
Expert Systems with Applications 36 (2009) 11925–11933
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A GA-Tabu algorithm for scheduling in-line steppers in low-yield scenarios

Chie-Wun Chiou, Muh-Cherng Wu *

Department of Industrial Engineering and Management, National Chiao Tung University, 1001, Dah-Shei Road, Hsin-Chu 300, Taiwan, ROC

a r t i c l e i n f o
Keywords:
Scheduling
Semiconductor
Flow shop
Port capacity constraints
Meta-heuristic algorithm
Genetic algorithm
Tabu search
0957-4174/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.eswa.2009.03.064

* Corresponding author. Tel.: +886 3 5731 913; fax
E-mail address: mcwu@mail.nctu.edu.tw (M.-C. W
a b s t r a c t

This paper presents a scheduling algorithm for an in-line stepper in low-yield scenarios, which mostly
appear in cases when new process/production is introduced. An in-line stepper is a bottleneck machine
in a semiconductor fab. Its interior comprises a sequence of chambers, while its exterior is a dock
equipped with several ports. The transportation unit for entry of each port is a job (a group of wafers),
while that for each chamber is a piece of wafer. This transportation incompatibility may lead to a capac-
ity-loss, in particular in low-yield scenarios. Such a capacity-loss could be alleviated by effective sched-
uling. The proposed scheduling algorithm, called GA-Tabu, is a combination of a genetic algorithm (GA)
and a tabu search technique. Numerical experiments indicate that the GA-Tabu algorithm outperforms
seven benchmark ones. In particular, the GA-Tabu algorithm outperforms a prior GA both in solution
quality and computation efforts.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In semiconductor manufacturing, steppers are the most expen-
sive machine and are usually the bottleneck of a wafer fab. Their
utilization would significantly affect the throughput of a fab. One
way to effectively utilize a stepper is by appropriately scheduling
the jobs waiting before it. Scheduling for steppers is thus an impor-
tant research issue.

Much literature on stepper scheduling has been published. In
terms of problem characteristics, they vary in the inclusion of dif-
ferent constraints imposed on steppers—for example, mask setup
(Chern & Liu, 2003; Duwayri, Mollaghasemi, Nazzal, & Rabadi,
2006), machine dedication (Wu, Huang, Chang, & Yang, 2006;
Wu, Chiou, & Chen, 2007; Wu, Jiang, & Chang, 2008), rework
(Sha, Hsu, Che, & Chen, 2006), and cluster tool configuration (Mor-
rison & Martin, 2007). In terms of solution methodology, four types
were mostly used: dispatching rules (Dabbas & Fowler, 2003; Ying
& Lin, 2009), artificial intelligence (Wu & Chang, 2007, 2008) math-
ematical programming (Chung & Hsieh, 2008), and meta-heuristic
algorithms (Chiang & Fu, 2008).

Significant milestones on stepper scheduling have been estab-
lished by prior studies. However, most of them implicitly made a
high-yield assumption. That is, the production yield is quite high
so that each wafer job is a full lot (i.e., carrying 25 wafers). How-
ever, in the stage of new product/process introduction, low-yield
is quite common. Many small lots (i.e., carrying less than 25 wafers)
may appear.
ll rights reserved.

: +886 3 5720 610.
u).
A recent study (Wu & Chiou, 2009) indicated that an in-line step-
per, a relatively advanced version of stepper, may loss capacity in a
low-yield scenario. Such a capacity-loss would not appear in a high-
yield scenario and has been rarely noticed. They proposed a genetic
algorithm (GA) for scheduling an in-line stepper. Their experiment
results indicated that the GA outperforms four heuristic scheduling
rules widely used in practice.

This paper aims to develop a more effective scheduling algo-
rithm for an in-line stepper. The algorithm we proposed is called
GA-Tabu, which is a combination of a GA and a tabu search tech-
nique. Experiment results indicated that the GA-Tabu outperform
seven other meta-heuristic methods, including the GA by Wu
and Chiou (2009).

The remainder of this paper is organized as follows. Section 2
introduces the operational mechanism of an in-line stepper. Sec-
tion 3 describes how to compute the makespan of a job sequence.
Section 4 presents the GA-Tabu algorithm. Experiment results are
reported in Section 5. Concluding remarks are in the last section.

2. Operational mechanism of an in-line stepper

An in-line stepper is a machine, whose interior comprises a
group of chambers, each of which can process one wafer at a time.
Its exterior is equipped with a dock for job entry/departure (Fig. 1).
Jobs are moved from a neighboring WIP buffer to the dock. The
transportation unit between the WIP buffer and the dock is a job
(a container carrying 1–25 wafers), but that between the dock
and the in-line stepper is a piece of wafer. A transportation incom-
patibility thus exists between the dock and the in-line stepper.

As shown in Fig. 2, an in-line stepper is composed of two mod-
ules—a track and an aligner (Quirk, 2001; Xiao, 2001). Each module

mailto:mcwu@mail.nctu.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

WIP

Buffers

AlignerTrack Dock

Area

In-line stepper

Fig. 1. Production system of stepper.

11926 C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933
involves various types of chambers. Each type of chamber may be
more than one in numbers. In the aligner module, a mask setup
time is needed at the exposure chamber, while a wafer from a dif-
ferent job enters the chamber.

The dock of an in-line stepper typically involves four ports. Each
port could accommodate only one job container. A job container on
the dock must stay at the port until all its wafers have completed
processing. This implies that any other jobs cannot access the in-
line stepper while all the ports have been occupied. As a result, a
capacity-loss may appear in a low-yield scenario, due to the limit
of port number.

An example of such a capacity-loss is given below. Consider an
in-line stepper that has four ports and 22 chambers. Four jobs (A,
B, C, and D) are now on the dock. Job A contains 25 wafers while
jobs B, C, D in total carry only 16 wafers. Suppose the processing
sequence isA, B, C and D. When Job A’s last wafer leaves the stepper
for the dock, the 16 wafers of jobs B, C, and D would occupy the last
16 chambers of the stepper. This results in a capacity-loss—the first
six (22–16) chambers have no new wafers to host. Such a capacity-
loss would not occur in a high-yield scenario, in which the total
number of wafers in B, C, and D is usually more than 22.

3. Makespan evaluation for job sequences

A method, adapted from Ruiz and Maroto (2006), is presented
for evaluating the makespan of a job sequence. In the evaluation,
we virtually sent each wafer in sequence into the in-line stepper
Fig. 2. Configuration of an in-line stepper. (a) Vapor prime: v1–v2, (b) cooling: hc1–hc4, (
pc1–pc2, (h) develop: d1–d2, (i) hard bake: h1–h2.
and looked for an available chamber that can finish the wafer at
the earliest time. We first give notation and proceed to the make-
span evaluation procedure, where a group of functionally identical
chambers is called a stage.

3.1. Notation

j index of job
k index of wafer
i index of stage
l index of chamber
a index of the exposure chamber
q total number of ports in the dock
n total number of jobs to be processed by the in-line stepper
M total numbers of stages in the in-line stepper
mi total number of chambers at stage i
piljk processing time required for chamber l at stage i to process

wafer k in job j
p a job sequence for n jobs, p = [p(1), . . .,p(n)]
p(j) the job in the jth position of a sequence p
w(j) total number of wafers in job j
tu transportation time for uploading a job to the dock
td transportation time for downloading a job from the dock
Si,l,p(j),k setup time required for chamber l in stage i to process wa-

fer k in job p(j)
if i–a or k–1; then Si;l;pðjÞ;k ¼ 0;
otherwise; Si;l;pðjÞ;k ¼ dpðjÞ;pðj�1Þ

dp(j),p(j�1) setup time required for the exposure chamber to switch
production from job p(j � 1)to job p(j); dp(j),p(j�1) = s0 if
p(j � 1) and p(j) use different masks, and dp(j),p(j�1) = 0,
otherwise

Ai,l,t the time epoch when chamber l in stage i just turns to be
available. That is, while the chamber (i, l) is free at t, Ai,l,t is
the last wafer-completion-epoch before t; while the cham-
ber (i, l) is in operation at t, Ai,l,t is the first wafer-comple-
tion-time after t

Ci,p(j),k the completion-time of wafer k in job p(j) at stage i
Cmax(p) makespan of job sequence p
3.2. Evaluation procedure

The makespan evaluation procedure is governed by the follow-
ing four equations:
c) Coater: k1–k2, (d) softbake: s1–s2, (e) cooling: sc1–sc2, (f) buffer b1–b3, (g) cooling:

C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933 11927
Ci;pðjÞ;k ¼ min
16l6mi

fmaxfAi;l;t þ Si;l;pðjÞ;k;Ci�1;pðjÞ;kg þ pi;l;pðjÞ;kg

where t ¼ Ci�1;pðjÞ;k for 1 6 i 6 M ð1Þ
CMþ1;pðjÞ;wðpðjÞÞ ¼ CM;pðjÞ;wðpðjÞÞ þ td ð2Þ
CMþ1;pðjÞ;wðpðjÞÞ þ tu ¼ C0;pðjþqÞ;1 for 1 6 j 6 n� q ð3Þ
CmaxðpÞ ¼ CMþ1;pðnÞ;wðpðnÞÞ ð4Þ

Eq. (1) expresses the completion-time of a particular wafer at
each stage i. The term Ai,l,t + Si,l,p(j),k denotes the time epoch when
chamber l at stage i is ready for processing wafer k in job p(j),
and the term Ci�1,p(j),k denotes the time epoch when the wafer is
available to be processed at the chamber.

Eq. (2) describes the completion-time of job p(j) at stage M + 1,
where we assume that a waiting-for-process wafer in the port is at
stage 0; and a finished wafer in the port is at stage M + 1.

Eq. (3) expresses the job arrival/departure relationships for the
dock. The equation indicates that job p(j + q) in the WIP buffer can
be transported to the dock only when job p(j) in the dock has been
moved away. Eq. (4) computes the makespan Cmax(p).

4. Algorithm

An algorithm called GA-Tabu, a combination of a GA (Holland,
1975) with a tabu search technique, is proposed to solve the in-line
stepper scheduling problem. In the algorithm, a chromosome (a job
sequence) is denoted by p = [p(1), . . .,p(n)] where p(j), called a
gene, represents the job in the jth position of sequence p. The
makespan Cmax(p) of the chromosome is called its fitness function.
We first introduce the logic flow of the GA-Tabu algorithm, and
proceed to describe each major component in the algorithm.

4.1. Logic flow

The logic flow of the proposed algorithm is described by a main
procedure named GA-Tabu, in which a sub-procedure named Tabu
will be called.

Procedure GA-Tabu

Step 1: Initialization

Set k = 0 and t = 0. Randomly select Np chromosomes to form
an initial population P(t). Identify the best chromosome p0

b

in P(0).
Set po ¼ p0

b /�po is the currently best ever solution; k is the
tenure of po �/
Set tabu_list = / /�tabu_list is a queue list of size q �/
Set p� ¼ p0

b /�p� is a chromosome called tabu_seed �/
Step 2: Update P(t + 1) by GA
Use crossover operators to create a set N1(t) of Pcr � Np new
chromosomes.
Use mutation operators to create a set N2(t) of Pm � Np new
chromosomes.
Let S(t) = P(t) [N1(t) [N2(t). From S(t), use a selection strat-
egy (the roulette wheel selection method by Michalewicz
(1996) to select Np chromosomes to form P(t + 1)).

Step 3: Update po based on pbest, the best chromosome in P(t + 1)

From P(t + 1), identify the best chromosome pbest

If Cmax(pbest) P Cmax(po) set k = k + 1, go to Step 4.
If Cmax(pbest) < Cmax(po), set k = 0 /�while pbest is better than
po �/
Set po = pbest /� update po by pbest �/
call Tabu(pbest,po); /� further update po by tabu �/

Step 4: Update po based on good chromosomes in P(t + 1) other
than pbest
If k = 20, call Tabu(pin,po), where pin is the 2nd best chromo-
some in P(t + 1)
If k = 30, call Tabu(pin,po); pin is the 3rd chromosome in
P(t + 1)
If k = 40, call Tabu(pin,po); pin is the 4th chromosome in
P(t + 1)

Step 5: Update po and p� based on the current tabu seed

If (k > 40 & mod (k,5) = 0), call Tabu(p�,po)

Step 6: Termination Check

If (k = K or t = T), then stop
Otherwise, set t = t + 1, go to Step 3.

Procedure Tabu(pin,pout)

Step 1: Create a set X of new chromosomes.
� Based on pin, apply the steepest descent pairwise interchange

(SDPI) (Armour & Buffa, 1963) technique to create a set X of
new chromosomes. Each new chromosome p is created by
applying a particular interchange operation, represented by
move(p)

Step 2: Update tabu_list

From X, identify the best q chromosome p1

b ; . . . ;pq
b

For i = 1,q
If moveðpi

bÞ R tabu_list, then

Place moveðpi

bÞ in the tabu_list;
Set pout ¼ pi

b;
Replace the worst chromosome in P(t + 1) by pout /
�update P(t + 1) �/
Go to Step 3

Endif
Endfor

Step 3: Update po and p�
If Cmax(pout) < Cmax(po), set po = pout and k = 0; /�update po �/
If (pin = p�), set p� = pout; /�update p� �/
Return.

Procedure GA-Tabu is explained below. In Step 1, we create an
initial population of chromosomes P(0) and set the initial status of
po and p�, where po is the currently best ever chromosome and p�

is a chromosome called tabu_seed.
In Step 2, we update P(t) by crossover operators, mutation oper-

ators and a selection strategy. Crossover and mutation operators
are used to create new chromosomes. The existing and new chro-
mosomes are then screened by the selection strategy in order to
create P(t + 1) from P(t).

In Step 3, we intend to update po based on pbest, the best chro-
mosome in P(t + 1). If pbest is better than po, this implies that pbest is
a good chromosome and its neighborhood could be exploited fur-
ther. To do so, we call Procedure Tabu to create a new chromosome
pout from the neighborhood of pbest. Of the two chromosomes pbest

and pout, the better one if eligible is used to update po. If po is not
updated in an iteration t, its tenure k is increased by one. The ten-
ure k indicates how many times po has outperformed pbest while
P(t) is evolving. A large k value implies that update po based on cur-
rent pbest in P(t + 1) appears to be difficult to a certain extent.

Therefore, in Step 4, some good chromosomes other than pbest in
P(t + 1) are considered to update po. That is, we use the 2nd, 3rd,
and 4th best chromosomes in P(t + 1) and call Procedure Tabu to
exploit their neighborhood in order to create new chromosomes
for possibly replacing po. In essence, both Steps 3 and 4 are in-
tended to update po through the use of P(t + 1), which evolves
based on the GA technique. While the value of k is too large (here
we set k > 40), we could infer that updating po through the use of
GA is now hard to a certain extent.

To remedy this deficiency, in Step 5, we alternatively use tabu_-
seed p� and call Procedure Tabu to exploit its neighborhood in or-
der to create new chromosomes for possibly replacing po. The
evolution of p� is independent of the GA. Therefore, p� is likely
far away from the neighborhood of the chromosomes in P(t + 1).

a. SWAP

b. Inverse

1 6 3 9 4 5 8 7 2

1 6 8 9 4 5 3 7 2

1 6 3 9 4 5 8 7 2

1 6 3 8 5 4 9 7 2

11928 C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933
This characteristic helps the algorithm escape from a local optimal
solution obtained by the GA.

Procedure Tabu(pin,pout) is designed to create a new chromo-
some pout, which is one in the neighborhood of pin. One purpose
for obtaining pout is for updating po and P(t + 1). The input pin

has two possible sources: P(t + 1) or tabu_seed p�. The source p�

is designed to evolve through this procedure. Therefore, we addi-
tionally use pout to update p�while pin = p�. In summary, Procedure
Tabu has three functions: updating po, p� and P(t + 1).
c. Insert

1 6 3 9 4 5 8 7 2

1 5 8 7 6 3 9 4 2

Fig. 4. Mutation operators: (a) SWAP, (b) Inverse, (c) Insert.
4.2. Crossover and mutation operators

To create new chromosomes, we use four types of crossover
operators and three types of mutation operators. A crossover oper-
ator is designed to create a new pair from an existing pair, while a
mutation operator is to create a new one from an existing one. The
four types of crossover operators are C1 (one point crossover) by
Reeves (1995), LOX (linear order crossover) by Croce, Tadei, and
Volta (1995), PMX (partially mapped crossover) by Goldberg
(1989), and NABEL operator by Bac and Perov (1993). The three
types of mutation operators are Swap, Inverse, and Insert (Nearc-
hou, 2004; Wang & Zheng, 2003; Zhang, Wang, & Zheng, 2006).

The four crossover operators are explained below, where par-
ent-1 and parent-2 denote parent chromosomes while child-1 and
child-2 denote the created ones.
a. C1 crossover

Parent 1 1 6 3 9 4 5 8 7 2

Parent 2 3 5 6 1 8 2 7 9 4

x-child-1

x-child-2

Parent 1

Child-2

Child 1

Parent 2

1 6 3

3 5 6

1 6 3 9 4 5 8 7 2

3 5 6 1 9 4 8 7 2

1 6 3 5 8 2 7 9 4

3 5 6 1 8 2 7 9 4

T

c. PMX (Partially Mapped Crossover)

Parent 1 1 6 3 9 4 5 8 7 2

Parent 2 3 5 6 1 8 2 7 9 4

Two cutting sites of the parents are chosen randomly 3,7

x-child-1

9 4 5 8

1 8 2 7

x-child-2

Child 2

Parent 2

Parent 1 1 6 3 9 4 5 8 7 2

child-1 9 6 3 1 8 2 7 4 5

3 1 6 9 4 5 8 2 7

3 5 6 1 8 2 7 9 4

Fig. 3. Crossover operators: (a) C1
C1 operator: Referring to Fig. 3a, one randomly selected point is
used to divide each parent into two sections (head and tail). To cre-
ate an offspring (say, child-2), its head is copied from the head of
parent-2—a string (3, 5, 6) in this case. Its tail is determined by
sequentially referring to the genes of parent-1; only the gene val-
ues not in the head of child-2 are eligible to appear in the tail. This
results in a string (1, 9, 4, 8, 7, 2) as the tail of child-2.

LOX operator: Referring to Fig. 3b, each parent is randomly di-
vided into three sections (head, middle and tail). The middle for par-
ent-1 and parent-2 are (3, 9, 4) and (6, 1, 8) respectively. A
b. LOX (Linear order crossover)

Parent
1

1 6 3 9 4 5 8 7 2

Parent
2

3 5 6 1 8 2 7 9 4

wo cutting sites of the parents are chosen randomly 2,5

x-child-1 H H 3 9 4 5 H 7 2

H 5 6 1 8 2 7 H Hx-child-2

y-child-1 3 9 H H H 4 5 7 2

5 2 H H H 1 8 2 7y-child-2

Child 1 3 9 6 1 8 4 5 7 2

5 6 3 9 4 1 8 2 7Child 2

d. NABEL operator

Child 1 3 4 5 1 7 6 8 2 9

Parent 1

Parent 2

Parent 1 1 6 3 9 4 5 8 7 2

Parent 2 3 5 6 1 8 2 7 9 4

3 5 6 1 8 2 7 9 4

1 6 3 9 4 5 8 7 2

, (b) PMX, (c) LOX, (d) NABEL.

C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933 11929
chromosome x-child-1 is created by two steps. First, its middle is
copied from the middle of parent-1. Second, its genes values that
appear in the middle of parent-2 are replaced by ‘‘H”. This yields
x-child-1 = (H, H, 3, 9, 4, 5, H, 7, 2). We then manipulate x-child-1
by moving ‘‘H” to the middle and yield a chromosome y-child-
1 = (3, 9, H, H, H, 4, 5, 7, 2). Finally, the middle of y-child-1 is re-
placed by that of parent-2; this yield child-1 = (3, 9, 6, 1, 8, 4, 5, 7, 2).

PMX operator: Referring to Fig. 3c, each parent is randomly di-
vided into three sections (head, middle, and tail). A new offspring
(e.g., child-1) is created by the following procedure. The middle of
child-1 is created by referring to that of parent-2, which is a string
(1, 8, 2, 7). Both the head and tail of child-1 are created by referring
to parent-1. If the gene values in the head/tail sections of parent-1
do not appear in child-1, we copy them in the exact positions of
child-1 (e.g., gene values 6 and 3). Finally, for those vacant genes
in child-1, we place their values by sequentially referring to the
unassigned genes in parent-1. This yields child-1 = (9, 6, 3, 1, 8, 2,
7, 4, 5).

NABEL operator: Suppose the two parent chromosomes are
pp1 = [pp1(1), . . .,pp1(n)] and pp2 = [pp2(1), . . .,pp2(n)]; and the two
children chromosomes to be created are pc1 = [pc1(1), . . .,pc1(n)]
and pc2 = [pc2(1), . . .,pc2(n)]. Referring to Fig. 3d, the NABEL opera-
tor is designed to set pc1(i) = pp1(pp2(i)) and pc2(i) = pp2(pp1(i)). For
example, pp2(2) = 5 and pp1(pp2(2)) = 4, and we can obtain
pc1(2) = pp1(pp2(2)) = 4.

The three mutation operators are explained below, where pa

denotes the parent chromosome while pb denotes the child one.
Swap operator: Referring to Fig. 4a, we randomly choose two

distinct genes in pa, and then swap their gene values to create pb.
Inverse operator: Referring to Fig. 4b, we randomly select two

cut-off points in pa to divide it into three sections. Represent pa =
{pa1,pa2,pa3} and pa2 = [pa2(1), . . .,pa2(m)]. The inverse operator is
designed to create a new chromosome pb = {pa1,pb2,pa3} where
pb2(i) = pa2(m + 1 � i).

Insert operator: Referring to Fig. 4c, we randomly select an in-
sert point and a segment of genes in pa. This would divide pa into
four sections pa = {pa1 j pa2,pa3 ,pa4} which denote that the insert
point is between pa1 and pa2, and the selected segment is pa3. To
create a new chromosome, the insert operator moves the selected
segment to the insert point position. This would yield a new chro-
mosome pb = {pa1, pa3 j pa2,pa4}.

4.3. Procedure Tabu

In Step 1 of Procedure Tabu, a set X of new chromosomes is cre-
ated by the SDPI technique. Given a chromosome pin, the technique
creates a new one by choosing a pair of genes from pin and inter-
changes their values. With n genes inpin, X would include C(n,2)
new chromosomes. For a new chromosome p = [p(1), . . .,p(i) . . .,
p(j), . . .,p(n)], where p(i)and p(j) are the two genes that are inter-
changed. Then, its interchange operation move(p) is represented
{p(i),p(j)}.

In Step 2 of the procedure, out of X, only the best possible chro-
mosome created by a ‘‘new” move is eligible for updating po, p�,
and P(t + 1). Herein, a ‘‘new” move is one, currently not in the ta-
Table 1
Process times of in-line stepper chambers.

Process
sequence

WIP
buffers to
dock area

Dock
area to
track

HMDS Cooling Coater Softbake Cool

Chamber
number

1 1 2 2 2 2 2

Process time
(min)

2.5 0.1 1.2 1.2 1.2 [1.2,2.8] 1
bu_list. This implies that the tabu_list is designed to record ‘‘good”
and ‘‘new” moves. Such a design is to avoid a cyclic creation of the
same chromosome. This would keep po and p� away from being
trapped into a local optima.
5. Numerical experiments

By numerical experiments, we justify the effectiveness of the
proposed GA-Tabu algorithm. The in-line stepper is assumed to
have four ports, 14 stages and 21 chambers. The operation time
at each chamber i follows a uniform distribution [ai,bi] (Table 1).
A mask setup is always required for the exposure chamber while
it turns to process a new job’s wafer, and the mask change time
is a constant (1.0 min). Parameters in the GA-Tabu are set as fol-
lows: P = 100, Pcr = 0.8, Pmu = 0.2, q = 7, K = 3000, T = 100,000.

5.1. Test cases

To model the process yield in experiments, we use a truncated
binomial distribution (TBD). The TBD implies that the job size is gov-
erned by a binomial distribution; however, the jobs carrying no wa-
fer are moved away from the fab.

We use (N,Y) to represent a test case, where N represents the
number of jobs and Y represents the average yield. In our experi-
ments, N involves five options ranging from 20 to 100 jobs while
Y involves 10 options ranging from 15% to 90% (Table 2–6). That
is, each algorithm has 50 test cases, and each test case is justified
by 15 replicates.

5.2. Benchmark algorithms

For each test case, we compare the GA-Tabu with seven other
algorithms: optimum heuristic rule (OHR), simulated annealing
(SA) by Osman and Potts (1989), GA by Wu and Chiou (in press),
tabu search (TS) by Widmer and Hertz (1989), two ant colony algo-
rithms (ACO) by Rajendran and Ziegler (2004), and particle swarm
optimization (PSO) by Liaoa, Tseng, and Luarnb (2007). The OHR
algorithm denotes taking the best result out of three heuristic
scheduling rules: SPT (shortest job processing time), LPT (longest
job processing time), and NEH (Nawaz, Enscore, & Ham, 1983).
The two ACOs are respectively called MMAX and PACO.

For each algorithm in each test case, the average makespan of
the 15 replicates is taken as the performance. Define the average
makespan of each algorithm as follows: CGA-tabu for the GA-Tabu,
COHR for the OHR, CSA for the SA, CGA for the GA, CTS for the TS, CMMAX

for the MMAX, CPACO for the PACO, and CPSO for the PSO. The com-
putation time for each algorithm is defined accordingly; for exam-
ple, that for the GA-Tabu is defined as tGA-tabu.

5.3. Experiment results

To compare the solution quality between the GA-Tabu and a
benchmark algorithm (say, x), a performance metric is so defined:
cx = (Cx � CGA_Tabu)/CGA_Tabu. A positive cx indicates that the GA-Tabu
ing Aligner Wafer
edge
exposure

PEB Cooling Develop Hard
bake

High
cooling

1 1 2 2 2 2 1

[0.75,1.65] 1 [1.2,2.8] 1 [1.2,2.8] [1.2,2.8] 0.5

Table 3
Makespan comparison at different binomial yield scenarios for job 40.

Jobs 40

GA_Tabu OHR GA SA Tabu MMAX PACO PSO

Yield
(%)

CGA-tabu

(min)
tGA-tabu

(s)
Random
(min)

SPT
(min)

LPT
(min)

NEH
(min)

CB

(min)
CGA

(min)
cGA

(%)
tGA

(s)
CSA

(min)
cSA

(%)
tSA

(s)
Ctabu

(min)
ctabu

(%)
ttabu

(s)
Cmax

(min)
cmax

(%)
tmax

(s)
Cpaco

(min)
cpaco

(%)
tpaco

(s)
CPSO

(min)
cPSO

(%)
Tpso

(s)

90 1155.6 381 1170.0 1170.6 1158.7 1160.6 1158.7 1155.6 0.00 722 1158.0 0.21 30 1155.6 0.00 160 1155.9 0.03 261 1155.8 0.01 185 1163.5 0.68 7
80 1001.0 333 1015.7 1011.9 1004.4 1008.0 1004.4 1001.0 0.00 635 1001.o 0.00 31 1001.0 0.00 155 1001.2 0.02 226 1001.4 0.04 160 1008.8 0.78 7
70 901.3 294 914.7 910.7 905.4 906.8 905.4 901.3 0.00 674 901.2 �0.01 30 901.3 0.00 151 901.8 0.06 203 901.8 0.06 143 909.5 0.91 6
60 773.7 276 787.9 781.5 778.3 781.4 778.3 773.7 0.00 553 775.1 0.19 28 773.7 0.00 146 774.0 0.04 173 773.9 0.03 122 781.8 1.04 6
50 677.8 261 691.0 685.7 681.8 683.1 681.8 677.8 0.00 488 685.6 1.15 26 677.8 0.00 143 678.0 0.02 150 677.9 0.02 106 685.7 1.17 6
40 519.2 182 531.9 527.2 523.8 525.7 523.8 519.2 0.00 359 526.2 1.35 24 519.2 0.00 138 519.6 0.08 116 519.4 0.05 81 526.9 1.49 6
30 405.9 150 419.0 413.8 411.3 411.9 411.3 405.9 0.01 334 405.8 �0.01 22 405.9 0.01 133 406.2 0.08 89 406.0 0.05 63 413.5 1.90 5
25 348.6 150 367.3 358.8 356.1 357.3 356.1 348.6 0.02 419 351.6 0.86 21 348.6 0.00 130 348.9 0.10 76 348.9 0.09 54 358.9 2.97 5
20 309.7 128 332.8 319.7 319.3 314.4 314.4 309.7 0.00 386 292.6 �5.52 20 309.7 0.01 129 309.8 0.05 69 309.8 0.05 48 313.6 1.25 5
15 247.3 104 290.7 268.2 267.2 272.9 267.2 251.4 1.65 649 261.4 5.69 19 247.9 0.21 124 251.2 1.55 48 251.7 1.78 34 273.0 10.37 5

Table 2
Makespan comparison at different binomial yield scenarios for job 20.

Jobs 20

GA_Tabu OHR GA SA Tabu MMAX PACO PSO

Yield
(%)

CGA-tabu

(min)
tGA-tabu

(s)
Random
(min)

SPT
(min)

LPT
(min)

NEH
(min)

CB

(min)
CGA

(min)
cGA

(%)
tGA

(s)
CSA

(min)
cSA

(%)
tSA

(s)
Ctabu

(min)
ctabu

(%)
ttabu

(s)
Cmax

(min)
cmax

(%)
tmax

(s)
Cpaco

(min)
cpaco

(%)
tpaco

(s)
CPSO

(min)
cPSO

(%)
Tpso

(s)

90 562.0 109 572.6 571.6 565.1 565.2 565.1 562.1 0.01 251 563.2 0.21 9 562.0 0.00 70.3 562.5 0.08 31 562.6 0.10 23 566.7 0.84 2
80 529.8 100 539.9 537.1 532.9 534.2 532.9 529.8 0.00 230 530.8 0.18 8 529.8 0.00 70.0 530.0 0.03 29 530.2 0.08 21 534.2 0.82 2
70 448.0 101 458.0 454.2 450.9 453.1 450.9 448.0 0.00 215 448.8 0.18 7 448.0 0.00 69.7 448.3 0.08 24 448.4 0.09 18 452.4 0.99 1
60 391.2 89 400.5 398.4 395.1 394.4 394.4 391.3 0.01 175 392.2 0.26 7 391.2 0.00 69.4 391.6 0.09 21 391.6 0.10 16 396.0 1.22 1
50 349.8 84 359.1 356.5 353.3 353.6 353.3 349.8 0.00 214 350.9 0.30 5 349.8 0.00 68.9 350.0 0.05 19 350.1 0.09 14 354.4 1.31 1
40 268.4 62 277.0 276.6 272.4 272.6 272.4 268.4 0.00 114 269.6 0.43 5 268.4 0.00 68.2 268.8 0.13 14 268.8 0.14 11 272.9 1.65 1
30 215.4 59 224.8 222.9 220.0 219.2 219.2 215.4 0.00 137 216.3 0.41 4 215.4 0.00 67.0 215.7 0.12 11 215.6 0.06 8 220.6 2.41 1
25 161.8 47 174.9 170.9 168.9 168.5 168.5 161.9 0.05 132 163.9 1.29 3 161.8 0.00 67.0 162.0 0.11 8 162.2 0.24 6 167.9 3.74 1
20 138.6 44 159.2 150.1 151.3 149.2 149.2 139.4 0.54 131 144.1 3.98 3 138.6 0.01 66.1 139.3 0.50 7 140.4 1.28 5 148.3 6.99 1
15 125.8 42 146.3 143.4 141.0 139.7 139.7 127.4 1.28 131 132.0 4.92 3 126.3 0.37 66.0 127.7 1.49 6 127.8 1.57 5 136.4 8.38 1

11930
C.-W

.Chiou,M
.-C.W

u
/Expert

System
s

w
ith

A
pplications

36
(2009)

11925–
11933

Table 4
Makespan comparison at different binomial yield scenarios for job 60.

Jobs 60

GA_Tabu OHR GA SA Tabu MMAX PACO PSO

Yield
(%)

CGA-tabu

(min)
tGA-tabu

(s)
Random
(min)

SPT
(min)

LPT
(min)

NEH
(min)

CB

(min)
CGA

(min)
cGA

(%)
tGA

(s)
CSA

(min)
cSA

(%)
tSA

(s)
Ctabu

(min)
ctabu

(%)
ttabu

(s)
Cmax

(min)
cmax

(%)
tmax

(s)
Cpaco

(min)
cpaco

(%)
tpaco

(s)
CPSO

(min)
cPSO

(%)
Tpso

(s)

90 1707.1 961 1726.0 1730.6 1710.2 1714.3 1710.2 1707.1 0.00 1670 1710.9 0.23 25 1707.1 0.00 527 1707.2 0.00 876 1707.3 0.01 618 1718.7 0.68 17
80 1503.7 838 1521.8 1519.5 1508.0 1510.8 1508.0 1503.7 0.00 1245 1513.3 0.64 23 1503.7 0.00 511 1503.9 0.02 773 1503.7 0.00 542 1514.4 0.71 17
70 1323.1 792 1341.1 1335.8 1328.1 1329.8 1328.1 1323.1 0.00 1549 1334.5 0.87 22 1323.1 0.00 495 1323.1 0.00 679 1323.3 0.02 475 1334.3 0.85 16
60 1192.7 694 1210.2 1201.3 1197.3 1199.6 1197.3 1192.7 0.00 1091 1203.0 0.86 19 1192.7 0.00 483 1192.9 0.02 612 1192.8 0.00 427 1203.6 0.92 16
50 960.6 517 977.2 967.4 964.8 967.3 964.8 960.6 0.00 980 970.8 1.06 18 960.6 0.00 466 960.9 0.04 487 960.8 0.02 339 971.5 1.14 15
40 794.1 433 811.1 801.4 798.6 800.5 798.6 794.1 0.00 771 804.8 1.35 16 794.1 0.00 452 794.4 0.05 401 794.3 0.03 278 805.5 1.44 15
30 566.7 324 586.4 578.0 575.5 577.2 575.5 566.7 0.00 726 570.1 0.60 14 566.7 0.00 431 566.7 0.01 282 566.9 0.04 197 578.9 2.15 15
25 472.7 284 502.6 486.1 482.2 489.4 482.2 472.8 0.03 858 485.2 2.66 13 472.7 0.01 421 472.8 0.04 240 473.1 0.10 166 490.9 3.86 15
20 417.3 281 462.3 445.8 444.1 452.3 444.1 419.2 0.44 1384 434.8 4.18 11 417.8 0.11 417 419.8 0.60 216 421.1 0.90 149 450.0 7.82 14
15 367.7 212 454.9 400.2 399.4 397.2 397.2 370.0 0.61 1595 386.7 5.16 10 368.7 0.28 411 373.7 1.62 162 374.5 1.83 112 389.8 6.00 14

Table 5
Makespan comparison at different binomial yield scenarios for job 80.

Jobs 80

GA_Tabu OHR GA SA Tabu MMAX PACO PSO

Yield
(%)

CGA-tabu

(min)
tGA-tabu

(s)
Random
(min)

SPT
(min)

LPT
(min)

NEH
(min)

CB

(min)
CGA

(min)
cGA

(%)
tGA

(s)
CSA

(min)
cSA

(%)
tSA

(s)
Ctabu

(min)
ctabu

(%)
ttabu

(s)
Cmax

(min)
cmax

(%)
tmax

(s)
Cpaco

(min)
cpaco

(%)
tpaco

(s)
CPSO

(min)
cPSO

(%)
Tpso

(s)

90 2274.0 1851 2297.0 2305.3 2277.7 2282.8 2277.7 2274.0 0.00 2502 2288.4 0.63 49 2274.0 0.00 1210 2274.4 0.02 2084 2274.2 0.01 1474 2289.0 0.66 34
80 2035.1 1731 2056.4 2055.0 2038.8 2043.7 2038.8 2035.1 0.00 2722 2049.6 0.71 47 2035.1 0.00 1174 2035.3 0.01 1857 2035.1 0.00 1309 2049.2 0.69 33
70 1805.3 1659 1827.3 1818.1 1809.8 1813.3 1809.8 1805.3 0.00 2053 1819.6 0.80 43 1805.3 0.00 1139 1805.4 0.01 1648 1805.3 0.00 1158 1819.7 0.80 33
60 1539.1 1352 1561.2 1547.4 1544.4 1547.7 1544.4 1539.1 0.00 1767 1553.1 0.91 39 1539.1 0.00 1098 1539.3 0.02 1393 1539.3 0.02 978 1553.1 0.91 32
50 1329.6 1130 1351.3 1338.9 1335.0 1337.7 1335.0 1329.6 0.00 1726 1344.5 1.12 36 1329.6 0.00 1074 1329.7 0.00 1205 1329.8 0.02 844 1343.6 1.05 32
40 1040.5 864 1061.9 1053.1 1050.9 1050.0 1050.0 1040.5 0.00 1109 1055.0 1.39 32 1040.5 0.00 1034 1040.7 0.02 954 1040.8 0.03 660 1054.7 1.36 31
30 834.9 708 855.2 844.0 841.5 843.5 841.5 834.9 0.00 1262 848.8 1.67 28 834.9 0.00 998 834.9 0.00 744 835.0 0.02 521 8485 1.63 31
25 675.1 601 703.1 688.1 684.3 685.3 684.3 675.1 0.01 1315 695.5 3.03 26 675.1 0.00 967 675.2 0.03 610 675.5 0.07 426 693.8 2.78 30
20 588.5 529 639.0 616.3 614.9 625.6 614.9 588.9 0.07 1997 624.5 6.12 24 588.5 0.01 954 589.2 0.12 543 590.0 0.25 374 623.0 5.86 30
15 484.2 392 727.8 517.1 517.2 525.1 517.1 487.1 0.59 2126 504.0 4.08 21 484.6 0.07 931 491.9 1.59 366 492.8 1.76 253 515.5 6.45 30

C.-W
.Chiou,M

.-C.W
u

/Expert
System

s
w

ith
A

pplications
36

(2009)
11925–

11933
11931

Ta
bl

e
6

M
ak

es
pa

n
co

m
pa

ri
so

n
at

di
ff

er
en

t
bi

no
m

ia
l

yi
el

d
sc

en
ar

io
s

fo
r

jo
b

10
0.

Jo
bs

10
0

G
A

_T
ab

u
O

H
R

G
A

SA
Ta

bu
M

M
A

X
PA

C
O

PS
O

Y
ie

ld
(%

)
C G

A
-t

ab
u

(m
in

)
t G

A
-t

ab
u

(s
)

R
an

do
m

(m
in

)
SP

T
(m

in
)

LP
T

(m
in

)
N

EH
(m

in
)

C B (m
in

)
C G

A

(m
in

)
c G

A

(%
)

t G
A

(s
)

C S
A

(m
in

)
c S

A

(%
)

t S
A

(s
)

C t
ab

u

(m
in

)
c t

ab
u

(%
)

t t
ab

u

(s
)

C m
ax

(m
in

)
c m

ax

(%
)

t m
ax

(s
)

C p
ac

o

(m
in

)
c p

ac
o

(%
)

t p
ac

o

(s
)

C P
SO

(m
in

)
c P

SO

(%
)

T p
so

(s
)

90
28

26
.8

34
02

28
53

.9
28

62
.2

28
32

.4
28

37
.3

28
32

.4
28

26
.8

0.
00

40
02

28
45

.0
0.

64
31

28
26

.8
0.

00
23

28
28

26
.8

0.
00

40
53

28
27

.0
0.

01
28

51
28

44
.4

0.
63

58
80

25
37

.5
33

48
25

64
.6

25
63

.0
25

40
.8

25
47

.1
25

40
.8

25
37

.5
0.

00
32

50
25

55
.5

0.
71

28
25

37
.5

0.
00

22
61

25
37

.5
0.

00
36

36
25

37
.7

0.
01

25
46

25
54

.8
0.

68
58

70
22

57
.0

27
34

22
82

.2
22

73
.1

22
60

.5
22

67
.2

22
60

.5
22

57
.0

0.
00

34
59

22
74

.6
0.

78
25

22
57

.0
0.

00
21

93
22

57
.1

0.
01

32
29

22
57

.1
0.

01
22

53
22

74
.6

0.
78

57
60

19
36

.4
22

94
19

61
.2

19
46

.5
19

41
.8

19
46

.1
19

41
.8

19
36

.4
0.

00
23

89
19

54
.0

0.
91

22
19

36
.4

0.
00

21
17

19
36

.6
0.

01
27

69
19

36
.7

0.
02

19
20

19
54

.0
0.

91
57

50
15

82
.9

18
68

16
08

.7
15

93
.5

15
89

.2
15

93
.5

15
89

.2
15

82
.9

0.
00

24
54

16
00

.4
1.

10
18

15
82

.9
0.

00
20

41
15

83
.0

0.
01

22
57

15
83

.1
0.

01
15

68
15

99
.9

1.
07

56
40

13
31

.6
17

11
13

57
.6

13
42

.0
13

38
.1

13
41

.3
13

38
.1

13
31

.6
0.

00
21

83
13

50
.1

1.
39

16
13

31
.6

0.
00

19
88

13
31

.7
0.

01
18

86
13

31
.7

0.
00

13
08

13
49

.4
1.

33
55

30
10

12
.6

12
31

10
39

.1
10

23
.4

10
17

.4
10

22
.7

10
17

.4
10

12
.6

0.
00

17
80

10
30

.1
1.

74
12

10
12

.6
0.

00
19

00
10

12
.7

0.
02

14
05

10
12

.8
0.

02
98

4
10

30
.2

1.
74

55
25

89
9.

8
11

53
92

9.
1

91
1.

0
90

8.
9

91
1.

0
90

8.
9

89
9.

8
0.

00
17

60
92

1.
1

2.
36

11
89

9.
8

0.
00

18
70

90
0.

0
0.

03
12

58
90

0.
0

0.
03

88
2

91
9.

3
2.

17
55

20
73

6.
0

96
1

79
2.

8
75

9.
7

75
9.

3
77

0.
0

75
9.

3
73

6.
5

0.
06

29
52

78
3.

2
6.

42
9

73
6.

0
0.

00
18

25
73

6.
3

0.
04

10
55

73
9.

3
0.

45
72

8
77

8.
9

5.
83

54
15

61
0.

6
68

1
71

1.
5

64
8.

5
64

6.
9

65
2.

7
64

6.
9

61
6.

4
0.

94
31

51
63

4.
3

3.
88

6
61

2.
1

0.
25

17
83

61
9.

2
1.

40
74

0
62

4.
1

2.
20

51
1

64
8.

9
6.

27
54

11932 C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933
is better than the benchmark, while a negative one denotes the GA-
Tabu is worse.

From Tables 2–6, we could see that all cx ranges from 0% to 10%.
This indicates that the GA-Tabu outperforms all the benchmark algo-
rithms, in terms of solution quality. Notice that this merit appears
more impressive in low-yield scenarios than in high-yield scenarios.
The GA-Tabu is relatively computationally extensive. However,
compared to the TS and the GA (the 2nd and 3rd best ones in terms
of solution quality), the GA-Tabu is faster computationally.

The experiment results indicate that the proposed GA-Tabu has
its merit—in particular in a low-yield scenario. With in-line step-
pers as the bottleneck of a fab, even a 1% increase in the in-line
stepper throughput would have a substantial positive impact on
gross margins.

6. Concluding remarks

This study examines a scheduling problem for a semiconductor
in-line stepper, with makespan as the performance criterion. We
propose a meta-heuristic algorithm, called GA-Tabu, to solve the
problem. Seven other scheduling algorithms are compared with
the GA-Tabu by numerical experiments. Experiment results indi-
cated that the GA-Tabu outperforms all the benchmarks in terms
of solution quality. This merit is in particular more impressive in
low-yield scenarios.

One extension to this research is the scheduling of two or more
in-line steppers. Such an extension would involve one more deci-
sion-making—how to allocate jobs to each in-line stepper. Another
extension is the configuration design for an in-line stepper, for
example, determining the optimum number of ports.

References

Armour, G., & Buffa, E. (1963). A heuristic algorithm and simulation approach to the
relative location of facilities. Management Science, 9, 294–309.

Bac, F. Q., & Perov, V. L. (1993). New evolutionary genetic algorithms for NP-
complete combinatorial optimization problems. Biological Cybernetics, 69,
229–234.

Chern, C. C., & Liu, Y. L. (2003). Family-based scheduling rules of a sequence-
dependant wafer fabrication system. IEEE Transactions on Semiconductor
Manufacturing, 16(1), 15–25.

Chiang, T. C., & Fu, L. C. (2008). Using a family of critical ratio-based approaches to
minimize the number of tardy jobs in the job shop with sequence dependent
setup times. European Journal of Operational Research. doi:10.1016/j.ejor.
2007.12.042.

Chung, S. H., & Hsieh, M. H. (2008). Long-term tool elimination planning for a wafer
fab. Computers and Industrial Engineering, 54, 589–601.

Croce, F. D., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job shop
problem. Computers and Operations Research, 22(1), 15–24.

Dabbas, R. M., & Fowler, J. W. (2003). A new scheduling approach using combined
dispatching criteria in wafer fabs. IEEE Transactions on Semiconductor
Manufacturing, 16, 3.

Duwayri, Z., Mollaghasemi, M., Nazzal, D., & Rabadi, G. (2006). Scheduling setup
changes at bottleneck workstations in semiconductor manufacturing.
Production Planning and Control, 17(7), 717–727.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine
learning. Boston: Addison-Wesley.

Holland, J. H. (1975). Adaptation in neural and artificial systems. Ann Arbor, MI: Univ.
Michigan Press.

Liaoa, C. J., Tseng, C. T., & Luarnb, P. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers and Operations
Research, 34, 3099–3111.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs
(3rd ed.). Berlin, Heidelberg, New York: Springer.

Morrison, J. R., & Martin, D. P. (2007). Performance evaluation of photolithography
cluster tools. OR Spectrum, 33, 375–389.

Nawaz, M., Enscore, J. E. E., & Ham, I. (1983). A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. OMEGA, The International Journal
of Management Science, 11(1), 91–95.

Nearchou, A. C. (2004). The effect of various operators on the genetic search for
large scheduling problems. International Journal of Production Economics, 88,
191–203.

Osman, I. H., & Potts, C. N. (1989). Simulated annealing for permutation flow-shop
scheduling. OMEGA, The International Journal of Management Science, 17(6),
551–557.

Quirk, M. (2001). Semiconductor manufacturing technology. Prentice Hall.

http://dx.doi.org/10.1016/j.ejor.2007.12.042
http://dx.doi.org/10.1016/j.ejor.2007.12.042

C.-W. Chiou, M.-C. Wu / Expert Systems with Applications 36 (2009) 11925–11933 11933
Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research, 155, 426–438.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers and
Operations Research, 22(1), 5–13.

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility. European Journal of
Operational Research, 169, 781–800.

Sha, D. Y., Hsu, S. Y., Che, Z. H., & Chen, C. H. (2006). A dispatching rule for
photolithography scheduling with an on-line rework strategy. Computers and
Industrial Engineering, 50, 233–247.

Wang, L., & Zheng, D. Z. (2003). An effective hybrid heuristic for flowshop scheduling.
International Journal of Advanced Manufacturing Technology, 21(1), 38–44.

Widmer, M., & Hertz, A. (1989). A new heuristic method for the flow shop
sequencing problem. European Journal of Operational Research, 41, 186–193.

Wu, M. C., & Chang, W. J. (2007). A short-term capacity trading method for semi-
conductor fabs with partnership. Expert Systems with Applications, 33, 476–483.

Wu, M. C., & Chang, W. J. (2008). A multiple criteria decision for trading capacity
between two semiconductor fabs. Expert Systems with Applications, 35, 938–945.
Wu, M. C., & Chiou, C. W. (2009). Scheduling semiconductor in-line steppers in new
product/process introduction scenarios. International Journal of Production
Research. doi:10.1080/00207540802577920.

Wu, M. C., Chiou, S. J., & Chen, C. F. (2007). Dispatching for make-to-order wafer fabs
with machine-dedication and mask set-up characteristics. International Journal
of Production Research, 1–17.

Wu, M. C., Huang, Y. L., Chang, Y. C., & Yang, K. F. (2006). Dispatching in
semiconductor fabs with machine-dedication features. International Journal of
Advanced Manufacturing Technology, 28, 978–984.

Wu, M. C., Jiang, J. H., & Chang, W. J. (2008). Scheduling a hybrid MTO/MTS
semiconductor fab with machine-dedication features. International Journal
Production Economics, 112, 416–426.

Xiao, H. (2001). Introduction to semiconductor manufacturing technology. Prentice
Hall.

Ying, K. C., & Lin, S. W. (2009). Raising the hit rate for wafer fabrication by a simple
constructive heuristic. Expert Systems with Applications, 36(2P2), 2894–2900.

Zhang, L., Wang, L., & Zheng, D. Z. (2006). A adaptive genetic algorithm with
multiple operators for flowshop scheduling. International Journal of Advanced
Manufacturing Technology, 27, 580–587.

http://dx.doi.org/10.1080/00207540802577920

	A GA-Tabu algorithm for scheduling in-line steppers in low-yield scenarios
	Introduction
	Operational mechanism of an in-line stepper
	Makespan evaluation for job sequences
	Notation
	Evaluation procedure

	Algorithm
	Logic flow
	Crossover and mutation operators
	Procedure Tabu

	Numerical experiments
	Test cases
	Benchmark algorithms
	Experiment results

	Concluding remarks
	References

