Chapter 4 DolT’s Approaches, Architecture,

Framework

4.1 Our Approach

First, MMOG’s behavior is generally modeled as driven by events. Real players send
commands to control the virtual players. The changes made by one virtual player
(either Player Character(PC) or Non-Player Character(NPC)) affect what other players
view on their monitors. Second, in most cases in client, many codes can be executed
in parallel. For example, when sending a command to the server, client can execute an
appropriate prediction algorithm to provide smoothing game experience to MMOG
players rather than block and wait for the corresponding update from the server.
Furthermore, message-oriented -Middleware (MOM)-technology has the advantage of
allowing the platform to decouple the-versioning relationship for both the client and
the server. Moreover, in the M/M/1:medel, MOM-based communication works better
for long-lived transactions that require long execution times from the service Provider.
Therefore, MOM technology was chosen for building an efficient platform rather than

RPC-based architecture.

Computation

Command

Update

Figure 4-1. Communication model of traditional MMOG

-14 -



4.2 DolT Architecture

Based on the survey and analysis in chapter 3, we believe that the above analysis
allowed us to say that appropriately designed proxy-based communication
architecture has inherently better scalability for our MMOG platform and we thus

chose to employ it in the way described in this section.

® Dynamic Cluster Management J
1 |
virtual world Ii Game Kegions
@ ' i Database Auditing
/ System
i Billing
- Internet . ‘_'. b= System
e, -f :

e, High Peameance Transrris‘snn — e — — — — Web
a2 Faiil-ower Tarebent Conmection Account  Specific  Dafabase Server
r'-"’ Game Servers J
# Server Servers Server

e ’ Secuyjty Defender High Avaliablility, Scalability, Flexibility, Easy to Deployment

(:_O{J o o
L .
. : 3rd Party
Cifent side Gurlenps sarver Side
Systems

Figure 4-2. DolT platform 4-tried architecture

We have been engaged since summer 2002 on a middleware building project, which
we term the Distributed-organized Information Terra (Dol T platform), to support
MMOG. DolT is implemented by pure Java programming language. Figure 4-2 shows
its architecture. The platform can also be categorized as 4-tier middleware
architecture. Moreover, it addresses the four ease requirements listed in the previous
chapter. This section explains each component in our platform. It contains three major

components: Game Servers, Gateways, and Coordinator.

Game Servers are the most important components in our platform. Game server

-15 -



passively accepts the Gateway connection for receiving messages from client and
actively connects to Coordinator for participating in region migration. Note that there
IS no connection between each server when the system starts up, but one server may

dynamically connect to another one on the process of region migration.

A Game Server is capable of computing the game logic and keeping the game states.
It receives messages from external (mostly are sent from client), renews the states of
virtual world, and then returns the updates to the corresponding clients and
components. The game logics are provided by game developers and deployed on

Game Servers.

Virtual world initiated in DolT is divided into multiple regions. Every Game Server
may contain zero to many regions apd‘a region:can’t span across more than one server.
A region is the concept of a single virtual world: In‘the same region, the game logics
share the same game context, the same game space. In addition, an avatar in a region
may migrate to another region. The details will be described in chapter 4.3
Framework. For the load sharing purpose, a region in a Game Server may migrate to

another Game server. The detail will be also discussed further in chapter 4.3 too.

Gateways are the inter-mediator of MMOG platform and the Internet. On the internal
side, they actively connect to game servers; on the external side, they passively accept
connections from clients. The major responsibility of a gateway is to forward control
messages from client to the servers and forward update messages from servers to the
clients. However, in DolT platform, a gateway does not simply forward messages but

assembles messages as an internal form.

To achieve high performance and flexibility, the implementation of gateway has many

considerations. For example, we provide several kinds of protocol at the external

-16 -



interface. If a client is not under a firewall, he or she can communicate with server in
UDP/IP in order to gain more efficient communication. On the contrast, for clients
under a firewall, we provide TCP/IP as underlying protocol in order to pass through
the firewall. For a game demands high security, it can also expose SSL as its
communication protocol. Another example is that a gateway can also provide hack
protection mechanism. The most famous hack technology is known as “acceleration
program.” It makes sense to add the facility at a gateway to protect against this kind

of vicious programs.

Coordinator is the component that coordinates the process of region migration. It
monitors the load of game servers and initiates the process of region migration. In
current implementation, coordinator is.only a console application. The process of

region migration can only be initiated by:ahuman.

Some other essential components for a-practical MMOG platform that are not the

major components in DolT are listed.and explained-here:

A client is a component that player directly interact with. It provides graphics
presentation of game environment and interaction interface to interact with the game
environment. The client component connects to gateway to interact with a virtual

world via certain protocol defined by virtual world provider.

Persistence is also an important part for a MMOG. The reason is that there are many
Object-Relation mapping solution in the real world. It is unnecessary to reinvent the
wheels. To integrate the persistence mechanism, we can design it as a game logic or a

server plug-in.

Update server is the component that updates the latest version of client program

before clients’ logging in the server. Web or P2P server are both common ideas to

-17 -



implement as update server. Update server provides a configuration file to indicate
which version is the latest one and describe where the latest version client program
locates at. The configuration file is put on a given URL. The client program retrieve
the configuration file and compare the version with the configuration file version. If
the version is old, get the latest version from the location specified in the

configuration.

4.3 Framework

In this section, we illustrate the whole framework and the detail of each component

within the framework.

Reconfigurable
profiles

£ 2L GM Management | 3rd Party Tools
Logic Tools
Tools

- 4

i

~
Object Plug-ins
adapter Framework
=
_ —_— Game Game
Presentation { Obijects { Objects
Virtual Virtual
Interactive World World
logic container container
Client Side Core
Game Logic \ Framework J
4 ) A
= N e
L& Message Factory J Network Network L& Message Factor Network
SESSRgS ey Engine | Engine e e Engine |

Figure 4-3. System Components of Dol T

In our design, the layered and service-oriented system architecture achieves the
functionalities of the system components mentioned above. Fig. 4-3 shows the overall
system architecture, which essentially comprises three components: Network Engine,

Virtual World Container, and virtual world Game Logic’s Object Adapters. The first

-18 -



provides the DolT platform with transparent communication; the second, which
maintains the user states, provides interfaces for operating all the virtual world’s states;
the third manages the virtual world logic processing functions. A detailed description

of the three will be given in later.

The relationship between the three is shown in Fig. 4-4. The network engine (shown
in Fig. 4-5) dispatches messages according to type to registered message handlers. For
example, a “move” control message handler sends a message of this type to the virtual
world game logic adapter (path 1) which then finds the move-related virtual world
game logic for processing the control. Virtual world game logic then obtains the
related states from the virtual world container and sends an update request, such as
“move player A to new location (x,y)”,.to. the container (paths 2, 3). Finally, the

container sends the update to the.client through the network engine (path 3).

Virtual World
Game Logic

LN N ) o000 1
* Virtual World
« Game Logic ¢
.‘o . oeg-a.p-tgt o6 :
Game
Objects Objects
Virtual Virtual
Path 1 World World
container container
Core
Path 3 FrameworkJ
1| | 1 - 1
2 Message
[ & Message Facto Network
e racssagler e ey Engine
L J

Figure 4-4. Relationship of Server Components

-19 -



The remainder of section 4.3 is organized as follows: In Section 4.3.1, we discuss the
design of DolT network engine. In Section 4.3.2, we describe the game logic adapter
that provide hot-swap features. In Section 4.3.3, we introduce the object container
component where virtual world objects is resided. In Section 4.3.4, we illustrate the
design and process of object migration in DolT environment. In Section 4.3.5, we
describe the plugins framework that make Dol T extensible. In Section 4.3.6, we set

out the design, process and results of the management framework.

4.3.1 Network Engine

NetEngine is a message-oriented lightweight network service. Namely, all data are
sent as a concept of message. The.Figure 4-5 presents the whole picture of NetEngine
library. The NetEngine class is-the.core fagade class. We also start to introduce this

library from this class.

NetEngine can be used as client or server. To'be a client, we call the connect() method
with the specified address to open a connection. This method will return a Channel
object. To be a server, we call the listen() method with the specified address. The
NetEngine will listen to a specified port. It is necessary to register a listener
implementing the interface ChannelListener. When a channel connects in, the
NetEngine will call back the channelConnected() of ChannelListener. In the same way,
when a channel disconnects, the system will call back the channelDisconnected() of

ChannelListener

To send a message, we make use of send() method of Channel. This method should
pass in an object implementing Message class. For each type of message, developers

should define a class extending the Message class. It must override the encode() and

-20 -



decode() abstract methods. The system will call back these two methods in order to
encode/decode the message data to/from byte buffers. In addition, we recommend that
these message classes adhere the JavaBeans [43] convention, that is, if a class has a
property named id, it should provides the setld() and getld() methods in this class. It

will make it easier to get use of the message objects.

<<interfacg>> <<lnterface>>

NetEngine 4,7 MessageFactory

+connect() +createMessage() ‘\
+listen() \
+addChannelListener()

+removeChannelListener() \
+register() \
+unregister() N <<Interface>> \\
+registerDefault()
+unregsiterDefault() MessageHandler \ Message
+close() +onMessalge() \
i +type()
+decode()
v +encode()
<<Interface>>
Message Info
<<interfaces> +getType()
ChannelListener +getLength()
-+channelConnected) +getChannek)
+channelDisconnected)) +getMessage()
<< Interface>> <<lnterface>>
ChannelEvent Channel
+channelEvent() +send()
+getChannel() +close()
+isOpen()
+setAttribute()
+getAttribute()
+getAttributeNamey()

Figure 4-5. Class diagram of NetEngine library

To receive a message, we should first register a message handler and a message
factory for a given type of message. The factory should implement the
MessageFactory class and overrides the createMessage() method. The handler should
implement the MessageHandler class and overrides the onMessage() method. When a
message comes, the NetEngine will first analyze the type of message from its header.
Then it creates the message from the corresponding message factory and call the

decode() method such that it can read the message from binary stream. Subsequently,

-21-



it dispatches the message to the corresponding message handler.

Channel is abstraction of connection. We can send a message by send() method. In
addition, the channel can be seen as a session to the remote peer. We can store some
attributes associating to this session. NetEngine supports two channel establishment
methods: active connecting by connect method and passively listening by listen. And
when a connection is established, we can get the connection handle Channel by

ChannelListener. The following is some example to use NetEngine.

Server-side Example:

import java.net. InetSocketAddress;
import mmog. net. *;
import mmog. net. tcp. TCPNetEngine;
//. ..
NetEngine engine = new TCPNetEngine() ;
InetSocketAddress sockaddr®= new [netSocketAddress(13579) ;
engine. register (MyMessage~TYPE,
new MyMessageFaetory.(),
new MyMessageHandler());
//. ..

engine. listen (sockaddr) ;

Client-side Example:

import java.net. InetSocketAddress;
import mmog. net. *;
import mmog. net. tcp. TCPNetEngine;

//. ..

NetEngine engine = new TCPNetEngine() ;

InetSocketAddress sockaddr = new InetSocketAddress(”localhost”,
13579) ;

engine. register (MyMessage. TYPE,

new MyMessageFactory (),

new MyMessageHandler()) ;
Channel channel = engine. connect (sockaddr) ;
MyMessage msg = new MyMessage () ;
channel. send (msg) ;

-22 -



4.3.2 Game Logic Adapter

Fig. 4-6 shows the design of the virtual world game logic adapter. It behaves like a
lightweight real-time CORBA Portable Object Adapte [39]. A control message
received by the network engine is asynchronously put into the game logic adapter.
According to the control type specified, the adapter searches and dispatches the
message to the corresponding virtual world game logic, which then processes the
control data in the message and places the update request into the virtual world
container. The content developers create the game logic, which can be plugged into or
removed from the VW logic adapter at runtime, and this makes any changes in them
easy. The appropriate game logics are held by the servant managers of the game logic
adapters. Adapters are hierarchically organized with indexing mechanisms to reduce
plugged virtual world logic search  time:</A configurable thread model helps

optimization for the concurrentexecution of plugged game logic.

Virtual World Virtual World
Game Logic Game Logic
( - \\
[ Servant Manager ] [ Servant Manager ]
Virtual World Virtual World
Game Logic Game Logic
Adapter Adapter
\_ (ClassLoader) (ClassLoader) J
[ Servant Manager ]
Virtual World
Game Logic Core
Adapter Framework
(ClassLoader)
& J

Figure 4-6. Design of Virtual World Game Logic Adapter

Fig. 4-7 shows the class diagram for the virtual world game logic adapter. The

ObjectAdapterManager maintains the hierarchically organized Object Adapters and

-23-



their states. When control messages are asynchronously put to the OAQueue of the
ObjectAdapter, it is the ObjectAdapterManager that finds the game logic adapter with
the game logic that corresponds with the control message. The ServantManager
provides hot-swap functionalities for the game logics. It is currently implemented by
monitoring a specified directory to automatically load and unload the game logics in it.

A hash function is used on the dispatch matching to improve performance.

ObjectAdapter
ObjectAdapterManager

+ObjectAdapater() ServantManager
+ObjectAdapterManager() +getOAQueue()
+activate() +getServantManager()
+deactivate() +setServantManager() +ServantManager()
-+holdRequest() . +activateObject() 1 | [tloadObjectFromFile()
+discardRequest() 1 L. +activateObjectWithID() +loadObjectFromFilelist()
+getState() +deactivateObject() +printMethod()
+getManagedOA() +setObjectAdapter()
+delManagedOA() +run()

+destory()

Figure 4-7. Virtual World Logic'Adapter Class Diagram

Game logic provides the interface for-developing. its logic. The ServantManager
extends the java.lang.Classloader to' dynamically load the game logic classes. This
feature allows developers to change the class, for instance by replacing bugged a
game logic class by a bug-free class, even when the MMOG application is running.

This “Hot swap’ feature helps to make our platform more maintainable.

4.3.3 Object Container

In GameMessageHandler, we can receive a message for a given type, process
message, and send updates back to the game object channel. But it is only possible to
send updates to original game objects. We need more functionality to deal with game

objects. In this subsection, we introduce the two classes, GameContext and

=24 -



GameSpace.

Figure 4-8«Interface of GameContext

GameContext represents the ‘context of the game. The concept is similar to
ServletContext in the Servet API [44]. Butthe:game context only associates with the
current region. We can store and retrieve-attributes to and form the context. Besides,
we can also obtain some information of the game. The GameContext instance can be
obtained from the init() method of MessageHandler, AvatarChannelListner, and

AvatarMigrationListener. The Fig 4-8 is the class information of GameContext.

GameSpace can be seen as a data structure of the virtual worlds. We can add, remove,
move, and find game objects from the GameSpace. The element type of GameSpace is
GameObjChannel. Before adding a GameObjChannel to a GameSpace, we should
first associate it with a game object. It is because GameSpace set and retrieve the
location information from setX()/getX() and setY()/getY() methods of
GameObjChannel. These methods delegate the implementation to the same methods

of GameObject associated by the GameObjChannel. Therefore, the GameSpace

-25-



prohibit a GameObjChannel without GameObject from added to it. The size of
GameSpace is specified in the game descriptor. The GameSpace instance can be

obtained from the GameContext.

% mova) : bodlean
¥ remove() - bodlean

Figure 4-9. Interface of GameSpace

GameSpaceUtil is a class let us use GameSpace more conveniently. We usually need
to send a message to surroundings -of a game object. We can call the
sendMsgToSurroundings() methad. It will get'the'GameObjChannels from the given
range and send the message respectively. ‘Likewise, if we need to receive updates
from surroundings, we can call the recvUpdtFromSurroundings() method. It will get
the GameObjChannels from the given range, get the updates from status()method of

GameObjChannels, and send them to the given channel.

4.3.4 Object Migration

(1) Avatar Migration

Due to the virtual world is divided into multiple regions. An avatar may migrate from
one region to another region dynamically. We call it Avatar Migration. To implement

this feature, the following should be considered. First, what data should be moved to

-26 -



destination? Secondly, the gateway should be aware of this migration in order to let
gateway dispatch messages to new region for the successive messages. Thirdly, we
should consider the two conditions that source and target region in the same server

and they are in the different servers.

We use AVAMIG sent between gateways and servers. AVAMIG consists of avatarid
indicating which avatar to migrate, source region id, target region id, and avatar data.
We must note that the data are provided by developers himself through the API in the
form of byte array. Fig 4-10 explains the condition that source and destination regions
are in the same game server. The game server migrate the avatar data to destination
directly. In the meantime, it sends an AVAMIG to notify the gateway the update of
avatar location. Fig 4-11 explains the condition that source and destination regions are
in different server. The source game server sends an. AVAMIG to the gateway, and then

the gateway forwards this message to the.game server where the destination region

resides.
( N )
: Game Object :
1 Migrate” T
Source Region
Qg; Region
Manager )
2.1 AVAMIG 0 \ Game Object
§ 2.2. Migrate
Destination Region
§\§ Game Server {_ y
0
X
Gateway

Figure 4-10. Avatar Migration, source region and destination region are in the same server.

-27-



. : Game Object :
1. M|gra;te/ .................
Source Region
Region
Manager
2. AVAMIG
Region

Game Server A

r
\

S
0 e )
&0
4. Migrate
Gateway / Destination Region
3. AVAMIG §\§ Region
] Manager
NS
Region
Game Server B J

Figure 4-11. Avatar Migration, source region and destination are in different servers.

(2) Region Migration

In order to share the load between game server-clusters, a region can migrate from one
server to another dynamically. We call'it'Region Migration. Here come the problems:
the way to collaborate between several components, the way to send migrating data,
the data to migrate, the way to migrate game-specific objects, the way to migrate
region scope plugin, and the way for region scope components to bind server scope

services.

We use the component coordinator to coordinate the process of region migration. The
migrating flow is explained in the Fig 4-12. When a coordinator broadcasts an
RMINIT message to initiate a region migration, the destination sever opens a port and
passively waits for the connection from source region. When the destination server is
ready for accepting the socket from the source server, it sends RMREADY message to

the coordinator. The coordinator forwards this message to source server. As source

-28 -



server receives this message, it connects to the destination and begins to send
migration data as stream. As all data are sent successfully, the destination server sends
the RMCOMPLETE to notify the completion of migration. Then the coordinator
broadcasts this result to all participants. Otherwise, the RMFAIL message is sent to

notify that some failure occurred when migrating.

However, it is important to know what data are sent when migrating. First, the system
data of region should be migrated. Secondly, the game specific data which is created
and managed by developers’ code should be migrated. Thirdly, the region scope
plugin should be migrated. The dependencies are crosscut between these objects. It
will be a big problem to recover all the data and dependency in the new server.
Fortunately, java serialization mechanism. solves all these problems. Region in our
system is designed as a Serializable capsule. The complex dependency can be

serialized and restored to the origin form by -mean of java serialization.

The other issue is that the region ‘Scope components and plugin may depend on server
scope components resided on server. Therefore, before a region’s migrating from a
server, these region components should be unbind from server, as well as after a
region’s migrating to a new server, they should bind to the new server. Thus, the base
class of region scope component provide bind() and unbind() abstract method.
Through these callback methods, the component itself can handle the logic of bind

and unbind logic.

-29-



coordinator Source Destination Gateway

Server Server

Jsend RM READY___— Create Server Socket
RM Ready
/send RM Ready
\

Send RM data

Recive RM data
RM complete

/send RM Complete=—7|

RM complete

RM complete

RM complete

RM complete

Close Connection Close Server Socket

Figure 4-12. Region Migration

4.3.5 Plug-in Framework

MMOG middleware should serve the varying needs of game developers. For example,
some middleware provides PC client libraries to interact with servers, while other

middleware is aimed at game console or mobile device clients. The point here is that

-30-



even where client libraries are provided, they are never enough to meet demands from
developers. Ideally, the middleware should provide developers with a variety of layers
of API, for example, a server-scope API for using with a system timer, or a thread
pool, or a region-scope-level API for creating game objects in the virtual world. It

must provide a good plug-ins framework.

In our sever implementation, we build up the server in a component-based
architecture. We separate components into server scope components and region
components scope. Besides, For the sake of flexibility, we allow developers to
provide their own plugin. The Fig 4-13 depicts the architecture. A server scope
component, as the name implies, lives with the game server. It can be seen as a
service on a server, such as timer, thread,pool, and so on. A region scope component
lives with the region. A region scope componént always tightly couple with a region,
such as NPC engine. There should be some dependencies between components. A
region scope component can depend:on'a server scope component, but a server scope

component can not depend on a region scope‘component.

(" s N N
Plug-ins
Framework
Region
Scope
Component
) Server
Virtual Virtual Scope
World World Component
container container
N
[ Server Component ] [ Region Manager
Manager
DolT -
Core
Eramework GameSpaceUtil ThreadPool Timer
\_ N————— )

Figure 4-13. Server Component-based Framework

-31-



In DOIT platform, we can plug service components to extend the functionality.
Plugins are divided server scope plugins and region scope plugins. To write a server
scope plugin, we should write a class extending mmog.server.ServerScopePlugin.
When the server starts up, the server will call back the init() method of
ServerScopePlugin. The system will pass in the ServerContext and plugin initial
parameters to this method. In ServerContext, we can get the information of server and

look up other server components in this server.

As for designing a region scope plugin, we should provide a class extending
mmaog.server.RegionScopePlugin. Similarly, when a region is initiated, the server will
call back the init() method of RegionScopePlugin. The difference is that there is no
RegionContext parameter passed in the_init().method of RegionScopePlugin. It will be
postponed to bind() method. Region_scoperplugins‘live with a region. When a region
is bound to a server, all the region scope plugins in-this region will have the bind()
called. Relatively, when a region. is unbound from a server, all the region scope
plugins in this region will have the unbound called. It must be noted that init() is only
called once throughout the lifecycle of game platform, and however, bind()/unbind()
is called once whenever a region is migrated in/out. Moreover, region scope plugins
should implement java.io.Serializable. Because region scope plugins migrate
accompany with regions, the plugin should be the serialization form. Note to add the
transient keyword to the field which is not able to serialize. We can restore this field

in the bind() method.

A plugin should be pack as a jar file and put in the “plugins” directory of DOIT
platform. For each plugin, we should provide a plugin definition file. In this file, we
can define the type classname of plugin, plugin type, plugin initial parameters. The

Figure 4-14 is an example of plugin definition file.

-32-



# MyPlugin. properties

# put plugins config here

mmog. plugin. server. test = hello. MyPlugin
mmog. plugin. server. test. foo = bar

mmog. plugin. server. test. foo2 = bar2

Figure 4-14. description of MyPlugin.properties
4.3.6 Management Framework

For flexibility and manageability, an n-tiered level architecture that is similar to JIMX
architecture [45] is presented. The device has three basic layers: manager, delegation,
and agent, the relationship between which is illustrated in Figure 4-15. At the manager
layer, a number of remote management APIs is defined. In this way, a remote
management application is employed to retrieve/manipulate the information of
managed objects by calling the AF_’,I,s?; 3 The'del-e,_gation layer provides a management
component to help the manager"vcije.al Wltl? ;@I'.Ij:.:théid!stributed nodes, such as create,

register, and startup, correspo'r_ld_ing to ,Jth'é' management beans. The ServerFactory

records the reference of the diffe??é_nt serwcenodesT he delegation layer also provides
a remote connection port that al-lc;vils' rerhbt;e control. At the agent level, an
individual service node packages the resource into the manageable object, and
registers the local server information to the delegation server.

Manager User Interface Manager Layer
Management Server API

Mbean Server

Delegation Layer
Manageable Bean G 4

Server1 ServerFactory Server2 ServerFactory

Mbean Server
j Agent Layer

MbeanLoader plug-in Manageable Bean

Service Node

Figure 4-15. n-tiers management architecture

-33-



The focus of the development environment is on managing the distributed computing
environment, such as the J2EE application server clusters, the MMOG platform, and
the grid service node. Their main characteristic is that most of the services have the
same functionalities, and are organized by many computers. For example, in a
MMOG service, each node handles different geographical coordinates of the virtual
world, but each node has the same individual object to be managed, such as, player
characters and auction lists. Therefore, to manage the identical object state of each
node with the same service component, we use a code generation model that provides

a rapid development kit for the purpose.

Here, the implementation of a real management system based on the framework of the
MMOG Platform: DolT platform is_described. The MMOG environment has a
combination of many servers. .Each service node handles different requests from
different clients. Because the DolT platform is built with pure Java language, the
notion is expressed as an extension of the JMX framework. The detailed relationship
between the layers and components is‘'shown‘in Fig 4-16. The device is divided into
three layers: agent, delegation, and manager. The entire management system work

flow and design detail is discussed in the follow subsection.

The purpose is to build a basic management function that reveals how many regions,
player objects, non-player objects there are in a single game server. First, the
programmer has to declare what information is to be retrieved or manipulated. Figure
4-17 illustrates the partial XML files that the programmer created. The manageable
objects are named ServerManager with interfaces: regionnumber, regioncount,
AVAcount, NPCcount. For example, the regionnumber interface is intended for
setting a region number with an integer type (therefore, authority is setting to write

permission) The NPCcount interface is intended to help the manager quantify how

-34-



many Non-Player-Character Objects are in the region given by the regionnumber.
Figure 4-19 is the interface code of ServerManagerMBean that is generated by the

code generation engine.

Invoke( Object name,

String methodname, HTTPconnector

String servername JMXconnector
Manager object{ ] args, Any Manager with protocol adapter
Layer String[ ] signature);
Delegation
Layer Invoke( Object name,

String methodname,

Object[] args,

String[ ] signature);

Reconfig_uration gl Reconfiguration
| profiles profiles
Game
Logic

Game
L Logic

Agent
Layer

Plug-ins
Manager

Plug-ins
Manager

-35-



<Classpath=C:/ /DEMO/MMOG_development_system/</Classpath:
- «<MBeansx
- <MBean=
<MBeanhame=ServerManager<,/MBeanhamezs

<MBeanParamsz

«<MBeanParam:
<MBeanParamMame=regionnumber</MBeanParamhame»
=MBeanParamType=Integer=/MBeanParamType:=
authority=w</authority=

</MBeanParam:

«MBeanParam:
<MBeanParamiame=regioncount </MBeanParamkames»
<MBeanParamTypesxInteger</MBeanParamTypes
wauthority=r</authority>

=/MBeanParam:

<MBeanParam:

«MBeanParam:
zMBeanParamMame=AYAcount</MBeanParamiame=
<MBeanParamTypesxInteger</MBeanParamTypes
wauthority=r</authority>

=/MBeanParam:

<MBeanParam:
<MBeanParamMame=NPCocount</MBeanParamiame=
«MBeanParamTypexInteger</MBeanParamTypex>
<authorityz=rs/authority s

</MBeanParam:

Figure 4-17. Partial code segment of the MBean declaration.

4.3.6.1 Agent Layer

Figure 4-18 shows the architecture and work flow. The management plug-in program,
termed MbeanLoader, follows the design of the DolT platform plug-in module and is
operated when the server is startup. With startup, the MBeanLoader creates the
Mbeans individually and registers them to the MBserver on the same node and the
delegation management server.

management APl of a ServerManagerMbean.

interfaces.

-36 -

Figure 4-19 shows an example of a common

Programmer has to implements the



Delegation
Layer

Figure 4-18. Process ler in single game server.

public interface ServeranagetvBean {
public Integer getRegionCount(); //get the total number of Regions in single server
public void setRegionMumber{Integer regionnumber); // set region nurrber
public String getRegiontamed); // get narme of region set by manager.
public void setdebug(Integer debug);
public void Debug();
public Integer getavacount(; /f get current nurmber of Avatar in this region
public Integer gethPCcount); & get current number of MPC in this region.
public Integer getRegionID); // get current [D of Region
public void resetRegion(); // reset Region info
public void register () // register 1o Managerment Server

Figure 4-19. Interface of ServerManagerMBean

-37 -



4.3.6.2 Delegation Layer

Figure 4-20 shows the process flow of the delegation layer. Here, ManagementServer
begins with startup an Mbean server, creates a ServersManagementMbean, and
registers it to the Mbean server, which then waits for the remote connection. Two

kinds of service are provided, one for the game server and the other for the manager.

The game server can connect to the management server and register a CustomMBean.
When this request is received, the manager creates a ServerFactory object according
to the register information. When the management server receives the manager’s
request, it can ascertain the responsible server factory, which can then be activated to
execute the manager’s request. Depending on the individual server name, the
individual ServerFactory object reference: can be ascertained. The individual
ServerFactory object can select:the method for. connecting to the game server and
invoke it in the ServerManagerMBean. It has a.one-to-one relationship to the
ServerManager Mbean. The “.ServerManagementFactory individually shares
same-named methods with those of the ServerManager Mbean. Because the
ServerManagementFactory plays an intermediary role, it is responsible for connecting
to the game server and for invoking the Mbean’s method. It therefore shares the same

methods with the ServerManager Mbean.

-38 -



Central Management Server

Any Protocol Adapter JMX Connector

Lr {p o

[ Server Factory & \

Server Hashtable

O MBean Server

Server
Management MBean Repository

Bean

J

1(4) Register j
2 Createﬁ G(l) Start Up

Management Server

\. J

Figure 4-20. Central Management Server Work Flow

4.3.6.3 Manager Layer

At the manager layer, managers accomplish their tasks by writing their own
management application. JMX technologies are used to connect to Management
Server and throw the JMXConnector or different protocol adapter (such as the HTTP
Connector). However, at this layer, a set of the management APIs of the server used
for connecting the programmer to the management server is still defined. The
ServersManagementFactory class provides some methods for use with the
management application. For example, the manager can initialize a
ServersManagementFactory object by a given central management server’s IP address
and the server port number of a management server. This object’s method can then be
used to connect to the management server, retrieve MBean lists, or get a specified

game server’s state.

Figure 4-21 shows a simple Management Client that calls a ServerManagerMBean

-39 -



interface. The manager chooses to view the states of region2 of serverl, and the

console reports that there are 325 avatars and 254 NPC in the current region.

VER m REGION M REFRESH

Current Region statel!

Region Mame :© region
Region ID T E
bpatar count 1 325
Mpc count o 254

Figure 4-21. A simple management client.with @ccess to ServerManagerMBean.

=40 -



