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三維多邊形處理、檢索及驗證方法 
 

學生： 林學億                指導教授：廖弘源  博士 

林志青  博士 

國立交通大學資訊工程學系(研究所)博士班 

 

中文摘要 

本論文提出了三種適於計算機圖學之相關應用的多邊形處理技術。

首先，我們提出一種利用視覺感知特徵為引導的三維多邊形物件分

解方法。所提方法利用視覺感知相關的特徵引導三維多邊形物件的

分解過程。由於特徵擷取法係根基於認知心理學中的視覺特點理

論，因此所提分解方法能夠適切地仿傚人類視覺對物件之構成要素

的感知能力。透過物件的拆解/分解，有許多計算機圖學為主的應用

能夠達到效能的提升。這些應用包括：碰撞偵測、熱幅射能量成像

模擬、強健式傳輸與連續式傳輸、材質貼圖、三維形變、多邊形化

簡與壓縮法、以骨架為主的動畫製作以及三維物件檢索系統。透過

研究考察，我們發現既有的三維物件檢索系統缺乏心理學理論的支
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撐與連結。反觀心裡學領域，許多認知心裡學專家已提出了許多重

要的理論(或規則)闡述人類視覺對物件或型式的感知過程。有鑑於

此，在第二項研究中，我們提出了一套以認知心理學為基礎的三維

物件檢索系統。我們將具體化源自於認知心理學領域的概念性理

論，用以設計特徵擷取及比對方法，並進而實現一套能仿傚人類對

物件辨識與認知處理的三維物件檢索系統。在第三項研究中，為了

讓使用者能驗證與偵測所擷取之三維物件的篡改與否，我們提出一

種利用新的脆弱型浮水印技術以達到篡改偵測與驗證的目的。所提

方法所嵌入之浮水印除了能抵抗一些非惡意的幾何處理(如頂點座標

量化及頂點順序重組)，尚能利用視覺檢視三維多邊形物件的篡改

處。 



3-D MESH PROCESSING, RETRIEVAL, AND

AUTHENTICATION

Student: Hsueh-Yi Sean Lin Advisors: Hong-Yuan Mark Liao and Ja-Chen Lin

Department of Computer Science

College of Computer Science

National Chiao Tung University

Abstract in English

In this dissertation, we propose three mesh processing techniques for 3-D

graphics-related applications. First, we propose a novel mesh decomposition

scheme called “visual salience-guided mesh decomposition,” which uses visually

salient features to guide the mesh decomposition process. Since the features

adopted are closely related to the psychology-based theory of visual salience, the

decomposition process can appropriately mimic the function of a human visual

system. There are a variety of applications that benefit from breaking up a

3-D object into components. These applications include collision detection, ra-

diosity simulations, robust transmission and streaming, texture mapping, meta-

morphosis, 3-D shape retrieval, simplification and compression, watermarking,

and control skeleton extraction for key-frame animation. In our investigation,

the existing 3-D shape analysis and retrieval algorithms are lack of explicit link

to psychology-based principles, while cognitive psychologists have found a set
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of principles (or properties) that are fairly important in perception of a form

or a shape. This motivates us to conduct our second work called “a cognitive

psychology-based approach for 3-D shape retrieval.” In this work, we incorporate

a set of principles, which is originated from cognitive psychology, into the design

of 3-D shape retrieval system. The proposed approach is intended for mimicking

human visual perception and recognition based on the psychology-based rules pro-

posed by Hoffman and Singh. In addition, our system realizes a “recognition-by-

components” and “recognition-by-visually-salient-components” search strategies.

Moreover, use of combined search strategies can perform a coarse-to-fine retrieval

task. In our third work, to provide a user with an ability to verify the integrity of

the content he/she received (or retrieved), we propose a new fragile watermarking

scheme for authenticating 3-D polygonal meshes. The proposed scheme can not

only achieve localization of malicious modifications in visual inspection, but also

is immune to certain incidental data processings, such as quantization of vertex

coordinates and vertex reordering.
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Chapter 1 Introduction

In this chapter, the motivation for this dissertation is first introduced. We then

provide an introduction to the 3-D mesh representation, which is used through-

out this dissertation. Next, we briefly introduce the proposed mesh processing

techniques. Finally, the organization of this dissertation is described.

1.1 Motivation

With the fast development of hardware and software for computer graphics,

graphics-based applications among a number of fields, including cartography,

geographical information system (GIS), virtual reality, scientific visualization,

computer-aided design (CAD), and computer-aided manufacture (CAM), widely

appear in recent years. As a result of the emergence of the new multimedia type,

3-D graphical objects (or 3-D geometry), a variety of digital geometry processing

(DGP) algorithms, including data creation, acquisition, storage, transmission,

editing, animation, and simulation, has come out. A detailed survey can be

found in [116]. Multimedia retrieval, including the retrieval of texts [2, 16, 129],
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Chapter 1. Introduction

images [42, 126], audios [32], videos [122, 126], and/or 3-D graphics [21, 86, 101],

has been a very hot research area in the past decade. On the other hand, copy-

right protection and authentication of 3-D graphical objects arise from the fact

that transferring digitized media via the Internet has become very popular in

recent years. Most of the people believe that the invention of the Internet in

early 1990’s is one of the major driving forces for the prosperity of this important

area. In this dissertation, we, therefor, put our emphasis on 3-D mesh processing,

retrieval, and authentication.

In this dissertation, we propose three mesh processing techniques for 3-D

graphics-related applications. First, we propose a novel mesh decomposition

scheme called “visual salience-guided mesh decomposition,” which uses visually

salient features to guide the mesh decomposition process. Since the features

adopted are closely related to the psychology-based theory of visual salience, the

decomposition process can appropriately mimic the function of a human visual

system. In addition, the proposed decomposition algorithm is robust againt ran-

domization of vertex coordinates. There are a variety of applications that benefit

from breaking up a 3-D object into components. These applications include colli-

sion detection, radiosity simulations, robust transmission and streaming, texture

mapping, metamorphosis, 3-D shape retrieval, simplification and compression,

watermarking, and control skeleton extraction for key-frame animation. In our

investigation, the existing 3-D shape analysis and retrieval algorithms are lack

2



1.2. Basic Concepts about Mesh-based Representation for 3-D Objects

of explicit link to psychology-based principles, while cognitive psychologists have

found a set of principles (or properties) that are fairly important in perception

of a form or a shape. This motivates us to conduct our second work called

“a cognitive psychology-based approach for 3-D shape retrieval.” In this work,

we incorporate a set of principles, which is originated from cognitive psychol-

ogy, into the design of 3-D shape retrieval system. The proposed approach is

intended for mimicking human visual perception and recognition based on the

psychology-based rules proposed by Hoffman and Singh. In addition, our sys-

tem realizes a “recognition-by-components” and “recognition-by-visually-salient-

components” search strategies. Moreover, use of combined search strategies can

perform a coarse-to-fine retrieval task. In our third work, to provide a user with

an ability to verify the integrity of the content he/she received (or retrieved),

we propose a new fragile watermarking scheme for authenticating 3-D polygo-

nal meshes. The proposed scheme can not only achieve localization of malicious

modifications in visual inspection, but also is immune to certain incidental data

processings, such as quantization of vertex coordinates and vertex reordering.

1.2 Basic Concepts about Mesh-based Representation for

3-D Objects

In order to speed up rendering and manipulation on 3-D models, a 3-D model is

commonly represented by means of vertices, edges, and faces, which is so-called

3



Chapter 1. Introduction

“polygonal meshes.” In particular, triangulated meshes, comprised of triangle

faces, have been widely used in representation of 3-D graphical objects. A trian-

gulated mesh, in which every edge is shared by exactly two triangles and every

triangle possesses exactly three neighboring triangles, is termed as manifold mesh.

When every boundary edge on a triangulated mesh is adjacent to only one tri-

angle, the triangulated mesh is so-called manifold with boundary. Since manifold

meshes possess well-behaved topology, they are favorable for a number of appli-

cations, such as curvature analysis and radiosity. On the contrary, non-manifold

meshes possess problematic topology such as cracks and T-junctions, which are

not suitable particularly for CAD/CAM applications. Examples of manifold and

non-manifold meshes are illustrated in Figs. 1.1-1.2, respectively. In addition to

manifold/non-manifold types, triangulated meshes can be classified into regular,

semi-irregular, and irregular meshes according to regularity of mesh connectivity.

A mesh with regular connectivity means that every vertex has exactly six neigh-

boring edges (valence of 6). On the mesh boundary, regular vertices have valence

of 4. In an irregular mesh, vertices can have any degree. A semi-regular mesh is

formed by starting with a coarse irregular mesh and then quadrisecting all trian-

gles. Fig. 1.3 illustrates the regular, semi-regular, and irregular connectivity in

2-D.
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1.2. Basic Concepts about Mesh-based Representation for 3-D Objects

Figure 1.1: A 2-manifold with a boundary (boundary edges in bold) [82].

(a) Singular edge (b) Singular vertex (c) T-junction

Figure 1.2: Example of non-manifold meshes [82]: (a) a singular edge is an
edge shared by more than three triangles; (b) a vertex shared by two otherwise
unconnected sets of triangles is called a singular vertex; (c) a T-vertex.

(a) (b) (c)

Figure 1.3: Two-dimensional illustration of (a) regular, (b) semi-regular, and (c)
irregular connectivity [25].

5



Chapter 1. Introduction

1.3 Overview of the Proposed Methods

In this dissertation, we propose three mesh processing techniques for 3-D graphics-

related applications. To properly mimic human visual perception of 3-D shapes,

we propose a visual salience-guided mesh decomposition scheme to decompose

a 3-D mesh into parts. Using the proposed decomposition scheme as a prepro-

cessing step, we propose a cognitive psychology-based approach for 3-D shape

analysis and retrieval. For authentication of 3-D polygonal meshes, we propose

a novel fragile watermarking method for localization of malicious modifications.

An overview of the proposed methods is given as follows:

Visual Salience-Guided Mesh Decomposition

In this work, we propose a novel mesh decomposition scheme called “visual

salience-guided mesh decomposition.” The concept of “part salience,” which

originated in cognitive psychology, asserts that the salience of a part can be de-

termined by (at least) three factors: the protrusion, the boundary strength, and

the relative size of the part. We try to convert these “conceptual” rules into

“real” computational processes, and use them to “guide” a 3-D mesh decom-

position process in such a way that the significant components can be precisely

identified and efficiently extracted from a given 3-D mesh. The proposed decom-

position scheme not only identifies the part’s boundaries defined by the minima

rule, but also labels each part with a “quantitative” degree of visual salience
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1.3. Overview of the Proposed Methods

during the mesh decomposition process.

A Cognitive Psychology-based Approach for 3-D Shape Retrieval

In this work, we incorporate a set of principles that originated in cognitive psy-

chology into the design of 3-D shape analysis and retrieval systems. Based on

the “visual salience-guided mesh decomposition” scheme we proposed previously,

a 3-D shape represented in mesh form is first broken into parts such that human

visual perception of the parts can be appropriately mimicked. Next, the decom-

posed parts are individually analyzed and quantified according to the properties

of visual salience. To establish the indices of 3-D meshes for the subsequent

retrieval process, spherical parameterization is adopted to map the decomposed

parts onto the surface of a unit sphere. In this way, the degree of similarity be-

tween a query provided by a user and models in the database can be calculated.

Fragile Watermarking for Authenticating 3-D Polygonal Meshes

Designing a powerful fragile watermarking technique for authenticating 3-D polyg-

onal meshes is a very difficult task. Yeo and Yeung [131] were first to propose a

fragile watermarking method to perform authentication of 3-D polygonal meshes.

Although their method can authenticate the integrity of 3-D polygonal meshes, it

cannot be used for localization of changes. In addition, it is unable to distinguish

malicious attacks from incidental data processings. In this work, we trade off
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the causality problem in Yeo and Yeung’s method for a new fragile watermark-

ing scheme. The proposed scheme can not only achieve localization of malicious

modifications in visual inspection, but also is immune to certain incidental data

processings (such as quantization of vertex coordinates and vertex reordering).

During the process of watermark embedding, a local mesh parameterization ap-

proach is employed to perturb the coordinates of invalid vertices while cautiously

maintaining the visual appearance of the original model. Since the proposed em-

bedding method is independent of the order of vertices, the hidden watermark

is immune to some attacks, such as vertex reordering. In addition, the proposed

method can be used to perform region-based tampering detection.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 4, the

proposed visual salience-guided mesh decomposition is described in detail. In

Chapter 3, we propose the computational process for realizing the qualitative

salient features, and describe in detail how to incorporate visual salience into the

representation scheme for 3-D shape retrieval. In Chapter 2, the proposed fragile

watermarking method for authenticating 3-D polygonal meshes is described in

detail. Finally, in Chapter 5, we present our conclusions and future work.
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Chapter 2 Visual Salience-Guided Mesh

Decomposition

Decomposition is a leverage to obtain the componential representation of a whole

object. After the decomposition step is executed, the decomposed components

can be individually selected, grouped, and analyzed based on the properties of

interest. In recent years, a variety of applications have benefited from decom-

posing a 3-D object into its component parts. These applications include colli-

sion detection [74], radiosity simulations [40], robust transmission and stream-

ing [14, 15], texture mapping [72, 105], metamorphosis [112], simplification and

compression [138], 3-D shape retrieval [37, 138], and control-skeleton extraction

for key-frame animation [62]. The requirements that an effective object decom-

position method has to satisfy usually depend on the application. In this study,

we emphasize high-level abstraction and organization for human object under-

standing.

High-level organization imposed on perceived data has been explored exten-

sively in both human visual processes and computer vision systems. Related
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Chapter 2. Visual Salience-Guided Mesh Decomposition

studies can be found in [11, 50, 51, 106, 114]. In order to account for human

visual processes, cognitive psychologists have identified a set of properties (or

rules) that are fairly important in the perception of a form or a shape. In the

field of computer vision, perceptual organization has shown that computational

resources can be effectively applied to extract structural and meaningful organiza-

tion from perceived data. Furthermore, perceptual organization can be regarded

as an intelligent process that can perform high-level abstraction for image un-

derstanding. In the literature, perceptual organization has been applied to the

segmentation of range images [28], 2-D images [110], textures [102], patterns [134],

and contours [136] respectively. However, for some reason, existing 3-D object

decomposition techniques lack a direct link to perceptual organization. Below,

we briefly review some existing 3-D object decomposition techniques and specify

their possible links to perceptual organization. Furthermore, we point out their

common shortcomings in terms of perceptual organization.

In [127], Wu and Levine introduced a simulated electrical charge distribution

scheme to perform surface characterization. Using their representation, the con-

cave boundaries can be located at the minima of the local charge density. In [84],

Mangan and Whitaker extended the watershed algorithm, which was originally

designed for image segmentation [108], to partition both volumetric and mesh sur-

faces. In [74], Li et al. employed skeletonization and space sweeping procedures

to extract organic parts. In [115], Svensson and Baja introduced the concept of
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distance transform to decompose 3-D volumetric objects into kernels and elon-

gated parts. Shlafman et al. [112] proposed a k-means based clustering algorithm

that separates distant faces, but clusters close faces together. In [62], Katz and

Tal proposed a general framework for mesh decomposition, in which a maximum-

flow (minimum-cut) algorithm is applied to construct boundaries without jagged

effects. In [75], Lien and Amato identified and resolved the non-convex features

in order of importance to achieve approximate convex decomposition. In [80],

Liu and Zhang introduced a spectral clustering method that favors segmentation

along concave regions. In [63], Katz et al. introduced multi-dimensional scaling

representation and spherical mirroring operation to extract prominent feature

points and core component respectively. The boundaries between the extracted

features are then constructed and refined using Katz and Tal’s algorithm [62].

From the perspective of perceptual organization, the underlying assumption

of the above methods is based on psychologists’ definitions of a part, which are

regularized by “a uniformity of nature” [50]. In cognitive psychology, the principle

of transversality1 is regarded as one of the guidelines for finding a part’s shapes.

Among existing methods, those that trace concave regions [62, 84, 93, 127] adopt

the minima rule2 to construct a part’s boundaries. With regard to clustering-

1Transversality regularity: When two arbitrarily shaped surfaces are made to interpenetrate,
they always meet in a contour of concave discontinuity of their tangent planes. For a detailed
discussion of transversality, please refer to [45].

2Minima rule: All negative minima of the principal curvatures (along their associated lines
of curvature) form boundaries between parts. For a detailed discussion of the minima rule,
please refer to [51].

11



Chapter 2. Visual Salience-Guided Mesh Decomposition

based methods [62, 112] and merging processes [84, 115], the Gestalt law of sim-

ilarity and proximity is frequently adopted to capture the homogeneous charac-

teristics of parts. Obviously, some existing 3-D object decomposition methods

do attempt to extract a part’s shapes and boundaries by mimicking human vi-

sual perception of 3-D shapes. However, none of the existing methods takes

the salience of parts into account. According to the findings of cognitive psy-

chologists [51], the salience of parts usually plays an important role in the 2-D

silhouette and 3-D shape partitioning processes.

In this chapter, we propose a novel mesh decomposition scheme called “visual

salience-guided mesh decomposition,” which bases decomposition on the theory

of part salience borrowed from cognitive psychology [51]. The theory asserts that

the salience of a part is usually determined by three factors: the protrusion,

the boundary strength, and the relative size of the part. The computational

processes designed for realizing two of these salient features are presented in

Section 2.2. We use these features to guide the decomposition process so that

the visually significant components can be extracted from a given 3-D mesh.

This new approach has a number of potential applications. For example, in

3-D shape databases, the organization of each object should be in accordance

with our visual perception. Specifically, the organization from the parts to the

whole would allow us to conduct a “part-in-whole” search process (as in [37]).

In addition, extracting significant components based on different salient features
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2.1. Review of Hoffman and Singh’s Theory of Part Salience

would allow us to construct an efficient and valid set of visual parts from a 3-D

model. In this way, one could realize “query-by-significant-components” in a 3-D

shape retrieval system.

The remainder of this chapter is organized as follows. In Section 2.1, we intro-

duce the theory of part salience and illustrate its importance in the perception

of parts. In Section 2.2, we propose the computational processes for realizing

the qualitative salient features, and describe in detail how to incorporate visual

salience into the mesh decomposition process. The experiment results are pre-

sented in Section 2.3. Finally, in Section 2.4, we present our conclusions.

2.1 Review of Hoffman and Singh’s Theory of Part Salience

In [51], Hoffman and Singh proposed the theory of part salience, which states

that at least three factors determine the salience of a part: the protrusion, the

boundary strength, and the relative size of the part. We now give the quantitative

definitions of these salient factors and then describe their importance in visual

processes.

Protrusion of A Part This factor is the degree to which a part protrudes

from its main body. For 2-D silhouettes, it can be quantified as the ratio of the

perimeter of the part (excluding its bases) to the sum of its base lengths. For

3-D shapes, the base of a part is referred to as the minimal surface formed by the
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boundary curve of the part. Hence, the protrusion of a 3-D part can be quantified

as the ratio of the area of the part’s surface to the area of its base surface.

Strength of A Part’s Boundary According to the principle of transversality,

a part’s boundaries are usually located at the concave creases, as shown in Fig.

2.1(b). In [51], Hoffman and Singh proposed that possible quantitative defini-

tions of the boundary strength include the turning normals and locale turning,

as shown in Figs. 2.1(a) and 2.1(c) respectively. Obviously, the indication of the

normal direction must have a global orientation consistency so that the boundary

strength can be captured precisely. The discriminating capability of turning nor-

mals and locale turning is shown by the following examples. For 2-D silhouettes,

two sides of a crease boundary usually have two normals, and the angle between

them can, in one sense, represent the strength of that boundary. On the other

hand, for potentially smooth boundaries, which are represented by the dotted

lines in Fig. 2.1(c), there is one normal at every point along a curve. To tackle

this problem, Hoffman and Singh [51] proposed obtaining the measure of turning

in an appropriate region near the boundary. As shown in Fig. 2.1(c), the gray

region is the so-called locale3 and the normals on its two sides (i.e., the so-called

locale turning) are used to characterize the strength of the smooth boundary. For

3-D shapes, the principal curvatures can be used to measure the strength of a

3By definition [51], a locale is an appropriate region near (but not just infinitesimally near)
a negative minimum of the curvature, in which we can explore how the curve evolves.
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(a) Turning normals (b) 2-D Silhouette (c) Locale turning

Figure 2.1: Illustration of turning normals and locale turning at the boundary of
a 2-D silhouette.

part’s boundary.

Relative Size of A Part This factor indicates the size of a part relative to

the whole object. For 2-D silhouettes, it can be defined as the ratio of the area

of a part to the area of the whole object. For 3-D shapes, the relative volume

can be used to measure a part’s relative size.

Having reviewed the factors that may be used to determine the salience of a

part, we now discuss their effects on both visual and decomposition processes.

For simplicity, the following discussion is based on 2-D silhouettes; however, the

concept can be easily extended to 3-D models. Fig. 2.2 shows the boundaries

and cuts of parts of a 2-D silhouette, indicated by isolated points and dotted

lines respectively. Note that, in Fig. 2.2(a), the four boundaries are used to form

possible cuts; and, in Figs. 2.2(b) and 2.2(c), each part is generated by exactly

one cut. According to the visually salient properties of interest, a 2-D silhouette
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may have different interpretations. For example, the 2-D silhouette might be in-

terpreted as an alien’s head with a pair of protrusive ears when the salience of the

part is determined primarily by its protrusion (i.e., the part’s cuts in Fig. 2.2(b)).

On the other hand, the 2-D silhouette might be interpreted as an unidentified

flying object when the part salience is determined primarily by its relative size

(i.e., the part’s cuts in Fig. 2.2(c)). As a result, the part salience would affect not

only the high-level visual processes that determine the interpretation of a shape,

but also the low-level visual processes that determine how the shape is really

decomposed. In order to precisely determine a part’s cuts, another independent

theory that incorporates a priori knowledge about the shape is usually required.

In the early 1980’s, 3-D object recognition was a popular research topic [28]. Also,

among the large number of research issues, 2-D perceptual organization [106] and

recognition-by-components (or parts) [11,50,114] were two important directions.

However, their development was hindered by some ill-posed early vision problems,

such as edge detection and image segmentation. Since these problems could not

be solved, 2-D perceptual organization and recognition by 2-D components (or

parts) could not be converted into “complete” computational processes, so they

both failed. Nowadays, there are large numbers of 3-D models distributed world-

wide. Since 3-D models (or meshes) are not restricted by the limitations of 2-D

images, perceptual organization is now possible in 3-D cases. Furthermore, Hoff-

man and Singh’s theory of part salience means that a priori knowledge may not
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(a) A part’s boundaries (b) A part’s cuts (c) A part’s cuts

Figure 2.2: A part’s boundaries and cuts in a 2-D silhouette (Re-sketched from
[51]).

be necessary in 3-D shape decomposition processes. However, the quantitative

definitions for part salience proposed by Hoffman and Singh [51] were made un-

der the assumption that a part and its boundary are found in advance. In terms

of perceptual organization, this is a drawback that, to some extent, limits the

power of Hoffman and Singh’s theory. In this chapter, we propose a new mesh

decomposition scheme that incorporates the cognitive psychology theory into the

mesh decomposition process such that the visually significant components can be

extracted from a given 3-D mesh.

2.2 Visual Salience-Guided Mesh Decomposition

We now discuss the computational processes for realizing two of the visually

salient features, namely, the protrusion and the boundary strength. We also

describe how to incorporate each visually salient feature into the mesh decompo-

sition process. As to the third salient feature, the relative size of components, we
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can easily calculate it once the protrusion and the boundary strength are known.

We shall use the relative size feature in the mesh retrieval process. This section is

organized as follows. In Section 2.2.1, we present the computational process for

characterizing the protrusion of an arbitrary surface mesh. Based on protrusion

characterization, a local maximum approach for choosing the salient representa-

tives of parts is proposed and described in Section 2.2.2. In Section 2.2.3, we

describe in detail the proposed computational process for modeling the boundary

strength. The proposed measure of boundary strength is used as the guideline to

find the locale of a part’s boundary. In Section 2.2.4, a coarse-to-fine approach

is proposed for finding the locale of a part’s boundary. In Section 2.2.5, Katz

and Tal’s algorithm for determining the boundary of a part (presented in [62]) is

described for the purpose of completeness.

2.2.1 Modeling the Protrusion as the Degree of Center

In this section, we propose a suitable way to characterize the protrusion of a

shape. It is intuitive that a protrusion is closely related to the skeletal structure

of a shape. As a result, some existing skeletonization methods [22, 70, 74, 111]

may be useful for characterizing the protrusion. In our investigations, however,

we found that the integral function proposed by Hilaga et al. [49] is more suitable

for protrusion characterization. The main reasons are as follows. First, the

integral function can be constructed on any type of polygonal meshes, including
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Figure 2.3: Illustration of the base patch construction for protrusion characteri-
zation: The darker region is the base patch occupied by bi.

non-orientable, non-closed, and non-manifold surfaces. Second, the function is

very stable so that there is no initial point selection problem. Third, the integral

can be calculated over the entire surface. As a result, the protrusion of every

vertex is accessible to any salience-guided process. Finally, the function is not

only invariant to geometrical transformations (such as rotation, translation, and

scaling), but is also resistant to noise added to vertex coordinates. Therefore, we

adopt the integral function described in [49] to characterize the protrusion of a

part.

In [49], the degree of center at the point v on the surface S is defined as

follows [49]:

µ(v) =

∫
p∈S

g(v, p)dS, (2.1)

where g(v, p) represents the geodesic distance between v and p on S. The contin-
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(a) Cactus (b) Dinopet (c) Hummingbird

Figure 2.4: The protrusion degree calculated on different 3-D meshes.

uous integral function µ(v) is defined as the total sum of geodesic distance from

the point v to all points on S. In other words, the value of µ(v) can be inter-

preted as a distance from the point v to arbitrary points on S. More precisely,

a smaller value of µ(v) indicates that the point v is closer to the center of the

surface S. On the other hand, a larger value of µ(v) means that the point v is

farther from the center of the surface. It can be seen from Eq. (2.1) that calcu-

lating the integral based on geodesic distance is computationally prohibitive. To

trade off accuracy for computational efficiency, Hilaga et al. employed Dijkstra’s

algorithm to approximate geodesic distance based on edge length of a 3-D mesh.

Here, in contrast to [49], the integral function is constructed on the dual

graph of a given 3-D mesh, G = (V, E), where V and E represent the set of
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dual vertices and the set of dual edges respectively. A dual vertex v ∈ V is

referred to as the center of mass of a face in the original mesh, while a dual edge

(u, v) ∈ E links the center-of-mass of two adjacent faces and intersects at the

midpoint of the edge shared by the two faces. For computational efficiency, we

segment the mesh into small patches of approximately equal size, which we called

base patches. Each base patch is represented by a single dual vertex, bi, located

at its approximate center. Such a base patch is constructed by a modified version

of Dijkstra’s algorithm such that the shortest distance between the base vertex

and any vertex within the base patch is less than a radius value. As shown in

Fig. 2.3, the darker region is the base patch of the radius thrµ with the base

dual-vertex bi in its center. Obviously, by increasing the number of base patches,

a more accurate integral can be obtained; however, the drawback is an increase

of computation time. Let area(v) denote the area of the mesh face corresponding

to a dual vertex v and area(V ) denote the total area of the object surface. The

protrusion degree at a dual vertex v can be defined as in [49]:

µ(v) =
∑

i

g(v, bi) · area(Pi), (2.2)

where {b0, b1, . . . } are the base dual-vertices representing the base patches {P0, P1, . . . }.

In addition, area(Pi) is the area of the entire base patch area(Pi) =
∑

vj∈Pi
area(vj)

and
∑

i area(Pi) = area(V ), while g(v, bi) returns the geodesic distance between

the dual vertex v and the base vertex bi. Since the function µ(v) defined in Eq.

(2.2) is not invariant to scaling transformation, a normalized version of µ(v) is
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defined as in [49]:

Protrusion(v) =
µ(v)−minu∈V µ(u)

maxu∈V µ(u)
. (2.3)

The calculation of the integral function has the complexity O(|V |log|V |),

where |V | is the number of faces on the mesh. Using the normalized protru-

sion degree defined in Eq. (2.3), we can calculate a numeric value (ranging from

0 to 1) for each dual vertex located on a 3-D mesh. The farther a dual vertex is

from the center of a 3-D mesh, the larger the protrusion degree will be. Fig. 2.4

illustrates the protrusion degree calculated on different 3-D meshes. Note that a

darker color represents a protrusion degree close to 0, while a lighter color means

the protrusion degree is close to 1.

2.2.2 Choosing the Salient Representatives of Parts

Here, we describe how to select a set of salient representatives from a given 3-

D mesh. The local maxima of protrusion degrees is the criterion used to select

salient features. After the selection process is completed, each identified local

maximum can be regarded as a salient representative of a part. Given a dual

vertex r ∈ V , the dual vertex is chosen as a salient representative of a part if the

following condition is satisfied:

Protrusion(r) = max
Wr

{Protrusion(v)} (2.4)

where Wr = {v ∈ V |g(r, v) < thrp} is an observation window for finding a local

maximum of protrusion degrees; and thrp represents the size of the observation
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Figure 2.5: Illustration of the candidate locales construction: The two darker
regions are the first two candidate locales of the salient representative of a part.

window, with which we can control the range of influence of a protrusive stim-

ulus. The observation window can be constructed using the modified version of

Dijkstra’s algorithm mentioned in the previous section. By replacing bi and thrµ

in Fig. 2.3 with r and thrp respectively, the darker region shown in Fig. 2.3 can

be interpreted as the observation window for choosing the salient representative.

Moreover, if the protrusion degree of the vertex r (i.e., the star shown in Fig.

2.3) is the largest value within the local window, the vertex is chosen as the

salient representative. Note that since the observation windows of local maxima

are subject to overlap, only one of them is chosen as a salient representative.
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2.2.3 Modeling the Boundary Strength based on the Border Area

Change

In this section, we describe how to convert the concept of boundary strength into

a computational process. Since the boundary of a part is completely unknown,

we start from the surface mesh and the salient representatives obtained in the

previous section. Motivated by the concept of locale turning (described in Section

2.1), we use Dijkstra’s algorithm [23] to explore how the surface evolves in the

locale of a boundary. For clarity, we split the computational process for modeling

the boundary strength into two steps:

Step 1. Establishing the Candidate Locales

Given a salient representative of a part, r, a set of candidate locales, {Lx
r} =

{L0
r, L

1
r, · · · }, is established. For simplicity and later use, we drop the subscript

r in subsequent descriptions and denote the xth candidate locale as:

Lx = {v|∀v ∈ V, x · e ≤ D(v) < (x + 1) · e}

for x ∈ {0, . . . , l − 1}, (2.5)

where e represents the extent of a candidate locale, in which the boundary evo-

lution is explored; and l = bmaxv∈V D(v)/ec is the number of candidate locales

established. D(v) returns the shortest distance from the source, r, to a dual ver-

tex, v, in terms of geodesic distance and protrusive difference. Fig. 2.5 illustrates
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that based on the new distance measure D(·), the first two candidate locales, L0

and L1, are established using the modified version of Dijkstra’s algorithm (as in

Section 2.2.1). To compute the shortest distance D(·), the weight for each edge

(u, v) ∈ E in the dual graph is defined as follows:

Weight(u, v) = δ · Len(u, v)

avg(Len)
+ (1− δ) · Prot(u, v)

avg(Prot)
, (2.6)

where Len(u, v) is the length of a dual edge between u and v. Here, Prot(u, v)

represents the absolute protrusion degree of difference between two dual vertices,

u and v. Also, avg(Len) and avg(Prot) represent the average length and the

average protrusion degree difference respectively. In order to fulfill the proximity

and similarity requirement of the Gestalt laws, the first term on the right-hand

side of Eq. (2.6) is usually considered in Dijkstra’s algorithm to determine the

shortest distance (or path) on a graph in terms of the geodesic proximity. The

purpose of the second term is to balance the effect caused by the geodesic prox-

imity, while creating the candiate locales containing similar protrusion degrees; δ

is the weighting between the two constraints. Moreover, including the protrusive

similarity is helpful in maintaining a locale’s boundaries approximately parallel

to a part’s boundaries.

Since each salient representative produces a set of candidate locales and even-

tually grows into the whole 3-D mesh, certain of candidate locales must “march”

by the potential region of its corresponding part boundary. However, the sets

of candidate locales will overlap one another. To prevent candidate locales from

25



Chapter 2. Visual Salience-Guided Mesh Decomposition

marching into the regions occupied by other parts, a constrained set of candidate

locales is constructed such that the region-growing process always ends whenever

a termination base is touched. To do so, we first define the termination base, K,

as follows:

K = {v|∀v ∈ V, Protrusion(v) ≤ thrb} , (2.7)

where thrb is the parameter used to collect the set of faces that forms the termi-

nation base. Next, the constrained set of candidate locales, L, is defined as the

union of (m + 1) consecutive locales,

L =
m<l−1⋃

x=0

Lx, (2.8)

satisfying the following constraint:

Lx ∩K 6= ∅

for x ∈ {m−∆b, . . . ,m}, (2.9)

where ∆b is used to specify that the last (∆b+1) locales in L overlap with the ter-

mination base, K. By the above construction, the overlap between a constrained

set of locales and the termination base provides a potential region in which to

find the correct boundary of a part.

Step 2. Modeling the Boundary Strength

With the constrained set of candidate locales established in Step 1, we now con-

sider two adjacent locales in L to determine how the surface evolves in candidate
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locales. Let VLx denote the set of dual vertices in Lx+1 ∈ L that has a dual

edge joining Lx ∈ L in the graph G. We then associate the following geometric

property to the xth candidate locale in L:

f(x) =
∑

v∈VLx

area(v). (2.10)

Since VLx is a set of dual vertices that collects the direct neighbors between Lx

and Lx+1, f(x) can be regarded as the total-area-of-border between two adjacent

candidate locales. Based on the geometric property defined in Eq. (2.10), we

model the boundary strength as the total-area-of-border change in response to

the boundary’s evolution. The modeling is reasonable because, at the border of

two adjacent parts, the total-area-of-border defined above will usually undergo

a significant change. Therefore, to judge whether a locale contains a boundary

using the total-area-of-border change is a justifiable choice. As a consequence,

the boundary strength at the xth candidate locale can be defined as follows:

Boundary Strength(x) = |f(x + 1)− f(x)| . (2.11)

By obtaining the measure of boundary evolution for the boundary strength, we

can explore how the surface evolves in the locale of a part’s boundary. Moreover,

by treating f(x) as a one-dimensional function defined in L, we can make the

process for finding the locale of a part’s boundary analytic.
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2.2.4 Finding the Locale of A Part’s Boundary

In this section, we describe how to use the previously defined boundary strength

to locate the locale of a part’s boundary. As mentioned in the previous section,

the boundary strength is quantified in response to the boundary’s evolutionary

process. Hence, the locale of a part’s boundary should possess the maximum

boundary strength. However, the function f(x) is very jagged (or noisy), since

the faces in the immediate neighbor of the xth candidate locale can never have

a regular area due to the nature of a mesh-based object. This makes finding

the locale of a part’s boundary very difficult. To overcome this, based on Haar

wavelet representation [83, 96], the function f(x) is transformed into w different

scales, f1(x), f2(x), · · · , fw(x). Then, the candidate locale that possesses the most

significant boundary strength is traced from a coarser scale fj(x) to a finer scale

fj−1(x) until a predefined finer scale is reached. In this way, one can conduct

a coarse-to-fine search to identify the locale that contains a part’s boundary.

Let kj−1 denote the index of the candidate locale that possesses the maximum

boundary strength in fj−1(x). Then, the index kj−1 is determined by the following

recursion:
kw = arg maxx Boundary Strengthw(x) initially

kj−1 = arg maxx∈Ij
Boundary Strengthj−1(x) if 1 ≤ j < w

, (2.12)

where Ij = {2kj, . . . , 2kj + 2} is the search range derived from the index kj

(i.e., the kjth candidate locale in fj(x)). Boundary Strengthj−1(x) is equal to
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|cj−1,x+1 − cj−1,x|, which can be regarded as the boundary strength characterized

in the finer scale fj−1(x). Note that the above recursion is stopped at the finer

scale, f1(x), since the original function, f(x), is too noisy to correctly find the

locale of the part’s boundary. Furthermore, since the extent of a candidate locale

may be too small to contain a part’s boundary, we can extend it as follows:

L̃ =

2k1+∆−⋃
x=2k1−∆+

Lx, Lx ∈ L, (2.13)

where ∆− and ∆+ are used to respectively control the left and right extent of

the candidate locale found above. After the region containing a part’s boundary

is found, the next step is to construct the boundary. In [62], Katz and Tal have

shown that by defining an appropriate capacity function, the boundary can be

found by solving a maximum-flow (minimum-cut) problem [23,41]. We, therefore,

apply Katz and Tal’s method [62] to construct the boundary.

2.2.5 Determining the Boundary of A part

In this section, for the purpose of completeness, we describe Katz and Tal’s

method [62] for determining a part’s boundary. As described in [62], the problem

of how to construct a part’s boundary within the region containing the boundary

is formulated as a maximum-flow (minimum-cut) in an undirected constrained

flow network graph problem. To construct the flow network graph, we denote the

locale, L̃, found in the previous section by the dual graph GeL = (VeL, EeL) and the

remaining two regions A and B, which are separated by L̃, by GA = (VA, EA)
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Figure 2.6: Illustration of constructing the boundary by solving the maximum-
flow (minimum-cut) problem.

and GB = (VB, EB) respectively (i.e., GA ∪ GeL ∪ GB = G). In addition, the

set of all dual-vertices in VA whose corresponding faces in A share an edge with

faces in L̃ is denoted by VeLA (resp. VeLB). Next, we construct an undirected flow

network graph G′ = (V ′, E ′) by adding two new vertices, s (source) and t (sink),

as in [62]:

V ′ = VeL ∪ VeLA ∪ VeLB ∪ {s, t} ,

E ′ = EeL ∪ {
(s, v),∀v ∈ VeLA

}
∪

{
(t, v),∀v ∈ VeLB

}
∪

{
euv ∈ E|u ∈ VeL, v ∈

{
VeLA ∪ VeLB

}}
. (2.14)

As illustrated in Fig. 2.6, the dotted mesh is the region L̃ (i.e., the nodes 3-11)

while the solid lines and circle nodes together form the constrained flow network

graph. In addition, the two nodes 1 and 2 shown in Fig. 2.6 belong to the region

A while the two nodes 12 and 13 belong to the region B. Note that in Eq. (2.14),
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the goal of adding the two sets of vertices, VeLA (i.e., the nodes 1 and 2 in Fig.

2.6) and VeLB (i.e., the nodes 12 and 13 in Fig. 2.6), is to consider the case that

the boundary is on either side of the locale, that is either the boundary between

VeLA and L̃ or the boundary between VeLB and L̃.

After the flow network graph is constructed, the capacity function Cap on an

edge (u, v) ∈ E ′ is defined as in [62]:

Cap(u, v) =


1

1+
Ang Dist(αuv)
avg(Ang Dist)

if {u, v 6= s, t}

∞ else

, (2.15)

where αuv represents the angle between the two faces sharing the same edge (u, v)

and Ang Dist is a conversion function Ang Dist(αuv) = η(1 − cos(αuv)). The

conversion function is used to map the dihedral angle αuv to a positive value;

avg(Agn Dist) represents the average angle distance over the entire mesh. In

addition, a small positive value for η is used for convex angles while η = 1 is

used for concave angles. In [62], Katz and Tal have shown that by the definition

of Cap(u, v), the minimum cut found in the flow network graph tends to pass

through edges having highly concave dihedral angles. As shown in Fig. 2.6,

the thicker line represents the boundary corresponding to the maximum-flow

(minimum-cut) in the flow network graph.

With the proposed measures for the protrusion and the boundary strength, the

significant components of an arbitrary 3-D mesh can be identified and extracted

according to their visual salience (i.e., visual significance). In terms of efficiency,
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the total complexity of the proposed method is O(|V |2log|V |). The protrusion

characterization can be performed in O(|V |log|V |) [49]. In addition, the process

for choosing a part’s salient representative costs O(|V |2log|V |). The process for

modeling the boundary strength can be performed in O(R|V |log|V |), where R

denotes the number of salient representatives.

2.3 Experiment Results

A series of experiments were conducted to test the effectiveness of the proposed

method. We used the set of triangulated meshes listed in Table 2.1 as the data

set in our experiments. Moreover, all the parameters used in our experiments

were the same and set as follows. To choose the salient representatives of parts,

we found that most of the salient representatives could be properly chosen by

assigning thrp = 5 · thrµ, where thrµ was used to generate the base patches for

protrusion characterization (as mentioned in Section 2.2.1). In the implemen-

tation process, we adopted the radius value thrµ =
√

0.005 · area(V ) described

in [49] to generate the set of base patches. Note that since the parameter, thrp,

is related to the total area of a mesh surface, the number of salient representa-

tives depends on the mesh itself. As shown in Fig. 2.10, different meshes have

different numbers of salient representatives. (i.e., the balls on the surfaces). To

generate the constrained set of candidate locales, the threshold value thrb = 0.05

was adopted to generate the termination base. To perform Dijkstra’s algorithm,
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Table 2.1: The triangulated meshes used in our experiments
Model Number of Number of Running

name vertices faces time (sec.)

Bunny 3752 7500 5.880

Cactus 620 1236 0.306

Cat 2779 5544 3.355

Cheetah 4704 9404 8.077

Cheetah2 5027 10050 9.036

Dinopet 2039 3999 2.303

Duck 716 1428 0.462

Female 1792 3572 1.573

Hand 1577 3110 1.472

Horse 2502 5000 3.284

Hummingbird 830 1640 0.611

Manatee 1977 3940 2.043

Santa 2502 5000 3.385

Stingray 997 1990 1.142

Tiger 956 1908 0.727

the parameter δ = 0.5 was used to balance the weighting between the geodesic

proximity and the protrusive similarity. To obtain the wavelet transform of f(x),

a fixed number of candidate locales l = 32 was adopted. As a result, we assigned

the extent of a locale as e = bmaxv∈V D(v)/32c during the process of collecting

candidate locales. In addition, for x ∈ {m + 1, · · · , l − 1} the value of f(x) was

padded with f(m).

2.3.1 Results of Finding the Locale of A Part’s Boundary

This experiment was comprised of two parts. The intent of the first part was to

show how to construct the candidate locales, the termination base, and the con-
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(a) (b) (c)

Figure 2.7: Illustration of (a) 32 candidate locales, (b) the termination base, and
(c) the constrained candidate locales constructed from the dinopet model.

strained set of candidate locales. As shown in Fig. 2.7(a), thirty-two candidate

locales were collected by applying Dijkstra’s algorithm to the source (i.e., the

ball near the dinopet’s mouth). Meanwhile, Fig. 2.7(b) shows the termination

base extracted from the dinopet model. Based on the results of Figs. 2.7(a)

and 2.7(b), the constrained set of candidate locales was collected such that the

consecutive candidate locales (starting with L0) were gathered together and the

last three candidate locales overlapped with the termination base. As shown in

Fig. 2.7(c), these constrained candidate locales were effective in localizing the

visual part. The intent of the second part of this experiment was to show the

effectiveness of the proposed method in finding the locale of a boundary. As men-

tioned in Section 2.2.3, the change of total-area-of-border between two adjacent
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locales is utilized to judge how a part’s boundary evolves in the candidate lo-

cales. For visualization purposes, the measure of total-area-of-border (i.e., f(x))

is converted into a gray scale; thus, the darker the gray scale, the larger the total-

area-of-border. Fig. 2.8(a) shows the original function f(x), shown in Fig. 2.8(e),

plotted on the surface of the dinopet model. More precisely, the gray scale of the

xth candidate locale on the surface mesh corresponds to the total-area-of-border

f(x). It can be seen from Fig. 2.8(e) that the shape of the original function is

rough and uneven. Figs. 2.8(f)-2.8(h) show three different scales of the original

function, f1(x), f2(x), and f3(x) respectively. Their corresponding plots on the

surface mesh are shown in Figs. 2.8(b)-2.8(d) respectively. To find the locale of a

part’s boundary, we started from the coarsest scale f3(x) and then found the most

significant boundary strength within this scale (i.e., k3 = 1). This shows that

the locale of the boundary can be found within the 8th-16th candidate locales.

Next, within the second scale, f2(x), the most significant boundary strength was

located at k2 = 2. The search range for the locale of the boundary was then

shrunk (i.e., within the 8th-12th candidate locales). Finally, we stopped at the

finer scale, f1(x), and k1 = 6 was found within this scale. The locale of the

boundary was then formed by the union of the 11th-13th candidate locales. As

shown in Fig. 2.9, the proposed method described in Section 2.2.4 is effective in

finding the locale of a part’s boundary.
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(a) (b) (c) (d)
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Figure 2.8: Each candidate locale is associated with its corresponding geometric
property, which can be regarded as a one-dimensional function that defines an
object surface: (a)–(d) the different scaled versions of the function f(x) plotted
on the object surface; (e)–(h) the different scaled versions of the function f(x)
corresponding to (a)–(d) respectively.
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(a) (b)

Figure 2.9: The locale of the part’s boundary and its decomposition result: (a)
the region that contains a part’s boundary was found by applying the proposed
method (i.e., L11 ∪ L12 ∪ L13); (b) the nearly concave boundary was constructed
within the region in (a) using the method proposed by Katz and Tal [62].

2.3.2 Visual Salience-Guided Mesh Decomposition for Extracting Sig-

nificant Components

This experiment was comprised of three parts. The intent of the first part of this

experiment was to show the effectiveness of the proposed method in decomposing

a 3-D mesh into parts. In this experiment, each model listed in Table 2.1 was

decomposed into a set of parts using the proposed decomposition method4. The

last column of Table 2.1 lists the running time of decomposing the fifteen test

4Note that in the proposed mesh decomposition scheme, each part is individually decom-
posed from a 3-D mesh. As a result, it is possible that a part can be covered by other parts. To
deal with this issue, the overlapped faces can be separated according to their geodesic distance
to the salient representatives. On the other hand, the overlapped parts may be merged in the
case where the amount of the overlapped area is larger than a predefined threshold. Currently,
these two features are implemented by our system. However, a more intelligent process for
merging parts should be developed to deal with the situation where the salient representatives
are chosen incorrectly.
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models into parts, on a Pentium IV, 1.98GHz, 1GB RAM PC. Each individual

part of a model was then associated with its visually salient features so that the

significant component could be identified. Fig. 2.10 shows the fifteen test models

decomposed into visual parts after the visual salience-guided mesh decomposition

method was applied. Since protrusion characterization was used to choose the

salient representatives, it can be seen from Fig. 2.10 that most of the represen-

tatives were located at the tips of parts. On the other hand, as shown in Fig.

2.10, the boundaries between the parts and the main “body” were constructed

precisely according to boundary strength.

Since human visual perception of parts is insensitive to noise and small undu-

lations applied to the vertex coordinates of a 3-D object, the proposed method

mimics the same visual processes. Thus, the intent of the second part of this

experiment was to show the robustness of the proposed method under the ran-

domization of vertex coordinates. The randomization was controlled by means of

the noise strength, which is defined as the ratio of the largest displacement to the

longest edge of the object’s bounding box. Figs. 2.11(a)-2.11(c) show the effects

of different levels of noise on the randomization applied to vertex coordinates

of the object’s surface. It is obvious that the proposed method still succeeds in

decomposing the dinopet model into its component parts.

The intent of the third part of this experiment was to compare the proposed

scheme against the method of Katz and Tal [62]. As mentioned in [62], there
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.10: Visual salience-guided mesh decomposition results, where the salient
representatives of parts chosen from different meshes are indicated by balls on
the surfaces: (a) bunny - 3 representatives; (b) cactus - 4 representatives; (c) cat
- 6 representatives; (d) cheetah - 6 representatives; (e) cheetah2 - 6 representa-
tives; (f) dinopet - 6 representatives; (g) duck - 2 representatives; (h) female -
5 representatives; (i) hand - 6 representatives; (j) horse - 5 representatives; (k)
hummingbird - 4 representatives; (l) manatee - 4 representatives; (m) santa - 5
representatives; (n) stingray - 3 representatives; (o) tiger - 6 representatives.
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(a) ns=0.3 (b) ns=0.4 (c) ns=0.5

Figure 2.11: The robustness of the proposed visual salience-guided mesh de-
composition method under the randomization of vertex coordinates, which is
controlled by means of the noise strength ns (i.e., the ratio of the largest dis-
placement to the longest edge of the object’s bounding box).

are two versions of Katz and Tal’s method: the (recursive) binary decomposi-

tion and the fuzzy k-means decomposition. Since the proposed method is type

of k-way decomposition, we implemented Katz and Tal’s fuzzy k-means decom-

position method for the purpose of comparison. Fig. 2.12 shows two different

results of decomposing the donkey model used in [62] into parts using the k-

means based method and the proposed method respectively. As shown in Fig.

2.12(a), seven representatives were chosen in order to generate the correspond-

ing patches. Fig. 2.12(b) shows that six salient representatives chosen using the

method described in Section 2.2.2 were located at the tips of the donkey’s four

legs, the tip of the donkey’s head, and the tip of the donkey’s tail respectively. In

the proposed decomposition scheme, contrary to the k-means based method [62],

the termination base represents the main body of the model while each feature

40



2.3. Experiment Results

(a) (b)

Figure 2.12: Results of decomposing the donkey model used in [62] into parts
using (a) the fuzzy k-means clustering method (as in [62]) and (b) the proposed
method respectively.

point represents the part that protrudes from the main body. As a result, the

total number of patches generated by the proposed method is equal to the num-

ber of salient representatives plus one main body. Moreoever, as shown in Fig.

2.12(b), the proposed decomposition algorithm favors the boundaries between

the protrusive parts and the main body. With regard to efficiency, the running

time of decomposing the donkey model using the k-means based approach, which

required 4 iterations to converge, was 2.707 seconds while that of using the pro-

posed method was 0.452 seconds. Obviously, the proposed decomposition scheme

is more efficient than the k-means scheme. However, the proposed method, like

other decomposition techniques, has its limitations. In the following paragraph,

we describe the limitations of the proposed method.
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One limitation of the proposed method is that the method failed in decom-

posing the models containing complex topology and more concave features. As

shown in Fig. 2.13(a), the proposed method succeeded in detecting the three

feature points representing the handle, the interior, and the exterior of the cof-

fee mug model; however, the proposed method failed to decompose the three

parts because of the failure in boundary strength characterization. Fig. 2.13(b)

shows that the proposed method failed to decompose the Venus head model since

the head model contains less protrusive features but more concave features. Ac-

cording to Hoffman and Singh’s theory [51], to decompose the model containing

highly concave features, the boundary strength would be more useful for guiding

the decomposition process than the protrusion-based features. As a result, Katz

and Tal’s method would properly decompose the models containing highly con-

cave features into parts while the proposed scheme would be more efficient and

effective in extracting the elongated parts from a given mesh. Another limitation

of the proposed method is the ambiguity in parts decomposition. For example,

the cactus shown in Fig. 2.10(b) should be divided into three parts, that is one

trunk and two branches; however, as shown in Fig. 2.10(b), the proposed method

cannot solve the problem. Finally, it may be useful to develop an optimization

scheme that simultaneously incorporates all the three visually salient factors. Our

current implementation is based on the two visually salient features: the protru-

sion and the boundary strength of a part. However, as mentioned in Section
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(a) (b)

Figure 2.13: The situations in which the proposed method failed to decompose
a 3-D mesh into parts: (a) the coffee mug model, which has genus-1 topology;
(b) the Venus head model, which contains more highly concave features than
protrusive features.

2.1, human visual perception determines a part’s salience by three factors: the

protrusion, the boundary strength, and the relative size of a part. Although the

relative size feature was not used in the mesh decomposition process, it can be

easily calculated and used in the 3-D mesh retrieval process.

2.4 Concluding Remarks

We have presented a visual salience-guided mesh decomposition scheme based on

Hoffman and Singh’s theory of part salience [51] for extracting significant com-

ponents from 3-D meshes. More specifically, the protrusion and the boundary

strength are modeled as the degree of center on the surface and the total-area-of-

border change respectively. To extract the visually significant components from

a given 3-D mesh, these salient features are incorporated into the mesh decom-
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position process. The proposed scheme has three remarkable features: (1) the

protrusion characterized over the entire surface is used as a guide to choose the

salient representatives of the parts; (2) the total-area-of-border change charac-

terized over the entire surface is used as a guide to find the locale of a part’s

boundary; and (3) the robustness against randomization of vertex coordinates

benefits greatly from the incorporation of visual salience into the decomposition

process. To the best of our knowledge, this is the first 3-D mesh decomposition

scheme that not only identifies the part’s boundaries defined by the minima rule,

but also associates the part with its visual salience.
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Chapter 3 A Cognitive Psychology-based

Approach for 3-D Shape Retrieval

Multimedia retrieval, including the retrieval of texts [2,16,129], images [42,126],

audios [32], videos [122, 126], and/or 3-D graphics [21, 86, 101], has become a

very active research area, especially in the last decade. Most researchers be-

lieve that the phenomenal growth of the Internet since the early 1990s has been

one of the major driving forces in the development of this important area. As

a result of the proliferation of multimedia content on the Internet, there is an

urgent need to develop an efficient indexing mechanism to assist users with the

retrieval of requested content. Among different multimedia retrieval mechanisms,

3-D shape/object retrieval [21, 86, 101] via the Internet has become increasingly

important. This is because 3-D geometry/mesh processing techniques (such as

creation and acquisition, modeling and editing, storage and transmission, and

copyright protection and authentication) have become more mature in recent

years [37, 44, 79, 98, 116]. The retrieval/recognition performance that an efficient

3-D shape retrieval system can achieve usually depends on how a 3-D shape is
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represented/described. In this study, we emphasize high-level abstraction and

organization of 3-D shapes through machine understanding. To equip our sys-

tem with a more theoretical grounding, we propose a cognitive psychology-based

representation scheme for 3-D shape retrieval.

High-level organization imposed on perceived data has been explored exten-

sively in the fields of human visual processes and computer vision. Related studies

can be found in [11,50,51,106,114]. To account for human visual processes, cog-

nitive psychologists have identified a set of properties (or rules) that are very

important in the perception of a form or a shape. Meanwhile, in the field of com-

puter vision, perceptual organization has shown that computational resources

can be effectively applied to extract structural and meaningful organization from

perceived data. Furthermore, perceptual organization can be regarded as an

intelligent process that can perform high-level abstraction for information un-

derstanding. In the literature, perceptual organization has been applied to the

segmentation of range images [28], 2-D images [110], textures [102], patterns [134],

and contours [136]. However, existing 3-D shape retrieval techniques lack a di-

rect link to perceptual organization. Below, we briefly review some existing 3-D

shape retrieval techniques and point out their common shortcomings in terms of

perceptual organization.

In order to build an efficient 3-D shape retrieval system, one may ask: What

kind of description/representation is most needed in a 3-D shape retrieval/recognition
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process? It is well known that there is always a trade-off between a repre-

sentation scheme and its corresponding recognition result. A coarse descrip-

tion/representation usually results in an efficient search process, but it sac-

rifices the accuracy of the search result. Examples of coarse representation

include normal and cord-based distribution [95], shape distributions [92], and

higher-order moment analysis [30, 95, 123, 135]. On the other hand, a thorough

description/representation scheme [49, 138] usually yields an accurate recogni-

tion/retrieval result, but the efficiency of the whole process is degraded. Among

the different types of representation schemes, the frequency-domain approach

[64, 123, 135] is often adopted because of its elegant formulation (e.g., frequency

decomposition) and beautiful mathematical properties (e.g., invariance). How-

ever, this approach lacks a direct link to the operation of human visual systems.

Kazhdan et al. are some of the few researchers who have incorporated salient

features (e.g., symmetry [65]) and intrinsic properties (e.g., shape anisotropy [66])

into 3-D shape retrieval systems. Since the features they adopt are not related

to human visual processes, either descriptor can be used in conjunction with ex-

isting methods. We firmly believe that if a 3-D shape retrieval system does not

consider the functions of the human visual system, its discriminating power is to

some extent limited.

In this chapter, to deal with the above-mentioned drawbacks, we incorporate

a set of principles that originated in the field of cognitive psychology into the
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design of 3-D shape analysis and retrieval algorithms. In the modeling phase,

a 3-D shape represented in mesh form is first broken up into parts such that

the functions of the human visual system can be appropriately mimicked. Next,

the decomposed parts are individually analyzed and quantified according to the

psychological theory of visual salience [51]. Using the above concept, one can label

a 3-D shape and then decide which components of the shape are the most salient.

In order to properly represent 3-D meshes for the subsequent retrieval process,

the spherical parameterization scheme proposed in [100] is adopted to map the

decomposed parts onto the surface of a unit sphere. With this representation, the

degree of similarity between a query provided by a user and models pre-stored

in the database can be easily compared within a canonical coordinate system.

Moreover, in the retrieval phase, one can use these visually salient components

to efficiently retrieve similar 3-D shapes/objects from the database.

The remainder of this chapter is organized as follows. In Section 3.1, we in-

troduce the theory of part salience and illustrate its importance in the perception

of parts. In Section 3.2, we propose computational process for realizing the qual-

itative salient features, and describe in detail how to incorporate visual salience

into the representation scheme for 3-D shape retrieval. The experiment results

are presented in Section 3.3. Finally, in Section 3.4, we present our conclusions.
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3.1 Theory of Part Salience and Its Importance in Visual

Perception

In [51], Hoffman and Singh propose the theory of part salience, which states

that at least three factors determine the salience of a part: the protrusion, the

boundary strength, and the relative size of the part. We now present quantita-

tive definitions of these salient factors and describe their importance in visual

processes.

Protrusion of A Part This factor is the degree to which a part protrudes

from its main body. For 2-D silhouettes, it can be quantified as the ratio of the

perimeter of the part (excluding its base) to the sum of its base lengths. For 3-D

shapes, the base of a part is referred to as the minimal surface formed by the

boundary curve of the part. Hence, the protrusion of a 3-D part can be quantified

as the ratio of the area of the part’s surface to the area of its base surface.

Strength of A Part’s Boundary The principle of transversality asserts that

a part’s boundaries are usually located at the concave creases, as shown in Fig.

3.1(b). Possible quantitative definitions of the boundary strength include the

turning normals and locale turning, as shown in Figs. 3.1(a) and 3.1(c), re-

spectively. Obviously, the indication of the normal direction must have a global

orientation consistency so that the boundary strength can be captured precisely.

The discriminating capability of turning normals and locale turning is shown by
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(a) Turning normals (b) 2-D Silhouette (c) Locale turning

Figure 3.1: Illustration of turning normals and locale turning at the boundary of
a 2-D silhouette.

the following examples. For 2-D silhouettes, a crease boundary usually has two

normals, and the angle between them can, in one sense, represent the strength

of that boundary. On the other hand, for potentially smooth boundaries, which

are represented by the dotted lines in Fig. 3.1(c), there is one normal at every

point along a curve. To deal with this problem, Hoffman and Singh [51] proposed

that the measure of turning in an appropriate region near the boundary should

be obtained. As shown in Fig. 3.1(c), the gray region is the so-called locale5

and the normals on its two sides (i.e., the so-called locale turning) are used to

characterize the strength of the smooth boundary. For 3-D shapes, the principal

curvatures can be used to measure the strength of a part’s boundary.

Relative Size of A Part This factor indicates the size of a part relative to

the whole object. For 2-D silhouettes, it can be defined as the ratio of the area

5By the definition in [51], a locale is an appropriate region near (but not infinitesimally
near) a negative minimum of the curvature in which we can explore how the curve evolves.
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(a) A part’s boundaries (b) A part’s cuts (c) A part’s cuts

Figure 3.2: A part’s boundaries and cuts in a 2-D silhouette (Re-sketched from
[51]).

of a part to the area of the whole object. For 3-D shapes, the relative volume

can be used to measure a part’s relative size.

Having reviewed the factors that may be used to determine the salience of a

part, we now discuss their effects on both visual perception and decomposition

processes. For simplicity, the following discussion is based on 2-D silhouettes;

however, the concept can be easily extended to 3-D models. Fig. 3.2 shows the

boundaries and cuts of parts of a 2-D silhouette, indicated by isolated points and

dotted lines, respectively. Note that, in Fig. 3.2(a), the four boundaries are used

to form possible cuts; and, in Figs. 3.2(b) and 3.2(c), each part is generated by

exactly one cut. According to the visually salient properties of interest, a 2-D

silhouette may have different interpretations. For example, the 2-D silhouette

might be interpreted as an alien’s head with a pair of protrusive ears when the

salience of the part is determined primarily by its protrusion (i.e., the part’s cuts

in Fig. 3.2(b)). On the other hand, the same silhouette might be interpreted as an
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unidentified flying object when the part’s salience is determined primarily by its

relative size (i.e., the part’s cuts in Fig. 3.2(c)). As a result, part salience affects

not only the low-level visual processes that determine how a shape is really decom-

posed, but also the high-level visual processes that determine the interpretation

of the shape. In order to precisely determine a part’s cuts, another independent

theory that incorporates a priori knowledge about the shape is usually required.

In the early 1980s, 3-D object recognition was a popular research topic [28]. Also,

among the large number of research issues, 2-D perceptual organization [106] and

recognition-by-components (or parts) [11,50,114] were two important directions.

However, their development was hindered by some ill-posed early vision prob-

lems, such as edge detection and image segmentation. Since these issues could

not be solved, 2-D perceptual organization and recognition by 2-D components

(or parts) could not be converted into “complete” computational processes, so

they both failed. Nowadays, there are many 3-D models distributed worldwide.

Since 3-D models (or meshes) are not restricted by the limitations of 2-D images,

perceptual organization is now possible in 3-D cases. In this chapter, we develop

an efficient and accurate 3-D retrieval system, which incorporates Hoffman and

Singh’s cognitive psychology theory into the representation scheme, such that the

human visual perception mechanism can be properly mimicked.
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Figure 3.3: The flowchart of the proposed cognitive psychology-based scheme for
3-D shape analysis and retrieval.

3.2 A Cognitive Psychology-based Approach for 3-D Shape

Retrieval

In this section, we introduce a cognitive psychology-based approach for 3-D mesh

retrieval. Fig. 3.3 shows the flowchart of the proposed cognitive psychology-based

scheme for 3-D shape analysis and retrieval. In Section 3.2.1, we provide a brief

introduction to how visual salience-guided mesh decomposition works. In Section

3.2.2, we describe how to extract a set of cognitive psychology-based features (i.e.,

protrusion, boundary strength, and relative size) from the decomposed parts. In

Section 3.2.3, we propose a spherical scheme for representing a 3-D shape and

part salience. In Section 3.2.4, a shape similarity metric, which can be used to

compare the difference between two 3-D shapes, is described in detail.
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3.2.1 Review of Visual Salience-Guided Mesh Decomposition

We now briefly review the previously proposed mesh decomposition scheme called

“visual salience-guided mesh decomposition” [77] because we use the algorithm

in this chapter. In [77], we analyzed the theory of part salience proposed by

Hoffman and Singh [51] and showed that it can be converted into computational

processes to extract significant components from 3-D meshes. More specifically,

the protrusion and boundary strength are modeled as the degree of center on the

surface and the total-area-of-border change, respectively. These visually salient

features are incorporated into the mesh decomposition process based on the fol-

lowing rules.

1. The protrusion degree characterized over the entire surface is used as a

guide to choose the salient representatives of the parts.

2. The boundary strength characterized over the entire surface is used as a

guide to find the locale of a part’s boundary.

As shown in Fig. 3.4(a), for a given 3-D mesh, the protrusion is first characterized

as the degree of center over the entire surface. After the protrusion characteriza-

tion is obtained, all the constituent triangular facets of the mesh are labeled with

a numerical protrusion degree ranging from 0 to 1. Note that, in Fig. 3.4(a), a

darker color represents a protrusion degree close to 0, while a lighter color means

the protrusion degree is close to 1. According to the protrusion characterization,
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(a) (b) (c) (d) (e) (f)

Figure 3.4: The visual salience-guided mesh decomposition process proposed in
[77]: (a) protrusion characterization; (b) choosing salient representatives; (c) the
termination-based constraint; (d)-(f) boundary strength characterization, finding
the locale of boundary, and generating the boundary of a specific part.

a set of salient representatives of the parts can be selected from the 3-D mesh

using a criterion based on the local maximum of protrusion degrees. In addition,

a termination base used to impose a constraint on a subsequent process can be

determined using a certain simple thresholding scheme. Figs. 3.4(b)-3.4(c) show

six salient representatives and one termination base extracted from a dinopet

model.

Using a part’s salient representatives as the seeds of Dijkstra’s algorithm,

we can execute multiple region growing processes, which will stop when they

“hit” the termination base. In response to the boundary’s evolutionary process,

the boundary strength can be quantitatively characterized as the change of the

adjacent-area-of-border. As shown in Fig. 3.4(d), the change of the adjacent-area-

of-border can be used to indicate the locale that is close to a part’s boundary.

To locate the locale, we propose a systematic method based on wavelet analysis

to locate the boundary in a coarse-to-fine manner. Fig. 3.4(e) shows the result
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after the locale of the part’s boundary is found (the gray area close to the neck of

the dinopet). Katz and Tal’s method [62] is applied in order to derive the exact

boundary of the part. After the above-mentioned mesh decomposition process is

completed, as shown in Fig. 3.4(f), each triangular facet in a mesh is symbolically

labeled such that the corresponding part and the main body can be identified.

In the decomposition process in [77], since the features used to guide the

process are closely related to Hoffman and Singh’s theory of visual salience, the

process itself can appropriately mimic the function of a human visual system

decomposing a 3-D mesh into parts. Note that the features defined above only

guide the mesh decomposition process (i.e., choose a part’s representative and

find the locale close to the part’s boundary). To perform 3-D shape retrieval, the

overall protrusion degree of every constituent part and the boundary strength

between every part and the main body of a 3-D shape, as well as the relative size

of every part to the whole object, have to be calculated based on Hoffman and

Singh’s theory [51]. In this way, all extracted features become real values that

can be used to establish a set of indices for an efficient 3-D shape retrieval task.

In what follows, we describe in detail how each feature is converted into a real

value.
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3.2.2 Part Salience Characterization

In this section, we report how to systematically calculate the protrusion degree of

a part, the boundary strength between a part and its corresponding main body,

and the relative size of every part. As mentioned in the previous section, after

the mesh decomposition scheme is executed, the parts and their corresponding

boundaries of the given 3-D model are extracted and identified. Due to the nature

of a mesh-based object, the shape of an extracted part is represented by a form

of open mesh, while its corresponding boundary is composed of a set of edges. In

order to realize the quantitative definitions for part salience mentioned in Section

3.1, we propose the following characterization methods:

Protrusion of A Part In [51], Hoffman and Singh mention that the protrusion

of a 3-D part should be defined as the ratio of the area of the part’s surface to

that of its base’s surface. For a 3-D mesh, the base of a part is referred to as the

minimal surface formed by the boundary polygon of the part. To obtain a part’s

base surface, we first apply the cutting algorithm proposed by Guéziec et al. [44]

to the marked boundary edges in order to partition the connectivity between

the part and its body. Next, Barequet and Sharir’s filling gaps algorithm [4] is

applied to form such a base surface, after which the protrusion of a mesh-based

part can be characterized. Moreover, in order to normalize the protrusion feature,

Gaussian normalization (as used in [104]) is applied to map the protrusion value

57



Chapter 3. A Cognitive Psychology-based Approach for 3-D Shape Retrieval

(a) Labeling (b) Cutting (c) Filling

Figure 3.5: The protrusion of a 3-D part can be obtained by first cutting the
decomposed part (as in (b)), applying the filling holes algorithms [76] to form its
base (as in (c)), and then calculating the ratio of the area of the part’s surface
to the area of the base.

in the range [0, 1]. Fig. 3.5 illustrates the process of how a base surface of a

3-D part is formed. Note that neither the filling gaps algorithm [4] nor the filling

holes algorithm [76] can guarantee that a generated mesh will form a manifold

surface.

Strength of A Part’s Boundary In [51], the boundary strength is charac-

terized by the turning normals at the crease boundaries. For a 3-D mesh, the

dihedral angle formed by two adjacent faces has been commonly used to char-

acterize the local curvature of an edge. However, as noted in [54], this measure

is sensitive to noise due to its small support region. In order to ensure that the

characterization of boundary strength is reasonable, we apply the extended sec-

ond order difference (ESOD) operator [54] to characterize the local curvature of

each boundary edge and then find the minimum value to represent the strength

of a part’s boundary. Fig. 3.6(a) illustrates the support of the ESOD operator.
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(a) (b)

Figure 3.6: Illustration of the boundary strength characterization: (a) the support
of the ESOD operator [54]; (b) the visualization of the boundary edges that
possess the strongest boundary strength.

Fig. 3.6(b) represents the visualization of the boundary edges that possess the

strongest boundary strength. Note that since the boundary strength is inversely

proportional to the corresponding radian value, all radian values falling within

the range [−π, π] should be normalized by changing their signs and then mapping

them in the range [0, 1].

Relative Size of A Part In [51], the relative size of a 3-D part is defined

as the ratio of the volume of the part to that of the whole object. However,

calculating the volume of a 3-D mesh is tedious work, especially for an open and

non-manifold mesh. To simplify this task, we characterize the relative size of a

part by an area ratio. That is, the ratio between the area of the constituent facets

that enclose a 3-D part and that of the constituent facets of the whole object.
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Table 3.1: Part salience of the query “horse” shown in Fig. 3.3.
Part Protrusion Boundary strength Relative size

A 0.4476 0.61692 0.21006

B 0.4749 0.68476 0.05041

C 0.5364 0.69291 0.04940

D 0.4561 0.69982 0.06867

E 0.4152 0.58425 0.08684

Table 3.1 lists the part salience extracted from the horse model in Fig.3.3

using the characterization methods described above. Note that the three visually

salient features (i.e., protrusion, boundary strength, and relative size) are in-

variant to rotation, scaling, and translation respectively. Moreover, the features

have nothing in common in terms of perceptual organization. More precisely,

the protrusion-based feature is characterized in response to a part’s shape. The

boundary strength-based feature quantitatively proposed here describes the con-

junction of a part and its main body. The relative size-based feature, on the

other hand, can quantitatively “measure” the relationship between a part and

the whole object.

3.2.3 A Spherical Representation Scheme for 3-D Meshes

In the previous section, we described how the set of human perception-related

features is quantified. However, these features are still not sufficient to achieve a

“thorough” description of a 3-D shape, so retrieval based on the above-mentioned

feature set cannot achieve a satisfactory result. Under these circumstances, some
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relational features have to be introduced to enhance the discrimination capability

of a shape descriptor. In the following, we describe in detail how to establish the

proposed representation scheme that incorporates a part’s salience and relational

information for 3-D shape retrieval.

To represent the geometrical relations among the parts of a 3-D shape, we

propose the use of spherical parameterization to map the labeled 3-D mesh onto

a unit sphere. In our investigation, we found that the spherical parameterization

algorithm proposed by Praun and Hoppe [100] is very suitable for this task,

because it can efficiently generate a valid sphere embedding while minimizing a

certain distortion metric. Fig. 3.8(a) shows the result of parameterizing the horse

model in Fig. 3.3 onto the spherical domain. Clearly, there are two advantages to

this method. On the one hand, the relative positions of the parts are retained by

this spherical representation scheme. On the other hand, by treating the degree

of a part’s salience as the value of a function defined on the unit sphere, all

salient features can be encoded as well. However, a variety of mesh resolutions

makes the subsequent matching process very difficult. More precisely, in order to

calculate the shape similarity, a uniform sampling within the spherical domain is

necessary.

It is well known that there are only three types of regular meshes that sat-

isfy the uniform sampling requirement for 3-D space. Therefore, after spherical

parameterization, we apply the sphere tessellation process described in [48] to
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Figure 3.7: Illustration of the n-tessellation of a unit sphere.

quantize the spherical domain. The process works as follows: First, an icosahe-

dron is generated and translated to its center of mass. Second, each triangle is

divided into n2 sub-triangles, where n is the subdivision frequency. Third, the

coordinates of all vertices are unitized such that all the vertices lie on the unit

sphere. Fig. 3.7 shows a set of tessellated spheres with different subdivision

frequencies.

To simplify the notations, let S denote a 3-D mesh, obtained by applying

the spherical parameterization method [100] to a labeled 3-D mesh, and let D

denote an n-tessellated sphere. Assume the two meshes, S and D, are scaled and

fitted onto the unit sphere. Based on the location of each mesh’s center-of-mass,

we further align each mesh into the correct position. We now describe the steps

required to construct a spherical domain-based shape descriptor:

1. Map the position of a part’s representative on S onto a facet fi on D, where

i is the integer index of a facet.

62



3.2. A Cognitive Psychology-based Approach for 3-D Shape Retrieval

2. Map a radially symmetric function to the support neighborhood of the facet

fi on D.

Since a part’s representative belongs to a facet on S (i.e., all the circles indicated

by an arrow in Fig. 3.8(a)), our first step is to project the normal of the facet onto

a facet fi on D (i.e., the dark triangles indicated by an arrow in Fig. 3.8(b)).

Note that a part’s representative can be determined either by calculating the

center of mass of the region belonging to a part on S or by using the salient

representatives chosen in the mesh decomposition process.

The second step spreads a part’s salience over the sphere domain D, begin-

ing with support neighborhood construction. Given a facet, fi, obtained in the

first step, the set of neighboring facets, Fi = {fi,j}, is constructed by applying

Dijkstra’s algorithm to the dual edges of the mesh graph of D. The cost of com-

puting each dual edge is defined as the distance between the centers of mass of

two corresponding facets. The construction is constrained by a radius threshold.

In each support neighborhood, Fi, we map a radially symmetric function to

this region. More precisely, the mapping, φk
i (j), is computed using the following

formula:

φk
i (j) =

(
1− (

dist(fi, fi,j)

distmax
i

)

)
× V k

i , (3.1)

where dist(fi, fi,j) is the distance between the center of mass of the facet fi,j ∈ Fi

and that of the facet fi. Also, distmax
i is the maximum distance between the center

of mass of the facet fi and that of any facet in the neighborhood. V k
i ∈ [0, 1] is
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the degree of salience of the part with the corresponding facet, fi, on D. The

superscript k ∈ {re, pro, bs, rs} is used to specify the type of visual salience, where

re, pro, bs, rs stand for relation, protrusion, boundary strength, and relative size,

respectively. Note that the term V re
i in Eq. (3.1) is always set to 1. In this way,

a relation-based shape descriptor can be constructed for a coarse search. Fig.

3.8(b) shows that a part’s relational information is spread over its corresponding

neighborhood on the tessellated sphere D. On the other hand, Fig. 3.8(c) shows

the visualization result after the relation-based shape descriptor is represented

in the spherical domain. With regard to part salience-based shape descriptors,

their visualization results are shown in Figs. 3.8(d)-3.8(f), respectively.

In [48], Hebert et al. use a similar spherical representation scheme to map the

curvature distribution of a 3-D surface onto a unit sphere. In contrast to their

intrinsic spherical representation for 3-D object recognition, our system provides

a coarse-to-fine search scheme as follows:

1. A recognition-by-components strategy for coarse search;

2. A recognition-by-visually-salient-components strategy for fine search.

More precisely, our relation-based shape descriptor implements the recognition-

by-components strategy to perform a coarse search. On the other hand, the

visual salience-based shape descriptor realizes the recognition-by-visually-salient-

components strategy to refine the results (up to the best m objects) retrieved in

the coarse search stage.
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(a) S (b) D (c) SDre

(d) SDpro (e) SDbs (f) SDrs

Figure 3.8: Illustration of the spherical domain-based shape descriptor construc-
tion. The original 3-D shape is first parameterized onto the spherical domain.
Next, the spherical domain is tessellated as an icosahedron. Based on the re-
sulting icosahedron, the shape descriptor stores the geometrical relations of the
parts.
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3.2.4 Comparing 3-D Shapes on A Normalized Sphere

Since the spherical parameterization process creates a one-to-one mapping be-

tween the points on the surface of a 3-D shape and those on a representative

sphere, the shape descriptor mentioned in Section 3.2.3 can be regarded as a

function defined on the representation sphere. It is obvious that some existing

mathematical analysis tools (e.g., spherical harmonic analysis [31] and spherical

wavelets [107]) can be utilized to perform shape analysis and calculate shape

similarity. However, such tools do not have any direct correlation with the func-

tions of the human visual system. In this chapter, we compare the shapes of two

distinct targets directly in the proposed spherical domain. The reason is twofold:

First, the proposed shape analysis algorithms (including mesh decomposition and

part salience characterization) are explicitly considered as natural ways to mimic

the human visual system. Second, mathematicians usually favor elegant formula-

tions (e.g., frequency decomposition) and beautiful mathematical properties (e.g.,

invariance), while cognitive psychologists prefer a mechanism that is close to the

way the human visual system operates. In this work, we have tried to build a

3-D shape retrieval system that would satisfy both mathematicians and cognitive

psychologists. We now describe the proposed similarity metric in more detail.

Let Φk(A) and Φk(B) denote the spherical domain-based shape descriptors of

two mesh-based shapes A and B, respectively. The superscript k indicates which

type of shape descriptor (either a part’s relation or visual salience) should be
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(a) (b)

Figure 3.9: Illustration of how to speed up the similarity calculation.

used to perform the retrieval task. Now, the distance between A and B subject

to a certain spherical rotation, R, can be defined as

Dist(A, B, R, k) =
∑
D

min(Φk
I (A), Φk

R(B)), (3.2)

where D is the tessellated sphere domain and I is the identity matrix. Under

these circumstances, the similarity between A and B becomes

Similarity(A, B, k) = max
R

Dist(A, B, R, k). (3.3)

Eq. (3.3) maximizes Dist(A, B, R, k) over all possible spherical rotations, R.

From Eqs. (3.2)-(3.3), it is apparent that the proposed shape matching algorithm

continuously rotates one of the shapes until the salience of the parts perceived

by the human visual system is maximized. In [48], Hebert et al. stated that the
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number of rotations for which Dist(A, B, R, k) should be evaluated is confined by

the facet number of a tessellated sphere. Since both A and B are represented in

the tessellated spherical domain, the comparisons should be directed to finding

the best correlation between the instances of Φ(A) and those of Φ(B). More

precisely, given an initial correspondence (i, j) for fi on Φ(A) and fj on Φ(B)

respectively, only three rotations should be evaluated and applied to Φ(B). As

shown in Fig. 3.9(a), each facet is surrounded by only three neighboring facets.

Fig. 3.9(b) shows that given an initial correspondence, the remaining correspon-

dence between the facets of Φ(A) and Φ(B) can be determined by applying a

counterclockwise (or clockwise) traversal of the remaining facets on Φ(A) and

Φ(B). Hence, a set of correspondence tables, {(Pi, Pi,j)}, can be constructed to

speed up the similarity calculation, where the pair (Pi, Pi,j) provides a valid cor-

respondence between the facets of Φ(A) and Φ(B). Now, based on the form of

Eq. (3.1), the right-hand term of Eq. (3.2) can be rewritten as

Dist(A, B, R, k) =
∑

i

min(φk(Pi), φ
k(Pi,j)). (3.4)

As noted in [48], the algorithm for calculating Eq. (3.4) tries all possible rotations

and the resolution is controlled by how the sphere is tessellated. Under these

circumstances, the global optimum of Dist can always be found without an initial

estimation of the transformation.
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Figure 3.10: The user interface of our 3-D shape retrieval system.

3.3 Experiment Results

We counducted a series of experiments to test the effectiveness of the proposed

method. The data set used in our experiments was comprised of 20 triangulated

meshes. Note that in order to properly apply spherical parameterization, all the

models must be genus-0 and closed meshes. Fig. 3.10 shows the user interface

of the proposed 3-D shape retrieval system. According to the different function-

alities, the interface is split into three sub-windows: (1) Thumbnail-View, (2)

Model-View, and (3) Operating-View. Below, we describe the functions of the

three sub-windows in detail.

In the Thumbnail-View sub-window (the bottom half of the right column

of Fig. 3.10), our system lists all of the thumbnail pictures of 3-D models in

the database. Note that after a retrieval/search command is executed, all the
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thumbnail pictures will be listed from left-to-right and top-to-bottom, based on

the degree of shape similarity between the query and the model in the database.

Since the thumbnail pictures listed are types of 2-D images, it is necessary to

provide users with a method for viewing the 3-D mode from different angles. We,

therefore, designed the Model-View sub-window to perform 3-D manipulations

such as rotation, zoom in, zoom out, and panning. Within the Model-View sub-

window, as shown on the top right-hand side of Fig. 3.10, a user can manipulate

a model in 3-D by using the drag command of the mouse. In the Operating-

View sub-window, as shown on the left-hand side of Fig. 3.10, a user can choose

an existing model from the Thumbnail-View sub-window as a query and specify

which strategy he/she would like to adopt to perform the retrieval task. We

now report the experiment results of the coarse search, the fine search, and the

comparison.

3.3.1 Recognition-by-components as A Coarse Search

In this experiment, a recognition-by-components search strategy was adopted and

the horse model was chosen as the query to find a set of similar models in the

database. Fig. 3.11(a) shows the search results after the strategy was executed.

Since a part relation-based shape descriptor manages the search strategy, the

purpose of the search was to retrieve those models that had a similar part relation

to that of the query. It can be seen from Fig. 3.11(a) that most of the animal
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(a) (b)

(c) (d)

Figure 3.11: Search results after the coarse-to-fine search strategy was executed:
(a) coarse search using a relation-based shape descriptor; (b) fine search using a
protrusion-based shape descriptor; (c)fine search using a boundary strength-based
shape descriptor; (d) fine search using a relative size-based shape descriptor.

models retrieved as the first six candidates have four feet and appear at the top

of the Thumbnail-View sub-window.

3.3.2 Recognition-by-visually-salient-components as A Fine Search

In this experiment, the recognition-by-visually-salient-components search strat-

egy described in Section 3.2.3 was adopted to refine the best m(=8) models shown
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in Fig. 3.11(a). Since there are three types of part salience-based shape descrip-

tors (i.e., SDpro, SDbs, and SDrs), this experiment was comprised of three parts.

The intent of the first part was to use the protrusion-based shape descriptor to

refine the best eight models shown in Fig. 3.11(a), such that the models with a

similar degree of part protrusion to that of the horse model could be placed at the

top of the list in the Thumbnail-View sub-window. Since the protrusion-based

shape descriptor takes a part’s relation and protrusion into account, using it as

the fine search strategy can retrieve those models that not only hold a similar

part relation to that of the horse model, but also possess a similar part protrusion

to that of the model. Fig. 3.11(b) shows the search results after the protrusion-

based shape descriptor was executed in the fine search process. Because of the

introduction of the protrusion-based feature, it can be seen from Fig. 3.11(b)

that most of the models listed at the top of the Thumbnail-View sub-window

have a similar degree of part protrusion to that of the horse model.

The intent of the second part of the experiment was to use the boundary

strength-based shape descriptor to refine the best eight models shown in Fig.

3.11(a), such that the models with a boundary strength similar to that of the

horse model could be placed at the top of the list in the Thumbnail-View sub-

window. Fig. 3.11(c) shows the search results after the boundary strength-based

shape descriptor was applied. Due to the use of the boundary strength-based

feature, most of the models at the top of the list in Fig. 3.11(c) have a similar
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parts-body conjunction to that of the horse model.

In the third part of the experiment, we used the relative size-based shape

descriptor to refine the best eight models shown in Fig. 3.11(a). Fig. 3.11(d)

shows the search results after the relative size-based shape descriptor was applied

to the fine search process. From the results, it is obvious that the introduction

of the relative size-based feature improved the search outcome.

3.3.3 Comparison to D2 Shape Distribution

In this experiment, we compared our spherical domain-based shape descriptors

against the D2 shape distribution-based approach [92] by using the well-known

precision-recall analysis. To perform this task, the models in the database were

classified into four classes according to a part’s functionality: (1) four-footed

animals, (2) two-footed animals, (3) birds, and (4) miscellaneous. After the

classification was done, each model in a specific class was used as a query to

perform the retrieval task. Next, the retrieved models were classified into relevant

and irrelevant in order to calculate the precision and recall. For all the models in

the same class, we then averaged their precisions and recalls. These results were

plotted on the precision-recall curves for comparision. Figs. 3.12(a)-3.12(b) show

the 2-D images of the four-footed and two-footed animal models, respectively. On

the other hand, Figs. 3.12(c)-3.12(d) show the precision-recall plots for the classes

of four-footed and two-footed animal models, respectively. It can be observed
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(a) Four-footed animals (b) Two-footed animals
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Figure 3.12: The precision-recall curves comparing our methods against the D2
shape distribution-based method presented in [92].

from the plots that the proposed shape descriptors performed better than the D2

shape distribution method.

3.4 Concluding Remarks

We have presented a cognitive psychology-based approach for 3-D shape analysis

and retrieval. The proposed scheme has four remarkable features: (1) a 3-D

shape retrieval system that mimics human visual perception and recognition can
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be constructed by incorporating Hoffman and Singh’s theory of part salience

into the design of shape analysis and retrieval algorithms; (2) a recognition-by-

components search strategy can be achieved by using part relational information;

(3) a recognition-by-visually-salient-components search strategy can be achieved

by using part salience (including protrusion, boundary strength, and relative

size); and (4) a coarse-to-fine shape retrieval strategy can be accomplished by

introducing the concepts of part relation and visual salience, respectively. To the

best of our knowledge, this is the first 3-D shape retrieval scheme that realizes the

psychological theories of recognition-by-components [11] and visual salience [51].
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Chapter 4 Fragile Watermarking for

Authenticating 3-D Polygonal Meshes

Transferring digitized media via the Internet has become very popular in recent

years. Content providers who present or sell their products through networks

are, however, faced with the copyright protection problem. In order to properly

protect the rights of a content owner, it is desirable to develop a robust protection

scheme that can prevent digital contents from being stolen or illegally distributed.

From a user’s point of view, after receiving a piece of digital content, he/she

usually needs to verify the integrity of the content. As a result, there should

be an authentication mechanism that can be used to perform the verification

task. With the rapid advance of watermarking technologies in recent years, many

investigators have devoted themselves to conducting research in this fast growing

area. According to the objectives that a watermarking technique may achieve,

two main-stream digital watermarking categories are: robust watermarking and

fragile watermarking. While the former aims to achieve intellectual property

protection of digital contents, the latter attempts to authenticate the integrity of
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digital contents.

There are a great number of existing robust watermarking algorithms designed

to protect 3-D graphic models [3,7,9], [18,19], [59,68], [85,87–91,98], [133], [125].

Their common purpose is to provide a robust way to protect target contents

when attacks are encountered. The existing fragile watermarking algorithms

that are designed to authenticate 3-D graphic models are relatively few. In [34],

Fornaro and Sanna proposed a public key approach to authenticating construc-

tive solid geometry (CSG) models. In [60], Kankanhalli et al., proposed the use of

content-based signature to authenticate 3-D volume data. In [131], Yeo and Ye-

ung proposed a fragile watermarking algorithm for authenticating 3-D polygonal

meshes. They embed a fragile watermark by iteratively perturbing vertex coor-

dinates until a predefined hash function applied to each vertex matches the other

predefined hash function applied to that vertex. Since their embedding algorithm

relies heavily on an ordered traversal of vertices, it is capable of detecting object

cropping. However, the consideration of causality disables it from localization of

changes and robustness against vertex reordering. In addition, particular attacks,

such as floating-point truncation or quantization, applied to vertex coordinates

might increase the false-alarm probability of tampering detection.

In this chapter, we trade off the causality problem in Yeo and Yeung’s method

for a new fragile watermarking scheme. The proposed scheme can not only achieve

localization of malicious modifications in visual inspection, but also is immune
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to the aforementioned unintentional data processings. In addition, the allowable

range for alternating a vertex is explicitly defined so that the new scheme is able

to tolerate quantization of vertex coordinates (up to a certain amount). During

the process of watermark embedding, a local mesh parameterization approach is

employed to perturb the coordinates of invalid vertices while cautiously maintain-

ing the visual appearance of the original model. Since the proposed embedding

method is independent of the order of vertices, the hidden watermark is immune

to some vertex order-dependent attacks, such as vertex reordering.

The remainder of this chapter is organized as follows. In Section 4.1, Yeo

and Yeung’s scheme for authenticating 3-D polygonal meshes is briefly reviewed.

In Section 4.2, the proposed fragile watermarking method is described in detail.

Experiment results are given in Section 4.3. Finally, conclusions are drawn in

Section 4.4.

4.1 Yeo and Yeung’s Approach and Its Drawbacks

In [131], Yeo and Yeung proposed a novel fragile watermarking algorithm which

can be applied to authenticate 3-D polygonal meshes. In Yeo and Yeung’s scheme

[131], there are three major components, i.e., two predefined hash functions and

an embedding process. For a given vertex, the vertex is identified as valid if and

only if the values calculated by both hash functions are identical. Otherwise, the

vertex is identified as invalid. During the authentication process, invalid vertices
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are considered as the set of vertices that has been tampered with. On the other

hand, valid vertices indicate the set of vertices which has never been modified.

In the embedding process, the coordinates of valid vertices are kept unchanged,

but those of invalid vertices are iteratively perturbed until each of them becomes

valid.

The first step in Yeo and Yeung’s approach is to compute location indices. In

this step, the first hash function is defined by a conversion function and associ-

ated with a given watermark pattern WM . The conversion function is used to

convert a vertex coordinate v = (vx, vy, vz) into a location index L = (Lx, Ly).

The idea behind the conversion function is to map a three dimensional coordi-

nate onto a two dimensional plane formed by a watermark pattern of dimension

WM X SIZE×WM Y SIZE. As a result, the location index L is used to

point to a particular position in the watermark pattern. Then, the content of

that particular position WM(L) (either 0 or 1) is used for the purpose of com-

parison. Since the conversion function defined in [131] calculates the centroid of

the neighboring vertices of a given vertex, the causality problem occurs. Further-

more, the traversal of vertices during the alternation of vertex coordinates must

take causality into account so as to avoid error propagation.

The second step in Yeo and Yeung’s approach is to compute value indices. In

this step, the second hash function is related to a set of look-up tables, i.e., K1,

K2, and K3. These look-up tables, which are composed of sequences of bits, are
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generated and protected by an authentication key. Yeo and Yeung [131] proposed

to convert each component of a vertex coordinate into an integer number so as

to index it into each of the look-up tables. The content of an indexed location

is either 0 or 1. The three binary values derived from the three coordinates

p = (p1, p2, p3) are then XOR processed to generate a final binary value. This

binary value K(p) is used as one of the components for deciding whether the

current vertex is valid or not. If the vertex is not valid, then it is perturbed until

it is valid. The amount of change that makes this vertex valid is the watermark

embedded.

After establishing the above-mentioned two hash functions, the next step is

to perturb the coordinates of all invalid vertices until they become valid. In [131],

the authors proposed an iterative procedure which can gradually perturb an in-

valid vertex until both hash functions are matched. On the one hand, in order

to maintain transparency, the embedding procedure must traverse in an orderly

manner each vertex during the alteration of vertex coordinates. In addition, the

ordering of vertices must be maintained during the watermark extraction process.

The benefit of taking the causality into account is for protection against changes

of connectivity (in particular cropping). However, the drawback is that their

method cannot achieve localization of malicious modifications in visual inspec-

tion. In addition, their method cannot tolerate certain incidental modifications,

such as quantization of vertex coordinates and vertex reordering. This drawback
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to some extent limits the power of Yeo and Yeung’s method. In this chapter,

we shall propose a new scheme that is more powerful than the existing fragile

watermarking algorithms.

4.2 The Proposed Fragile Watermarking Method

In this section, we shall propose a new fragile watermarking scheme for authenti-

cating 3-D polygonal meshes. In order to tackle the issues that were not handled

by Yeo and Yeung [131], we employ the following concepts: 1) Each hash function

can be designed so as to form a binary state space particularly helpful for defining

the domain of allowable alternation for a given vertex. Accordingly, the domain

of acceptable alternation for a given vertex can be defined as the intersection

of the binary state spaces where the values of both hash functions match each

other; 2) In order to resolve the causality problem, the conversion function used

in the first hash function can be designed to simply perform the mapping from

the 3-D space to a 2-D plane without considering the neighboring vertices of a

vertex. Based on the above two concepts, we have designed a new scheme, which

is shown in Fig. 4.1. With the new authentication scheme, malicious attacks ap-

plied to 3-D polygonal meshes can be easily distinguished from certain incidental

modifications. In what follows, we shall describe our authentication scheme in

more detail.

82



4.2. The Proposed Fragile Watermarking Method

Figure 4.1: The flowchart of the proposed authentication scheme for 3-D polyg-
onal meshes.

4.2.1 Computing Location Indices

Since the conversion function used in the first hash function (the left hand side

of Fig. 4.1) aims to calculate the location index that can be used to locate a

particular bit in the watermark pattern, any functions that can transform a 3-D

coordinate into a 2-D coordinate can serve this purpose. Therefore, it is possible

to use some parameterization schemes to achieve the goal. As mentioned in

the previous section, Yeo and Yeung did not use an analytical method to perturb

invalid vertices. However, a systematic perturbation strategy is always preferable.

Therefore, we propose to adopt the parameterization-based approach to make the

vertex perturbation process analytic. For the purpose of clarity, we propose to
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split the location index computation process into two steps:

Step 1 Given a vertex coordinate v, the specified parameterization S : R3 → R2

converts the vertex coordinate into a parameter coordinate. We propose to use

so-called cylindrical parameterization [57] to perform the conversion task. The

procedure involved in performing cylindrical parameterization is as follows [57]:

Given an oriented 3-D point, it is composed of a 3-D point m and its orienta-

tion n. As shown in Fig. 4.2(a), a cylindrical parameterization process6 can be

expressed as

Sm,n(v) → (α, β) = (

√∥∥v −m
∥∥2 − (n · (v −m))2, n · (v − m)), (4.1)

where (α, β) is the coordinate in the parameter domain. The range for each

dimension of the parameter domain is α ∈ [0,∞) and β ∈ (−∞,∞), respectively.

Step 2 Convert the parameter coordinate formed in Step 1 into the so-called

bin coordinate, i.e., the location index (Lx, Ly). This conversion can be accom-

plished by quantizing the parameter domain. In addition, a modulus operator is

required to map them onto the dimension of a watermark pattern. In what fol-

lows, we shall describe how the parameter domains are quantized. Assume that

the size of a 2-dimensional watermark pattern is WM X SIZE×WM Y SIZE,

6Note that although an oriented point defines 5 degree of freedom (DOF) basis (m,n), the
proposed method is not immune to geometrical transformations. This results from the fact that
whether a vertex is valid or not is guarded by the two hash functions.
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the quantization formula for a cylindrical parameterization domain is as follows:

L = (Lx, Ly) = (

⌊
α

b

⌋
%WM X SIZE,

⌊
β

b

⌋
%WM Y SIZE), (4.2)

where b is the quantization step for ordinary numeric values and % represents a

modulus operator.

A very important feature of the above design is that the quantized parame-

terization domain and the watermark pattern together form a binary state space.

Such a state space is helpful for defining a legal domain of alternation for a given

vertex. The side-view of the binary state space corresponding to the quantized

cylindrical parameterization domain is illustrated in Fig. 4.2(b).

4.2.2 Computing Value Indices

Even though any functions for converting a floating-point number into an integer

can be used to calculate value indices, the following conversion function was

designed since it is able to form a binary state space. Assuming that the size of

each look-up table is LUT SIZE, the conversion function is formulated as

p = (p1, p2, p3) = (

⌊
vx

b

⌋
%LUT SIZE,⌊

vy

b

⌋
%LUT SIZE,

⌊
vz

b

⌋
%LUT SIZE), (4.3)

where b is the same quantization step as used to compute location indices.

The side-view of the binary state space corresponding to the above conver-

sion function is illustrated in Fig. 4.2(c). In addition, Fig. 4.2(d) reveals that
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(a)

(b) (c)

(d)

Figure 4.2: Illustration of the robustness construction: (a) the basis for cylindrical
parameterization [57]; (b) the side-view of the binary state space formed by the
quantized cylindrical parameterization domain; (c) the side-view of the binary
state space formed by the conversion function for computing value indices; (d)
the two binary state spaces superimposed on a sidepiece of the cylindrical mesh
with irregular connectivity.
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the domain of acceptable alternation for a given vertex can be defined as the

intersection of the binary state spaces where the values of both hash functions

applied to that vertex match each other. More precisely, for a valid vertex the

displacement applied to its original coordinates will depend on the value of (α, β)

and thus it will make (Lx, Ly) change as well. As long as the displacement for

both location and value indices does not vary beyond the aforementioned domain

of acceptable alternation, the vertex will be identified as intact by our scheme.

As a result, the encoded location and value indices will be robust to a certain

extent of quantization.

4.2.3 Watermark Embedding

Since both hash functions have been well-designed to define the domain of ac-

ceptable alternation for a given vertex, the embedding procedure can focus on

perturbing the coordinates of invalid vertices while maintaining transparency. In

the remeshing-related literatures [33], [71], [99], [120], [116], the points over the

surface of the polygonal model have frequently been used for resampling the ge-

ometry of a model. We, therefore, apply a local mesh parameterization approach

proposed in [71] for finding a valid point on the surface of a polygonal mesh.

Assume that the polygonal model to be watermarked is a closed and oriented

2-manifold mesh that has been triangulated, our method is as follows: Given an

invalid vertex v ∈ R3 and its neighboring vertices in the counter-clockwise order
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Figure 4.3: The proposed alternation procedure for an invalid vertex.

v1, v2, . . . , v|N(v)| ∈ R3, where |N(v)| is the number of v’s neighboring vertices,

the proposed alternation procedure for an invalid vertex is divided into five steps,

which can be explained with the help of Fig. 4.3. The details of the five steps

are as follows:

Step 1 Transform the vertex coordinate v into the parameter coordinate q ∈ R2

and its neighboring vertices v1, v2, . . . , v|N(v)| to q1, q2, . . . , q|N(v)| ∈ R2, respec-

tively, using arc-length parameterization. Let ang(a, b, c) be the angle formed

by vectors
−→
ba and

−→
bc . Then, the parameter coordinates are provided with the

following properties [33]:

‖qk − q‖ = ‖vk − v‖, (4.4)

ang(qk, q, qk+1) = 2π · ang(vk, v, vk+1)/θ, (4.5)

where

θ =

|N(v)|∑
k=1

ang(vk, v, vk+1), v|N(v)|+1 = v1,

q|N(v)|+1 = q1, and k = 1, . . . , |N(v)|.
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If we set q=(0, 0) and q1=(‖v1−v‖, 0), the parameter coordinates q2, q3, . . . , q|N(v)|

can be easily derived from (4.4) and (4.5). Hence, q1, q2, . . . , q|N(v)| form the

boundary vertices of the star-shaped planar polygon Q with q in its kernel. In

addition, v1, v2, . . . , v|N(v)| are the boundary vertices of the polygon P with one

internal vertex v. Let tk denote the triangle formed by the parameter coordinates

q, qk, qk+1 and Tk denote the triangle formed by the vertex coordinates v, vk, vk+1

for k = 1, . . . , |N(v)|. Then, the two triangle sets {tk} and {Tk} form the

triangulation of the planar polygon Q and the polygon P , respectively.

Step 2 Establish the local mesh parameterization Π : Q → P by means of

the well-known barycentric mapping. Let q̂ denote an arbitrary point inside the

planar polygon Q and area(a, b, c) denote the signed area of the triangle formed

by the vertices a, b, c. Then, there exists a unique t ∈ {1, . . . , |N(v)|} such that

the barycentric coordinates of q̂ will correspond to the triangle tt and have the

following forms:

λt,1 =
area(q̂, qt, qt+1)

area(q, qt, qt+1)
, λt,2 =

area(q, q̂, qt+1)

area(q, qt, qt+1)
, λt,3 =

area(q, qt, q̂)

area(q, qt, qt+1)
. (4.6)

The three barycentric coordinate components are all of the same sign. Hence,

the corresponding point v̂ on the surface of the polygon P can be represented as

a combination of the points v, vt, vt+1 with respect to Tt as follows:

v̂ = λt,1v + λt,2vt + λt,3vt+1. (4.7)
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Step 3 Define an allowable region for alternating an invalid vertex in the pa-

rameter domain. Let the region be a shrunken ring whose origin is the parameter

coordinate, q, and let the scale for shrinkage be 0.5. (As shown in Fig. 4.2(d),

for some invalid vertices to find a valid state may sacrifice a great deal of the

original quality. As a result, the shrunken ring defined here can be regarded as

the maximum bound of distortion induced by alternating an invalid vertex. In

addition, it can avoid geometrical degeneracies, like triangle flipping, T-joints,

etc.)

Step 4 Distribute a set of points q̃ = {q̃i ∈ R2 : i = 1, . . . , r} randomly on the

allowable region.7 Next, find a new parameter coordinate q′ ∈ q̃ satisfying the

condition

WM(L(Sm,n(Π(q′)))) = K(p(Sm,n(Π(q′)))), (4.8)

where Π is the barycentric mapping derived from (4.6) and (4.7). If there does

not exist such a new parameter coordinate, alternation for the current invalid

vertex is skipped, and q′ = q is assigned.

Step 5 Record the new vertex coordinate v′ = Π(q′).

Note that the set of random points generated in Step 4 can be sorted accord-

ing to its geometric distance to the parameter coordinate q, in such a way that

the new parameter coordinate q′ can be chosen not only satisfying (4.8) but also

7A random point in a triangle is generated using the method described in [121].
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minimizing the distortion. Currently, this feature has not been considered in our

implementation since the maximum distortion has been bounded as described in

Step 3. As for maximizing the robustness, the domain of acceptable alternation

can be mapped onto the parameter domain using the inverse of the parameter-

ization Π−1 : P → Q. Then, the new parameter coordinate q′ that maximizes

the robustness can be determined. Since the efficiency of the algorithm would

be degraded, this feature has not been implemented in our system. As for the

performance of our method, it is a natural outcome of the Step 4 that a certain

amount of invalid vertices may remain untouched/invalid. We, therefore, propose

some possible solutions to optimize the performance in the following section.

4.2.4 Analysis and Discussion

In this section, we shall conduct a thorough analysis of our authentication scheme

for 3-D polygonal meshes. The watermarking parameters that can influence the

quality of transparency and robustness are the shrinkage scale and bin size. On

the other hand, we also know that the correlation value C can never reach 1.

Therefore, we shall examine several crucial issues: 1) how to optimize the perfor-

mance so that C can be very close to 1; 2) how to balance the competition between

transparency and capacity using the shrinkage scale; and 3) how to guarantee the

robustness of a hidden watermark. Before discussing the above mentioned issues,
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we adopt the correlation value used by Yeo and Yeung [131] and formulated it as

C =
|{v : K(p(v)) = WM(L(v))}|

|V |
, (4.9)

where V is the vertex set of a mesh and |V | is the total number of vertices. Note

that the correlation C is the ratio of the number of valid vertices to the total

number of vertices (instead of a linear correlation coefficient). In what follows,

we shall discuss the aforementioned issues.

First of all, we aim to optimize the performance of our algorithm so that the

watermark correlation value C can be very close to 1. In our investigation, there

are two possible solutions to optimize the performance. The first solution is to

adopt a smaller quantization step, which would increase the possibility of finding

a valid state. Such an approach will be a great benefit to the maintenance of

transparency. However, the drawback is that the robustness would be sacrificed as

well. An alternative solution is to make the spacing between vertices regular while

maintaining the shape of a 3-D mesh. In such an approach, the robustness can

benefit greatly from the specified quantization step (i.e., the bin size). However,

the drawback is that the shape of the mesh would be simplified significantly when

the spacing between vertices is increased. Our intention here is to maintain the

robustness when encountering certain incidental modifications, such as vertex

quantization and noise addition. We, therefore, picked five different models to

generate analysis models with different mesh resolutions using a mesh resolution
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control algorithm described in [56].8 Furthermore, for each model, we generated

five analysis models corresponding to different mesh resolutions. Thirty analysis

models and their mesh resolutions are listed in Table 4.1. Fig. 4.4 shows the

flat-shaded HIV model and its analysis models corresponding to five different

mesh resolutions. In the watermarking process, we fixed the shrinkage scale

as 0.5 and the bin size as 2. With varied mesh resolution levels, our fragile

watermark was embedded into each model to test the effect of the mesh resolution

on the watermark correlation value. In addition, we ran each test five times using

different keys and reported the median value. Fig. 4.5(a) shows the effect of

different mesh resolutions on the watermark correlation value. Obviously, the

curves shown in Fig. 4.5(a) reveal that a polygonal mesh with higher mesh

resolution would possess higher capacity for watermarking.

In order to investigate how the shrinkage scale can force a compromise between

transparency and capacity, a suitable visual metric was needed to evaluate the

difference between the original model M and the watermarked model M ′. In

[61], Karni and Gotsman proposed the use of Root-Mean-Square measure plus a

Laplacian-based visual metric to capture human visual preceptibilities. The RMS

metric simply captures the geometric distance between corresponding vertices in

both models. On the other hand, the Laplacian-based metric can capture more

8In [56], the resolution of a mesh is defined as the median of its edge length histogram.
In addition, the edge length spread is defined as the half-width (upper quartile minus lower
quartile) of the histogram. The goal of the mesh resolution algorithm is to adjust the resolution
of the original mesh to a desired resolution while minimizing the edge length spread of the
histogram.
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Table 4.1: A list of thirty triangulated meshes used in the analysis.
Model Number of vertices/faces Mesh resolution

spock 16386/32768 1.974926

spock-lv1 11543/23082 2.828352

spock-lv2 3604/7204 5.127024

spock-lv3 1819/3634 7.390215

spock-lv4 878/1752 10.350958

spock-lv5 426/848 14.553292

skull 20002/40000 1.524550

skull-lv1 9559/19114 2.876386

skull-lv2 3063/6122 5.138119

skull-lv3 1418/2832 7.652043

skull-lv4 747/1490 10.350958

skull-lv5 365/726 14.622301

holes3 5884/11776 3.581405

holes3-lv1 10620/21248 2.871731

holes3-lv2 3429/6866 5.061736

holes3-lv3 1555/3118 7.652731

holes3-lv4 847/1702 10.258323

holes3-lv5 410/828 14.520646

HIV 9988/20000 1.493200

HIV-lv1 2691/5398 2.915812

HIV-lv2 683/1372 5.233385

HIV-lv3 291/594 7.255211

HIV-lv4 135/270 10.562971

HIV-lv5 62/124 14.92876

isis 46912/93820 1.217783

isis-lv1 8727/17450 2.879494

isis-lv2 2765/5526 5.157736

isis-lv3 1347/2690 7.480489

isis-lv4 658/1312 10.380298

isis-lv5 329/654 14.454476

subtle visual properties (such as smoothness) with respect to both the topology

and geometry. The geometric Laplacian operator applied to a vertex vi is defined
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Analysis models for the HIV protease surface model: (a) original HIV
model; (b) HIV-lv1 model; (c) HIV-lv2 model; (d) HIV-lv3 model; (e) HIV-lv4
model; (f) HIV-lv5 model.

as

GL(vi) = vi −
∑

j∈n(i) l−1
ij vj∑

j∈n(i) l−1
ij

, (4.10)

where n(i) is the set of indices of vi’s neighboring vertices, and lij is the geomet-

ric distance between vertices i and j. Hence, the visual difference between the

original model M and the watermarked model M ′ can be expressed as

diff(M, M ′) =
1

2 |V |
(

|V |∑
i=1

‖vi − v′i‖ +

|V |∑
i=1

‖GL(vi)−GL(v′i)‖). (4.11)

In the mesh-based watermarking literature [19], the above mentioned visual met-

ric has been used to capture the geometric distortion between two models. We,

therefore, adopted this visual metric to measure the transparency. In this anal-
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ysis, we picked five models that were at the fourth resolution. We chose the bin

size and the shrinkage scale as 2 and 0.5, respectively. With various shrinkage

scales, our fragile watermark was embedded into each model for transparency

and capacity tests. In the same way, we ran each test five times using differ-

ent keys and reported the median value. Figs. 4.5(b)-4.5(c) show the effects of

different shrinkage scales on the watermark correlation value and PSNR value,

respectively. From Figs. 4.5(b)-4.5(c), it is clear that the best choice of shrinkage

scale is 0.5.

In order to demonstrate how robust our watermark is, we attacked the em-

bedded watermark by means of randomization of vertex coordinates. To simulate

such attacks, randomization of vertex coordinates was controlled by means of the

noise strength, which is defined as the ratio of the largest displacement to the

longest edge of the object’s bounding box. In this analysis, we picked five models

with the largest resolution level from the set of analysis models and fixed the

shrinkage scale at 0.5. With various bin sizes, our watermark was embedded into

each model and then attacked using different noise strengths in robustness tests.

In the same way, we ran each test five times using different keys and reported the

median value. Fig. 4.5(d) shows the results of robustness tests using different

bin sizes for the HIV-lv5 model. From these plots, it can be seen that a larger

bin size can provide a hidden watermark with higher robustness. However, the

drawback is that the false-alarm rate is increased as well.
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Figure 4.5: (a) Effect of the mesh resolution on the watermark correlation value.
Note that the mesh resolution of “0” indicates that the original models were not
influenced by the mesh resolution control algorithm; (b) effect of the shrinkage
scale on the watermark correlation value; (c) effect of the shrinkage scale on the
transparency of our fragile watermark; (d) robustness under different bin sizes
for the HIV-lv5 model.
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4.3 Experiment Results

A series of experiments were conducted to test the performance of the proposed

fragile watermarking method. We shall start with parameter selection and then

report quantitatively some experiment results. In addition, we shall present a set

of visualization results that can demonstrate the power of the proposed method

in distinguishing malicious attacks from incidental modifications.

4.3.1 Selecting Appropriate Parameters

We have reported in Section 4.2 that several parameters were needed during

watermark embedding and detection. These parameters included a binary water-

mark pattern, a set of look-up tables, a basis for parameterization, and the degree

of quantization. All of the parameters used in our experiments were set as follows.

A binary watermark pattern with a size of 512×512 (as indicated in Fig. 4.6) was

used in our experiments. That means, WM X SIZE = WM Y SIZE = 512.

In addition, a set of look-up tables were generated and protected by one authen-

tication key. The size of each table was 256. Therefore, LUT SIZE = 256.

As to the basis for parameterization, since the 3-D vertex space is periodically

aggregated into binary state spaces, its selection is not crucial to the proposed

method. Therefore, we fixed the basis as m(0, 0, 0) and n(1, 0, 0) in the experi-

ments. As for appropriate quantization steps, we assigned the ordinary numeric

value, b = 0.2, in all the experiments such that the performance of our method
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Figure 4.6: The binary watermark pattern used in our experiments.

is close to optimal (i.e., C ∼= 1). The selection of b = 0.2 was based on the

experiments gained from conducting quite a number of experiments. However,

since the selection is an ill-posed problem, it is hard to systematically determine

a right value that can fit in all cases.

One thing to be noted is that the basis (m, n) and the quantization step b

together can possibly be hard-coded into the algorithm so that detecting a wa-

termark for the purpose of authentication can be realized as oblivious detection.

However, the drawback is that the robustness (i.e., the domain of acceptable al-

ternation) certainly varies with applications. These are the restriction that are

associated with an LUT/secret key approach in general.

4.3.2 Experiment Results of Authentication

The data set used in our experiments was a set of triangulated and closed meshes,

listed in Table 4.2. Each of them was watermarked using our fragile watermarking

method presented in Section 4.2. The last column in Table 4.2 shows the water-

mark correlation values for the five different models. The five test models were
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Table 4.2: A list of five triangulated meshes used in our experiments and their
watermark correlation values detected using the proposed method.

Model Number of vertices/faces Correlation value

dolphins 855/1692 1

spock 16386/32768 1

mannequin 711/1418 1

holes3 5884/11776 1

HIV 9988/20000 1
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Figure 4.7: Five test models were watermarked and tested to evaluate the ro-
bustness against reduction of floating-point precision.

watermarked and tested to evaluate the robustness against reduction of floating-

point precision. The results of this experiment are shown in Fig. 4.7, where the

precision of a floating-point number is specified by a nonnegative decimal integer

preceded by a period (.) and succeeded by a character f. It is clearly shown in Fig.

4.7 that the proposed method is very robust against vertex quantization down

to 3 decimal digits. Note that for authentication applications one has to rely on

visual inspection since the correlation coefficient does not signal. For instance,
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for meshes with a large number of vertices, only modifying a small region does

not affect the correlation value substantially. In addition, finding a threshold

that is suitable for all kinds of meshes and resolutions is very difficult. In what

follows, therefore, we shall show how to visualize the authentication results.

4.3.3 Visualization of Authentication Results

Visualization is a good way to “see” whether the proposed watermarking method

is valid or not. Fig. 4.8 shows that the original and the watermarked Spock

models were rendered as either wireframe or flat-shaded models, respectively. It

can be seen that the watermarked model maintained high correlation with the

original model, whether in a wireframe format or in a flat-shaded format.

The results of experiments on detecting malicious attacks from some inci-

dental modifications are shown in Figs. 4.9-4.10. Fig. 4.9(a) shows that the

watermarked Spock model was tampered with by stretching out Spock’s nose.

In addition, the quantization down to 2 decimal digits was applied to the vertex

coordinates of the watermarked Spock model that has been tampered with. Fig.

4.9(b) shows some detected potentially modified regions before the closing oper-

ator was applied. Note that approximately 50 percent of vertices on Spock’s nose

were identified as invalid vertices, as shown in Fig. 4.9(b). Therefore, in order

to amplify the effect of the authentication results, the morphological operators

described in [103] were adopted so that the parts being tampered with in a model
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(a) (b)

(c) (d)

Figure 4.8: Visualization of the transparency test: (a) the original Spock model
rendered in a wireframe format; (b) the watermarked Spock model rendered in a
wireframe format; (c) the original Spock model rendered in a flat-shaded form;
(d) the watermarked Spock model rendered in a flat-shaded form.
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(a) (b) (c)

Figure 4.9: Region-based tampering detection: (a) the watermarked Spock model
tampered with by stretching out its nose, which was followed by applying the
quantization (down to 2 decimal digits) to the vertex coordinates.; (b) the de-
tected potentially modified regions (before morphological operators were applied);
(c) the detected modified regions after the morphological operators were applied.

could be detected and highlighted. Fig. 4.9(c) shows the authentication results

of Fig. 4.9(b) after some morphological operations were applied. Fig. 4.10 shows

another example of malicious tampering involving vertex quantization, which

could possibly occur in the real world. In this case, it is not obvious that the two

dolphins were tampered with. Nevertheless, the proposed method still succeeded

in malicious tampering detection. As shown in Fig. 4.10(d), among the two dol-

phins that were tampered with, one was translated, and the other one stretched

out. Both attacks were detected and highlighted.
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(a) (b)

(c) (d)

Figure 4.10: Detection of malicious attack involving the incidental modification
(such as quantization of vertex coordinates): (a) the original dolphins model; (b)
the watermarked dolphins model; (c) a slightly modified dolphins model; (d) two
out of the three dolphins have been tampered with. The maliciously modified
dolphins were effectively detected.
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4.4 Concluding Remarks

A new fragile watermarking scheme which can be applied to authenticate 3-D

polygonal meshes has been presented in this chapter. Watermarks are embedded

using a local mesh parameterization technique and can be blindly extracted for

authentication applications. The proposed scheme has three remarkable features:

1) the domain of allowable alternation for a vertex is explicitly defined by two

well-designed hash functions; 2) region-based tampering detection is achieved by a

vertex-order-independent embedding process; 3) fragile watermarking is achieved

for localization of malicious modifications and tolerance of certain incidental ma-

nipulations (such as quantization of vertex coordinates and vertex reordering).

To the best of our knowledge, this is the first 3-D mesh authentication scheme

that can detect malicious attacks involving certain incidental modifications.
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Chapter 5 Conclusions and Future Work

In this dissertation, we have presented three mesh processing techniques for dif-

ferent 3-D graphics-related applications. The three mesh processing methods

include the visual salience-guided mesh decomposition (Chapter 2), the cognitive

psychology-based approach for 3-D shape retrieval (Chapter 3), and the fragile

watermarking method for authenticating 3-D polygonal meshes (Chapter 4).

In Chapter 2, we analyzed and pointed out that the theory of part salience

proposed by Hoffman and Singh [51] can be converted into computational pro-

cesses for extracting significant components from 3-D meshes. More specifically,

the protrusion and boundary strength are modeled as the degree of center on the

surface and the total-area-of-border change, respectively. These visually salient

features are incorporated into the mesh decomposition process based on two rules.

They are (1) the protrusion degree characterized over the entire surface can be

used as a guide to choose the salient representatives of the parts and (2) the

boundary strength characterized over the entire surface can be used as a guide

to find the locale of a part’s boundary. Since the features used to guide the de-

composition process are closely related to Hoffman and Singh’s theory of visual
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salience, the proposed decomposition algorithm can not only appropriately mimic

the function of a human visual system, but also efficiently decompose a 3-D mesh

into parts. Moreover, the proposed decomposition method is robust against ran-

domization of vertex coordinates. To the best of our knowledge, this is the first

3-D mesh decomposition scheme that not only identifies the part’s boundaries

defined by the minima rule, but also associates the part with its visual salience.

In Chapter 3, we incorporate a set of cognitive psychology-based principles

into the design of 3-D shape analysis and retrieval algorithms. In order to realize

the conceptual rule of “recognition-by-components,” the proposed visual salience-

guided mesh decomposition is adopted to decompose a 3-D mesh-based shape into

parts. Next, the decomposed components are individually analyzed and quanti-

fied according to the psychology theory of visual salience [51]. Using the above

concept, one can label a 3-D shape and then decide on which components on the 3-

D shape are the most salient ones. In order to represent the geometrical relations

among the parts of a 3-D shape, we propose the use of spherical parameterization

to map the labeled 3-D mesh onto a unit sphere. In this way, a set of spherical

domain-based shape descriptors, which encodes a part’s relation and salience, can

be constructed such that comparing 3-D shapes can be done within a normal-

ized sphere. Moreover, our system provides a coarse-to-fine search scheme: (1)

a recognition-by-components strategy for coarse search and (2) a recognition-by-

visually-salient-components strategy for fine search. More precisely, our relation-

108



based shape descriptor implements the recognition-by-components strategy to

perform a coarse search. On the other hand, the visual salience-based shape de-

scriptor realizes the recognition-by-visually-salient-components strategy to refine

the results (up to the best m objects) retrieved in the coarse search stage.

Finally, in Chapter 4, we propose a fragile watermarking method for authen-

ticating 3-D polygonal meshes. The proposed authentication scheme can tolerate

unintentional modifications, such as vertex re-ordering and floating-point trun-

cation. The robustness comes from the principle that the two hash functions can

be designed to form binary state spaces particularly helpful for defining the ro-

bustness. Another benefit of our scheme is that region-based tampering detection

is achieved by our fragile watermarking method. To the best of our knowledge,

this is the first 3-D mesh authentication scheme that can detect malicious attacks

involving incidental modifications.

In future work, we shall establish a large 3-D model database for performance

evaluation and present more quantitative results for comparison with the existing

3-D shape retrieval systems. Moreover, use of combined features to perform the

retrieval task will be the main subject for our future work.
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[44] A. Guéziec, G. Taubin, F. Lazarus, and B. Horn, “Cutting and Stitching:
Converting Sets of Polygons to Manifold Surfaces,” IEEE Trans. Visual-
ization and Computer Graphics, Vol. 7, No. 2, pp. 136-151, 2001.

[45] V. Guillemin and A. Pollack, Differential Topology, Englewood Cliffs, N. J.
: Prentic Hall, 1974.

[46] I. Guskov, W. Sweldens, and P. Schröder, “Multiresolution Signal Process-
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