
 - 14 -

Chapter 4 DoIT’s Approaches, Architecture,

Framework

4.1 Our Approach

First, MMOG’s behavior is generally modeled as driven by events. Real players send

commands to control the virtual players. The changes made by one virtual player

(either Player Character(PC) or Non-Player Character(NPC)) affect what other players

view on their monitors. Second, in most cases in client, many codes can be executed

in parallel. For example, when sending a command to the server, client can execute an

appropriate prediction algorithm to provide smoothing game experience to MMOG

players rather than block and wait for the corresponding update from the server.

Furthermore, message-oriented Middleware (MOM) technology has the advantage of

allowing the platform to decouple the versioning relationship for both the client and

the server. Moreover, in the M/M/1 model, MOM-based communication works better

for long-lived transactions that require long execution times from the service Provider.

Therefore, MOM technology was chosen for building an efficient platform rather than

RPC-based architecture.

 Figure 4-1. Communication model of traditional MMOG

 - 15 -

4.2 DoIT Architecture

Based on the survey and analysis in chapter 3, we believe that the above analysis

allowed us to say that appropriately designed proxy-based communication

architecture has inherently better scalability for our MMOG platform and we thus

chose to employ it in the way described in this section.

 Figure 4-2. DoIT platform 4-tried architecture

We have been engaged since summer 2002 on a middleware building project, which

we term the Distributed-organized Information Terra (DoIT platform), to support

MMOG. DoIT is implemented by pure Java programming language. Figure 4-2 shows

its architecture. The platform can also be categorized as 4-tier middleware

architecture. Moreover, it addresses the four ease requirements listed in the previous

chapter. This section explains each component in our platform. It contains three major

components: Game Servers, Gateways, and Coordinator.

Game Servers are the most important components in our platform. Game server

 - 16 -

passively accepts the Gateway connection for receiving messages from client and

actively connects to Coordinator for participating in region migration. Note that there

is no connection between each server when the system starts up, but one server may

dynamically connect to another one on the process of region migration.

A Game Server is capable of computing the game logic and keeping the game states.

It receives messages from external (mostly are sent from client), renews the states of

virtual world, and then returns the updates to the corresponding clients and

components. The game logics are provided by game developers and deployed on

Game Servers.

Virtual world initiated in DoIT is divided into multiple regions. Every Game Server

may contain zero to many regions and a region can’t span across more than one server.

A region is the concept of a single virtual world. In the same region, the game logics

share the same game context, the same game space. In addition, an avatar in a region

may migrate to another region. The details will be described in chapter 4.3

Framework. For the load sharing purpose, a region in a Game Server may migrate to

another Game server. The detail will be also discussed further in chapter 4.3 too.

Gateways are the inter-mediator of MMOG platform and the Internet. On the internal

side, they actively connect to game servers; on the external side, they passively accept

connections from clients. The major responsibility of a gateway is to forward control

messages from client to the servers and forward update messages from servers to the

clients. However, in DoIT platform, a gateway does not simply forward messages but

assembles messages as an internal form.

To achieve high performance and flexibility, the implementation of gateway has many

considerations. For example, we provide several kinds of protocol at the external

 - 17 -

interface. If a client is not under a firewall, he or she can communicate with server in

UDP/IP in order to gain more efficient communication. On the contrast, for clients

under a firewall, we provide TCP/IP as underlying protocol in order to pass through

the firewall. For a game demands high security, it can also expose SSL as its

communication protocol. Another example is that a gateway can also provide hack

protection mechanism. The most famous hack technology is known as “acceleration

program.” It makes sense to add the facility at a gateway to protect against this kind

of vicious programs.

Coordinator is the component that coordinates the process of region migration. It

monitors the load of game servers and initiates the process of region migration. In

current implementation, coordinator is only a console application. The process of

region migration can only be initiated by a human.

Some other essential components for a practical MMOG platform that are not the

major components in DoIT are listed and explained here:

A client is a component that player directly interact with. It provides graphics

presentation of game environment and interaction interface to interact with the game

environment. The client component connects to gateway to interact with a virtual

world via certain protocol defined by virtual world provider.

Persistence is also an important part for a MMOG. The reason is that there are many

Object-Relation mapping solution in the real world. It is unnecessary to reinvent the

wheels. To integrate the persistence mechanism, we can design it as a game logic or a

server plug-in.

Update server is the component that updates the latest version of client program

before clients’ logging in the server. Web or P2P server are both common ideas to

 - 18 -

implement as update server. Update server provides a configuration file to indicate

which version is the latest one and describe where the latest version client program

locates at. The configuration file is put on a given URL. The client program retrieve

the configuration file and compare the version with the configuration file version. If

the version is old, get the latest version from the location specified in the

configuration.

4.3 Framework

In this section, we illustrate the whole framework and the detail of each component

within the framework.

Core
Framework

GM
Tools

Network
Engine

Game
Logic

Plug-ins
Framework

Interactive
logic

Presentation

Management
Tools

Virtual
World

container

Game
Objects

Object
adapter

3rd Party ToolsGame
Logic

Game
Logic

Message
& Message Factory

Object
adapter

Object
adapter

Virtual
World

container

Game
Objects

Message
& Message Factory

Message
& Message FactoryNetwork

Engine
Message

& Message Factory

Message
& Message Factory

Message
& Message Factory

Gateway
Network

Engine

Client Side
Game Logic

Reconfigurable
profiles

Reconfigurable
profiles

Reconfigurable
profiles

Core
Framework

GM
Tools

Network
Engine

Game
Logic

Plug-ins
Framework

Interactive
logic

Presentation

Management
Tools

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

Object
adapter

3rd Party ToolsGame
Logic

Game
Logic

Message
& Message Factory

Object
adapter

Object
adapter

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

Message
& Message Factory

Message
& Message FactoryNetwork

Engine
Message

& Message Factory

Message
& Message Factory

Message
& Message Factory Network

Engine
Message

& Message Factory

Message
& Message Factory

Message
& Message Factory

Gateway
Network

Engine

Client Side
Game Logic

Reconfigurable
profiles

Reconfigurable
profiles

Reconfigurable
profiles

 Figure 4-3. System Components of DoIT

In our design, the layered and service-oriented system architecture achieves the

functionalities of the system components mentioned above. Fig. 4-3 shows the overall

system architecture, which essentially comprises three components: Network Engine,

Virtual World Container, and virtual world Game Logic’s Object Adapters. The first

 - 19 -

provides the DoIT platform with transparent communication; the second, which

maintains the user states, provides interfaces for operating all the virtual world’s states;

the third manages the virtual world logic processing functions. A detailed description

of the three will be given in later.

The relationship between the three is shown in Fig. 4-4. The network engine (shown

in Fig. 4-5) dispatches messages according to type to registered message handlers. For

example, a “move” control message handler sends a message of this type to the virtual

world game logic adapter (path 1) which then finds the move-related virtual world

game logic for processing the control. Virtual world game logic then obtains the

related states from the virtual world container and sends an update request, such as

“move player A to new location (x,y)”, to the container (paths 2, 3). Finally, the

container sends the update to the client through the network engine (path 3).

Core
Framework

Network
Engine

Game
Logic

Virtual
World

container

Game
Objects

Object
adapter

Game
Logic

Virtual World
Game Logic

Message
& Message Factory

Object
adapter

Virtual World
Game Logic

Adapter

Virtual
World

container

Game
Objects

Message
& Message Factory

Message
& Message Factory

Path 1

Path 2

Path 3 Core
Framework

Network
Engine

Game
Logic

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

Object
adapter

Game
Logic

Virtual World
Game Logic

Message
& Message Factory

Object
adapter

Virtual World
Game Logic

Adapter

Virtual
World

container

Game
Objects

Message
& Message Factory

Message
& Message Factory

Path 1

Path 2

Path 3

 Figure 4-4. Relationship of Server Components

 - 20 -

The remainder of section 4.3 is organized as follows: In Section 4.3.1, we discuss the

design of DoIT network engine. In Section 4.3.2, we describe the game logic adapter

that provide hot-swap features. In Section 4.3.3, we introduce the object container

component where virtual world objects is resided. In Section 4.3.4, we illustrate the

design and process of object migration in DoIT environment. In Section 4.3.5, we

describe the plugins framework that make DoIT extensible. In Section 4.3.6, we set

out the design, process and results of the management framework.

4.3.1 Network Engine

NetEngine is a message-oriented lightweight network service. Namely, all data are

sent as a concept of message. The Figure 4-5 presents the whole picture of NetEngine

library. The NetEngine class is the core façade class. We also start to introduce this

library from this class.

NetEngine can be used as client or server. To be a client, we call the connect() method

with the specified address to open a connection. This method will return a Channel

object. To be a server, we call the listen() method with the specified address. The

NetEngine will listen to a specified port. It is necessary to register a listener

implementing the interface ChannelListener. When a channel connects in, the

NetEngine will call back the channelConnected() of ChannelListener. In the same way,

when a channel disconnects, the system will call back the channelDisconnected() of

ChannelListener

To send a message, we make use of send() method of Channel. This method should

pass in an object implementing Message class. For each type of message, developers

should define a class extending the Message class. It must override the encode() and

 - 21 -

decode() abstract methods. The system will call back these two methods in order to

encode/decode the message data to/from byte buffers. In addition, we recommend that

these message classes adhere the JavaBeans [43] convention, that is, if a class has a

property named id, it should provides the setId() and getId() methods in this class. It

will make it easier to get use of the message objects.

+connect()
+listen()
+addChannelListener()
+removeChannelListener()
+register()
+unregister()
+registerDefault()
+unregsiterDefault()
+close()

<<interface>>
NetEngine

+channelConnected()
+channelDisconnected()

<<interface>>
ChannelListener

+channelEvent()
+getChannel()

<<Interface>>
ChannelEvent

+onMessage()

<<Interface>>
MessageHandler

+createMessage()

<<Interface>>
MessageFactory

+getType()
+getLength()
+getChannel()
+getMessage()

<<Interface>>
MessageInfo

+type()
+decode()
+encode()

Message

+send()
+close()
+isOpen()
+setAttribute()
+getAttribute()
+getAttributeNames()

<<Interface>>
Channel

+connect()
+listen()
+addChannelListener()
+removeChannelListener()
+register()
+unregister()
+registerDefault()
+unregsiterDefault()
+close()

<<interface>>
NetEngine

+channelConnected()
+channelDisconnected()

<<interface>>
ChannelListener

+channelEvent()
+getChannel()

<<Interface>>
ChannelEvent

+onMessage()

<<Interface>>
MessageHandler

+createMessage()

<<Interface>>
MessageFactory

+getType()
+getLength()
+getChannel()
+getMessage()

<<Interface>>
MessageInfo

+type()
+decode()
+encode()

Message

+send()
+close()
+isOpen()
+setAttribute()
+getAttribute()
+getAttributeNames()

<<Interface>>
Channel

 Figure 4-5. Class diagram of NetEngine library

To receive a message, we should first register a message handler and a message

factory for a given type of message. The factory should implement the

MessageFactory class and overrides the createMessage() method. The handler should

implement the MessageHandler class and overrides the onMessage() method. When a

message comes, the NetEngine will first analyze the type of message from its header.

Then it creates the message from the corresponding message factory and call the

decode() method such that it can read the message from binary stream. Subsequently,

 - 22 -

it dispatches the message to the corresponding message handler.

Channel is abstraction of connection. We can send a message by send() method. In

addition, the channel can be seen as a session to the remote peer. We can store some

attributes associating to this session. NetEngine supports two channel establishment

methods: active connecting by connect method and passively listening by listen. And

when a connection is established, we can get the connection handle Channel by

ChannelListener. The following is some example to use NetEngine.

Server-side Example:

import java.net.InetSocketAddress;

import mmog.net.*;

import mmog.net.tcp.TCPNetEngine;

//...

NetEngine engine = new TCPNetEngine();

InetSocketAddress sockaddr = new InetSocketAddress(13579);

engine.register(MyMessage.TYPE,

 new MyMessageFactory(),

 new MyMessageHandler());

//...

engine.listen(sockaddr);

Client-side Example:

import java.net.InetSocketAddress;

import mmog.net.*;

import mmog.net.tcp.TCPNetEngine;

//...

NetEngine engine = new TCPNetEngine();

InetSocketAddress sockaddr = new InetSocketAddress("localhost",

13579);

engine.register(MyMessage.TYPE,

 new MyMessageFactory(),

 new MyMessageHandler());

Channel channel = engine.connect(sockaddr);

MyMessage msg = new MyMessage();

channel.send(msg);

 - 23 -

4.3.2 Game Logic Adapter

Fig. 4-6 shows the design of the virtual world game logic adapter. It behaves like a

lightweight real-time CORBA Portable Object Adapte [39]. A control message

received by the network engine is asynchronously put into the game logic adapter.

According to the control type specified, the adapter searches and dispatches the

message to the corresponding virtual world game logic, which then processes the

control data in the message and places the update request into the virtual world

container. The content developers create the game logic, which can be plugged into or

removed from the VW logic adapter at runtime, and this makes any changes in them

easy. The appropriate game logics are held by the servant managers of the game logic

adapters. Adapters are hierarchically organized with indexing mechanisms to reduce

plugged virtual world logic search time. A configurable thread model helps

optimization for the concurrent execution of plugged game logic.

Core
Framework

Game
Logic

Game
Logic

Virtual World
Game Logic

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Game
Logic

Game
Logic

Virtual World
Game Logic

Core
Framework

Game
Logic

Game
Logic

Virtual World
Game Logic

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Virtual World
Game Logic

Adapter

((ClassLoaderClassLoader))

Servant Manager

Game
Logic

Game
Logic

Virtual World
Game Logic

 Figure 4-6. Design of Virtual World Game Logic Adapter

Fig. 4-7 shows the class diagram for the virtual world game logic adapter. The

ObjectAdapterManager maintains the hierarchically organized Object Adapters and

 - 24 -

their states. When control messages are asynchronously put to the OAQueue of the

ObjectAdapter, it is the ObjectAdapterManager that finds the game logic adapter with

the game logic that corresponds with the control message. The ServantManager

provides hot-swap functionalities for the game logics. It is currently implemented by

monitoring a specified directory to automatically load and unload the game logics in it.

A hash function is used on the dispatch matching to improve performance.

 Figure 4-7. Virtual World Logic Adapter Class Diagram

Game logic provides the interface for developing its logic. The ServantManager

extends the java.lang.Classloader to dynamically load the game logic classes. This

feature allows developers to change the class, for instance by replacing bugged a

game logic class by a bug-free class, even when the MMOG application is running.

This ‘Hot swap’ feature helps to make our platform more maintainable.

4.3.3 Object Container

In GameMessageHandler, we can receive a message for a given type, process

message, and send updates back to the game object channel. But it is only possible to

send updates to original game objects. We need more functionality to deal with game

objects. In this subsection, we introduce the two classes, GameContext and

 - 25 -

GameSpace.

 Figure 4-8. Interface of GameContext

GameContext represents the context of the game. The concept is similar to

ServletContext in the Servet API [44]. But the game context only associates with the

current region. We can store and retrieve attributes to and form the context. Besides,

we can also obtain some information of the game. The GameContext instance can be

obtained from the init() method of MessageHandler, AvatarChannelListner, and

AvatarMigrationListener. The Fig 4-8 is the class information of GameContext.

GameSpace can be seen as a data structure of the virtual worlds. We can add, remove,

move, and find game objects from the GameSpace. The element type of GameSpace is

GameObjChannel. Before adding a GameObjChannel to a GameSpace, we should

first associate it with a game object. It is because GameSpace set and retrieve the

location information from setX()/getX() and setY()/getY() methods of

GameObjChannel. These methods delegate the implementation to the same methods

of GameObject associated by the GameObjChannel. Therefore, the GameSpace

 - 26 -

prohibit a GameObjChannel without GameObject from added to it. The size of

GameSpace is specified in the game descriptor. The GameSpace instance can be

obtained from the GameContext.

 Figure 4-9. Interface of GameSpace

GameSpaceUtil is a class let us use GameSpace more conveniently. We usually need

to send a message to surroundings of a game object. We can call the

sendMsgToSurroundings() method. It will get the GameObjChannels from the given

range and send the message respectively. Likewise, if we need to receive updates

from surroundings, we can call the recvUpdtFromSurroundings() method. It will get

the GameObjChannels from the given range, get the updates from status()method of

GameObjChannels, and send them to the given channel.

4.3.4 Object Migration

 (1) Avatar Migration

Due to the virtual world is divided into multiple regions. An avatar may migrate from

one region to another region dynamically. We call it Avatar Migration. To implement

this feature, the following should be considered. First, what data should be moved to

 - 27 -

destination? Secondly, the gateway should be aware of this migration in order to let

gateway dispatch messages to new region for the successive messages. Thirdly, we

should consider the two conditions that source and target region in the same server

and they are in the different servers.

We use AVAMIG sent between gateways and servers. AVAMIG consists of avatarid

indicating which avatar to migrate, source region id, target region id, and avatar data.

We must note that the data are provided by developers himself through the API in the

form of byte array. Fig 4-10 explains the condition that source and destination regions

are in the same game server. The game server migrate the avatar data to destination

directly. In the meantime, it sends an AVAMIG to notify the gateway the update of

avatar location. Fig 4-11 explains the condition that source and destination regions are

in different server. The source game server sends an AVAMIG to the gateway, and then

the gateway forwards this message to the game server where the destination region

resides.

Source Region

Game Object

Destination Region

Game Object

Region
Manager

Game Server

1. Migrate

2.1 AVAMIG

2.2. Migrate

Gateway

Source Region

Game Object

Destination Region

Game Object

Region
Manager

Game Server

1. Migrate

2.1 AVAMIG

2.2. Migrate

Gateway

 Figure 4-10. Avatar Migration, source region and destination region are in the same server.

 - 28 -

Source Region

Game Object

Region

Destination Region

Game Object

Region

Region
Manager

Region
Manager

2. AVAMIG

1. Migrate

4. Migrate

3. AVAMIG
Gateway

Game Server A

Game Server B

Source Region

Game Object

Region

Destination Region

Game Object

Destination Region

Game Object

Region

Region
Manager

Region
Manager

2. AVAMIG

1. Migrate

4. Migrate

3. AVAMIG
Gateway

Game Server A

Game Server B

 Figure 4-11. Avatar Migration, source region and destination are in different servers.

(2) Region Migration

In order to share the load between game server clusters, a region can migrate from one

server to another dynamically. We call it Region Migration. Here come the problems:

the way to collaborate between several components, the way to send migrating data,

the data to migrate, the way to migrate game-specific objects, the way to migrate

region scope plugin, and the way for region scope components to bind server scope

services.

We use the component coordinator to coordinate the process of region migration. The

migrating flow is explained in the Fig 4-12. When a coordinator broadcasts an

RMINIT message to initiate a region migration, the destination sever opens a port and

passively waits for the connection from source region. When the destination server is

ready for accepting the socket from the source server, it sends RMREADY message to

the coordinator. The coordinator forwards this message to source server. As source

 - 29 -

server receives this message, it connects to the destination and begins to send

migration data as stream. As all data are sent successfully, the destination server sends

the RMCOMPLETE to notify the completion of migration. Then the coordinator

broadcasts this result to all participants. Otherwise, the RMFAIL message is sent to

notify that some failure occurred when migrating.

However, it is important to know what data are sent when migrating. First, the system

data of region should be migrated. Secondly, the game specific data which is created

and managed by developers’ code should be migrated. Thirdly, the region scope

plugin should be migrated. The dependencies are crosscut between these objects. It

will be a big problem to recover all the data and dependency in the new server.

Fortunately, java serialization mechanism solves all these problems. Region in our

system is designed as a Serializable capsule. The complex dependency can be

serialized and restored to the origin form by mean of java serialization.

The other issue is that the region scope components and plugin may depend on server

scope components resided on server. Therefore, before a region’s migrating from a

server, these region components should be unbind from server, as well as after a

region’s migrating to a new server, they should bind to the new server. Thus, the base

class of region scope component provide bind() and unbind() abstract method.

Through these callback methods, the component itself can handle the logic of bind

and unbind logic.

 - 30 -

coordinator Source
Server

Destination
Server

Gateway

 Figure 4-12. Region Migration

4.3.5 Plug-in Framework

MMOG middleware should serve the varying needs of game developers. For example,

some middleware provides PC client libraries to interact with servers, while other

middleware is aimed at game console or mobile device clients. The point here is that

 - 31 -

even where client libraries are provided, they are never enough to meet demands from

developers. Ideally, the middleware should provide developers with a variety of layers

of API, for example, a server-scope API for using with a system timer, or a thread

pool, or a region-scope-level API for creating game objects in the virtual world. It

must provide a good plug-ins framework.

In our sever implementation, we build up the server in a component-based

architecture. We separate components into server scope components and region

components scope. Besides, For the sake of flexibility, we allow developers to

provide their own plugin. The Fig 4-13 depicts the architecture. A server scope

component, as the name implies, lives with the game server. It can be seen as a

service on a server, such as timer, thread pool, and so on. A region scope component

lives with the region. A region scope component always tightly couple with a region,

such as NPC engine. There should be some dependencies between components. A

region scope component can depend on a server scope component, but a server scope

component can not depend on a region scope component.

DoIT
Core
Framework

Plug-ins
Framework

Virtual
World

container

Virtual
World

container

Region
Scope

Component
Server
Scope

Component

Timer

Server Component
Manager Region Manager

GameSpaceUtil ThreadPool

DoIT
Core
Framework

Plug-ins
Framework

Virtual
World

container

Virtual
World

container

Region
Scope

Component
Server
Scope

Component

Timer

Server Component
Manager Region Manager

GameSpaceUtil ThreadPool

 Figure 4-13. Server Component-based Framework

 - 32 -

In DOIT platform, we can plug service components to extend the functionality.

Plugins are divided server scope plugins and region scope plugins. To write a server

scope plugin, we should write a class extending mmog.server.ServerScopePlugin.

When the server starts up, the server will call back the init() method of

ServerScopePlugin. The system will pass in the ServerContext and plugin initial

parameters to this method. In ServerContext, we can get the information of server and

look up other server components in this server.

As for designing a region scope plugin, we should provide a class extending

mmog.server.RegionScopePlugin. Similarly, when a region is initiated, the server will

call back the init() method of RegionScopePlugin. The difference is that there is no

RegionContext parameter passed in the init() method of RegionScopePlugin. It will be

postponed to bind() method. Region scope plugins live with a region. When a region

is bound to a server, all the region scope plugins in this region will have the bind()

called. Relatively, when a region is unbound from a server, all the region scope

plugins in this region will have the unbound called. It must be noted that init() is only

called once throughout the lifecycle of game platform, and however, bind()/unbind()

is called once whenever a region is migrated in/out. Moreover, region scope plugins

should implement java.io.Serializable. Because region scope plugins migrate

accompany with regions, the plugin should be the serialization form. Note to add the

transient keyword to the field which is not able to serialize. We can restore this field

in the bind() method.

A plugin should be pack as a jar file and put in the “plugins” directory of DOIT

platform. For each plugin, we should provide a plugin definition file. In this file, we

can define the type classname of plugin, plugin type, plugin initial parameters. The

Figure 4-14 is an example of plugin definition file.

 - 33 -

MyPlugin.properties

put plugins config here

mmog.plugin.server.test = hello.MyPlugin

mmog.plugin.server.test.foo = bar

mmog.plugin.server.test.foo2 = bar2

 Figure 4-14. description of MyPlugin.properties

4.3.6 Management Framework

For flexibility and manageability, an n-tiered level architecture that is similar to JMX

architecture [45] is presented. The device has three basic layers: manager, delegation,

and agent, the relationship between which is illustrated in Figure 4-15. At the manager

layer, a number of remote management APIs is defined. In this way, a remote

management application is employed to retrieve/manipulate the information of

managed objects by calling the APIs. The delegation layer provides a management

component to help the manager deal with all the distributed nodes, such as create,

register, and startup, corresponding to the management beans. The ServerFactory

records the reference of the different service nodes. The delegation layer also provides

a remote connection port that allows remote control. At the agent level, an

individual service node packages the resource into the manageable object, and

registers the local server information to the delegation server.

 Figure 4-15. n-tiers management architecture

 - 34 -

The focus of the development environment is on managing the distributed computing

environment, such as the J2EE application server clusters, the MMOG platform, and

the grid service node. Their main characteristic is that most of the services have the

same functionalities, and are organized by many computers. For example, in a

MMOG service, each node handles different geographical coordinates of the virtual

world, but each node has the same individual object to be managed, such as, player

characters and auction lists. Therefore, to manage the identical object state of each

node with the same service component, we use a code generation model that provides

a rapid development kit for the purpose.

Here, the implementation of a real management system based on the framework of the

MMOG Platform: DoIT platform is described. The MMOG environment has a

combination of many servers. Each service node handles different requests from

different clients. Because the DoIT platform is built with pure Java language, the

notion is expressed as an extension of the JMX framework. The detailed relationship

between the layers and components is shown in Fig 4-16. The device is divided into

three layers: agent, delegation, and manager. The entire management system work

flow and design detail is discussed in the follow subsection.

The purpose is to build a basic management function that reveals how many regions,

player objects, non-player objects there are in a single game server. First, the

programmer has to declare what information is to be retrieved or manipulated. Figure

4-17 illustrates the partial XML files that the programmer created. The manageable

objects are named ServerManager with interfaces: regionnumber, regioncount,

AVAcount, NPCcount. For example, the regionnumber interface is intended for

setting a region number with an integer type (therefore, authority is setting to write

permission) The NPCcount interface is intended to help the manager quantify how

 - 35 -

many Non-Player-Character Objects are in the region given by the regionnumber.

Figure 4-19 is the interface code of ServerManagerMBean that is generated by the

code generation engine.

Core
Framework

Network
Engine

Game
Logic

Plug-ins
Manager

Virtual
World

container

Game
Objects

Object
adapter

Game
Logic
Game
Logic

Message
& Message Factory

Object
adapter

Object
adapter

Virtual
World

container

Game
Objects

Message
& Message Factory

Message
& Message Factory

Gateway
Network

Engine

Reconfigurable
profiles

Reconfigurable
profiles

Reconfiguration
profiles

Network
Engine

Message
& Message Factory

Message
& Message Factory

Message
& Message Factory

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

Core
Framework

Game
Logic

Plug-ins
Manager

Virtual
World

container

Game
Objects

Game
Logic
Game
Logic

Virtual
World

container

Game
Objects

Reconfigurable
profiles

Reconfigurable
profiles

Reconfiguration
profiles

Object
adapter

Object
adapter

Object
adapter

Central
management

Server
Management

Bean

Management
Bean

cManagement
BeanMBean Repository

ServerFactory MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

MBean Server

HTTPconnectorHTTPconnector
JMXconnectorJMXconnector

Any Manager with protocol adapterAny Manager with protocol adapter

JMX protocol (RMI)

Invoke(Object name,
String methodname,
String servername
object[] args,
String[] signature);

Invoke(Object name,
String methodname,
Object[] args,
String[] signature);

Manageable
Object

Manageable
Object

Manageable
Objects

Manageable
Object

Manageable
Object

Manageable
Object

Manageable
Objects

Manageable
Object

Agent
Layer

Delegation
Layer

Manager
Layer

Protocol
Adapter

 Figure 4-16. The Management System on the DoIT platform

 - 36 -

 Figure 4-17. Partial code segment of the MBean declaration.

4.3.6.1 Agent Layer

Figure 4-18 shows the architecture and work flow. The management plug-in program,

termed MbeanLoader, follows the design of the DoIT platform plug-in module and is

operated when the server is startup. With startup, the MBeanLoader creates the

Mbeans individually and registers them to the MBserver on the same node and the

delegation management server. Figure 4-19 shows an example of a common

management API of a ServerManagerMbean. Programmer has to implements the

interfaces.

 - 37 -

Core
Framework

Network
Engine

Plug-ins
Manager

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

Manageable
Object

Manageable
Object

Central
management

Server

JMX Connector

(1) Start Up

(2) Start Up

(3) Create

(4) Register

(5) Register

Agent
Layer

Delegation
Layer

Core
Framework

Network
Engine

Plug-ins
Manager

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

Manageable
Object

Manageable
Object

Central
management

Server

JMX Connector

(1) Start Up

(2) Start Up

(3) Create

(4) Register

(5) Register

Core
Framework

Network
Engine

Plug-ins
Manager

Virtual
World

container

Game
Objects

Virtual
World

container

Game
Objects

MBean Server

Management Plugins (JMX MBLoader)

MBean Repository
Management

Bean

Management
Bean

Management
Bean

Manageable
Object

Manageable
Object

Central
management

Server

JMX Connector

(1) Start Up

(2) Start Up

(3) Create

(4) Register

(5) Register

Agent
Layer

Delegation
Layer

 Figure 4-18. Process flow of MBeanLoader in single game server.

 Figure 4-19. Interface of ServerManagerMBean

 - 38 -

4.3.6.2 Delegation Layer

Figure 4-20 shows the process flow of the delegation layer. Here, ManagementServer

begins with startup an Mbean server, creates a ServersManagementMbean, and

registers it to the Mbean server, which then waits for the remote connection. Two

kinds of service are provided, one for the game server and the other for the manager.

The game server can connect to the management server and register a CustomMBean.

When this request is received, the manager creates a ServerFactory object according

to the register information. When the management server receives the manager’s

request, it can ascertain the responsible server factory, which can then be activated to

execute the manager’s request. Depending on the individual server name, the

individual ServerFactory object reference can be ascertained. The individual

ServerFactory object can select the method for connecting to the game server and

invoke it in the ServerManagerMBean. It has a one-to-one relationship to the

ServerManager Mbean. The ServerManagementFactory individually shares

same-named methods with those of the ServerManager Mbean. Because the

ServerManagementFactory plays an intermediary role, it is responsible for connecting

to the game server and for invoking the Mbean’s method. It therefore shares the same

methods with the ServerManager Mbean.

 - 39 -

Central Management Server

MBean Server

Management Server

MBean Repository
Management

Bean

Management
Bean

Server
Management

Bean

JMX Connector

(1) Start Up

(3) Start Up

(2) Create
(4) Register

Any Protocol Adapter

Server Factory &
Server Hashtable

Central Management Server

MBean Server

Management Server

MBean Repository
Management

Bean

Management
Bean

Server
Management

Bean

JMX Connector

(1) Start Up

(3) Start Up

(2) Create
(4) Register

Any Protocol Adapter

Server Factory &
Server Hashtable

 Figure 4-20. Central Management Server Work Flow

4.3.6.3 Manager Layer

At the manager layer, managers accomplish their tasks by writing their own

management application. JMX technologies are used to connect to Management

Server and throw the JMXConnector or different protocol adapter (such as the HTTP

Connector). However, at this layer, a set of the management APIs of the server used

for connecting the programmer to the management server is still defined. The

ServersManagementFactory class provides some methods for use with the

management application. For example, the manager can initialize a

ServersManagementFactory object by a given central management server’s IP address

and the server port number of a management server. This object’s method can then be

used to connect to the management server, retrieve MBean lists, or get a specified

game server’s state.

Figure 4-21 shows a simple Management Client that calls a ServerManagerMBean

 - 40 -

interface. The manager chooses to view the states of region2 of server1, and the

console reports that there are 325 avatars and 254 NPC in the current region.

 Figure 4-21. A simple management client with access to ServerManagerMBean.

