fig. 1. Manymanufacturing environments that producemultiple final
products are extensions of this basic model. In particular, this model
can be applied to describe the production setting for delayed prod-
uct differentiation, which is one of the approaches taken to achieve
mass customization [4,26]. Kyparisis and Koulamas [15] remarked
that “applications of the proposed flowshop model are encountered
in manufacturing settings, where all jobs must first go through the
same main process, and then they require a finishing operation spe-
cial to the job”. For a specific application, consider a production line
for furniture manufacturing (e.g., chairs). The main bodies of the
chairs are manufactured in the first stage. Several different head-
supports are then assembled in the second stage. Thus, each type
of chair products proceeds to a different dedicated machine in the

∗ Corresponding author. Tel.: +88635131472; fax: +88635729915.
E-mail address: bmtlin@mail.nctu.edu.tw (B.M.T. Lin).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.02.001

second stage. Clearly, the second stage may be an assembly opera-
tion as described above, a painting operation (painting the product
in one of several colors), or a packaging operation (wrapping up the
product in one of several packages), etc. Another application is pot-
tery production. The main glazing process is performed in the first
stage. Several heating processes to produce different figures or sur-
face effects are applied in the second stage. In other words, each type
of pottery products proceeds to a corresponding dedicated machine
for the required baking process after being glazed. The second stage
may consist of re-glazing, various thermal treatments, or packaging.

The machine setting studied in this paper is similar to the hybrid
flowshop, where multiple parallel machines are available at each
stage and jobs can be processed by any of the machines. The reader
is referred to Linn and Zhang [17] for a review of scheduling in hy-
brid flowshops. In the differentiation model considered in this study,
stage two consists of two machines, and jobs are routed to only the
dedicated machines of their types. When there is only one type of
jobs, the differentiation model reduces to the classical two-machine
flowshop proposed by Johnson [13]. The model studied in this paper
probably first appeared in Herrmann and Lee [9], in which three
objectives, namely the makespan, the number of tardy jobs and
the maximum tardiness, were investigated and the corresponding
problems were shown to be strongly NP-hard. For the problem to
minimize the makespan with two fixed sequences for the two types
of jobs, they transformed it into the problem to minimize the max-
imum lateness such that Jackson's earliest due date (EDD) rule [11]
can solve the makespan problem in O(n logn) time. Given an arbi-
trary number of stage-two machines in a job shop, Drobouchevitch
and Strusevich [5] designed a heuristic algorithm to minimize the
makespan with a performance ratio of 3

2 . Kyparisis and Koulamas

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:bmtlin@mail.nctu.edu.tw


3032 T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040

Common Critical Machine

Dedicated Machine 2

Dedicated Machine 1

Fig. 1. Machine configuration.

[15] investigated the model with m types of jobs that need to be
processed on m dedicated machines in the second stage, subject to
a technical constraint, called the block assumption, whereby jobs of
the same type must be processed contiguously on the critical ma-
chine in the first stage. The authors proposed an O(m(n logn+logm))
algorithm to minimize the makespan. Subsequently, Moshelov and
Yovel [20] made several comments on Kyparisis and Koulamas's al-
gorithm and improved the time complexity to O(n logn) under the
assumption that m�n. Cheng and Kovalyov [2] incorporated setup
times on the common machine whenever the processing of jobs on
it is switched from one type to the other. They proposed a dynamic
programming algorithm that is polynomial in the number of jobs for
makespan minimization. A model that exhibits a reverse production
flow has m dedicated machines for m types of jobs installed in stage
one and contains a critical machine that is common for all the jobs
in stage two. With regard to makespan minimization, the two sym-
metric models are equivalent. Specifically, the reverse model with
m=2 types of jobs was independently studied by Lin [16], Neumytov
and Sevastyanov[21] and O�guz et al. [22].

The goal of makespan minimization, as an internal management
metric, is to maximize machine utilization. Another objective is to
minimize the weighted total job completion time (

∑
wiCi), which,

as a metric of WIP inventory or customer's waiting time, is based
upon job completion times. The objective to minimize the weighted
sum of machine completion times studied, in this paper, is non-
classical. It aims at attaining better machine utilization where dif-
ferent machines may have different operating costs. This objective
borrows the concept of the weighted total job completion time, but
it generalizes the goal of makespan minimization that focuses on in-
ternal management. Bagga [1] first studied the situation where the
machine (rental) cost depends on the duration between a machine
starts processing its jobs and when it finishes processing all the jobs.
Ho and Gupta [10] investigated permutation flowshop scheduling
with dominant machines to minimize the total machine completion
time. Fondrevelle et al. [7] investigated this objective in a multi-
stage flowshop incorporating the constraint of minimum and maxi-
mum time lags between successive operations. They showed that the
classical two-stage (F2) problem can be solved using Johnson's rule
and that the problem with three or more stages, i.e., Fm, m�3, is
strongly NP-hard. For the parallel-machine model (Pm), we can min-
imize the weighted sum of machine completion times in polynomial
time because the problem can be formulated as the classical assign-
ment problem, which is polynomially solvable. The objective of to-
tal machine completion time is different from the objective of total
machine load, which was introduced by Mosheiov [19] to measure
the total time in which the machines are engaged in the production
process. The total machine load objective has the potential to deal
with the objective of the total completion time as demonstrated in
Jeng and Lin [12]. To the best of our knowledge, the three-machine
two-stage flowshop scheduling model with the objective of mini-

mizing the weighted sum of machine completion times, denoted by
F(1,2)_WMT, under study has not been addressed in the scheduling
literature. Note that only stage-two machine completion times are
involved in the objective function because the completion time of
the stage-one machine is fixed once the input instance is given.

The rest of the paper is organized as follows. In Section 2 we
present the notation that is used throughout the paper, and give
a numerical example to illustrate the problem definition. Section 3
presents the result that the problem under study is strongly NP-
hard. We dedicate Section 4 to the development of a polynomial
time algorithm for the special case with a fixed sequence for each
of the two types of jobs. We develop an approximation heuristic
and analyze its performance ratio in Section 5. We present some
concluding remarks and suggest some topics for future research in
Section 6.

2. Problem definition and notation

In this section, we give a formal definition of the F(1,2)_WMT
problem and define the notation that will be used. We then give an
example of two schedules for illustration.

The problem setting of F(1,2)_WMT is formally defined as follows.
There is a set of n jobsJ={J1, J2, . . . , Jn} available from time zero to be
processed on a three-machine two-stage flowshop, where M0 is the
stage-one machine andM1,M2 are two different dedicated machines
in the second stage. The jobs belong to two different types: type
1, J1 = {J1, J2, . . . , Jn1 } and type 2 J2 = {Jn1+1, Jn1+2, . . . , Jn1+n2 } with
n1+n2=n. Each job inJ1 consists of two operations, of which the first
is performed on the common critical machine M0, and the second
is performed on the dedicated machine M1, as in the classical two-
machine flowshop. Similarly, the jobs of J2 are processed first on
the common critical machineM0 and then on the dedicated machine
M2. Each machine can process at most one operation at any time,
and no preemption is allowed. The goal is to find a schedule that
minimizes the weighted sum of machine completion times. Applying
the job-interchange argument to jobs of the same type, we can show
that it suffices to consider only permutation schedules, i.e., jobs of
the same type have the same processing sequence on the critical
machine and on their dedicated machine.

Notation:
J= {J1, . . . , Jn} =J1 ∪J2: the set of jobs to be processed;
J1 = {J1, . . . , Jn1 }: the set of type-1 jobs;
J2 = {Jn1+1, . . . , Jn1+n2 }: the set of type-2 jobs, where n1 +

n2 = n;
M0: the stage-one common critical ma-

chine;
M1: the stage-two dedicated machine

for jobs of J1;
M2: the stage-two dedicated machine

for jobs of J2;
pki: the processing time on machineMk,

k = 0, 1, 2, of job Ji ∈ J;
wk: the weight of machine Mk, k = 1, 2;
� = (�1,�2, . . . ,�n): a particular schedule, �i ∈

J, 1� i�n;
Cki(�): the completion time of job Ji ∈ J on

machineMk, k=0, 1, 2, under sched-
ule �;

C(k)(�): the completion time of machine
Mk, k = 0, 1, 2, under schedule �;

Z(�) = w1C(1)(�) + w2C(2)(�): the weighted sum of machine com-
pletion times under schedule �;

Z∗: the optimal weighted sum of ma-
chine completion times.



T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040 3033

Fig. 2. Two example schedules with different objective values.

In the above notation, � may be omitted if no ambiguity would
arise, and Cki will replace Cki(�). To avoid possible confusion con-
cerning missing operations in the flowshop, we assume that all
the processing times pki are strictly positive. Note that processing
times p1i (resp. p2i) are only defined for i�n1 (resp. i>n1). The
machine weights wk are positive, too. Furthermore, if it is not nec-
essary to specify the starting times of the jobs, then a sequence,
instead of a schedule, of the jobs on machine M0 will be referred to.
Fig. 2 shows four jobs, two of each type, to be scheduled. Consider
schedules �1 = (J3, J1, J2, J4) and �2 = (J1, J3, J4, J2). Jobs of each type
are sequenced in the Johnson's order in both schedules. The two
schedules correspond to different interleaved Johnson's sequences
and result in different weighted sums of machine completion
times.

3. Complexity results

In the following, we show that the F(1,2)_WMT problem is NP-
hard in the strong sense. We first introduce an optimality property
of the studied problem. A job sequence on machine M0 can be di-
vided into blocks, each of which contains jobs of the same type.
The following property resolves the sequencing issue within each
block.

Lemma 1. There is an optimal schedule in which the jobs of the same
block on machine M0 are sequenced by Johnson's rule.

Proof. The validity can be established by applying the job-
interchange argument to two consecutive jobs of the same type not
following Johnson's order. �

The following NP-hardness proof is based on a reduction from
3-PARTITION, which is known to be strongly NP-hard [8].

3-PARTITION: Given a non-negative integer B and a set of 3m non-
negative integers A = {x1, x2, . . . , x3m} with B/4<xi <B/2 for each xi
and

∑
xi∈Axi =mB, is there a partition A1,A2, . . . ,Am of set A such that

for each subset Aj,
∑

xi∈Aj
xi = B?

+B

M2

M0

M1 I0 A1

J1

J1 J2

J2

A2

A2

Am

Am

Jm-1

Jm

Jm

+2
B

+B
M+B

+B
M+2

B

+2
BM+2

B

+m
B(M

+1
)+2

B

J3m+1<A1>

+m
BM+m

B

Fig. 3. Configuration of the optimal schedule in Theorem 1.

Theorem 1. The F(1,2)_WMT problem is NP-hard in the strong sense
even if the stage-two machines are equally weighted.

Proof. The verification process can be easily done in polynomial
time. Therefore, the decision version of the F(1,2)_WMT problem is
clearly in NP. From a given instance of 3-PARTITION, we construct the
following instance of F(1,2)_WMT consisting of 4m + 1 jobs:

n1 = 3m + 1 type-1 jobs:

p0i = xi, p1i = xi(M + 1), i = 1, . . . , 3m, where M>mB,

p0,3m+1 = �,p1,3m+1 = 2B where 0< �<1.

n2 = m type-2 jobs:

p0i = BM, p2i = B(M + 1), i = 3m + 2, . . . , 4m,

p0,4m+1 = BM, p2,4m+1 = 2B.

The two dedicated machines have the same weights. Without
loss of generality, we assume that m>2. Given a 3-PARTITION in-
stance and the constructed instance, it can be shown that the an-
swer to 3-PARTITION is affirmative if and only if there is a schedule for
the F(1,2)_WMTproblem whose objective value is no greater than
2mB(M + 1) + 4B + 2�.

If there is a partition A1,A2, . . . ,Am of set A, we construct a schedule
by arranging the jobs on machine M0 as

(J3m+1, 〈A1〉, J3m+2, 〈A2〉, J3m+3, . . . , J4m, 〈Am〉, J4m+1),

where 〈Ai〉 denotes the type-1 jobs corresponding to the elements of
Ai. It is easy to verify that the weighted sum of machine completion
times is exactly 2mB(M+1)+4B+2�. The configuration is shown in
Fig. 3.

We now assume that there is a schedule � with Z(�)�2mB(M +
1) + 4B + 2�. First, notice that on machine M1 the total processing
length of all the jobs is mB(M + 1)+ 2B and that on machine M2 the
total processing length of all the jobs is (m − 1)B(M + 1) + 2B. With
these observations, we readily have that the sum of idle times on
machine M1 and machine M2 cannot exceed B(M + 1) + 2�. Because
all the type-2 jobs have the same operation on machine M0 and job
J4m+1 has the shortest processing time on M2, we assume that the
type-2 jobs are arranged in increasing order of their indices. The
validity of this assumption comes from Lemma 1.

Assume that type-2 job J3m+2 is scheduled first on M0. Then,
an idle time of BM will be incurred on both dedicated machines,
resulting in 2BM total idle time, a contradiction. Therefore, some
type-1 jobs must be scheduled before job J3m+2 on M0. Let 〈A1〉 ∪
{J3m+1} denote the set of type-1 jobs that precede job J3m+2 on M0.
Before proceeding with the analysis, we note that an idle time of BM



3034 T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040

is inevitable for the first job J3m+2 on M2. By Lemma 1, we assume
that type-1 job J3m+1 is scheduled first because p0,3m+1 = �. The idle
time on M1 is at least �. Consider the following two cases:

Case 1:
∑

xi∈A1
xi >B

The starting time of job J3m+2 on machine M2 is � + ∑
xi∈A1

xi +
BM�� + (B + 1) + BM>B(M + 1) + �. That is, the idle time on M2 is
greater than B(M+1)+ �. Combining the idle time � on M1, the total
idle time on both dedicated machines is greater than B(M + 1) + 2�,
a contradiction.

Case 2:
∑

xi∈A1
xi <B

On machine M1, the completion time of the last job of 〈A1〉 is
� + 2B + (M + 1)

∑
xi∈A1

xi. Because the completion time of job J3m+2
on machine M0 is � + ∑

xi∈A1
xi + MB, the first type-1 job following

〈A1〉 on machine M1 has an idle time of at least⎛
⎝� +

∑
xi∈A1

xi + MB

⎞
⎠ −

⎛
⎝� + 2B + (M + 1)

∑
xi∈A1

xi

⎞
⎠

= M

⎛
⎝B −

∑
xi∈A1

xi

⎞
⎠ − 2B

�M − 2B

>mB − 2B

>B.

Therefore, the total idle time on M1 is greater than � + B. On the
other hand, the total idle time on M2 is at least � + BM. Hence the
sum of the idle times on the two stage-two machines is greater than
B(M + 1) + 2�, a contradiction.

From the analysis of the above two cases, we know that the
equality

∑
xi∈A1

xi = B must hold. Let the elements corresponding to
the type-1 jobs included in 〈A1〉 form a subset A1. When job J3m+2 is
finished, the completion times of the three machines are �+BM+B,
�+BM+3B and �+2BM+2B, respectively. We can continue the same
analysis to obtain sets A2,A3, . . . ,Am and complete the proof. �

Before closing this section, we note that the instance constructed
in the proof exhibits three side conditions: (1) The dedicated ma-
chines are equally weighted. (2) Agreeable condition: for any jobs
Ji and Jj of the same type, if p0i <p0j, then p1i�p1j (type 1) or
p2i�p2j (type 2). (3) Equal-processing-time condition: all the type-
2 jobs have the same processing time on M0. In other words, the
F(1,2)_WMT problem remains computationally intractable even
if the input instance satisfies these three assumptions commonly
adopted to deal with difficult scheduling problems. The follow-
ing sections are dedicated to one special case that can be solved
in polynomial time, and to the development of an approximation
algorithm for the general case.

4. Fixed sequences

In this section, we consider a simplified situation where the
sequences of both types of jobs are fixed, i.e., two independent pre-
determined sequences are given. Under this assumption, the prob-
lem reduces to finding an interleaved sequence on machine M0 from
the two given fixed sequences. The problem is motivated as fol-
lows. We have two sets of products to manufacture and each set has
its processing sequence predetermined by some job characteristics
or technological constraints. The products will be assigned a com-
mon resource, i.e., machine time on the stage-one machine, so we
need to construct an interleaved sequence of all the products on the
common machine. In most scheduling problems, schedules are im-
plicitly implied from sequences. For some problems, it is neverthe-
less hard to determine an optimal schedule from fixed sequences. In
two-machine flowshop scheduling with batch processing, it is not
trivial to determine an optimal batching policy of a given sequence

to minimize the total completion time. To minimize the makespan
in the F(1, 2) model, Hermann and Lee [9] reduced the problem to
the problem to minimize the maximum lateness, which is solvable
in O(n logn) time. Shafransky and Strusevich [24] studied open shop
scheduling to minimize the makespan, subject to a given job se-
quence on one machine. They investigated several cases and showed
them to be NP-hard or polynomially solvable.

We denote the F(1, 2) problem with two fixed sequences by
F(1,2)_WMTfixed_seq. Consider the two schedules in Fig. 2 as an
example. Both schedules are obtained from interleaving sequences
(J1, J2) and (J3, J4); however, the weighted sums of machine com-
pletion times of the two interleaved sequences (J3, J1, J2, J4) and
(J1, J3, J4, J2) are different. For notational simplicity, let (J1, J2, . . . , Jn1 )
and (Jn1+1, Jn1+2, . . . , Jn) denote the given sequences. Given the two
sequences, there are (n1 + n2)!/(n1)!(n2)! possible interleaved se-
quences. The problem is to develop a solution algorithm to deter-
mine an interleaved sequence from such a solution space with an
exponential size. Preliminary investigation suggests that the prob-
lem is not trivial to solve. At least, no simple method or dispatching
rule has been found to deliver optimal solutions.

In this section we explore several structural properties that can
help identify promising candidates. The main algorithm will con-
struct at most n1(n2 +1) schedules, among which an optimal sched-
ule is identified. In particular, for each job Ji of type 1, and for each
l = 0, . . . ,n2, the algorithm finds a feasible schedule (if such exists)
to minimize the completion time of machine M2. The schedule must
satisfy the following two requirements: there are exactly l jobs of
type 2 preceding job Ji on M0 and job Ji is the first job of type 1 after
which machine M1 has no idle time.

Let �∗ be an optimal sequence. We examine the processing of
type-1 jobs on machine M1. In the following discussion, when index
i = 0 refers to a job, a dummy job with zero processing time is
assumed; when index i = 0 refers to job completion times, C0,0 = 0
and C1,0 = 0 are assumed. First, we find the largest index i such
that C0i >C1,i−1 and C0r �C1,r−1 for any r, i< r�n1. In other words,
on machine M1, a non-zero idle time exists before job Ji and jobs
Ji, Ji+1, . . . , Jn1 are processed consecutively without idle time inserted.
We further assume that exactly j type-2 jobs Jn1+1, . . . , Jn1+j precede
job Ji in �∗. Therefore, job Ji has i + j − 1 predecessors. The above
arrangement implies that the completion time of machine M1 is

C(1)(�∗) =
i∑

r=1

p0r +
n1+j∑

r=n1+1

p0r +
n1∑
r=i

p1r .

Given the above arrangementwith the fixed completion time C(1)(�∗)
of machine M1, we then seek to minimize the completion time
C(2)(�∗) of machine M2. The above discussion leads to the following
notion.

Definition. The ordered pair (i, j), 1� i�n1, 0� j�n2 is admissible if
there exists an interleaved sequence � that satisfies the following
conditions:

(a) Job Ji is preceded by type-1 jobs J1, . . . , Ji−1 and type-2 jobs
Jn1+1, . . . , Jn1+j.

(b) C1,i−1(�)<C0,i(�) = ∑i
r=1p0r + ∑n1+j

r=n1+1p0r .
(c) For i< r�n1, C0,r(�)�C1,r−1(�).

Condition (b) specifies that there is a non-zero idle time on ma-
chine M1 before Ji. Condition (c) dictates that job Ji is the last job of
set J1 to have idle time before its second-stage operation, i.e., the
processing of Ji, . . . , Jn1 on machine M1 is consecutive without idle
time inserted. An illustration of the configuration with two sched-
ules is shown in Fig. 4.



T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040 3035

Ji

i-1 type-1 jobs
j type-2 jobs

M0

M1

M2

Ji

i-1 type-1 jobs

j type-2 jobs

M0

M1

M2

Fig. 4. Tow schedules for an admissible ordered pair (i, j).

Definition. For the ordered pair (i, j), 1� i�n1, 0� j�n2, define the
basic sequence �(i, j) as (J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j, Ji, . . . , Jn1 , Jn1+j+1,
. . . , Jn).

Lemma 2. If the basic sequence �(i, j) violates condition (b) or condition
(c), then the ordered pair (i, j) cannot be admissible.

Proof. The starting time
∑i

r=1p0r + ∑n1+j
r=n1+1p0r of job Ji is fixed for

the pair (i, j). The subsequence (J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j) clearly pro-
vides the smallest completion time of Ji−1 on M1 for all the possible
interleaved sequences derived from (J1, . . . , Ji−1) and (Jn1+1, . . . , Jn1+j).
Therefore, if the subsequence (J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j) violates con-
dition (b), then so will all the other interleaved sequences. If con-
dition (c) fails, then on M1 a non-zero idle time exists before some
type-1 job Ji′ , i′ >i, in the basic sequence. The idle time before job Ji′
can be eliminated only if the idle time before Ji vanishes, which vio-
lates condition (b). Therefore, if condition (c) fails, the ordered pair
(i, j) cannot be admissible. The proof is complete.

The theme of our solution algorithm now becomes one of deter-
mining all the admissible ordered pairs (i, j) using Lemma 2. For each
admissible ordered pair, we find an interleaved sequence that mini-
mizes the completion time of machineM2. Finally, we take the mini-
mum of the weighted sum of machine completion times over all the
admissible pairs. The minimization of weighted sum of machine-two
completion times of the basic sequence consists of two subproblems:

Problem X: Minimize the completion time of Jn1+j on machineM2
with condition (b) satisfied, and;

Problem Y: Subject to the solution for Problem X, minimize the
completion time of job Jn on machineM2 with condition (c) satisfied.

For Problem X, it suffices to consider the partial sequence �̄(i, j)=
(J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j). For 1� r� i − 1, define Īr as the subse-
quence of type-2 jobs of the subset {Jn1+1, . . . , Jn1+j} that are sched-
uled between jobs Jr and Jr+1. In addition, define Ī0 as the subse-
quence of type-2 jobs of {Jn1+1, . . . , Jn1+j} that are scheduled before
J1. The set of jobs in sequence Īr , 0� r� i − 1, is denoted by {Īr}.
Initially, in subsequence �̄(i, j), we have Ī0 = Ī1 = · · · = Īi−2 =

null, and Īi−1 = (Jn1+1, . . . , Jn1+j). The following procedure trans-
forms subsequence �̄(i, j) so that the completion time of job Jn1+j is
minimized, subject to condition (b).

Let �̄′(i, j) be a sequence derived by interleaving the two types
of jobs from the partial sequence �̄(i, j) = (J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j)
for Problem X. Sequence �̄′(i, j) is called feasible if condition (b) is
satisfied. Given two feasible sequences �̄′(i, j) and �̄′′(i, j), we say that
�̄′(i, j) dominates �̄′′(i, j) if

⋃r
l=0{Ī

′
l} ⊇ ⋃r

l=0{Ī
′′
l } for all 0� r� i − 1.

The schedule of Fig. 4(a) dominates that of Fig. 4(b).

Observation 1. Giventwo feasible sequences �̄′(i, j) and �̄′′(i, j) for Prob-
lem X, if �̄′(i, j) dominates �̄′′(i, j), then the completion times of Jn1+j
on machine M0 and machine M2 with respect to �̄′(i, j) are no greater
than those with respect to �̄′′(i, j), i.e., C0,n1+j(�̄

′(i, j))�C0,n1+j(�̄
′′(i, j))

and C2,n1+j(�̄
′(i, j))�C2,n1+j(�̄

′′(i, j)).

The observation reveals that Problem X reduces to finding a fea-
sible sequence that dominates all the feasible ones. The following
procedure is designed to find such a sequence. In the algorithm, the
symbols “⊕” and “�” denote sequence concatenation and sequence
deletion, respectively.

PROCEDURE X(�̄(i, j))

Step 1: Set Ī0 = Ī1 = · · ·=Īi−2 = null, and Īi−1=(Jn1+1, . . . , Jn1+j).
Step 2: Set r = 0; s = n1 + 1.
Step 3: While (r < i − 1) and (s�n1 + j) do

if moving Js ∈ Īi−1 into Īr will not violate condition (b)
then Īr := Īr ⊕ (Js); Īi−1 : =Īi−1�(Js); s := s + 1;
else r := r + 1.

Step 4: Return sequence �̄(i, j) = (Ī0, J1, Ī1, . . . , Īi−2, Ji−1, Īi−1).

Lemma 3. PROCEDURE X for Problem X produces a feasible sequence that
dominates all the feasible sequences.

Proof. First, note that during the course of execution of PROCEDURE
X, the produced sequence �̄(i, j) satisfies condition (b), so feasibility
is maintained.

Let �̄′(i, j) = (Ī
′
0, J1, Ī

′
1, . . . , Ī

′
i−2, Ji−1, Ī

′
i−1) be a feasible se-

quence not dominated by sequence �̄(i, j). There must be a small-
est r such that

⋃r
l=0{Īl} ⊂ ⋃r

l=0{Ī
′
l}. Let Jx be the type-2 job of⋃r

l=0{Ī
′
l}\

⋃r
l=0{Īl} with the smallest index. By the logic of the if

test in Step 3, augmenting Īrwith Jx will cause infeasibility, and
thus �̄′(i, j) cannot be feasible. Therefore, there cannot be such a
feasible sequence �̄′(i, j). �

With regard to the computing time, it is easy to see that con-
dition (b) is examined for at most O(n1 + n2) = O(n) times. A na�̈ve
approach can be deployed to examine condition (b) for the current
sequence under consideration by a simple O(n) loop, thus, resulting
in an overall O(n2) time. The concept of composite jobs, which was
proposed by Kurisu [14], can be used to reduce to constant time the
time required by checking condition (b) for a single sequence. Appli-
cations of composite jobs can be found in, e.g., Monma [18], Sidney
[25], and Cheng and Lin [3].

Assume that the string of jobs (J1, . . . , Ji−1) is to be processed on
machines M0 and M1 as in the two-machine flowshop without any
other jobs inserted in the string. By the concept of composite job, the
processing of the job string (J1, . . . , Ji−1) can be replaced by a single
composite job, denoted by J[1:i−1] in the sense that the string and its
corresponding composite job have the same total idle time on M1.
To define composite job J[1:i−1], we first consider jobs Ji−2 and Ji−1.
Composite job J[i−2:i−1] is defined by letting

p0,[i−2:i−1] = p0,i−2 + max{0,p0,i−1 − p1,i−2},



3036 T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040

M0

M
1

J1

J1 J2

J2

J3 J4

J3 J4

M
0

M
1

J[1:2]

J[1:2]

J3 J4

J3 J4

M
0

M
1

J[1:3]

J[1:3]

J4

J4

M
0

M
1

J[1:4]

J[1:4]

Fig. 5. Formation of composite jobs.

and

p1,[i−2:i−1] = max{0,p1,i−2 − p0,i−1} + p1,i−1.

Combining Ji−3 and J[i−2:i−1], we can then define J[i−3:i−1] by letting

p0,[i−3:i−1] = p0,i−3 + max{0,p0,[i−2:i−1] − p1,i−3},

and

p1,[i−3:i−1] = max{0,p1,i−3 − p0,[i−2:i−1]} + p1,[i−2:i−1].

Therefore, composite jobs J[i−2:i−1], J[i−3:i−1], . . . , J[1:i−1] can be succes-
sively found in a backward manner in O(n) time. Composite jobs
J[r:s], 1� r < s� i − 1, can be similarly derived in O(n2) time. This
preprocessing step will be elaborated in the analysis of another al-
gorithm to be discussed later.

Lemma 4 (Kurisu [14]). Sequences (J1, . . . , Ji−1) and (J1, . . . , Jr−1, J[r:s],
Js+1, . . . , Ji−1), 1� r < s� i−1, have the same total idle time on machine
M1.

The schedules shown in Fig. 5 demonstrate how composite jobs
are formed and the total idle time on the stage-twomachine remains
unchanged. Assume that all the composite jobs J[r:i−1], 1� r� i − 1
are derived when the input instance is given. The required time for
the preprocessing step is O(n2), which will not be included in the
computing time of PROCEDURE X.

Lemma 5. Given the composite jobs defined, PROCEDURE X solves Prob-
lem X in O(n) time.

Proof. Lemma 3 confirms that PROCEDUREX produces a feasible sched-
ule that minimizes the completion times of job Jn1+j on machines
M0 and M2. To complete the proof, it suffices to show that checking
condition (b) for each iteration of Step 3 requires only O(1) time.

Let T0 and T1 be the completion times of machines M0 and M1
immediately after consideration of appending a particular type-2 job
Js–Īr . If not terminated, depending on whether or not the insertion

of Js into Īr is feasible, the algorithm will proceed to examining
either Js+1 and Īr or Js and Īr+1. For the former case, job Js+1 and
composite job J[r+1:i−1] are scheduled from T0 and T1. On machine
M1, the idle time immediately preceding J[r+1:i−1] is � = max{0, T0 +
p0,s+1 +p0,[r+1:i−1] − T1}. Therefore, the completion time of job Ji−1 is

C1,i−1 = T1 + � +
i−1∑

l=r+1

p1l.

If, on the other hand, Js and Īr+1 are considered in the next iteration,
then � = max{0, T0 + p0,s + p0,[r+2:i−1] − T1} and

C1,i−1 = T1 + � +
i−1∑

l=r+2

p1l.

Having the value of C1,i−1, we can readily examine condition (b) in
constant time. The proof is complete. �

Based upon the sequence �̄(i, j) produced by PROCEDURE X, we can
then proceed to the second part to deal with Problem Y . We start
with the sequence

�̃(i, j) = �̄(i, j) ⊕ (Ji, . . . , Jn1 , Jn1+j+1, . . . , Jn).

For i� r�n1 − 1, define Ĩr as the subsequence of type-2 jobs of
{Jn1+j+1, . . . , Jn} that are scheduled between jobs Jr and Jr+1. The se-
quence of type-2 jobs arranged after Jn1 is denoted by Ĩn1 . Initially,
in the subsequence �̃(i, j), we have Ĩi = Ĩi+1 = · · · = Ĩn1−1 = null,
and Ĩn1 = (Jn1+j+1, . . . , Jn). As the development and analysis are sim-
ilar to those for Problem X, we omit the details of the proofs.

PROCEDURE Y

Step 1: Set Ĩi=Ĩi+1= · · ·=Ĩn1−1=null, and Ĩn1=(Jn1+j+1, . . . , Jn).
Step 2: Set �̃(i, j) = �̄(i, j) ⊕ (Ji, Ĩi, . . . , Ĩn1−1, Jn1 , Ĩn1 ).
Step 3: Set r = i; s = n1 + j + 1.
Step 4: While (r <n1) and (s�n) do

if moving Js ∈ Ĩn1 into Ĩr does not violate condition (c)
then Ĩr := Ĩr ⊕ (Js); Ĩn1 := Ĩn1�(Js); s : =s + 1;
else r := r + 1.

Step 5: Return sequence �̃(i, j) = �̄(i, j) ⊕ (Ji, Ĩi, . . . , Ĩn1−1, Jn1 , Ĩn1 ).

Lemma 6. PROCEDURE Y for Problem Y produces a feasible sequence that
dominates all the feasible sequences.

Lemma 7. Given the defined composite jobs, PROCEDURE Y solves Prob-
lem Y in O(n) time.

The result concerning the determination of the earliest comple-
tion time of machine M2 for an admissible pair (i, j) is summarized
in the following.

Lemma 8. Given two fixed sequences and an admissible pair (i, j), a
schedule yielding the smallest completion time of machine M2 can be
found in O(n) time.

Proof. If the pair (i, j) is admissible, then the basic schedule (i, j)
is obtained by sequence concatenation. PROCEDURE X is invoked
on the prefix partial sequence �̄(i, j), which is initially given by
(J1, . . . , Ji−1, Jn1+1, . . . , Jn1+j). Then we invoke PROCEDURE Y on sequence
�̃(i, j) = �̄(i, j) ⊕ (Ji, . . . , Jn1 , Jn1+j+1, . . . , Jn). After execution of the two
procedures, we obtain a sequence in which the type-2 jobs are
scheduled as early as possible such that the completion time of M2
is minimum while maintaining conditions (b) and (c). The execution
of PROCEDURES X and Y takes O(n) time. This completes the proof. �



T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040 3037

Consider the following instance with five jobs of each type.

n1 = n2 = 5

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

pi0 3 5 9 8 2 2 4 11 3 2

pi1, pi2 5 6 8 7 3 6 5 13 2 1

Subsequences (J1, J2, J3, J4, J5) and (J6, J7, J8, J9, J10) are given. Ad-
missible ordered pairs are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2),
(4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5).

All the other ordered pairs are inadmissible. Taking or-
dered pair (3, 3) as an example, we have the basic sequence
(J1, J2, J6, J7, J8, J3, J4, J5, J9, J10). Through PROCEDURE X, jobs J6, J7, J8 are
moved with condition (b) preserved. The sequence output by
PROCEDURE X is (J6, J7, J8, J1, J2, J3, J4, J5, J9, J10). Through PROCEDURE Y,
jobs J9, J10 are moved with condition (c) preserved. The final out-
put is (J6, J7, J8, J1, J2, J3, J4, J9, J10, J5). The Gantt charts of the above
sequences are shown in Fig. 6.

The following algorithm integrates the above ingredients to de-
termine the interleaved sequence that minimizes the weighted sum
of machine completion times.

ALGORITHM FIXED-SEQUENCES

Input: Two sequences (J1, J2, . . . , Jn1 ) and (Jn1+1, Jn1+2, . . . , Jn).
Output: Interleaved sequence �∗ that minimizes the weighted sum

of machine completion times.
Step 1: Set Z∗ = ∞;
Step 2: Derive

∑i
r=1p0i and

∑n1
r=ip0i for 1� i�n1, and

∑i
r=n1+1p0i

for 1� i�n2.
Step 3: For i = 1 to n1 define J[i:i] = Ji.
Step 4: For s = n1 down to 2 do

for r = s − 1 down to 1 do
Derive composite job J[r:s] from Jr and J[r+1:s].

Step 5: For each pair (i, j), 1� i�n1, 0� j�n2, do
if basic sequence �(i, j) is admissible, then
Call PROCEDURE X and PROCEDURE Y;
if Z(�̃(i, j))<Z∗,then �∗ = �̃(i, j); Z∗ = Z(�∗).

Step 6: Return �∗ and Z∗.

Theorem2. ALGORITHM FIXED-SEQUENCES solves problem F(1,2)_WMTfixed_seq
in O(n3) time.

Proof. The algorithm inspects all the possible ordered pairs, for
each of which PROCEDURES X and Y produce a sequence with the ear-
liest completion time of M2. Taking the minimum weighted sum
of machine completion times among all the feasible ordered pairs,
ALGORITHM FIXED-SEQUENCES returns the optimal solution. As for the
computing time, the preprocessing part, Steps 1-4, of ALGORITHM FIXED-
SEQUENCES takes O(n2) time. There are O(n2) ordered pairs (i, j) to ex-
amine in Step 5 and examining a pair requires O(n) time. Therefore,
the overall running time is O(n3). �

In the following we extend the result given in Theorem 2. Recall
the agreeable condition defined in Section 3. We consider the reverse
of the agreeable condition:

rev_agr: For any jobs Ji, Jj ∈ J1, if p0i <p0j, then p1i�p1j, and for
any jobs Ji, Jj ∈ J2, if p0i < p0j, then p2i�p2j.

The case satisfying condition rev_agr is denoted by
F(1,2)_WMTrev_agr . To solve this case, we re-index the type-1 jobs
such that if i< j, then “p0i < p0j” or “p0i = p0j and p1i�p1j”. Break
ties arbitrarily. Type-2 jobs are similarly re-indexed.

Lemma 9. For problem F(1,2)_WMTrev_agr , there is an optimal sched-
ule in which the jobs of each type are sequenced in increasing order of
their indices.

J1, J2, J6, J7, J8, J3, J4, J5, J9, J10

M0

M1

M2

J6, J7, J8, J1, J2, J3, J4, J5, J9, J10

M0

M1

M2

J6, J7, J8, J1, J2, J3, J4, J9, J10, J5

M0

M1

M2

Fig. 6. Execution of PROCEDURES X and Y on ordered pair (3,3).

Proof. Assume that in some optimal solution for F(1,2)_WMTrev_agr ,
there are jobs not sequenced as specified. Let Ji, Jj, 1� i< j�n1, be
the first two type-1 jobs such that job Jj precedes job Ji. We ex-
change the positions of the two jobs. The standard job-interchange



3038 T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040

argument is applied in two phases, based on operations rather than
on jobs. First, we interchange their stage-one operations and leave
their stage-two operations unchanged. That is, p0i and p1j constitute
one job, and p0j and p1i constitute another job. It is clear that the
completion of any job of J\{Ji, Jj} will not be deferred. Next we in-
terchange the positions of the dedicated operations of the two jobs.
Similarly, no completion time of any other jobs will increase. There-
fore, the schedule derived from swapping the positions of jobs Ji and
Jj will not increase the makespan. Continuing the swapping process,
if necessary, we can obtain a schedule in which the type-1 jobs are
sequenced in increasing order of their indices. The same line of rea-
soning can be applied to type-2 jobs. This completes the proof. �

By Theorem 2, the following result immediately follows.

Corollary 1. Problem F(1,2)_WMTrev_agr can be solved in O(n3) time.

5. Approximation algorithm

This section is devoted to the development of a heuristic and
analysis of its worst-case performance. Given a minimization prob-
lem and an approximation algorithm H, the performance ratio of the
algorithm on a given instance is defined as the ratio of the solution
value ZH given by the algorithm to the optimal value Z∗, i.e., ZH/Z∗. If
for any instance, an algorithm attains a performance ratio less than
or equal to r, then it is called an r-approximate algorithm for the
studied problem. We give a 4

3 -approximate algorithm for the prob-
lem F(1,2)_WMT in this section.

First, we derive a lower bound on the objective value for analysis.
Jobs ofJ1 and jobs ofJ2 are independently sequenced by Johnson's
rule. A lower bound is then obtained from the resulting weighted
sum of completion times:

LB = w1C
(1)
JS + w2C

(2)
JS ,

where C(1)
JS and C(2)

JS are the makespan (completion times of the two
dedicated machines) of the two Johnson's sequences. An extra term
can be added to the bound if we consider the interaction between
the jobs of two different types. Let P1 =∑n1

i=1p0i and P2 =∑n
i=n1+1p0i.

Assume that the last job on machine M0 belongs to type 1. If we
consider only type-1 jobs, then for a particular sequence �, the dif-
ference between the completion times of machines M1 and M0 is
no less than C(1)

JS − P1. The insertion of the processing of type-2 jobs
on M0 will delay the completion of the last type-1 job in � by P2.
Consequently, the makespan of sequence � will increase by at least
max{0, P2−(C(1)

JS −P1)}. Adding this term to the previous lower bound,
we get

LB1 = w1C
(1)
JS + w2C

(2)
JS + w1 max{0, P1 + P2 − C(1)

JS }
= w2C

(2)
JS + w1 max{C(1)

JS , P1 + P2}.

On the other hand, if the last job on machine M0 belongs to type 2,
then we have the following lower bound:

LB2 = w1C
(1)
JS + w2 max{C(2)

JS , P1 + P2}.

The heuristic algorithm presented below is mainly based upon
application of Johnson's algorithm to the two job sets J1 and J2,
whichwewill show to be a 4

3 -approximate algorithm for the problem
F(1,2)_WMT.

HEURISTIC H:
Step 1: Let �(J1) (resp. �(J2)) be the Johnson's sequence forJ1

(resp. J2).
Step 2: If w2P1�w1P2, then return �(J1) ⊕ �(J2); otherwise,

return �(J2) ⊕ �(J1).

The computing time required by HEURISTIC H is dominated by the
sorting stage for deriving the two Johnson's sequences. Therefore,
the running time is O(n logn). Denote by ZH the weighted sum of
machine completion times of the schedule produced by HEURISTIC H.
In the following, we analyze the performance ratio of HEURISTIC H.
Without loss of generality, we assume that w2P1�w1P2. The case
of w2P1�w1P2 is symmetric. By the algorithm, all the type-1 jobs
sequenced by Johnson's rule are scheduled first as a block. The ma-
chine completion times of the schedule produced by HEURISTIC H are
C(1)
JS and P1 +C(2)

JS , respectively. Therefore, the weighted sum is given

by ZH = w1C
(1)
JS + w2(P1 + C(2)

JS ).

Theorem3. HEURISTICH is a 4
3 -approximate algorithm for F(1,2)_WMT and

the bound is tight.

Proof. To establish the correctness of the result, we focus on esti-
mating max{ZH/LB1, ZH/LB2} because

min{LB1, LB2}�Z∗.

Let P1 = �P2 for some positive �.
Case 1: LB1�LB2
In this case, ZH/LB1 is considered. The assumption that

w2P1�w1P2 implies the inequality �w2�w1. Because w2P1 =
w2�P2��w2C

(2)
JS , we also have C(2)

JS �P1/�. Therefore,

ZH
LB1

=
w1C

(1)
JS + w2P1 + w2C

(2)
JS

w2C
(2)
JS + w1 max{C(1)

JS , P1 + P2}

� 1 + w2P1

w2C
(2)
JS + w1 max{C(1)

JS , P1 + P2}
(because C(1)

JS � max{C(1)
JS , P1 + P2})

� 1 + w2P1

w2C
(2)
JS + w1P1 + w1P2

(because max{C(1)
JS , P1 + P2}�P1 + P2)

� 1 + w2P1
w2P1/� + �w2P1 + w2P1

(because C(2)
JS �P1/�, w1��w2, w1P2�w2P1)

= 1 + �
�2 + � + 1

.

Case 2: LB1�LB2
Considering ZH/LB2, we have

ZH
LB2

=
w1C

(1)
JS + w2P1 + w2C

(2)
JS

w1C
(1)
JS + w2 max{C(2)

JS , P1 + P2}

� 1 + w2P1

w1C
(1)
JS + w2 max{C(2)

JS , P1 + P2}
(because C(2)

JS � max{C(2)
JS , P1 + P2})

� 1 + w2P1

w1C
(1)
JS + w2P1 + w2P2

(because max{C(2)
JS , P1 + P2}�P1 + P2).

We relate w1C
(1)
JS and w2P2 in the denominator to w2P1 in the nu-

merator. Inequalities w1��w2 and C(1)
JS �P1 imply w1C

(1)
JS ��w2P1.



T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040 3039

2n-1

5n+1

M2

M0

M1

J1

J2

J1

J2

6n-1

4n-3

J3,J4, ..., Jn

J3,J4, ..., Jn

2n+2

3n+3

M2

M0

M1

J1

J2

J1

J
3
,J

4
, ..., J

n
J2

4n+1

J3,J4, ..., Jn

4n-3

Fig. 7. (a): Schedule produced by HEURISTIC H. (b) Optimal schedule.

Therefore,

ZH
LB2

�1 + w2P1

w1C
(1)
JS + w2P1 + w2P2

� 1 + w2P1
�w2P1 + w2P1 + w2P1/�

= 1 + �
�2 + � + 1

.

From the discussion of Cases 1 and 2, a performance ratio
of �/(�2 + � + 1) is obtained. We further note that the func-
tion �/(�2 + � + 1) attains its maximum of 1

3 when � = 1. Thus,
ZH/Z∗ �ZH/min{LB1, LB2}� 4

3 .
Consider the following instance of n jobs to establish the asymp-

totic tightness of this bound. In the instance n1 = 1 and n2 = n − 1.
Assume that the stage-two machines are equally weighted. The sin-
gle type-1 job is defined as p01 =2n−2, p11 =1. The type-2 jobs are
defined as p02 =3, p22 =3n, and p0i =2, p2i =1 for 3� i�n. Because
P1 = 2n − 2<P2 = 2(n − 2) + 3, HEURISTIC H produces the sequence
(J1, J2, J3, . . . , Jn) (Fig. 7(a)) with ZH = (2n − 1) + (6n − 1) = 8n − 2. The
optimal sequence for the instance is (J2, J1, J3, . . . , Jn) (Fig. 7(b)) with
Z∗ = (2n + 2) + (4n + 1) = 6n + 3. As n approaches infinity, the ratio
ZH/Z∗ approaches 4

3 , implying that 4
3 is, indeed, a tight bound. �

Considering the results of Section 4, we know that a better heuris-
tic can be designed by applying ALGORITHM FIXED-SEQUENCES to the two
independent Johnson's sequences for the two types of jobs. How-
ever, there exist no clear structural properties for the analysis of the
performance ratio.

6. Conclusion

In this paper, we investigated a scheduling problem in a two-
stage flowshop that has a common critical machine in stage one and
two independent dedicated machines in stage two. The objective is
to minimize the weighted sum of machine completion times. We
showed that the problem is strongly NP-hard even under three com-
mon assumptions on the input instances. Given two fixed sequences
for the two types of jobs, we developed an O(n3) algorithm to deter-
mine an optimal interleaved sequence. We also designed a heuristic
for the problem and analyzed its performance ratio as 4

3 .
For further research, it will be of interest to generalize our results

to a constant number (>2) of stage-two machines. The case with a
variable number of stage-two machines is also interesting. A third
possible research issue is analysis of the performance ratio addressed
at the end of Section 5. Under some circumstances, the machines
could have different processing modes, e.g., batch machines can be
considered. Incorporating batch machines, with continuous batches
or simultaneous batches, into the differentiation model will give rise
to several interesting research problems.

Acknowledgments

We are grateful to the reviewers for their helpful comments on
an earlier version of the paper. Lin and Tian were supported in part
by the National Science Council of Taiwan under Grant number 97-
2923-H-009-001-MY3.

References

[1] Bagga PC. Sequencing in a rental solution. Journal of the Canadian Operational
Research Society 1969;7:152–3.

[2] Cheng TCE, Kovalyov MY. An exact algorithm for batching and scheduling two
part types in a mixed shop: a technical note. International Journal of Production
Economics 1998;55(10):53–6.

[3] Cheng TCE, Lin BMT. Johnson's rule, composite jobs and the relocation problem.
European Journal of Operational Research 2009;192(3):1008–13.

[4] Da Silveira G, Borenstein D, Fogliatto FS. Mass customization: literature
review and research directions. International Journal of Production Economics
2001;72(1):1–13.

[5] Drobouchevitch IG, Strusevich VA. Heuristics for the two-stage job shop
scheduling problem with a bottleneck machine. European Journal of Operational
Research 2000;123:229–40.

[6] Dudek RA, Panwalkar SS, Smith ML. The lessons of flowshop scheduling
research. Operations Research 1992;40:7–13.

[7] Fondrevelle J, Oulamara A, Portmann M-C. Permutation flowshop scheduling
problems with time lags to minimize the weighted sum of machine completion
times. International Journal of Production Economics 2008;112(1):168–76.

[8] Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco, CA: Freeman; 1979.

[9] Herrmann JW, Lee C-Y. Three-machine look-ahead scheduling problems.
Research Report no. 92–93, Department of Industrial Engineering, University
of Florida, FL; 1992.

[10] Ho JC, Gupta JND. Flowshop scheduling with dominant machines. Computers
& Operations Research 1995;22(2):237–46.

[11] Jackson JR. Scheduling a production line to minimize maximum lateness.
Research Report 43, Management science research report, University of
California, Los Angeles; 1955.

[12] Jeng AAK, Lin BMT. A note on parallel-machine scheduling with deteriorating
jobs. Journal of the Operational Research Society 2007;58:1099–102.

[13] Johnson SM. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly 1954;1:61–7.

[14] Kurisu T. Two-machine scheduling under required precedence among jobs.
Journal of the Operations Research Society of Japan 1976;19:1–13.

[15] Kyparisis GJ, Koulamas C. Flow shop and open shop scheduling with a critical
machine and two operations per job. European Journal of Operational Research
2000;127(1):120–5.

[16] Lin BMT. The strong NP-hardness of two-stage flowshop scheduling problem
with a common second-stage machine. Computers & Operations Research
1999;27(6):695–8.

[17] Linn R, Zhang W. Hybrid flow shop scheduling: a survey. Computers & Industrial
Engineering 1999;37(1–2):57–61.

[18] Monma CL. The two-machine maximum flow time problem with series-parallel
precedence constraints: an algorithm and extensions. Operations Research
1979;27(4):792–8.

[19] Mosheiov G. Multi-machine scheduling with linear deterioration. INFOR
1998;36(4):205–14.



3040 T.C.E. Cheng et al. / Computers & Operations Research 36 (2009) 3031 -- 3040

[20] Mosheiov G, Yovel U. Comments on Flow shop and open shop scheduling with
a critical machine and two operations per job. European Journal of Operational
Research 2004;157(1):257–61.

[21] Neumytov YD, Sevastyanov SV. Approximation algorithm with tight bound for
three-machine counter-routes problem. Upravlyaemye Sistemy 1993;31:53–65
(in Russian).

[22] O�guz C, Lin BMT, Cheng TCE. Two-stage flowshop scheduling problem
with a common second-stage machine. Computers & Operations Research
1997;24(12):1169–74.

[23] Reisman A, Kumar A, Motwani J. Flowshop scheduling/sequencing research,
1952–1994: a statistical review of the literature. IEEE Transactions on
Engineering Management 1997;44:316–29.

[24] Shafransky YM, Strusevich VA. The open shop scheduling problem with a given
sequence of jobs on one machine. Naval Research Logistics 1998;45:705–31.

[25] Sidney JB. The two-machine maximum flow time problem with series parallel
precedence relations. Operations Research 1979;27(4):782–91.

[26] Simchi-Levi D, Kaminsky P, Simchi-Levi E. Designing and Managing the Supply
Chain: Concepts, Strategies and Case Studies. MA: McGraw-Hill; 2000.


	Scheduling of a two-stage differentiation flowshop to minimize weighted sum of machine completion times
	Introduction
	Problem definition and notation
	Complexity results
	Fixed sequences
	Approximation algorithm
	Conclusion
	Acknowledgments
	References


