
 - 60 -

 Chapter 6 Experiments and Evaluations

6.1 Assumption

The evaluation in this dissertation mainly focuses on the scalability issues of building

a virtual world platform for MMOGs in 4-tiered architecture. Experiments that is

done by Chen [29] and Kim [22] are mainly focus on global traffic characteristics and

analysis. However, we measure the average response time of client’s commands,

which is the mostly concern of MMOG players.

The experiments include performance of the NetEngine, performance of the core

framework, and performance of real action simulations. The frequency of control

commands sent by players depends on the design of MMOG. However, many current

models (MMORPG type) allow players to send only one command within any period

of one to three seconds. This feature prevents players flooding the server with too

many commands, and allows enough time for a reply from the server. Thus, we design

the robots to send control commands one per second. Next, the primary variable for

evaluating the server’s scalability is the number of players. The measurement

information is the response times for the control messages.

In experiments round 3, we evaluate scalability by a robot program that simulates real

player action. The movement action in the virtual world is quite basic and critical for

evaluation, because it involves state updates, the replacement of states in a map, and

inter-server state migrations. The robots in the program thus send move controls in

random directions and receive updates from the VW server, which, in addition, is

using corresponding VWLogic. In general, the average response time bellows to

 - 61 -

250ms is acceptable result for most real-time MMOGs in Q4 of 2005. All of the

experiment is done with JDK version version 1.4.2_01-b06 on Windows XP with

service pack 1.

6.2 Experiments

6.2.1 Performance Evaluation of Message-oriented Network Engine

The goal of experiment 1 here is trying to measure the performance of our

message-oriented network engine, that is, we try to find out the performance limit of

our network engine.

For the hardware configuration, we use one machine as the server and 10 machines as

clients. Table 6-1 describes the detail configuration.

Table 6-1. hardware configuration of experiments round 1

Usage Number Configuration

Server 1 P4 2.4GHz CPU with 1GB RAM

Client 10 P4 1.6~2.4GHz CPU with 512MB RAM

 - 62 -

Clients
10 physical nodes

Server
1 physical node

Intra-net
connections

Clients
10 physical nodes

Server
1 physical node

Intra-net
connections

 Figure 6-1. Communication architecture of round 1

We conducted the simulation testing by a virtual client generator program to simulate

multiple players in a single machine. We run this program in 10 machines

simultaneously, and we increase the number of clients by 50 for each run each

machine(i.e. the number of client is increased by 500 for each run). Experiments

includes 8 rounds, and the client number is increasing from 500 to 4000. Each client

send one message per second for 10 minutes. Clients and the server run on the same

LAN and all of them are connected with 100 Mbit Ethernet (Fast-Ethernet).

The network engine of server side performs simple reply action. When the server

receive a message, it simply send it back to the client. This echo message contains a

4-bytes serial number field, which is used to identify where should the message is sent

back to. For each round, we run for 10 minutes and collect the data in the medium 8

minutes as the effective data. Table 6-2 shows the number of clients, the average

response time and standard deviation for each test.

 - 63 -

Table 6-2. Experiment result of round 1

Client number
Average Response

Time (ms)
Standard Deviation

500 0.33 3.00

1000 0.87 5.00

1500 3.03 19.00

2000 4.06 26.00

2500 7.12 31.00

3000 9.34 29.00

3500 26.70 79.00

4000 50.31 516.00

Round1

0

100

200

300

400

500

0 1000 2000 3000 4000

Client Number

re
sp

on
se

 ti
m

e
(m

s)

Avg.

SD

 Figure 6-2. Experiment result of round1

As the result shows, the network engine part gets excellent performance under 3000

clients concurrently. The average response time is less than 10 ms and the standard

deviation is less than 30ms. It begins to unstable when a server handles over 4000

clients.

 - 64 -

6.2.2 Performance Evaluation of DoIT client-gateway-server architecture

design

The goal of experiment 2 here is trying to measure the performance of our DoIT

client-gateway-server architecture, that is, we try to find out the performance limit of

our client-gateway-server design.

During evaluation of experiment 3, it includes all the essential component of DoIT

“network” components and object adapters. This evaluation will help us to realize the

performance baseline under client-gateway-server architecture. In this round, we also

use the simple echo program (echo message is generated by a virtual world game

logic). In this round, we prepared one more machine to run as a gateway. This

machine has the same configuration as the server.

Table 6-3. Hardware configuration. of round 2

Usage Number Configuration

Server 1 P4 2.4GHz CPU with 1GB RAM

Gateway 1 P4 2.4GHz CPU with 1GB RAM

Clients
10 physical nodes

Gateway
1 physical node

Intra-net
connections
(192.168.0.*)

Intra-net
connections

(140.113.88.*)

Server
1 physical node

Clients
10 physical nodes

Gateway
1 physical node

Intra-net
connections
(192.168.0.*)

Intra-net
connections

(140.113.88.*)

Server
1 physical node

 Figure 6-3. Communication architecture of round 2

Also, we use the same client generator program to perform the experiment. The client

number also increase from 500 to 4000 each round (total 8 rounds). The most

 - 65 -

different point is that the test environment was separated into 2 LAN. Clients

connected to the gateway in a subnet and the gateway connected to server in another

one (see Figure 6-3). Therefore, the traffic from client to gateways didn’t inference

the one between the gateway and the server.

Concerning the test program, we designed an echo server as well. The difference is

that the echo program was implemented and deployed on DoIT platform as a virtual

world logic component. Thus, this program can be considered as the simplest game

logic and the performance can be considered as the performance baseline. Similarly,

there were 8 rounds test and each run for ten minutes.

Table 6-4. Experiment result of round 2

Client number
Average Response

Time (ms)
Standard Deviation

500 12.87 33.33
1000 13.19 25.30
1500 11.46 31.21
2000 19.34 34.91
2500 17.83 35.27
3000 20.17 44.22
3500 25.26 78.29
4000 32.72 122.09

 - 66 -

Round2

0

100

200

300

400

500

0 1000 2000 3000 4000

Client Number

R
es

po
in

se
 t

im
e

(m
s) Avg.

SD

 Figure 6-4. Experiment result of round 2

We observe that the result was very similar to the result of round 1. Although the

average response was slightly larger than that of round 1, it was also less than 100ms

even if the client number reached to 4000. The standard deviation also had the level

near 100 ms. It is interesting to note that the average response time in 500 clients was

higher than that in 1000 clients. The reason could be caused that it fully exploited the

benefit of message aggregation in test of 1000 clients such that it got the better

performance than that in 500 clients. The similar result also appeared in round 3.

6.2.3 Performance Evaluation of a virtual world simulation

In the 3rd experiment, we try to simulate a simple real game environment and observe

the performance. We used two computers for servers, two for gateways, ten for clients.

The detail configuration is list as follow.

 - 67 -

Table 6-5. Hardware Configuration of round 3

Usage Number Configuration

Server 2 P4 2.4GHz CPU with 1GB RAM

Gateway 2 P4 2.4GHz CPU with 1GB RAM

Client 10 P4 1.6~2.4GHz CPU with 512MB RAM

To simulate the real game world, we implemented the most significant game logic

“movement” in the silmuation program. However, the different implementation of the

move logic will affect the result obviously. So we should make more effort to describe

the implementation detail of move logic. We should first define the term AOI (Area of

Interest) as the area in which all events are interesting to a given game object. This

game object is interested in all the game objects withn AOI. Assume that one avatar

moves right, we should send the player update message to all the game objects inside

the AOI plus 1 unit. This is because the game objects in the AOI of new location

should be interested in the new state of this avatar. The game objects in the leftmost of

the AOI of the old location should receive the player update to indicate that this avatar

was move out of their AOI. In addition to send updates to the surrounding objects, the

avatar also needs to extend his eye sight. So the states of the game objects in the

oblique line area should also be sent back to avatar. The AOI can be set dynamically

in package mmog.doit.gamespaceutil.

 - 68 -

Clients
10 physical nodes

Gateway
2 physical nodes

Intra-net
connections
(192.168.0.*)

Intra-net
connections

(140.113.88.*)

Game Server
2 physical nodes

Intra-net
connections

(140.113.88.*)

Intra-net
connections
(192.168.0.*)

Clients
10 physical nodes

Gateway
2 physical nodes

Intra-net
connections
(192.168.0.*)

Intra-net
connections

(140.113.88.*)

Game Server
2 physical nodes

Intra-net
connections

(140.113.88.*)

Intra-net
connections
(192.168.0.*)

 Figure 6-5. Communication architecture of round 3

The Figure 6-5 illustrates the communication architecture of this round. The virtual

world was divided into 4 equal size regions plus a login region. They were deployed

to 2 game servers. In addition, we provided two gateways for clients to connect in.

Similarly, we put the two servers in the private network. The gateway was responsible

for routing messages between internal and external network. Due to multiple regions,

it is possible that one avatar will migrate from one region to another, the avatar

migration also be implemented in this round.

Concerning the test program, there were also 10 machines running the client generator

program. We separated them into two groups. Machines in the same group connected

to the same gateway. There were 8 runs in this round. The number of clients is

increase with the number of 50 in each client generator program. Therefore, in the

extreme case, the gateway had 2000 clients connected concurrent at most, and the

game platform had 4000 clients in the virtual world concurrently. Furthermore, we

performed different tests for different map size and AOI size. The map had 500 x 500

and 1000 x 1000 two different sizes, and AOI had 9 x 9 and 16 x 16 two different

 - 69 -

sizes. We hope to realize the performance in different environment. Besides, in each

test, we pick the updates with avatar migration to do further analysis. The following

figure and table (figure 6-6 to 6-9, table 6-6 to 6-12) shows the statistic of our raw

data.

Table 6-6. Average Response Time – Total

Average Response Time - Total

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

23.74 23.26 23.16 27.82 23.74
21.80 23.27 24.56 20.39 21.80
27.21 17.95 24.94 22.26 27.21
24.83 12.24 34.36 18.92 24.83
22.74 15.83 54.66 31.25 22.74
30.86 23.22 240.14 24.02 30.86
66.95 21.98 491.99 46.49 66.95

125.65 29.22 4188.32 55.79 125.65

Average Response Time - Total

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e
T

im
e

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 Figure 6-6. Average response time – total

 - 70 -

Table 6-8. standard deviation – total

Standard Deviation - Total

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

500 56.43 49.85 52.68 62.79
1000 56.50 43.44 60.12 42.03
1500 62.46 41.13 58.00 53.07
2000 52.98 35.05 74.65 41.18
2500 56.68 40.04 175.69 54.88
3000 78.40 46.01 834.17 97.16
3500 271.01 56.03 1013.94 141.07
4000 591.70 102.10 5712.77 250.44

Standard Deviation - Total

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e
T

im
e

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 Figure 6-7. Standard deviation total

 - 71 -

Table 6-9. Average response time – migration

Average Response Time - Migration

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

500 45.08 30.11 37.23 51.67
1000 31.16 33.68 42.17 35.15
1500 29.49 30.70 46.43 23.94
2000 38.05 23.31 40.89 33.80
2500 31.76 25.71 78.27 43.65
3000 38.50 34.33 201.92 33.16
3500 74.61 31.57 628.70 63.66
4000 119.16 36.90 5187.59 63.68

Average Response Time - Avatar Migration

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e
T

im
e

(m
s)

500x500

9x9

1000x1000

9x9
500x500

16x16

1000x1000

16x16

 Figure 6-8. Average response time – migration

 - 72 -

Table 6-10. Standard Deviation – Migration

Standard Deviation - Migration

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

500 77.70 49.53 69.24 86.87
1000 60.79 52.61 73.01 62.75
1500 60.76 56.85 82.84 56.46
2000 69.03 55.47 82.88 63.86
2500 59.35 51.17 380.69 66.56
3000 76.13 63.01 913.79 100.30
3500 198.03 53.26 919.04 144.63
4000 483.43 94.72 6280.69 211.38

Standard Deviation - Avatar Migration

0.00

100.00

200.00

300.00

400.00

500.00

0 1000 2000 3000 4000

Client Number

R
es

po
ns

e
T

im
e

(m
s)

500x500

9x9

1000x1000

9x9

500x500

16x16

1000x1000

16x16

 Figure 6-9. Standard Deviation – Migration

 - 73 -

Table 6-11. CPU load

 500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16

 Gateway Server Gateway Server Gateway Server Gateway Server

500 7 3 5 3 4 5 7 4

1000 24 4 14 4 6 8 14 4

1500 36 12 19 3 11 7 24 8

2000 38 10 24 12 22 12 26 10

2500 40 11 40 11 52 17 43 12

3000 79 11 59 12 92 21 69 18

3500 96 16 87 16 98 27 89 25

4000 99 37 89 17 101 33 92 29

Table 6-12. The total amount of messages forwarded per second in a gateway

 500x500 9x9 1000x1000 9x9 500x500 16x16 1000x1000 16x16

500 629 553 653 592
1000 1473 1098 1639 1180
1500 2463 1692 2867 1844
2000 2983 2300 4399 2694
2500 4115 2936 6124 3439
3000 5178 3573 7941 4325
3500 6466 4299 9610 5318
4000 7815 5059 12841 6315

6.3 Discussion

In this section, our major discussion focuses on the phenomenon encountered in

experiments.

Aggregation design of gateway gains better scalability.

From the result of experiment 1 and 2, we can say that, the message aggregation

mechanism and reduction of connection between server and gateway helps DoIT

serves more clients with better performance. In Table 6-2, when a network engine of

 - 74 -

server handles 4000 connections from 4000 clients, then standard deviation is 543ms,

and the average response time is 55.11ms. However, in DoIT client-gateway-server

architecture, in Table 6-4, the standard deviation reduces to 135ms, and the average

response time reduces to 33.22ms. Although the average response time is a little

getting higher by aggregation delay of gateway relay mechanism, it is an acceptable

improvement.

The bottleneck of Gateway performance

In Figure 6-7 and Figure 6-8 we can observe that different map size and different AOI

size lead to different result. In all the tests, as we can expect, the data of map size 500

x 500 and AOI 16 x 16 got the worst result. In this configuration, the average response

time grows steadily under 2500 clients concurrently. But it starts to have dramatic

growth after 2500 clients. Concerning the two configuration of 1000 x 1000, 16 x 16

and 500 x 500, 9 x 9, there is no obvious growth until the client number reaches to

3500 clients. But the amount of growth is steady and slow. Concerning the

configuration of 1000 x 1000, 9 x 9, the average responses time is almost under good

result throughout the test.

If we observe the percentage of CPU usage in Table 6-11, we can find that the

performance bottleneck is on the gateway. The CPU usage is always under 50% in the

servers. We take a future look. We recorded the update sent per second in the gateway

at the Table 6-12. We consider it have tight relation to the performance. The main

game logic is movement message. According to the movement game logic described

above, the number of update messages should be a function of total clients, map size,

AOI size, and clients in the gateway. We first consider how many update messages are

sent when one move message is process. First of all, the update message should be

sent back to the avatar himself.

 - 75 -

We calculate the total messages per second processed by a gateway by the given

update messages per second plus the command message sent by clients. According the

result we get above and map it to this diagram, we can find that a gateway can bear

5000~6000 messages per second with excellent performance.

Finally, we observe the impact of avatar migration in Figure 6-9 and Figure 6-10. The

trend of updates of avatar migration is very similar to the general message updates.

The average response time is 1.5 times larger than general message. But it is

acceptable because the avatar migration does not happen often.

According the result we get above and map it to this diagram. The results show that

gateway performance drops dramatically when the gateway needs to process over

6000 messages per second (the number of clients handled by a single gateway is

1500).We can generally state that if a server cluster is required to successfully handle

simultaneously about 10,000 players, we need a total of 10 nodes of a server cluster (6

gateways and 4 cell servers).

If we could improve the performance of the gateways, we could greatly decrease the

number of gateways and lower the cost. Gateways in MMOG service now play an

important role. Not only do they forward packets, but also provide security. Moreover,

MMOGs with mobile devices support might soon be available. As can be seen,

gateways carry a heavy responsibility and arranging their performance and

functionalities is an important task.

Overall performance evaluation conclusion

According to information received at Q4 of 2005 from the games industry, one server

cluster (consisting of about twenty computers, including proxy/gateway and server)

can serve about 9000 players simultaneously. Therefore, the results for the scalability

 - 76 -

of our DoIT platform were good. We can achieve the same simultaneous online

players by using only 10 PC-based machines.

