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This paper addresses the issue of flow in heterogeneous leaky confined aquifers subject to leakage. The
leakage into the confined aquifer is driven by spatial and periodic fluctuations of water table in an over-
lying phreatic aquifer. The introduction of leakage leads to non-uniformity in the mean head gradient and
results in nonstationarity in hydraulic head and velocity fields. Therefore, a nonstationary spectral
approach based on Fourier–Stieltjes representations for the perturbed quantities is adopted to account
for the spatial variability of nonstationary head fields. Closed-form expressions for the variances of
hydraulic head and specific discharge are developed in terms of statistical properties of hydraulic param-
eters. The results indicate that the spatiotemporal variations in leakage leads to enhanced variability of
the hydraulic head and of the specific discharge, which increase with distance from any arbitrary refer-
ence point. The coefficient of leakage and the spatial structure of log transmissivity field and of the ampli-
tude of water table fluctuation are critical in quantifying the variability of the hydraulic head and of the
specific discharge.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the existing stochastic analyses of groundwater flow in
heterogeneous formations rely on the assumption of a constant
mean head gradient in the treatment of flow problem. It is recog-
nized that groundwater recharge may cause non-uniformity in
the mean hydraulic head gradient, which results in nonstationarity
in the statistics of random head fields in heterogeneous media
[7,17]. Several studies [3,9,12,18] have revealed that the assump-
tion of a uniform mean head gradient leads to the solution that
fails to capture the covariances and cross-covariances in random
nonstationary velocity fields. It is well known that the log conduc-
tivity-head cross-covariance is of significance in controlling the
variability of flow-dependent variables such as hydraulic head.
This implies that the applicability of solutions developed based
on the uniform mean head gradient (or uniform mean flow)
assumption to the quantification of the flow perturbation caused
by the presence of recharge is excluded. Motivated by this, this
study is devoted to the development of closed-form analytic
expressions for quantifying the variability of hydraulic head and
specific discharge in a leaky confined aquifer, where the stochastic
nature of hydraulic head is unstationary.
ll rights reserved.
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The changes in groundwater table in response to a given tempo-
ral forcing are a common occurrence in many ground water basins.
This temporal effect can directly affect the velocity variation and,
therefore, the migration potential of contaminant plumes
[6,10,16]. Therefore, to make correct groundwater management
decisions, it is important to understand the temporal effect of re-
charge (leakage) on the mean behavior of flow system and the var-
iability of the output processes (such as the variability of head and
specific discharge). Several stochastic investigations of problems of
flow and solute transport in a leaky confined aquifer have been
presented over the past years [8,13,14,22,23]. However, to our
knowledge, the application of the nonstationary spectral approach
[11,12] to quantify the variability of hydraulic head and specific
discharge in a leaky confined aquifer subject to spatial and periodic
leakage has not been done so far. We hope that the approach in this
study provides a basic framework for quantifying and understand-
ing field-scale flow processes in heterogeneous leaky confined
aquifers and the findings will be useful in stimulating further re-
search in this area.

2. Mathematical formulation of the problem

Groundwater flow through a leaky confined aquifer overlain by
a leaky phreatic aquifer is considered to be essentially horizontal,
so that it can be modeled using the vertically integrated form of
the continuity equation combined with Darcy’s law [2]
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where the leakage into the confined aquifer takes place through a
leaky confining layer whose hydraulic conductivity is much smaller
than that of the main aquifer. In Eq. (1), / is the hydraulic head in
the confined aquifer, /p is the hydraulic head in the phreatic aqui-
fer, T is the transmissivity, S is the storativity and f2 is the coeffi-
cient of leakage [2], which is defined as the root of the ratio of
the thickness of the confining layer to its hydraulic conductivity.
The conductivity of the confining layer does not vary significantly
in space compared to the spatial variation of hydraulic conductivity
in the confined aquifer. Therefore, the conductivity of the confining
layer is assumed to be uniform. Expanding these terms in Eq. (1)
and dividing the equation by the nonzero transmissivity yields
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The hydraulic head in the phreatic aquifer and log transmissiv-
ity ln T are regarded as realizations of stationary random fields per-
turbed into means and corresponding zero-mean perturbations

/pðX; tÞ ¼ h/pðX; tÞi þ hpðX; tÞ ¼ Hp þ hpðX; tÞ
ln TðXÞ ¼ hln TðXÞi þ f ðXÞ ¼ F þ f ðXÞ ð3Þ

where hi stands for the expected value operator. The random spatial
fluctuations of lnT and the water table fluctuations in space and
time result in random spatiotemporal variability of aquifer heads

/ðX; tÞ ¼ h/ðX; tÞi þ hðX; tÞ ¼ HðX; tÞ þ hðX; tÞ ð4Þ

where hðX; tÞ is the zero-mean perturbation.
Substituting perturbation expansions (3) and (4) into Eq. (2),

dropping all products of perturbations and subsequently taking
the expected value in the resulting equation, one obtains a first-or-
der approximation of the flow equation governing the mean
hydraulic head
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where the variability of S is assumed negligible. Subtracting this
mean equation from Eq. (2) leads to the following equation
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With reference to Eq. (5), a first-order partial differential equation
relating the perturbations f and h is found as
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If the X1 direction is selected to be in the direction of the mean flow,
the equations for the mean head and perturbation can then be sim-
plified to
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Eqs. (8) and (9) provide the framework required to develop the first
two moments of the hydraulic head and specific discharge in terms
of the statistics of the input hydraulic parameters.

The perturbation expansion (first-order analysis) is an efficient
and powerful method for solving the stochastic equation. This
method is formally limited to relatively small variance (r2

f � 1,
where r2

f is the variance of lnT). However, Zhang and Winter
[21] found it to be accurate for the head variance solutions for r2
f

as high as 4.38. A similar finding was reported in Gelhar [4].

3. Spectral solutions

The approach followed is to solve Eq. (9) to fully characterize
the second moments of hydraulic head and specific discharge.
However, the mean Eq. (8) must be solved first in order to develop
expressions for the products of mean hydraulic head gradients in
Eq. (9).

3.1. Head variance

Suppose that the water table starts to fluctuate in response to
periodic forcing (e.g., seasonal recharge or tides) and it would con-
sist of a steady component (mean water table) plus a periodic per-
turbation. As such, the mean Eq. (8) for the flow would be time
invariant and the solution to Eq. (8) can be shown to be

HðX1Þ ¼ Hp þ ðH0 � HpÞ coshðgX1Þ �
J0

g
sinhðgX1Þ ð10Þ

where g ¼ 1=ðfeF=2Þ and H0 and J0 are the reference mean head and
negative mean head gradient at arbitrary location X1 ¼ 0, respec-
tively. From Eq. (10), we immediately have

@H
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Superposition is a useful tool in analyzing linear groundwater
problems [19,20]. The principle of superposition states that a com-
plex equation can be divided into sub-equations and the solution
to the original equation is then obtained by summing the individ-
ual solution to each of the sub-equations. Based on this principle,
the head perturbation in Eq. (9) can be separated conveniently into
steady-state and time-varying components [19,20] such that

hðX; tÞ ¼ hsðXÞ þ hsðX; tÞ ð13Þ

This leads to separate differential equations for the steady and peri-
odic components of head
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The solutions to Eqs. (14) and (15) can be determined using
Fourier–Stieltjes representations for the perturbed quantities
[1,11,12]. By using this approach, the lnT perturbation field f is as-
sumed to be a second-order stationary random field and repre-
sented by the following two-dimensional wave number integral:

f ðXÞ ¼
Z 1

�1
eiK �XdZf ðKÞ ð16Þ

where dZf ðKÞ is the complex Fourier amplitude of lnT process,
K ¼ ðK1;K2Þ is the wave number vector, and K2 ¼ K2

1 þ K2
2.

The mean hydraulic head gradient is dependent of X as
indicated in Eq. (11). This space-dependent mean head gradient
causes the head random perturbations in Eq. (14) to be nonstation-
ary. However, the head perturbed quantities in Eq. (14) can be
presented using the nonstationary spectral representation [11,12]
as

hsðXÞ ¼
Z 1

�1
Uhf ðX;KÞdZf ðKÞ ð17Þ
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where Uhf ðX;KÞ is a transfer function to be given. Thus substituting
Eqs. (16) and (17) into Eq. (14) and invoking the uniqueness of the
spectral representation gives the following equation
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The corresponding solution is
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where R1ðgX1Þ ¼ mg coshðgX1Þ � sinhðgX1Þ, R2ðgX1Þ ¼ mgsinhðgX1Þ�
coshðgX1Þ, m¼ ðH0�HpÞ=J0. Note that taking the advantage of a
closed-form expression, the boundary effects on the perturbation
hs is assumed negligible [12,14] in obtaining the solution of (19). It
is expected that the boundary effect is largely limited to a small zone
next to the medium boundary.

Suppose that when t > 0, the water table starts to fluctuate (as
in response to a periodic forcing) according to

hpðX; tÞ ¼ hp0
ðXÞ sinðxtÞ ð20Þ

where hp0 is the amplitude of water-level fluctuation in the leaky
phreatic aquifer and x is the angular frequency. We consider hp0

and hs as spatially correlated, stationary, random processes.
Stationarity of the hs and hp0

processes allows the Fourier–Stieltjes
representations
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where dZhs and dZhp are the complex Fourier amplitudes of hs and
hp0 processes, respectively.

The transient-state part of the spectral relation follows from Eq.
(15) through the application of Eqs. (20)–(22) and the use of
uniqueness of the representations:

d
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eF

S
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It is assumed that at t ¼ 0 the transient-state part of the head dis-
tribution is smooth, that is, hsðX; t ¼ 0Þ ¼ 0. Thus, dZhs ¼ 0 at
t ¼ 0. The solution for (23) is then

dZhs ¼
eFg2

S
�x cosðxtÞ þ v sinðxtÞ þxe�vt

v2 þx2 dZhp ð24Þ

where v ¼ eFðK2 þ g2Þ=S. With Eq. (24), the time-varying com-
ponent of head perturbation (21) is given by
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where - ¼ xS=eF . The last term of the integrand in Eq. (25) which
dies away as t becomes large.

Finally, the head perturbation in Eq. (13) is determined by inte-
grals (17), (19) and (25) and the corresponding solutions for the
steady and time-varying components of head variance can be ex-
pressed, respectively, as
r2
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where Sff ðKÞ is the spectrum of lnT and ShphpðKÞ is the spectrum of
hp. By noting that hs and hs are statistically independent, the com-
plete solution for the head variance is then given by

r2
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hs
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ðtÞ ð28Þ

Eq. (28) is a local head variance relationship illustrating that the
head variability is determined by the statistical properties of input
hydraulic parameters.

3.2. Variance of specific discharge

The first-order equation for the specific discharge perturbation,
which can be determined using Darcy’s equation, takes the form
[5]

q0i ¼ TG di1JðX1Þf �
@h
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where TG ¼ exp½F� and

JðX1Þ ¼ �
@H
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¼ J0 coshðgX1Þ � gðH0 � HpÞ sinhðgX1Þ ð30Þ

defined previously by Eq. (11). From Eqs. (13), (17), (19) and (25),
the last term on the right-hand side of Eq. (29) in the X1 direction
can be written as

@h
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Similarly, in the X2 direction
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where Uhf is defined previously by Eq. (19).
Substituting Eqs. (31) and (34) and the Fourier–Stieltjes repre-

sentations of specific discharge perturbations, i.e.,

q0i ¼
Z 1

�1
exp½iK � X�dZqi

ðKÞ ð35Þ

where dZqi
ðKÞ is the complex Fourier–Stieltjes amplitude of q0i, into

the specific discharge perturbation Eq. (29) and invoking the
uniqueness of the spectral representation gives the following spe-
cific discharge spectra in the longitudinal and transverse directions,
respectively,



1604 H.-D. Yeh, C.-M. Chang / Advances in Water Resources 32 (2009) 1601–1608
Sq1q1
ðKÞ ¼ Sq1s

ðKÞ þ Sq1s ðKÞ
¼ T2

G J2
0½R

2
2ð1þK1Þ2 þ R2

1K
2
2�Sff ðKÞ

n
þ sinðxtÞ � -

tanðxtÞ þ K2 þ g2
� �

þ-e�vt

� �2

�
g4K2

1Shphp ðKÞ
½ðK2 þ g2Þ2 þ-2�2

)
ð36Þ

Sq2q2
ðKÞ ¼ Sq2s

ðKÞ þ Sq2s ðKÞ
¼ T2

G J2
0½R

2
2K

2
3 þ R2

1ðn1ÞK2
4�Sff ðKÞ

n
þ sinðxtÞ � -

tanðxtÞ þ K2 þ g2
� �

þ-e�vt

� �2

�
g4K2

2Shphp ðKÞ
½ðK2 þ g2Þ2 þ-2�2

)
ð37Þ

where
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The expressions in Eqs. (36) and (37) contain two principal compo-
nents depending on spatial fluctuations alone and both spatial and
temporal fluctuations. Within the spectral framework, the specific
discharge variance can be evaluated as

r2
qi
¼ r2

qiss
þ r2

qis
¼
Z 1

�1
½Sqis
ðKÞ þ Sqis ðKÞ�dK ð40Þ

where the longitudinal and transverse components of integrand are
defined by Eqs. (36) and (37), respectively.

4. Closed-form solutions

The variances of hydraulic head (28) and specific discharge (40)
requires the knowledge of spectral density functions of f and hp, we
need to select them before using Eqs. (28) and (40). We consider
the case where the random lnT perturbation field can be repre-
sented by the following spectral density function [12,13,15]

Sff ðKÞ ¼
3r2

f a
2K4

pðK2 þ a2Þ4
ð41Þ

where a ¼ 3p=ð16kÞ and r2
f and k are the variance and integral scale

of lnT, respectively. Note that the choice of (41) is to meet the math-
ematical requirement of zero spectral amplitude at zero wave num-
ber, and, therefore, in order to produce a finite-variance head
process [4]. In addition, the spectral density function to characterize
the amplitude of water table fluctuation in Eq. (20) is assumed to be
described by Li and Graham [13]
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pK4
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where ap ¼ 3p=ð16kpÞ and r2
hp and kp are the variance and integral

scale of the amplitude of water table fluctuation, respectively.
To simplify the analysis we assume that sufficient time has

elapsed for the exponential term in Eq. (25) to die away (i.e.,
e�vt ! 0). Because of -� 1, corresponding to ranges of x; S and
eF that are likely to be of interest, and the form of the denominator
in Eq. (27), the approximate solution for the time-varying compo-
nent of head variance (27) may be developed by neglecting the -2

term in the denominator. As a result
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Similarly, the specific discharge spectra in the longitudinal and
transverse directions (i.e., Eqs. (36) and (37)) can be approximated,
respectively, as
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4.1. Head variance

Substituting Eqs. (41) and (42) into Eqs. (26) and (43) and
integrating leads to the following expressions for the steady and
time-varying components of head variance, depending on spatial
fluctuations alone and both spatial and temporal fluctuations,
respectively:
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ð47Þ

where R1 and R2 are redefined, respectively, as R1ðbn1Þ ¼ mb cosh
ðbn1Þ=k� sinhðbn1Þ, R2ðbn1Þ ¼ mb sinhðbn1Þ=k� coshðbn1Þ, b ¼ kg; n1

¼ X1=k;C ¼ 3p=ð16bÞ, e ¼ ½ð16=3pÞq�2;q ¼ kpg;g ¼ 1=ðfeF=2Þ and
l ¼ Sxf2= tanðxtÞ.

The behavior of the dimensionless steady component of head
variance in Eq. (46) as a function of dimensionless position for var-
ious b is presented graphically in Fig. 1a. It indicates that the head
variance increases with position, while it decreases with the coef-
ficient of leakage f2, which is inversely related to bð¼ k=ðfeF=2ÞÞ, for
fixed values of eF and k at a fixed location. Note that a larger coef-
ficient of leakage leads to less leakage into the confined aquifer.
The increase in the head variance with decreasing f at a fixed loca-
tion can be explained by the fact that a decrease in f produces



Fig. 1. (a) Dimensionless steady component of head variance as a function of dimensionless position. Dimensionless time-varying component of head variance as a function
of (b) dimensionless time and (c) dimensionless integral scale of the amplitude of water table fluctuation.
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more persistence of head fluctuations, which leads to larger
deviations of the head from the mean head surface. Fig. 1b depicts
the behavior of the dimensionless time-varying component of head
variance in Eq. (47) as a function of dimensionless time. It can be
clearly seen the reduction in hydraulic head variability with
increasing f for fixed values of eF and kp at a specified time. As
expected, the increase in the time-varying component of head
variance with kp is shown in Fig. 1c. The increase in the scaled
time-varying component of head variance is generally with q,
due to either decreasing coefficient of leakage, because of greater



Fig. 2. Dimensionless steady components of specific discharge variance (a) in the longitudinal direction and (b) in the transverse direction as a function of dimensionless
position. Dimensionless time-varying component of specific discharge variance in the longitudinal direction as a function of (c) dimensionless time and (d) dimensionless
integral scale of the amplitude of water table fluctuation.
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communication with the overlying water table, or due to increas-
ingly spatially correlated water table fluctuations. The latter
implies that water table fluctuations are either consistently above
or below zero, thus contributing to a greater head variance. Finally,
we note that in the limit of b! 0 (i.e., f!1), corresponding to
the case of no leakage, Eq. (46) converges to ½8=ð3pÞ�2J2

0r2
f k

2, which
is identical to Eq. (21) of Mizell et al. [15]. On the other hand, for
the no leakage case ðf!1Þ the two aquifer are hydraulically dis-
connected, therefore, the time-varying component of head vari-
ance in Eq. (47) reduces to zero.

4.2. Variance of specific discharge

With Eqs. (41) and (42), closed-form solutions for the steady
and time-varying components of specific discharge variance in
the longitudinal and transverse directions are obtained by substi-
tuting Eqs. (36) and (37) into Eq. (40), respectively, and integrating
them over the wave number domain
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Fig. 2a and b shows how the dimensionless steady components
of specific discharge variance in the longitudinal and transverse
directions, respectively, vary with dimensionless position for vari-
ous b. These figures suggest that decreasing the coefficient of leak-
age or increasing geometric mean of aquifer transmissivity
increase the variability of specific discharge in the longitudinal
and transverse directions at a fixed location. The increase in the
dimensionless time-varying component of specific discharge vari-
ance in the longitudinal direction with q is displayed in Fig. 2c.
Fig. 2d depicts the dependence of time-varying component of spe-
cific discharge variance in the longitudinal direction on the integral
scale of the amplitude of water table fluctuation and indicates that
the variability of time-varying component of specific discharge in-
creases with the integral scale of the amplitude of water table fluc-
tuation or with decreasing coefficient of leakage.

It is clear that in the case of no leakage ðb! 0Þ, the steady com-
ponents of specific discharge variance, Eqs. (48) and (49), respec-
tively, reduce to

r2
q1s
¼ 3

8
T2

GJ2
0r

2
f ð53Þ

r2
q2s
¼ 1

8
T2

GJ2
0r

2
f ð54Þ

which are well-known expressions for two-dimensional flow re-
ported in the literature. In addition, the time-varying component
of specific discharge variance reduces to zero as f!1.

5. Conclusions

We have analyzed groundwater flow in heterogeneous leaky
confined aquifers subject to leakage from a stochastic point of
view. The leakage is driven by spatial and periodic fluctuations of
the water table in an overlying phreatic aquifer. The presence of
leakage affects the mean hydraulic head gradient and thereby
causes nonstationarity in the statistics of hydraulic head fields.
Closed-form expressions for the variances of hydraulic head and
specific discharge are developed in terms of statistical properties
of hydraulic parameters based on the perturbation approximation
and spectral Fourier–Stieltjes nonstationary representations for
the perturbed quantities.

The analyses in this study are limited to small perturbations in
hydraulic properties, assuming that r2

f is smaller than unit so that
second-order terms in the flow equation can be neglected. For a lar-
ger r2

f , the adequacy of the first-order approximation is uncertain.
The results indicate that the introduction of spatial and tempo-

ral variations in leakage leads to enhanced and periodic variability
of the hydraulic head and of the specific discharge, which increase
with distance from any arbitrary reference point. The larger the
coefficient of leakage, the less variability of the hydraulic head
and of specific discharge. The variability of the time-varying com-
ponent of hydraulic head and of specific discharge increases with
the integral scale of the amplitude of water table fluctuation.
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