
 - 41 -

Chapter 5 DoIT Development Tool with Generative

Programming Concept

5.1 Basic Concept

The total workload of a MMOG development is very huge and need various

developers like network programmers, art designers, musicians, and game contents

designers and system maintenance workers.

To build a real MMOG, after discuss with developers who have real experience, it can

be concluded as the following steps. In the general MMOG development flow, the

first step is to define the game contents, for example, game roles, environment, events,

game objects, NPCs and game playing scenario. After decide the game contents, the

next step is to develop the server side and client side code.

Therefore, in the architecture purposed in previous chapter, the development process

can be division into four parts there are client, gateway, server and database. Each part

of the development must focus on different characteristics. The client’s development

focuses on the presentation, control interface, encryption mechanism and the game

content. The gateway’s and server’s development focus on high performance

NetEngine, message processor, load balance mechanism, and fault tolerance. And

database focuses on data reliability and persistent storage.

Figure 5-1 shows the essential part of a MMOG development from developer’s view.

The red components (includes the client network engine, gateway network engine,

server core and network engine components) are provided by the MMOG platform

 - 42 -

solution, and the developer will not necessary to pay attention to their operation

mechanism, so they can be used directly. The light blue with white dot components

are game based components, according to different kinds of MMOG they will have

different way to be designed, including the client side presentation, control, game

logic and database components. The green components with oblique line are platform

based, to design them must according to the assignment way defined by platform, so

each MMOG which using the same platform will have the same way and format to

design these components.

Network
Engine

Core
Framework

Protocol

Game
Objects

Game
Logic

Plug-ins
Framework

Interactive &
Client side Game logic

Presentation

Plug-ins

Network
EngineProtocolNetwork

EngineProtocol

Client Server

: essentials of middleware core

: content specific program that
middleware should assist programmers in creating it

: content specific program that
middleware needn’t to assist programmers in creating it

: essentials of middleware core

: content specific program that
middleware should assist programmers in creating it

: content specific program that
middleware needn’t to assist programmers in creating it

Gateway

 Figure 5-1. Developer’s view for MMOG Development

Based on the essential components and development flow, some parts that can be

done to accelerate the development speed and reduce the development complexity.

First, the game content description document format should be provided by the

platform that uses a popular language to define. Therefore, the game content designers

could write the description document by using the language and the programmers

 - 43 -

could understand the document’s content more easy and it also reduce the

communication time between content designers and programmers which wasted on

talk about the content’s definition.

Second, programmers will write a lot of the duplicate code during the development

process. Because the development of the MMOG component’s program will follow an

architecture which assigned by the platform and these programs may have the some

methods or attributes are the same. Under this condition, the same MMOG

component’s programs will have a part of codes are similarity and the differentiations

between them are the method operation logic and other attributes which are defined

by themselves.

Therefore, we draw out the similarity part of the programs and use the XML

description document to describe the different parts like methods and attributes. Then

we design a code generation engine according to the document’s format and the

regular of the programs. The code generation engine will generate the code according

to the distribution of the document. Therefore, we can load the document into the

code generation engine, and then the programs will be generated automatically. At last,

the programmers must insert the code into the programs which can’t be generated by

the engine, and then the development work will be finished.

Therefore, this chapter introduces a development system framework for the DoIT

MMOG platform. This dissertation use XML to edit a MMOG content description

document and also design a code generation engine, then we can generate the code by

load the document into the engine. Therefore, the whole MMOG development works

will become more simply, fast and elasticity.

 - 44 -

5.2 Code Generation Engine

The development system we introduced will focus on supporting the development of

deep blue part components in Fig 5-1 and implementing it on the framework

described in previous chapter.

Figure 5-2 shows the overview of MMOG Code generation system. Each generator

handle a kind of code, it will store this kind of program’s architecture and the part of

the same code and will have some method to generate the part of the different code

according to received data.

XML
Document

DOM

Message
generator

Message Handler
generator

Code Generation Engine

Message
code

Handler
code

Message Factory
generator

Factory
code

vwlogic
generator

vwlogic
properties

MBean
generator

MBean
code

CMBean
generator

CMBean
code

MBean interface
generator

MBean
interface

CMBean interface
generator

CMBean
interface

Mbean list
generator

MbeanList
properties

Code Generation
System

XML
Document

DOM

Message
generator

Message Handler
generator

Code Generation Engine

Message
code

Handler
code

Message Factory
generator

Factory
code

vwlogic
generator

vwlogic
properties

MBean
generator

MBean
code

CMBean
generator

CMBean
code

MBean interface
generator

MBean
interface

CMBean interface
generator

CMBean
interface

Mbean list
generator

MbeanList
properties

Code Generation
System

 Figure 5-2. Code Generation System of DoIT platform

 - 45 -

In traditional development process without generative programming support. After

defined the game contents document, the programmers must development the

programs according to the definition of contents. The programmers must development

all components’ programs of the MMOG, the whole work is very complexity and

complicated. In order to reduce the programmers’ load, development tool here loads

the document (which is written in XML by system analyst or programmers) into the

code generation engine and generates part of the programs automatically. The

generated programs still need to be edit by programmers, because the code generation

engine only generate the code which can be described, and others like method

operation logic which could not be described in the description document must be

write into the program by them self. The code generation engine use a XML parser to

parser the XML description document, and send the data which were got in the parser

process to the corresponding generator, then the generator will be responsible to

generate the codes.

5.2.1 Protocol-driven code generation

The DoIT platform provides the high performance game servers and gateways but

doesn’t include the clients. Because the client side development will be different

according to different kind of the MMOG. The platform keeps the elasticity of the

client side design, it allows the client side development according to game developer

design themselves. The client side design can be implement by JAVA or C++ or other

program language and can use the high performance network engine which provided

by platform. The only thing which the programmer should be considered in the client

side development process is the message protocol definition; it must be implemented

follow the server side definition.

 - 46 -

At the server side, there are some components must be implemented according to the

definition of the platform. There are message, message handler, message factory, NPC

configure, and server configure, vwlogic list document and game objects. Figure 5-3

shows the DOIT platform inner message process flow, it explains the relationship

between the message, message handler and message factory. When an unknown

message is sand to the server, it will be process at the ControlMessageHandler first.

According to the AVID of the message, the message will be delivery to the relative

region. AVID is the player’s avatar id in the virtual world, and each AVID will be

assign to one region according to the player’s position in the virtual world. The region

will find out the message handler at the Object Adapter according to the type value of

the message, and then send the message to the handler. The handler will cast the

unknown message to the original message type by using the message factory. And

then execute the message operation, and create an update Message return to the client.

Network
Engine

Message
& Message Factory

Message
& Message Factory

Message
& Message Factory

GameMessageInfo type # 2 (move command)

0101011010101111101 .

Control Message
Handler

② Checking message factory and decode

③ Create message object for object adapter

① an unknown message is received

④ send message to corresponding object adapter

 Figure 5-3. DOIT Platform Inner Message Process Flow

The components which programmers must development are the messages, message

handlers, and message factories in the inner message process flow and they are the

generality part of the work load in the server side development. Therefore, the

development system which we presented will focus on to these components’

 - 47 -

development. In order to descript these components, the first step is to define the

XML schema document according to the format of the message, and find out the

relationship between these components. In the DOIT platform, each message is

defined as a byte buffer. In the Figure 5-3, there is an unknown type message be sent

to the server. This message is composed by two components. First is the fixed

component, they include a message type, total message length, avatar id, player id and

the length of custom component. Each message will have the same format at the first

component and next component is the custom format. According to the different

messages’ function, the client will need to send some different attributes to the servers

for the game logic operation. Therefore, the custom component is composed by some

attributes. In the DOIT platform, we support some types of the attributes include int,

string, Boolean, byte, short, long and float. For example, a player login message is

sent when a new client join to the virtual world and it must include the player id and

password attribute. So the custom component in the player login message is

composed by a player id string and a password string, the full format is show in figure

5-4.

 Figure 5-4. Examples of the Message Format

 - 48 -

Because of the total length, avatar id, ct id, custom length attributes’ value are

assigned dynamically during the message sending process, so we will not necessary to

describe them. We must describe the others, include the message type, and custom

attributes and we also describe the message version number, package name and the

class path. Figure 5-5 is a MMOG message description document; it describes the

login and move message protocol. And we defined an xml schema document to verify

it; the xml schema document is show in the Appendix B. After defined the MMOG

script document, the next step is to design the code generation engine. The code

generation engine will generate the code according to the attributes’ value which we

described in the script document. Therefore, we analyze the code which we want to

generate to induce some regular and relationship between these codes.

 Figure 5-5. MMOG message script document

 - 49 -

 Figure 5-6. The Code of MoveMessage and LoginMessage

Figure 5-6 shows the code of the login message. It includes the message name and

attributes’ name and type and the message type value which all described in the

MMOG script document. Because each message class will have encode and decode

method, and the method logic operation will be different according to the attributes

included by the message. The decode method function is to put the attributes’ value

 - 50 -

from the byte buffer, and the encode method is doing the inverse work. Therefore, we

must insert the code into the method according to the type of the attributes. In the

decode method, we must use the JAVA byte buffer API to get the values from the

byte buffer, and the sequence which we get the attributes must follow the sequence of

the attributes which we described in the MMOG script document. And the encode

method is also. For example, we described the login message in the Figure 5-6, it

defined the login message have two attributes; id and password, and they will have

the same order in the byte buffer.

Therefore, in the decode method, we assign direction attribute value by using the get()

method to get a byte value from the byte buffer and then we use some code to get the

accept attribute value. Because the JAVA byte buffer API doesn’t provide the method

to get or put the Boolean and string value, we use a shot value to replace the Boolean

value, and we use a short value and a byte array to replace the string. In the decode

method, we use getShort() method to get a short value from the byte buffer and to

differentiate the value. If it is equal to zero then it represent the Boolean value false, if

it is equal to one then it represent the Boolean value true. If the attribute type is the

string, then we use a short value to record the length of the string and use the bytes to

store the string. By the same way, in the encode method we also need to use some

JAVA byte buffer API to put the value into the byte buffer according to the type and

sequence of the attributes.

The last part of the program is the attributes composed with the get and set methods.

Each attributes in the message will accompany a get and a set method. We must insert

these methods according to the attributes’ name and type. For example, in the login

message, the attribute id will have the getID() and the setID() methods.

Besides the message code, we will also generate the message factory and message

 - 51 -

handler code. The code of the login message factory and handler is show in the

Figure 5-7. They are also follow a fixed format and the only thing that different is the

class name. We just only insert the message name into the program where the red

block area. Therefore, we can generate these codes fast without do any logic

determine. After generated the code, the last work is to generate the vwlogic

properties file. The game server will load the message handlers dynamically when

system startup according to the description of the vwlogic properties file. The vwlogic

properties file will store the entire handler and factories name and class path, and the

record format is show in the next page. Each line represents a message handler or

factory and it distributes the class path and message type:

1=cis.game.common.message.LoginMessageFactory/0x01

2=cis.game.server.handler.LoginMessageHandler/0x01

1=cis.game.common.message.MoveMessageFactory/0x02

2=cis.game.server.handler.MoveMessageHandler/0x02

 - 52 -

 Figure 5-7. The Code of LoginMessageHandler and LoginMessageFactory

5.2.2. Management function code generation

At the game server layer, the architecture and work flow were shown in the Figure

4-18. We designed a management plug-in program named MbeanLoader. This

program is designed follow the DOIT platform plug-in module and will be executed

when the server is startup. It will do some works; it will startup an Mbean server and

also creates a Serveranager Mbean which implemented by DOIT platform server

management API, then it will register this Mbean to the Mbean server and connect to

 - 53 -

the central management server and make the register mechanism. Therefore, there are

some programs we need to development includes the Serveranager Mbean and

MbeanLoader.

In the DOIT platform, the server provides some management API. We use these API

to implement the Serveranager Mbean. Therefore, we defined a ServerManagement

MBean interface follow the JMX definition [45]. The interface defined the server state

get and set debug and remote register invoke methods. The Serveranager Mbean will

implement this interface and will be registered to the Mbean server.

public interface ServerManagerMBean {

 public Integer getregioncount();

 public void setregionnumber(Integer regionnumber);

 public String getregionname();

 public void setdebug(Integer debug);

 public void Debug();

 public Integer getAVAcount();

 public Integer getNPCcount();

 public Integer getRegionID();

 public void resetRegion();

 public void register();

}

There is a part of the ServerManager code in the below. The getregioncount() method

is to get the server region count. The method content is to use the MBeanLoader

object reference to lookup the RegionManager object reference, and then use the

RegionManager’s getRegionCount() method to get the count. So, each of the method

in the ServerManager will be implemented by the same way.

 - 54 -

public class ServerManager implements ServerManagerMBean {

 public MBeanLoader mbeanloader;

 public Integer regioncount;

 public ServerManager() {

 }

 public Integer getregioncount() {

 RegionManager a = (RegionManager) mbeanloader.context.

 lookupComponent(

 RegionManager.COMPONENT_NAME);

 return new Integer(a.getRegionCount());

 }

}

After implemented the Serveranager Mbean, we must implement the MbeanLoader

program. Because it is a plug-in for the DOIT platform, so we must development it

according to the platform plug-in definition. The DOIT platform defined a plug-in

interface; each plug-in program will implement this interface, and they will get the

server component manager object reference. By this object reference, the plug-in

program can get the server state or call some component method. Therefore, the entire

MbeanLoader code can be divided into four parts. First is the platform defined part,

this part is composed by a init(ServerContext context, Hashtable properties) method.

This method will be invoked by the game server when this plug-in program was start.

The game server will send the ServerContext object reference and a Hashtable

reference to the method, and then the MbeanLoader will get these object reference.

Here is the init() method content:

public void init(ServerContext context, Hashtable properties) throws

MMOGComponentException {

 this.properties = properties;

 this.context=context;

}

The next part is to startup an Mbean server. During this process, we must assign a port

number to the Mbean server, and also create a JMXConnectorServer for remote

 - 55 -

connection:

LocateRegistry.createRegistry(port);

MBeanServer mbs = MBeanServerFactory.createMBeanServer();

JMXServiceURL url = new

JMXServiceURL("service:jmx:rmi:///jndi/rmi://localhost:"+port+"/serve

r");

JMXConnectorServer cs

=JMXConnectorServerFactory.newJMXConnectorServer(url, null, mbs);

cs.start();

The third part is to create a ServerManager Mbean, and register it to the Mbean

server:

sm = new ServerManager();

sm.mbeanloader = this;

mbs.registerMBean(sm,new

ObjectName("MBeans:type=mmog_management.ServerManager"));

The last part is to connect to the central management server and make a register

procedure. We will use standard JMXConnector to connect to the central server, and

then set the local server name, port and IP to it. At last, we will invoke the addserver

method to create a server factory which represents this game server’s remote control

component.

5.3 Benefits

Below are presented some of the results after testing the development and

management systems on the DOIT MMOG platform:

(1) Separating out the various tasks of the system administration, application

programming and communication configuration.

In a large scale distributed computing environment, it is important to separate out the

 - 56 -

various tasks in the software engineering process. In the model presented here, the

system administrators/analyzers can define only the interfaces necessary for

management tasks. The programmers who employ the interface generated by the

code generation engine do not need to know the detail of the communication

technology. The model provides a scheme of isolation from implementation and

simple and easily understood representation. Essentially the idea is based on the my’

previous work: the Ghostwriter engine [50] , which provided a lower technical

learning curve, help for concentrating on system design, easily reusable components,

and easily integrated applications.

(2) The code generation model helping programmers build a manageable object

rapidly and easily.

 Using XML as the MMOG content description language offers certain advantage.

First, the game content designer has simply to learn the description syntax, and can

then use any text editing software to edit a MMOG description document. Second, the

Unicode encoding of XML allows the use of any language code for editing the

document. Third, much of the data in the MMOG is structured data and can be

suitably described by XML. On completion of the editing, an XML schema file can

verify if the description document is valid while the existing XML parser can analyze

the content and process the data.

(3) An efficient and customizable message-based network engine, which reduces

complexity for application programmers designing the protocol.

A main goal of DoIT’s is “simple is better” [35]. Our message-based network engine

 - 57 -

helps developers focus on a simple and impact protocol description. Developers need

only define the protocol and have no worries over network programming. We also

introduce a code generator model (shown in Figure 5-8) to help the developer

generate appropriate content protocol. First, the content developer describes the

message format in an XML file. Next, our engine parses the protocol description.

Third, the engine generates corresponding message factory and handler codes for both

clients and servers. Fourth, the developer implements the detailed content code in

handlers (for example, how to handle a PLAYER_MOVE message sent by a client).

Finally, the codes can be deployed by both client and server.

An example of protocol defined in this platform is shown as Fig 5-8. MMOG

developers define the detailed protocol in XML format. Figure 5-8(a) shows that the

content protocol number 1 is “LoginMessage”, the parameters include a long typed id

and a string type password. Figure 5-8(b) is the real protocol generated by our code

generator. In our opinion, defining protocol precisely makes the generated protocol

handlers more compact, and thus increases the network transmission performance

without too much of the overhead that is encountered in CORBA.

Security issues and content updating makes changes of content protocols are

commonly encountered during the development and operation of MMOGs, so the

network engine should be flexible enough to meet such changes easily. In our DoIT

platform, the content-oriented protocols are modeled as a set of message field offsets.

Therefore, a random shuffling of the field offsets by the code generator engine

increases the protection against hacking message-oriented protocols and faking

messages. Moreover, the combination of messaging protocol and encryption

algorithms, such as SSL, can greatly assist the vendor against hackers.

 - 58 -

 Figure 5-8. Code Generator Model for DoIT platform content developers

(4) A lightweight real-time virtual world logic adapter makes development,

deployment, and change of content easier.

Messages sent to virtual world logics (VWLogic, i.e., game rules) are processed by

this component. A control message received by the network engine is asynchronously

put into the Virtual World logic adapter. The MMOG developer creates the VWLogic,

which can be plugged into or removed from the VW logic adapter at runtime, and this

makes any changes simple. This feature allows developers to change the class, for

instance by replacing bugged VWLogic by a bug-free class, even when the whole

MMOG application is running. Asynchronous adapter design makes ‘Hot swap’

feature possible to DoIT platform, and more maintainable once the service is online.

 - 59 -

(5) The n-tiers hierarchy model providing a scalable management architecture.

While most mechanisms or architecture focus on integrating certain network

devices/services by a unified protocol or presentation (with such as XML, SNMP,

GMPLS technologies), it is very important to present a more scalable and flexible

architecture/framework. The framework here can scale from small objects to a large

distributed computing environment and all the services can be dynamically loaded,

unloaded, or updated in the management infrastructure. In the development of the

MMOG management system, JMX is extended to solve the network communication

problems and an Mbean server is used to implement the n-tier management server

architecture. The workload of the MMOG management system development is

reduced and all the resources needing to be managed are packaged into the Mbean.

Where there are any new resources that must be managed, the management interfaces

are simply added into the Mbean and registered to the delegation server. The manager

can connect to the management server by an http connection or other JMX support

connection protocols. The method should make the management task more flexible

convenient.

(6) Leveraging future management concepts. While SNMP and MUWS focus on

packaging legacy components into a specified protocol (SNMP and Web Services,

respectively), the approach in this paper is to focus on making components

manageable in n-tier architecture. As protocol transformation is done at the delegation

layer, manageable objects could be retrieved by any possible future technologies..

