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a b s t r a c t

This paper investigates the Granger causality between electricity consumption (EL) and economic growth
for Taiwan during 1980–2007 using the cointegration and error-correction models. The results indicate
that EL and real GDP are cointegrated, and that there is unidirectional short and long run Granger
causality from economic growth to EL but not vice versa. Considering cointegrated property, this study
proposes a new error-correction state space model (ECSTSP) with the error-correction term (ECT) in its
state vector to forecast both EL and real GDP simultaneously, whereas the ECM is not in the state vector
of classical state space model (STSP). The out-of-sample forecasting ability of the ECSTSP is compared
with STSP and SARIMA models using six forecasting horizons from 1-year to 6-year. The results suggest
that all of the models have strong forecasting performance with MAPE less than 5.4%, but the ECSTSPs
have the smallest average values of MAPEs for both EL and GDP, which are 2.50% and 1.74%, respectively.
For short-term predictions, SARIMA models are as good as STSP or ECSTSP ones. For long-term predic-
tion, ECSTSP is the best model, because the cointegration relationship between real GDP and EL is taken
into account in this model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Energy is the foundation of economic development. Electricity is
the most flexible form of energy and constitutes one of the vital
infra-structural inputs in socioeconomic development. Both
economy and energy consumption in Taiwan have been growing
rapidly. In the 1990s, energy consumption increased about 5% per
year, with real GDP growing at an average annual rate of about 5.4%.
Among the categories of energy consumed, electricity took up 52%,
petroleum 38%, and the rest 10%. Total electricity consumption (EC)
rises sharply from 82.60 billion (kwh) in 1990 to 229.20 billion
(kwh) in 2007, implying an annual growth rate of 6.19%. Official
energy projections for Taiwan indicate a continuing increase in
demand for energy, especially for electricity, in the next two
decades (Bureau of Energy, Ministry of Economic Affairs in Taiwan).

There are numerous studies that deal with the causality rela-
tionship between EC and economic growth. This study tried to
focus on studies conducted in the recent five years, i.e., 2004 and
afterwards, especially regarding countries with developing econo-
mies, such as Taiwan. These studies are summarized in Table 1. The
findings from the studies vary not only across countries but also
across methodologies for the same country. In a summary of the
All rights reserved.
literature on the causal relationship between EC and economic
growth, there is evidence to support bidirectional or unidirectional
causality, or no causality, between EC and economic growth.

Evidence in either direction will have a significant bearing on
policy. If, for example, there is unidirectional causality running
from economic growth to EC, it could imply that electricity
conservation policies may be implemented with little or no adverse
effect on economic growth. Unidirectional causality running from
economic growth to EC was revealed by Ghosh [1] for India, by
Mozumder and Marathe [2] for Bangladesh, by Narayan and Smyth
[3] for Australia, by Yoo [4] for Indonesia and Thailand, and by Chen
et al. [5] for Korea, Singapore, India, Malaysia and the Philippines.

In contrast, if a unidirectional causality runs from EC to
economic growth, reducing EC could lead to a fall in economic
growth while increasing it may contribute towards a country’s
economic growth. Unidirectional causality running from EC to
economic growth was revealed by Shiu and Lam [6] and Yuan et al.
[7] for China, by Wolde-Rufael [8] for Shanghai, China, by Ho and
Siu [9] for Hong Kung, by Altinay and Karagol [10] for Turkey, by Lee
and Chang [11] for Taiwan, and by Chen et al. [5] for Indonesia.

On the other hand, if bidirectional causality is found, economic
growth may demand more electricity whereas more EC may induce
economic growth. EC and economic growth may complement each
other and energy conservation measures may negatively affect
economic growth. For example, Jumbe [12] for Malawi, Tang [13]

mailto:htpao@mail.nctu.edu.tw
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy


Table 1
Empirical results from causality tests between electricity consumption and economic growth for developing countries.

Author Country Method Period Finding

Mozumder and Marathe [2] Bangladesh VECM 1971–1999 GDP / EL
Narayan and Smyth [3] Australia VECM 1966–1999 GDP / EL
Yoo [4] Thailand

Indonesia
Malaysia
Singapore

Hsiao’s version of GC 1971–2002 GDP / EL
GDP / EL
GDP 4 EL
GDP 4 EL

Chen et al. [5] Korea
Singapore
India
Malaysia
Philippines
Indonesia
China
Taiwan
Thailand
Hong Kong
10 Asian countries

VECM
Panel VECM

1971–2001 GDP / EL
GDP / EL
GDP / EL
GDP / EL
GDP / EL
GDP ) EL
GDP o EL
GDP o EL
GDP o EL
GDP 4 EL
GDP 4 EL

Shiu and Lam [6] China VECM 1971–2000 GDP ) EL
Yuan et al. [7] China VECM 1978–2004 GDP ) EL
Wolde-Rufael [8] Shanghai, China TY version of Granger non-causality 1952–1999 GDP ) EL
Ho & Siu [9] Hong Kong VECM 1966–2002 GDP ) EL
Altinay and Karagol [10] Turkey GC and VAR 1950–2005 GDP ) EL
Lee and Chang [11] Taiwan Weak exogeneity 1954–2003 GDP ) EL
Jumbe [12] Malawi GC & VECM 1970–1999 GDP 4 EL
Tang [13] Malaysia GC 1972–2003 GDP 4 EL
Morimoto and Hope [14] Sri Lanka Regression 1960–1998 GDP 4 EL
Zachariadis & Pashourtidou [15] Cyprus VECM 1960–2004 GDP 4 EL
Yoo [16] Korea VECM 1970–2002 GDP 4 EL

Note: GC and GNC indicate the Granger causality and Granger non-causality tests, respectively. GDP o EL indicates no causality between GDP and EL.
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and Yoo [4] for Malaysia, Yoo [4] for Singapore, Morimoto and Hope
[14] for Sri_Lanka, Zachariadis and Pashourtidou [15] for Cyprus,
Yoo [16] for Korea, Yang [17] for Taiwan, and Chen et al. [5] for Hong
Kong found bidirectional causality between EC and economic
growth. In addition, Chen et al. [5] found bidirectional causality for
10 Asian countries using panel data.

Finally, no causality in either direction would indicate that
energy conservation policies may not affect economic growth, and
rise in real income may not affect EC. Chen et al. [5] found that there
was no causality between economic growth and EC in China,
Taiwan and Thailand.

Recently, various studies have been conducted to explore the
causality relationship between total energy consumption and
economic growth in Taiwan ([11] and [17–20]). Although the EC
is an important category constituting 52% of the total energy
consumption in 2007, there are very few studies concerning the
relationship between electricity use and GDP for Taiwan. In
articles [5,11,17], different results were provided by using annual
data sets from 1971 to 2001, 1954 to 2003 and 1954 to 1997,
respectively. Furthermore, to the best of our knowledge, there is
no study to jointly forecast both EC and real GDP dynamically,
using the results of causality relationship studies and quarterly
data sets.

The two purposes of this study are as follows. The first one is to
investigate the causality relationship between EC and economic
growth, and to obtain policy implications from the results. This
purpose is accomplished by the following steps: First, stationarity
and cointegration are tested; second, error-correction models are
estimated to test for the Granger causality; finally, the F-tests are
performed to determine the joint significance levels of causality
between the two variables.

The second purpose is to construct a new error-correction state
space model (ECSTSP hereafter) for forecasting of both EC and real
GDP simultaneously, taking the cointegration property into
account. For modeling and forecasting time series, univariate Box–
Jenkins ARIMA [21] linear models are used. Recently, some
univariate nonlinear models have been proposed. Pappas et al.
[22,23] proposed an adaptive method based on the multi-model
partitioning filter for short-term electricity load forecasting. Aza-
deh [24] presented an integrated algorithm based on ANN, simu-
lated-based ANN, time series and DOE (ANOVA and DMLT) to
forecast monthly electricity in Iran. Lauret [25] proposed the use of
Bayesian regularization as a technique to estimate the parameters
of a neural network in order to forecast load. For long-term fore-
casting, Pao [26] proposed an ANN to forecast electricity market
pricing. Articles [27] and [28] presented a trigonometric grey
prediction approach and a grey prediction with rolling mechanism
approach to forecast electricity demand in China and Turkey,
respectively. On the other hand, the multivariate models of neural
network techniques [29,30], regression and econometric approach
[31–33] have been also applied in predicting EC. Karanfil and
Ozkaya [34] utilized the Kalman Filter technique for GDP fore-
casting in Turkey. Furthermore, Jebaraj and Iniyan [35] made
a literature survey in order to give a brief overview of different
types of energy modeling and forecasting.

This paper is organized as follows. The next section outlines the
econometric methodology and models. Section 3 presents the data
source, shows the empirical results and makes model comparisons.
Section 4 provides the discussion and policy implications. The final
section summarizes this work and concludes.

2. Methodology

According to Engle and Granger [36], a linear combination of
two or more nonstationary series (with the same order of inte-
gration) may be stationary. If such a stationary linear combination
exists, the series are considered to be cointegrated and long run
equilibrium relationship exists. Incorporating these cointegrated
properties, the error-correction model (ECM) is specifically adopted
to examine the Granger causality among variables. Taking the
cointegration property into account, this study proposes a new
ECSTSP to forecast both EC and real GDP simultaneously. The out-
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of-sample forecasting ability of ECSTSP is compared with both the
state space model (STSP) and SARIMA, where STSP and SARIMA are
the multivariate and univariate benchmark models, respectively.

2.1. Granger causality, stationarity and cointegration

Since the use of the ECM requires the series to be cointegrated
with the same order, it is essential to first test the series for sta-
tionarity and cointegration. The Augmented Dickey-Fuller [37]
(ADF) and the Phillips-Perron [38] (PP) unit root tests are used to
investigate the stationarity and the order of integration of the
variables. If a nonstationary series has to be differenced d times to
become stationary, then it is said to be integrated of order d: i.e.,
I(d). The differenced data is to be applied for the causality test.

When both series are integrated of the same order, The Johansen
maximum likelihood method [39,40] is used to test cointegration.
The evidence of cointegration rules out the possibility that the
estimated relationship is spurious. The existence of cointegration
indicates that there are long run equilibrium relationships among
the variables, and thereby Granger causality among them in at least
one direction (Engle and Granger [36] and Oxley and Greasley [41]).
The ECM is used for correcting disequilibrium in the cointegration
relationship, captured by the error-correction term (ECT), as well as
testing for long and short run causality among cointegrated vari-
ables. The ECM is specified as follows:

DXt ¼ aþ
Xm
i¼1

biDXt�i þ
Xn

j¼1

gjDYt�j þ dECTt�1 þ mt (1)

DYt ¼ aþ
Xq

i¼1

biDXt�i þ
Xr

j¼1

cjDYt�j þ dECTt�1 þ vt ; (2)

where Xt and Yt represent the EL and real GDP in actual or loga-
rithmic form respectively, and (DXt, DYt) are the differences in these
variables that capture their short run disturbances. The mt, nt are the
serially uncorrelated error terms. The ECTt�1 is derived from
the long run cointegration relationship. This specification can test
the short and long run causality among co-integrated variables. The
optimum lag lengths m, n, q and r are determined bases on Akaike’s
[42] information (AIC) and Schwarz Bayesian (SBC) criteria.

2.2. SARIMA model

The SARIMA model analyzes and forecasts equally spaced
univariate seasonal time series data. It predicts a value in
a response time series as a linear combination of its own past
values and past errors. The analysis performed by SARIMA
procedure is divided into three stages: identification, estimation
and diagnostic checking, and forecasting, which correspond to
the stages described by Box and Jenkins. Classical Box–Jenkins
models describe stationary time series. Thus, in order to tenta-
tively identify a Box–Jenkins model, we must first transform the
time series into a stationary time series by taking a pre-differ-
encing transformation. The seasonal Box–Jenkins models, SAR-
IMA (p,d,q)5(P,D,Q)S, are expressed as follows:

where
fpðBÞFP

�
BS
�
ð1� BÞd

�
1� BS

�D
yt ¼ dþ qqðBÞQQ

�
BS
�

at

fpðBÞ ¼ 1� f1B� f2B2 �/� fpBp

qqðBÞ ¼ 1� q1B� q2B2 �/� qqBq

FP

�
BS
�
¼ 1� F1BS � F2B2S �/� FPBPS

QQ

�
BS
�
¼ 1�Q1BS �Q2B2S �/�QQ BQS

(3)
In this expression, the time series is yt; S is the seasonal periodicity;
B is the backward shift operator; d is the order of regular differ-
ences; D is the order of seasonal differences, and at, at�1,. are
independent random shocks. The series at is assumed to be a white
noise process, and fpðBÞ and qqðBÞ are polynomials in B of order p
and q respectively. The roots of fpðBÞ ¼ 0 and qqðBÞ ¼ 0 should lie
outside the unit circle.

2.3. STSP model

STSP modeling was introduced by Kalman [43] and is known as
Kalman filtering. It is appropriate for jointly forecasting several
related time series that are dynamically interacting. Taking the
autocorrelations among the whole set of variables into account,
the SAS STATESPACE may give better forecasts than methods that
model each series separately [44]. The methods used in
the STATESPACE procedure are described in Akaike [42]. These
methods assume that the time series are jointly stationary.
Nonstationary series must be made stationary by some preliminary
transformation, usually by differencing. If the stationary multivar-
iate time series, xt, of dimension r is taken into account, where
xt¼ (x1,t, x2,t,.,xr,t), a STSP model for this multivariate time series
could be written as:

zt ¼ Fzt�1 þ Get (4)

where zt is a state vector of dimension s, whose first r components
compose xt and whose last s� r elements are conditional predic-
tions of future xt, for example, zt¼ (x1,t, x2,t, x3,t, x1,tþ1jt, x3,tþ1jt,
x1,tþ2jt)0. F is an s-by-s transition matrix. G is an s-by-r input matrix,
with the identity matrix Ir forming the first r rows and columns. et is
a sequence of independent normally distributed random vectors of
dimension r with mean 0 and covariance matrix See. Even though
the variables have been differenced for stationarity, STATESPACE
procedure forecasts them in their non-differenced levels.

In this study, the STSP model would be employed for fore-
casting of both EL and real GDP interrelated time series with
a feedback relationship, if a cointegration relationship exists
between the two variables. The proposed new ECSTSP model
includes ECT in its state vector, where ECT is derived from the
cointegrating vector. However, the state vector of classical STSP
model does not include ECT. The state vector zt of ECSTSP has
dimension s, whose first 3 elements are xt, xt¼ (DELt, DGDPt,
DECTt), whose last s-3 elements are conditional predictions of
future xt, for example, zt¼ (DELt, DGDPt, DECTt, DELtþ1jt, DGDPtþ1jt,
DELtþ2jt)0. The transition matrix F has dimension sxs. The input
matrix G has dimension sx3, with the identity matrix I3 forming
the first 3 rows and columns.

3. Data and experimental results

3.1. Data analysis

The data provided cover the period from 1980 to 2007 (sample
period 1) with each data point representing EL (Fig. 1) and real GDP
(Fig. 2) for each quarter. All data are taken from the AREMOS
economic-statistic data banks, created by the Ministry of Education
in Taiwan. The sub-period from 1990 to 2007 (sample period 2) is
employed to confirm the parameter stability in estimating the ECM.
Both series EL and GDP appear to be nonstationary in level. As
shown in Fig. 1, the EL data show strong seasonality and growth
trends. The electricity peak season for each year generally occurs in
July to September, because electricity use is greatest in the summer.
The troughs of these two series fall in the fourth season of each
year, which contains many Chinese holidays and vacations.
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All of the empirical analysis on the relationship between vari-
ables has only studies the relationship of the trend [7], seasonal
factors can cause a biased estimator. Thus, this study uses the X-12-
ARIMA Seasonal Adjustment Program [45] to remove seasonal
effects from both EC and real GDP quarterly data sets. The resulting
seasonally adjusted ELSA and GDPSA time series are also shown in
Figs. 1 and 2, respectively. The descriptive statistics of EL, ELSA, GDP,
and GDPSA variables are reported in Table 2 for both sample
periods 1 and 2.
3.2. Results of unit roots, cointegration and Granger causality tests

In this analysis, the order of integration of data is investigated. In
order to avoid the biased estimator caused by seasonal factors,
seasonally adjusted variables are used in the models. They are
LELSA and LGDPSA, the natural logarithms of ELSA and GDPSA. The
logarithm variables have economic meaning because they are
regarded as the growth of the respective differenced variables. For
sample period 1, panel A of Table 3 presents the results of the ADF
and PP unit root tests on the levels and the first differences of both
LELSA and LGDPSA variables. In addition to LELSA and LGDPSA
variables, the unit root tests of both EL and GDP variables are shown
in panel B of Table 3, for the STSP forecasting model to use in
sample period 2. Results of both the ADF and the PP tests indicate
that all of the series are nonstationary. However, first differences of
Table 2
Descriptive statistics of included variables.

Variables Usable obs. Mean S.D. Min. Max.

Panel A: sample period 1980–2007
EL 116 26,014,980 12,776,311 8,332,261 52,985,000
ELSA 116 25,998,693 12,489,520 9,244,621 48,998,635
GDP 116 1,828,285 848,978.2 593,538 3,440,210
GDPSA 116 1,827,890 847,309.6 613,714 3,377,318

Panel B: sample period 1990–2007
EL 72 38,589,517 12,173,618 17,515,317 64,305,493
ELSA 72 38,563,734 11,631,932 20,051,444 57,815,522
GDP 72 2,270,806 571,398.5 1,291,437 3,446,720
GDPSA 72 2,270,195 567,335.8 1,312,886 3,345,857
these four series lead to stationarity. This result indicates that all of
the variables in Table 3 are of order one, i.e., I(1).

Given that the employed series are of the same order of inte-
gration, the next step is to test whether the two series LELSA and
LGDPSA are cointegrated over the two sample periods. Table 4
shows the results of the Johansen test. The trace and eigenvalue
tests reject both the hypotheses of no cointegrating equation and of
at most one cointegrating equation at 5% level of significance over
the sample period 1. This implies that there are two cointegrating
equations at 5% level of significance. However, only one cointe-
grating equation of the two is consistent [46]. The trace and
eigenvalue tests also reject the hypothesis of no cointegrating
equation at 5% level of significance over the sample period 2. Table
4 shows that the estimated cointegrating vectors normalized with
respect to LELSA are (1.00, 1.163) and (1.00, 1.220) for both sample
periods. The results shown in panel B of Table 4 also indicate that
the two series EL and GDP have one cointegration equation with the
optimal lag length 4 over the sample period 2 (the hypothesis of no
cointegration equation is rejected at 5% level). The estimated
cointegrating vectors normalized with respect to EL are (1.00,
23.492). The positive signs of the variables conform to the theory in
literature [7], i.e., there is a long-term positive relationship between
real GDP and EC for Taiwan. The existence of a cointegrating
Table 3
Results of ADF and PP unit root tests.

Variables ADF statistics PP statistics

Levels First differences Levels First differences

Panel A: sample period 1980–2007
LELSA �1.118 [1] �11.592 [0]a �1.025 [3] �11.592 [0]a

LGDPSA �2.324 [1] �6.778 [0]a �2.472 [2] �6.478 [2]a

Panel B: sample period 1990–2007
LELSA �2.810 [1] �12.588 [0]a �2.362 [1] �12.588 [0]a

LGDPSA �2.021 [1] �6.016 [0]a �2.300 [0] �6.026 [1]a

EL 0.402 [3] �17.182 [2]a �1.354 [14] �15.916 [12]a

GDP 0.586 [4] �4.107 [4]a 1.109 [15] �9.611 [15]a

Note: Each ADF and PP tests uses an intercept and no trend and leg length has been
chosen based on minimum AIC. Fingers in brackets are the lag lengths.

a Implies significance at 1% level.



Table 4
Results of Johansen cointegration test.

Eigenvalue Trace
Stat.

5% critical
value

Max Eigen.
Stat.

5% critical
value

Number of
cointegration

Panel A: sample period 1980–2007
Variable: LELSA and LGDPSA; Lags interval: 1–2
0.207 31.677a 12.321 25.289a 11.225 None
0.057 6.388a 4.130 6.388a 4.130 At most 1
Normalized cointegration equation: LELSA¼ 1.163� LGDPSA

Panel B: sample period 1990–2007
Variables: LELSA and LGDPSA; Lags interval: 1–2
0.222 18.543a 12.321 17.321a 11.225 None
0.018 1.221 4.130 1.221 4.130 At most 1
Normalized cointegration equation: LELSA¼ 1.220� LGDPSA

Variables: EL and GDP; Lags interval: 1–4
0.306 25.295a 12.321 24.437a 11.225 None
0.013 0.858 4.130 0.858 4.130 At most 1
Normalized cointegration equation: EL¼ 23.492�GDP

Notes: Trace and maximal eigenvalue tests indicate the existence of one cointe-
gration equation at 5% level.

a Denotes rejection of the hypothesis at 5% level. The lag length has been chosen
based on minimum AIC.

Table 6
Results of robustness tests and stability tests for electricity equation in the ECM.

1980–2007 1990–2007

Value Prob. Value Prob.

Panel A: Robustness tests
LM(4) [c2(4)] 3.8384 0.4283 1.3165 0.8586
RESET [F(m,n)] 0.0456 0.8253 0.4129 0.5229
BPG [c2 (5)] 6.5542 0.2560 5.9345 0.3126
ARCH [c2 (4)] 0.2924 0.5887 0.2549 0.6136
Jarque–Bera 1.2597 0.5327 0.8463 0.6550

Panel B: Stability tests
Maximum LR F-statistic (1989q1) 3.3399 1.0000
Maximum LR F-statistic (1998q4) 2.4912 1.000
Maximum Wald F-statistic 3.3399 1.0000 2.4912 1.000
Exp LR F-statistic 0.9567 1.0000 0.5052 1.000
Exp Wald F-statistic 0.9567 1.0000 0.5052 1.000
Ave LR F-statistic 1.6927 1.0000 0.9041 1.000
Ave Wald F-statistic 1.6927 1.0000 0.9041 1.000
Panel C: Chow forecast tests
Forecast from 1989q1 to 2007q4 1.2888 0.2329
Forecast from 1998q4 to 2007q4 0.9306 0.5865

20

30
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relation indicates that the real GDP and EC have an inherent co-
movement tendency over the long run.

Cointegration implies the existence of causality, at least in one
direction. However, it does not indicate the direction of the causal
relationship. Hence, to shed light on the direction of causality, the
ECM based causality tests are performed. The short run F-statistics,
long run t-statistics and joint F-statistics for Eq. (1) and (2) are
reported in Table 5. The results show that only the electricity
equation (Eq. (1)) contains the significant variables. However, no
significant variable is contained in the GDP equation (Eq. (2)). Thus,
the robustness of electricity equation is checked for two sample
periods. Generally speaking, the equation appears to be robust to
various departures from standard regression assumptions in terms
of residual correlation by Lagrange multiplier (LM) test, hetero-
scedasticity by BPG test [47,48], autoregressive conditional heter-
oscedasticity by ARCH test [49], misspecification of functional form
by RESET test [50], or non-normality of residuals by Jarque–Bera
test. Panel A of Table 6 displays the results from these tests. For
sample period 2, the Jarque–Bera test is performed by smoothing
the outlier residual in 1998q3, which corresponds to the 921
earthquake (dated on September 21) in Taiwan.

Table 5 shows that short run causality is found only from real
GDP to EL, but not the reverse, i.e., there is unidirectional Granger
causality. The coefficients of ECT are found to be significant in the
EC equation, which indicates that given any deviation in the ECT,
both variables in the ECM would interact in a dynamic fashion to
restore long run equilibrium. Moreover, the interactive term of
Table 5
Results of causality tests based on the ECM.

Dependent
variables

Source of causation (independent variable)

Short run Long run Joint (short-run/ECT)

DLGDPSA DLELSA ECTt�1 DLELSA, ECTt�1 DLGDPSA, ECTt�1

F-statistics t-statistics F-statistics

Panel A: sample period 1980–2007
DLGDPSA 1.046 0.720 0.831
DLELSA 3.489a �3.606a 7.845a

Panel B: sample period 1990–2007
DLGDPSA 0.092 �1.812 1.177
DLELSA 4.299a �2.448a 6.529a

The lag lengths are selected using Akaike’s information criterion.
a Implies significance at the 5% level.
change in GDP (DGDP), along with the ECT in the electricity
equation, is significant at 1% level. These indicate that GDP is
strongly exogenous and whenever a shock occurs in the system, EC
would make short run adjustments to restore long run equilibrium.
Hence, bringing domestic electricity prices in line with interna-
tional market prices or any well-designed conservation policy can
play an effective role in managing the electricity sector.

3.3. Constancy of cointegration space

One important problem with ECMs is that the estimated
parameters may change over time. Unstable parameters can result
in model misspecification and, if any structural break exists,
necessary adjustment of the ECM parameters and variables to
reflect the structure break should be made [3]. Once the ECM has
been estimated, the author assesses the parameter constancy by
using the cumulative sum of recursive residuals (CUSUM) and the
CUSUM of square (CUSUMSQ) tests, which were proposed by
Brown et al. [51]. In this study, only the electricity equation contains
a significant ECT, which can be derived from the long run cointe-
grating vector. Thus, the CUSUM and CUSUMSQ tests are needed
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Fig. 3. Plot of the CUSUM for dependent variable LELSA, 1980–2007.
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only for the electricity equation [3]. The equation is estimated by
OLS first and the residual is subjected to the CUSUM and CUSUMSQ
tests. Figs. 3,4 plot the CUSUM and CUSUMSQ statistics when EC is
the dependent variable. The results indicate no instability in the
coefficients as the plots of the CUSUM and CUSUMSQ statistics are
confined within the 5% critical bounds of parameter stability.
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Fig. 5. Plot of the recursive coefficient estimates
In addition, the plot of the recursive estimates of each coefficient
from electricity equation is shown in Fig. 5 for sample period 1. If
the coefficient estimation displays significant variation, as more
data are added to estimate the electricity equation, it is a strong
indication of instability of coefficient estimation. In Fig. 5, the
estimated coefficients rise steadily as more data are added to the
electricity equation.

Furthermore, the Quandt-Andrews unknown breakpoint tests
[52] are also employed to test for unknown structural breakpoint
amongst all the regressors from the electricity equation for two
sample periods. The tests are performed with 10% of trimming on
the data set. The results shown in panel B of Table 6 fail to reject the
null hypothesis of no structure break. Since Eq. (1) is linear, the
results of LR F-statistic are identical to the results of Wald F-statistic
as shown in panel B of Table 6. The maximum F-statistics are in
1989q1 and 1998q4 for sample 1 and 2, respectively, and that are
the most likely breakpoint locations. Therefore, the Chow’s forecast
tests are performed and specify 1989q1 and 1998q4 as the first
observations in the forecast period for two sample periods,
respectively. The tests reestimate the electricity equation for the
periods 1980q1 to 1988q4 and 1990q1 to 1998q3 for two sample
period, and use the result to compute the prediction errors for the
remaining quarters. The results shown in panel C of Table 6 fail to
reject the null hypothesis of no structure change in the electricity
equation before and after 1989q1 for sample 1 and 1998q4 for
sample 2, respectively.

Overall, the structure of the parameters has not diverged
abnormally over the period from 1980 to 2007. It appears that
applying Granger causality tests based on the ECM does not suffer
from any problem caused by a structure change during the 1980–
2007 period, and the coefficient estimates of ECM are stable. Thus,
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panel B in Tables 3–5 indicate that the results of stationarity,
cointegration and causality relationship during 1990–2007 are
similar to the results during 1980–2007. That is, there is unidirec-
tional Granger causality running from GDP to EC in the long and
short run, while electricity has a neutral effect on GDP in both the
short and long run.
3.4. Building SARIMA models

The EC series given in Fig. 1 assumes that the seasonality and
the trend exist in the historical data and extend to the future
with the same pattern, thus the univariate SARIMA models are
employed using sample period 2. According to the autocorrela-
tion function (acf) and partial autocorrelation function (pacf) of
EL, the first regular and first seasonal differences are employed to
remove the growth trend and the seasonality characteristics.
During this process, the first five observations are lost. The
acquired stationary time series can be used to identify the SAR-
IMA model. AIC is used to determine the best model. At the
seasonal level, the acf has a spike at lag 4 and cuts off after lag 4
and the pacf dies down. At the nonseasonal level, the acf has
a spike at lag 1 and cuts off after lag 1, and the pacf dies down. As
we can see here, the best available model generated from the
estimation data set is SARIMA (0,1,1)5(0,1,1)4. The residual
analysis indicates that the model is adequate. The estimated
model equation is as follows.

�
1� B

��
1� B4

�
ðELt or GDPÞ ¼ mþ ð1� q1BÞ

�
1� q2B4

�
at

(5)

In accordance with the process of building the EL model, the best
available model for real GDP is obtained. It is the SARIMA
(0,1,1)5(0,1,1)4 with no intercept model, as shown in Eq. (5). The
residual analysis indicates that the GDP model is adequate. For
both EL and real GDP variables, using 12-year, 13-year,.,17-year
quarterly data sets and full data sets from 1990 to 2001, 1990 to
2002,., 1990 to 2006 and 1990 to 2007 as estimation periods, the
estimated coefficients on SARIMA models are shown in Table 6.
The forecast values are shown in Figs. 6(a–c) and 7(a–c) for EL and
GDP, respectively. The out-of-sample forecasting abilities of the
SARIMA models are evaluated and compared with STSP and
ECSTSP models by using testing data during the following periods:
2002–2007, 2003–2007,., and 2007. Three statistics, root mean
square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE), are used as performance
criteria. Results are shown in Tables 7 and 8. The MAPE results are
a means to judge the accuracy of the forecast, in which MAPE less
than 10% is a highly accurate forecast [53]. For both EL and real
GDP, the estimated SARIMA models using full data sets are
employed to forecast over the period 2008–2015. Results are
shown in Table A1, Figs. 6(d) and 7(d).
3.5. Building STSP and ECSTSP multivariate models

The SAS STATESPACE procedure is appropriate for jointly
forecasting several related time series that are dynamically inter-
acting. The procedure selects the STSP model automatically and
assumes that the input series are stationary. If the series are
nonstationary, then the process may fail. Based on the ADF and PP
statistics, panel B of Table 3 shows that the integrations of EL and
real GDP are I(1), respectively. The result of the Johansen test in
panel B of Table 4 indicates that both EL and GDP are cointegrated.
Thus, the ECT derived from the long run cointegration relationship
is stationary. Taking the cointegration relationship into account,
the proposed ECSTSP model with vector xt¼ (DGDPt, DELt, ECTt) is
constructed. The classical STSP model with vector xt¼ (DGDPt,
DELt) is also constructed, where the xt vector is defined in Eq. (4).
Even though the variables have been differenced for stationarity,
STATESPACE procedure forecasts them in their non-differenced
level. For both EL and GDP variables, using 12- ,13-,., 17-year data
sets and the full data sets in period 2, the seven state vectors: z1t,
z2t,.,z6t, zFull of ECSTSP models and the seven state vectors: y1t,
y2t,.,y6t, yFull of STSP models are expressed as follows:

z1t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt ;DGDPtþ2jt
�0
;

z2t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt ;DGDPtþ2jt
�0
;

z3t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt ;DGDPtþ2jt
�0
;

z4t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt
�0
;

z5t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt ;DELtþ1jt
�0

z6t ¼
�

DGDPt ;DELt ;ECTt ;DGDPtþ1jt ;DELtþ1jt
�0

zFull ¼
�

DGDPt ;DELt ; ECTt ;DGDPtþ1jt ;DELtþ1jt
�0

(6)

and

y1t ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DGDPtþ2jt
�0
;

y2t ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DGDPtþ2jt
�0
;

y3t ¼
�

DGDPt ;DELt ;DGDPtþ1jt
�0
;

y4t ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DELtþ1jt
�0
;

y5t ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DELtþ1jt
�0

y6t ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DELtþ1jt
�0

yFull ¼
�

DGDPt ;DELt ;DGDPtþ1jt ;DELtþ1jt ;DELtþ2jt
�0

(7)

The out-of-sample forecasting performances are shown in Table 7
by using testing data. The forecast values are shown in Figs. 5 (a–c)
and 6 (a–c) for two variables.

Both ECSTSPFull and STSPFull models with zFull and yFull state
vectors are used to predict EC and real GDP simultaneously over the
period 2008–2015. Results are shown in Table A1, Figs. 5(d) and
6(d). The zFull and yFull state vectors corresponding to transition
and input matrices FFull and GFull; specified in Eq. (4), are presented
in the following:

zFull ¼

2
66664

DGDPt
DELt
ECTt

DGDPtþ1jt
DELtþ1jt

3
77775

¼

2
66664

0 0 0 1 0
0 0 0 0 1

0:04 �0:00 0:85* 0:92* �0:04*

�0:19 0:00 0:03 �0:36# 0:01*

7:65 �0:65* �0:19 �28:41* 0:22#

3
77775

�

2
66664

DGDPt�1
DELt�1
ECTt�1

DGDPtjt�1
DELtjt�1

3
77775þ

2
66664

1 0 0
0 1 0
0 0 1

0:41* �0:02* �0:21#

�7:75 0:11 15:93*

3
77775
2
4 e1;t

e2;t
e3;t

3
5

(8)
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Fig. 6. Comparison of predicted electricity consumption using ECSTSP, STSP and SARIMA models.
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Table 7
SARIMA coefficients for electricity consumption and real GDP in Taiwan.

Estimation period Electricity consumption Real GDP

q0 q1 q2 q1 q2

1990–2001 28,201.0a 0.8854a 0.6769a �0.2709b 0.7991a

1990–2002 23,850.4a 0.8814a 0.5896a �0.3189a 0.7036a

1990–2003 21,674.0a 0.9030a 0.4911a �0.3381a 0.4697a

1990–2004 19,755.2a 0.8889a 0.5127a �0.3400a 0.5192a

1990–2005 15,887.4 0.8476a 0.5169a �0.3468a 0.5098a

1990–2006 8562.3 0.7616a 0.5093a �0.3088a 0.5168a

1990–2007 7458.6 0.7584a 0.5196a �0.3296a 0.4734a

a Denote significance at the 5% level.
b Denote significance at the 10% level.
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yFull ¼

2
66664

DGDPt
DELt

DGDPtþ1jt
DELtþ1jt
DELtþ2jt

3
77775

¼

2
66664

0 0 1 0 0
0 0 0 1 0

�0:10 �0:00 0:04 0:01* 0
0 0 0 0 1

�9:01# �0:40# 31:60* �1:21* �0:06

3
77775

�

2
66664

DGDPt�1
DELt�1

DGDPtjt�1
DELtjt�1

DELtþ1jt�1

3
77775þ

2
66664

1 0
0 1

0:12 �0:00
�4:21 �0:55*

10:73* �0:77*

3
77775
�

e1;t
e2;t

�
(9)

The * and # on the coefficients of the transition and input matrices F
and G indicate that they are significant at the 5% and 10% level,
respectively.

3.6. Out-of-sample forecasting performance comparisons

The forecasting ability of the new multivariate ECSTSP model is
compared with the multivariate ECSTSP and univariate SARIMA
Table 8
Out-of-sample comparisons between ECSTSP, STSP and SARIMA models.

ECSTSP STSP

Electricity GDP Electricit

Forecasting period 2002–2007
RMSE 2,580,842.88 106,427.89 2,601,98
MAE 2,080,817.21 77,478.10 2,100,60
MAPE 3.90% 2.53%
Forecasting period 2003–2007
RMSE 1,596,771.96 76,284.54 1,693,88
MAE 1,373,947.66 56,878.51 1,393,26
MAPE 2.57% 1.90%
Forecasting period 2004–2007
RMSE 1,645,895.44 41,111.90 1,684,14
MAE 1,278,933.98 33,567.65 1,300,41
MAPE 2.38% 1.10%
Forecasting period 2005–2007
RMSE 1,136,792.72 72,618.97 1,159,62
MAE 842,647.20 52,837.55 957,38
MAPE 1.52% 1.64%
Forecasting period 2006–2007
RMSE 1,561,909.54 64,567.62 1,423,39
MAE 1,419,260.35 47,838.60 1,291,61
MAPE 2.57% 1.46%
Forecasting period 2007
RMSE 1,329,412.62 71,722.45 1,525,65
MAE 1,148,128.67 59,992.16 1,347,12
MAPE 2.04% 1.79%
Mean (MAPE) 2.50% 1.74%
Var (MAPE) 0.53 0.19
models. In general, the forecasting performance of the multivariate
models is highly dependent on the availability and reliability of data
on independent variables over the forecasting period, which requires
further efforts in data collection and estimation. On the other hand,
univariate time series analysis provides another modeling approach,
which only requires the historical data of the variable of interest to
forecast its future evolution behavior. Therefore, the prediction error
of univariate model can be less than the prediction error of multi-
variate model. However, if the multivariate model has stronger
modeling power than the associated univariate model, the multi-
variate model is likely to achieve better prediction performance. For
the performance evaluation, the predictive accuracies of the three
models for both EC and real GDP are compared over the six different
forecast horizons, 6-year, 5-year,., 1-year, using sample period 2.
Four observations can be made. First, all of the models have strong
forecasting performance, because all of the MAPEs are less than 5.4%.
Second, the ECSTSPs have the smallest average values of MAPEs over
six forecasting horizons for both EL and GDP, which are 2.50% and
1.74%, respectively. For two variables, the average values of MAPEs are
MAPEECSTSP<MAPESTSP<MAPESARIMA (shown in Table 7). Third, the
forecasting accuracies of both ECSTSP and STSP are not sensitive to the
length of forecast horizon, but the forecasting accuracies of SARIMA
models are. For two variables, the variances of MAPEs (VMAPE) over
six forecasting horizons are VMAPESTSP<VMAPEECSTSP<VMAPESAR-

IMA (shown in Table 7). For short-term prediction (1 and 2 year), the
univariate SARIMA models are as good as ECSTSP ones for both series.
These results may be expected since the SARIMA model is available for
short prediction periods. For long-term prediction periods (3-year to
6-year), both STSP and ECSTSP models are better than SARIMA
models, because the STSP model is appropriate for jointly forecasting
several related time series that dynamically interact. Finally, for long-
term prediction, the best models are ECSTSP for two variables,
because the cointegration relationship between real GDP and EC is
taken into account in the ECSTSP model.

This study concludes by using three models to forecast both EC
and real GDP for Taiwan up to year 2013. The forecasts of two
variables over the 2008–2013 period, together with the actual data
SARIMA

y GDP Electricity GDP

0.83 110,754.40 3,311,868.93 172,511.25
4.05 82,061.58 2,754,532.04 137,231.42
4.04% 2.69% 5.32% 4.47%

9.88 96,808.67 2,384,135.37 130,307.88
9.02 72,323.68 2,022,144.92 102,174.30
2.62% 2.36% 3.79% 3.31%

5.67 68,269.16 2,053,217.94 66,971.61
1.04 51,318.58 1,660,985.40 49,728.90
2.43% 1.65% 3.01% 1.60%

2.34 95,316.45 1,855,532.67 140,591.78
5.07 72,117.83 1,594,815.12 121,331.24
1.75% 2.23% 2.87% 3.80%

6.02 62,189.97 1,404,183.40 50,346.40
5.37 47,653.14 1,229,182.90 45,842.32
2.34% 1.46% 2.18% 1.46%

5.64 70,404.47 731,592.56 58,937.36
3.71 61,411.96 694,850.52 48,567.61
2.39% 1.84% 1.20% 1.45%
2.60% 2.04% 3.06% 2.68%
0.50 0.18 1.65 1.50



H.-T. Pao / Energy 34 (2009) 1779–1791 1789
in 2007, are illustrated in Figs. 6(d) and 7(d) and presented in detail
in Appendix A. Table A1, Figs. 6(d) and 7(d) show that the fore-
casted values of ECSTSP are less than SARIMA and greater than
STSP, especially in the second half of the forecasting period. Thus,
the ECSTST model tends to give values that are neither too large nor
too small for long-term forecast among the three different models.
4. Discussion and policy implications

The finding of unilateral short and long run causality from real
GDP to EC without any feedback effects can be explained from
a perspective of economic structure and electricity usage structure.
In many Asian developing countries, economic growth is causing
the industrial and commercial sectors, where electricity has been
used as a basic energy input, to expand [5]. In Taiwan, the annual
average growth rates of EC of the industrial, commercial and
household sectors are 6.05% 7.52% and 5.85% respectively, with the
annual average growth rate of real GDP about 5.4% from 1990 to
2007. Hence, the expansion in GDP also increases the need for
electricity. Economic growth results in a higher proportion of
national income to spend on highly electricity-consuming goods
and/or services such as plasma display panel televisions and high-
speed wired or wireless Internet connections, and thereby stimu-
lates further EC. Intuitively, increased real income requires enor-
mous EC.

Moreover, the empirical results indicate that there is no
causality running from EC to economic growth. In Taiwan, the
energy intensity (defined as the amount of energy consumed per
GDP) is 8532 Btu/USD in 2007, which is more than the average
energy intensity in Asia and Oceania (6706 Btu/USD), and is also
more than the average energy intensity in the world (8035 Btu/
USD) (Energy Information Administrator (EIA), 2007). The higher
energy intensity in Taiwan reflects inefficient energy usage in
industry, as well as in the commercial and household sectors. This
indicates that much improvement needs to be made in EC effi-
ciency. Hence, electricity efficiency and conservation will not hurt
economic growth and development.

The results of this paper suggest that electricity conservation
policies such as rationalizing the tariff structure, improving effi-
ciency and managing demand, which aim at curtailing waste of
electricity and reducing EC without affecting the end-use benefits,
can be adopted because they bring no harm to Taiwan’s economic
growth. Moreover, around 57% of electricity was consumed for
industrial production in 2007. Therefore, the government of Taiwan
should also encourage domestic industries to adopt new technol-
ogies to minimize CO2 emissions in order to respond to the
recommendations of the Kyoto protocol.
5. Conclusions

This paper examines the causality between EC and real GDP in
Taiwan during 1980–2007 using the ECM model for seasonally
adjusted quarterly data. The sub-period from 1990 to 2007 is
employed to confirm parameter stability in estimating the ECM.
The results indicate the following: (1) both series appear to be
nonstationary in levels, but stationary in the first differences for
actual value and logarithmic form; (2) a stationary linear cointe-
gration relationship between two variables exists; (3) there is
unidirectional short and long run strong Granger causality from
economic growth to EC, while electricity has a neutral effect on GDP
in both the short and long run; and (4) no structure change exists
during 1980–2007 and the estimated parameters of ECM are stable.
Therefore, energy conservation is a feasible policy with no
damaging repercussions on economic growth for Taiwan.
The finding of this paper is compared with three of the leading
research results [5,11,17]. In [5], Chen et al. found that electricity
and GDP are neutral with respect to each other in 31 annual
observations over the period 1971 to 2001. Lee and Chang [11]
found that a unidirectional causality runs from EC to economic
growth based on the 50 annual observations during 1954–2003.
Yang [17] found that a bidirectional causal linkages between GDP
and EC from the 44 annual observations during 1954–1997. The
difference in the findings or the results of this study and that of
[5,11,17] may largely be attributed to the choice of the sample
periods and the sampling data sets. The sample periods used in
this paper are 1980–2007 and 1990–2007. And, the sampling data
used in articles [5,11,17] are 31, 50, and 44 annual data sets
respectively. While, this study adopts seasonally adjusted data sets,
e.g., 112 and 72 quarterly data sets for two sample periods,
respectively.

Furthermore, due to the rapid growth in both economy and EC
in Taiwan, forecasting both variables is of the utmost significance
to the reconstruction process going on in Taiwan, especially to
that of the energy generation systems. Thus, this study proposes
a new ECSTSP model to forecast both EL and real GDP simulta-
neously, taking the cointegration relationship into account. The
out-of-sample forecasting ability of the ECSTSP model is to be
compared with both STSP and SARIMA multivariate and univar-
iate benchmark models over six forecast horizons. The investi-
gation results suggest that all of the models have strong
forecasting performance with MAPE less than 5.4%, but the
ECSTSPs have the smallest average values of MAPEs over six
forecasting horizons for both EL and GDP, which are 2.50% and
1.74%, respectively, while the average values of MAPE for SARIMA
are 3.06% and 2.68%. Both STSP and ECSTSP models have smaller
variance of MAPEs over six forecasting horizons than SARIMA
models. These results indicate that the forecasting accuracies of
STSP models are not sensitive to the length of forecast horizon,
but SARIMA models are. For short-term prediction, the univariate
SARIMA models are as good as ECSTSP ones for both series. These
results may be expected since the SARIMA model is available for
short prediction periods. For long-term prediction, both STSP and
ECSTSP models are better than SARIMA models, because the STSP
model is appropriate for jointly forecasting several related time
series that dynamically interact. For long-term prediction, the
best models are ECSTSP for two variables, because the cointe-
gration relationship between real GDP and EC is taken into
account in this method.

In the future, it will be possible to explore the causality rela-
tionship between industrial sector EC and other economic factors,
e.g., employment or income, and to forecast EC in Taiwan using
multivariate linear or nonlinear models.
Acknowledgments

The author would like to thank two anonymous referees and
the Editor for their valuable suggestions and helpful comments
which have greatly enhanced the quality of this paper.
Appendix A. Electricity consumption and real GDP forecast
results during 2007–2013

The forecasts of two variables over the 2008–2013 periods,
together with the actual data in 2007, are presented in detail in
Table A1. It shows that the ECSTST model tends to give values that
are neither too large nor too small for long-term forecast among the
three different models.



Table A1
Forecasts for electricity consumption and real GDP for Taiwan, 2007–2013.

Electricity consumption (kwh) Real GDP

Date Actual ECSTSP STSP SARIMA Actual ECSTSP STSP SARIMA

Mar-2007 50,701,637 51,663,499 52,488,618 51,090,844 3,152,427 3,168,121 3,177,247 3,168,466
Jun-2007 56,315,383 58,113,668 58,101,558 57,121,193 3,135,149 3,148,132 3,153,063 3,098,508
Sep-2007 64,305,493 63,457,851 62,091,182 63,098,841 3,358,002 3,284,883 3,275,344 3,296,605
Dec-2007 57,873,290 59,501,202 58,365,758 58,419,147 3,446,720 3,444,997 3,437,911 3,481,292
Mar-2008 53,720,909 53,761,967 52,956,674 3,380,523 3,361,709 3,358,718
Jun-2008 60,905,753 59,879,718 58,843,202 3,379,799 3,358,989 3,326,597
Sep-2008 66,087,459 64,364,457 65,896,274 3,517,143 3,478,496 3,514,669
Dec-2008 60,113,690 59,819,927 60,230,636 3,578,985 3,535,885 3,610,174
Mar-2009 56,167,044 56,887,821 55,106,383 3,510,861 3,487,286 3,527,566
Jun-2009 62,965,585 62,362,795 61,000,369 3,516,151 3,494,367 3,495,445
Sep-2009 67,757,661 66,145,193 68,060,900 3,644,962 3,598,897 3,683,517
Dec-2009 62,245,092 61,936,993 62,402,721 3,702,079 3,649,687 3,779,022
Mar-2010 58,729,371 59,526,853 57,285,926 3,640,588 3,608,794 3,696,414
Jun-2010 65,110,064 64,766,702 63,187,371 3,648,319 3,621,145 3,664,292
Sep-2010 69,521,095 68,101,977 70,255,360 3,769,301 3,720,470 3,852,365
Dec-2010 64,440,719 64,096,745 64,604,639 3,822,853 3,766,625 3,947,870
Mar-2011 61,312,826 62,096,062 59,495,303 3,767,750 3,730,061 3,865,261
Jun-2011 67,297,363 67,142,102 65,404,207 3,777,856 3,746,671 3,833,140
Sep-2011 71,356,982 70,092,276 72,479,654 3,891,798 3,841,991 4,021,212
Dec-2011 66,675,933 66,279,145 66,836,392 3,942,324 3,884,165 4,116,718
Mar-2012 63,898,043 64,644,191 61,734,514 3,893,310 3,851,468 4,034,109
Jun-2012 69,509,822 69,497,618 67,650,877 3,905,678 3,871,823 4,001,988
Sep-2012 73,246,732 72,099,360 74,733,783 4,013,219 3,963,352 4,190,060
Dec-2012 68,935,762 68,479,825 69,097,979 4,061,134 4,001,997 4,285,566
Mar-2013 66,474,656 67,177,063 64,003,560 4,017,867 3,973,034 4,202,957
Jun-2013 71,736,846 71,836,013 69,927,381 4,032,342 3,996,714 4,170,836
Sep-2013 75,178,310 74,121,107 77,017,746 4,134,023 4,084,562 4,358,908
Dec-2013 71,211,018 70,696,651 71,389,401 4,179,661 4,120,077 4,454,414
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