
850 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 11, NOVEMBER 2009

Distributed Wake-up Scheduling for
Data Collection in Tree-Based Wireless Sensor Networks

Fang-Jing Wu and Yu-Chee Tseng

Abstract—In a multi-hop wireless network, a conventional way
of defining interference neighbors is to prohibit a node from using
the same slot/code as those of its 1-hop and 2-hop neighbors.
However, for data collection in a wireless sensor network, since
the set of communication nodes is limited and the transmission
directions are toward the sink, we show that a less strict set of
interference neighbors can be defined. Based on this observation,
we develop an efficient distributed wake-up scheduling scheme
for data collection in a sensor network that achieves both energy
conservation and low reporting latency.

Index Terms—Communication protocol, power saving, sensor
network, slot/code assignment, wireless network.

I. INTRODUCTION

COLLECTING sensing data is an important function of
a wireless sensor network (WSN). It involves a subset

of nodes, ℛ, each requested to report its sensory data via a
data collection tree to the sink. Two main technical issues are
power saving and latency. The former is to prolong network
lifetime, while the latter concerns the freshness of data. To
simultaneously address these two issues, we define a wake-
up scheduling problem, where nodes can periodically switch
between sleep and active modes. A node, if involved in the
data collection tree, will receive an active slot. During its
active slot, a node must wake up to collect data from its
children. Then, it can go to sleep. Note that a node also needs
to wake up to cooperate with its parent’s active slot. On the
other hand, for latency concern, data forwarding along the
tree should be bounded. Besides, interference among these
transmission activities should be avoided.

To avoid interference, a conventional way is to avoid a
node from using the same slot as those used by its neighbors
within two hops. However, in the data collection scenario
in WSNs, since communication only involves partial nodes
and the communication directions are always toward the sink
along a data collection tree, the definition of interference
can be relaxed. Motivated by this observation, this paper
shows how to define the tightest set of interference neighbors
when assigning active slots to nodes. Based on this definition,
we then design an efficient distributed wake-up scheduling
scheme for data collection in a WSN to meet the interference-
free and low-latency requirements.

Manuscript received March 26, 2009. The associate editor coordinating the
review of this letter and approving it for publication was X. Cao.

The authors are with the Department of Computer Science, National Chiao-
Tung University, Taiwan (e-mail: fangjing@cs.nctu.edu.tw).

Y.-C. Tseng’s research is co-sponsored by the MoE ATU Plan, by NSC
grants 96-2218-E-009-004, 97-3114-E-009-001, 97-2221-E-009-142-MY3,
and 98-2219-E-009-005, by MOEA 98-EC-17-A-02-S2-0048 and 98-EC-17-
A-19-S2-0052, and by ITRI, Taiwan.

Digital Object Identifier 10.1109/LCOMM.2009.090712

Several efforts have focused on data collection in a WSN.
In [1][2], nodes of the same depth in the data collection
tree will have the same wake-up time. Work [1] proposes a
staggered wake-up scheme, while [2] extends [1] to a multi-
parent scheme such that a node can choose one parent with the
earliest wake-up time to relay data. Unfortunately, [1][2] are
not compatible with ZigBee and nodes of the same depth may
suffer from interference. The work [3] proposes a ZigBee-
compatible scheduling for convergecast, but it involves all
nodes to report their data. It is a special case of our work and
still adopts the conventional interference definition. Based on
a TDMA model, [4] shows how to assign transmission slots to
nodes to avoid interference. Reference [5] further improves [4]
by reducing the latency when collecting data along the tree.
Although a less strict definition of interference is used in [4]
and [5], interference actually happens at the receivers’ side.
Our work does consider avoiding interference from this aspect
and allows multiple transmitters to compete for a receiver at
the latter’s slot by following ZigBee’s rules.

II. MODELING INTERFERENCE FOR DATA COLLECTION

A WSN is modeled as an undirected graph 𝐺 = (𝑉,𝐸),
where 𝑉 contains all nodes and 𝐸 contains all communication
links between nodes. One special node in 𝑉 is designated as
the sink. A set of nodes ℛ ⊆ 𝑉 is requested to conduct data
collection in the sense that each node needs to periodically
send its sensing data to the sink, and these data may be
aggregated on their way to the sink. Our goal is to construct
a subtree 𝑇 from 𝐺 rooted at the sink connecting all nodes in
ℛ and schedule the wake-up time of nodes in 𝑇 for energy-
saving and low-latency purposes. Note that 𝑇 is not necessarily
a spanning tree of 𝐺.

We adopt a time-division model by dividing time into fixed-
length slots. Each 𝑘 consecutive slots are grouped together
and called a frame. In each frame, each node 𝑣𝑖 in 𝑇 will be
assigned a wake-up slot 𝑠𝑖 ∈ {0, 1, . . . , 𝑘−1}. During slot 𝑠𝑖,
𝑣𝑖 must wake up to announce a beacon to synchronize with its
children and then collect sensory data from them. Excluding
𝑠𝑖, 𝑣𝑖 may go to sleep. The value of 𝑘 should be large enough
to ensure each node to find a slot.

The assignment of wake-up slots should meet two goals
simultaneously: (i) the communication must be interference-
free and (ii) the overall reporting latency from leaves of 𝑇 to
the sink should be minimized. To address goal (i), one typical
approach is to enforce a node not to use the same wake-up
slot as any of its 1-hop and 2-hop neighbors. However, in our
data collection scenario, since not all nodes are involved in
the communication and communication directions are always
toward the sink, a node only needs to consider a tighter set of
interference neighbors, as defined below.

1089-7798/09$25.00 c⃝ 2009 IEEE

WU and TSENG: DISTRIBUTED WAKE-UP SCHEDULING FOR DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 851

(a)

Node in)(iT vI
Node not in)(iT vI

Communication link in T
Communication link not in T

Node in T

Node not in T

(b)

 R={G, H, I, J, M, N, O, P}
 relaying nodes={A, B, C, F, K, L}

L
M

k = 8
7

4

4

3

6

5

3

sink

A

B

C

D

E

5

4

4

6

4

F

G
H I

JK

3

3
N

O

1-hop neighbors

2-hop neighbors

))((iT vNP

))((iT vCN

)(iT vP

)(iT vC)(iT vN
vi)(1, iT v

)(2, iT v

)(4, iT v

)(3, iT v

3
P

Fig. 1. (a) Classification of 𝑣𝑖’s 1-hop and 2-hop neighbors, and (b) an
example of slot assignment, where the number in a circle is the node’s slot.

Definition 1. Given a node 𝑣𝑖 and a data collection tree 𝑇 in
𝐺, we define 𝑃𝑇 (𝑣𝑖) as the set of 𝑣𝑖’s parent in 𝑇 , 𝐶𝑇 (𝑣𝑖) as
the set of 𝑣𝑖’s children in 𝑇 , 𝑁(𝑣𝑖) as the set of 𝑣𝑖’s neighbors
in 𝐺, and 𝑁𝑇 (𝑣𝑖) = 𝑁(𝑣𝑖) − 𝑃𝑇 (𝑣𝑖) − 𝐶𝑇 (𝑣𝑖) (i.e., 𝑣𝑖’s
neighbors excluding 𝑣𝑖’s parent and children in 𝑇). We define
the interference set of 𝑣𝑖 with respect to 𝑇 as:

𝐼𝑇 (𝑣𝑖) = 𝑁(𝑣𝑖) ∪𝑁(𝐶𝑇 (𝑣𝑖)) ∪ 𝑃𝑇 (𝑁(𝑣𝑖))− {𝑣𝑖}. (1)

Eq. (1) contains 𝑣𝑖’s direct interference set (𝑁(𝑣𝑖)) and
indirect interference set (𝑁(𝐶𝑇 (𝑣𝑖)) ∪ 𝑃𝑇 (𝑁(𝑣𝑖))). The first
set contains all 𝑣𝑖’s 1-hop neighbors. However, the second set
may not contain all 𝑣𝑖’s 2-hop neighbors. Nodes in 𝑣𝑖’s 2-hop
neighbors but not in 𝑁(𝐶𝑇 (𝑣𝑖)) ∪𝑃𝑇 (𝑁(𝑣𝑖)) can be divided
into four subsets:

Φ𝑇,1(𝑣𝑖) = 𝑁𝑇 (𝑁𝑇 (𝑣𝑖))− 𝐼𝑇 (𝑣𝑖)
Φ𝑇,2(𝑣𝑖) = 𝐶𝑇 (𝑁𝑇 (𝑣𝑖))− 𝐼𝑇 (𝑣𝑖)
Φ𝑇,3(𝑣𝑖) = 𝐶𝑇 (𝑃𝑇 (𝑣𝑖))− 𝐼𝑇 (𝑣𝑖)
Φ𝑇,4(𝑣𝑖) = 𝑁𝑇 (𝑃𝑇 (𝑣𝑖))− 𝐼𝑇 (𝑣𝑖). (2)

Fig. 1(a) shows how we divide 𝑣𝑖’s 1-hop and 2-hop neighbors
in an abstract way. Considering node 𝐾 , Fig. 1(b) shows an
example, where 𝐺 ∈ Φ𝑇,1(𝐾), 𝐿 ∈ Φ𝑇,2(𝐾), 𝐽 ∈ Φ𝑇,3(𝐾),
and 𝐹 ∈ Φ𝑇,4(𝐾). We see that data reporting from 𝑁 to 𝐺
and from 𝑀 to 𝐾 can coexist without interference. Similarly,
reception at 𝐿, 𝐽 , and 𝐹 is also interference-free. Note that
interference should be decided at the receiver side, not the
sender side. Therefore, all 𝐺, 𝐿, 𝐽 , 𝐹 , and 𝐾 can use the
same slot (4). The following theorem proves that Eq. (1) gives
the tightest interference set.

Theorem 1. Given ℛ and a tree 𝑇 in 𝐺, a slot assignment
for data collection is interference-free iff for each pair of 𝑣𝑖
and 𝑣𝑗 such that 𝑣𝑗 ∈ 𝐼𝑇 (𝑣𝑖), we have 𝑠𝑖 ∕= 𝑠𝑗 .

Proof: To prove the if part, we will show that if an
assignment achieves 𝑠𝑖 ∕= 𝑠𝑗 for each pair of 𝑣𝑖 and 𝑣𝑗
such that 𝑣𝑗 ∈ 𝐼𝑇 (𝑣𝑖) then the assignment is interference-
free. Consider each 𝑣𝑗 in 𝑣𝑖’s 1-hop and 2-hop neighbors
(refer to Fig. 1(a)). It is clear that no 𝑣𝑗 ∈ 𝐼𝑇 (𝑣𝑖) will cause
interference with 𝑣𝑖. For each 𝑣𝑗 ∈ Φ𝑇,𝑞(𝑣𝑖), 𝑞 = 1 . . . 4, we
will show that if 𝑠𝑗 = 𝑠𝑖, the reception activities of 𝑣𝑖 and 𝑣𝑗
will not suffer from interference (there is no need to consider

their transmission activities because this will be examined
when considering their parents). Without loss of generality,
we consider any child 𝑣𝑐 of 𝑣𝑗 ; there are two cases.

1. If 𝑣𝑐 is 1-hop away from 𝑣𝑖, then 𝑣𝑗 ∈ 𝑃𝑇 (𝑁(𝑣𝑖)) ⊆
𝐼𝑇 (𝑣𝑖), which implies 𝑠𝑖 ∕= 𝑠𝑗 . So, 𝑣𝑗 will not choose the
same slot as 𝑣𝑖.

2. If 𝑣𝑐 is 2-hop or above away from 𝑣𝑖, then 𝑣𝑐’s signal
cannot be heard by 𝑣𝑖. So, 𝑣𝑖 will not be interfered by 𝑣𝑐’s
transmission.

To prove the only if part, we show that if an assignment for
𝑇 is interference-free, for each pair 𝑣𝑖 and 𝑣𝑗 such that 𝑣𝑗 ∈
𝐼𝑇 (𝑣𝑖), we have 𝑠𝑖 ∕= 𝑠𝑗 . This part is proved by contradiction.
Assume that there is a pair of 𝑣𝑖 and 𝑣𝑗 such that 𝑣𝑗 ∈ 𝐼𝑇 (𝑣𝑖)
and 𝑠𝑖 = 𝑠𝑗 . By Eq. (1), 𝑣𝑗 may fall in three subsets.

1. If 𝑣𝑗 ∈ 𝑁(𝑣𝑖), 𝑠𝑖 = 𝑠𝑗 will lead to direct interference,
which is a contradiction.

2. If 𝑣𝑗 ∈ 𝑁(𝐶𝑇 (𝑣𝑖)), 𝑠𝑖 = 𝑠𝑗 will cause reception at the
𝑣𝑗 side being interfered by the transmission of 𝑣𝑖’s children,
a contradiction.

3. If 𝑣𝑗 ∈ 𝑃𝑇 (𝑁(𝑣𝑖)), 𝑠𝑖 = 𝑠𝑗 will cause reception at the
𝑣𝑖 side being interfered by the transmission of 𝑣𝑗’s children,
a contradiction.

To address goal (ii), given a tree 𝑇 , we then define the
latency of data collection along 𝑇 . The data collection latency
𝐿𝑇 (𝑣𝑖, 𝑣𝑗) along a tree link (𝑣𝑖, 𝑣𝑗) is the number of slots from
𝑣𝑖 collecting a report from a child to 𝑣𝑖 forwarding them to
𝑣𝑗 , i.e., 𝐿𝑇 (𝑣𝑖, 𝑣𝑗) = (𝑠𝑗 − 𝑠𝑖) mod 𝑘. Similarly, the data
collection latency along a tree path 𝑃 = 𝑣𝛼1 → 𝑣𝛼2 → ⋅ ⋅ ⋅ →
𝑣𝛼𝑚 is defined as 𝐿𝑇 (𝑃) = 𝐿𝑇 (𝑣𝛼1 , 𝑣𝛼2) + 𝐿𝑇 (𝑣𝛼2 , 𝑣𝛼3) +
⋅ ⋅ ⋅+ 𝐿𝑇 (𝑣𝛼𝑚−1 , 𝑣𝛼𝑚). Finally, the data collection latency of
𝑇 is defined as 𝐿𝑇 = max{𝐿𝑇 (𝑃)∣ each path 𝑃 from a leaf
of 𝑇 to sink}. For example, in Fig. 1(b), 𝐿𝑇 (𝐾,𝐵) = 2,
𝐿𝑇 (𝑃 = 𝐾 → 𝐵 → 𝑠𝑖𝑛𝑘) = 3, and 𝐿𝑇 = 4.

Definition 2. Given network 𝐺 = (𝑉,𝐸), data collection set
ℛ, and 𝑘 available slots, the wake-up scheduling problem is
to find a subtree 𝑇 in 𝐺 and a slot assignment for each node in
𝑇 which is interference-free and the overall reporting latency
𝐿𝑇 is as small as possible.

III. DISTRIBUTED WAKE-UP SCHEDULING ALGORITHM

Based on the definition in Eq. (1), we propose a distributed
algorithm. It contains two phases. The first tree-formation
phase is to form a subtree 𝑇 to connect all nodes in ℛ. The
second slot-allocation phase is to find an interference-free slot
for each node in 𝑇 with low latency 𝐿𝑇 .

Tree-formation phase: Each node attempts to join the
network using its interference set as the metric. Note that first
𝑇 will include all nodes and then some nodes may truncate
themselves from 𝑇 later on.

1. To initiate a new data collection task, the sink floods a
FORM TREE(ℛ) packet to the whole network.

2. On receipt of the FORM TREE(ℛ) packet, each node
𝑣𝑖 will repeatedly broadcast a HELLO packet containing its
parent (if it already has one) and its 1-hop neighbor set to its
2-hop neighbors for a period of time. It will also collect these
information from its 2-hop neighbors.

3. Each node 𝑣𝑖 will try to find a node as it parent from those
neighbors which have already joined 𝑇 . If there are multiple

852 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 11, NOVEMBER 2009

DSA Tx-based Ours DSA Tx-based Ours

-60
-40
-20

0
20
40
60
80

100
120
140
160
180

400 600 800 1000 1200 1400 1600
|V|

0

40

80

120

160

200

240

280

320

In
te

rfe
re

nc
e

ne
ig

hb
or

s

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r

10

20

30

40

50

60

70

In
te

rfe
re

nc
e

ne
ig

hb
or

s

(a) (b)

LTLT

Fig. 2. (a) 𝐿𝑇 vs. ∣𝑉 ∣ (𝑘 = 128 slots). (b) 𝐿𝑇 vs. 𝑟 (n=1000).

candidates, 𝑣𝑖 will choose the one which causes the least value
of (𝑑𝑒𝑝𝑡ℎ(𝑃𝑇 ′(𝑣𝑖)), ∣𝐼𝑇 ′(𝑃𝑇 ′(𝑣𝑖))∣) as its parent. Note that
𝑑𝑒𝑝𝑡ℎ(𝑃𝑇 ′(𝑣𝑖)) can help reduce the data collection latency
and ∣𝐼𝑇 ′ (𝑃𝑇 ′(𝑣𝑖))∣ can help improve slot reuse. Here we give
priority to the former term. So, a pair (𝑎, 𝑏) is considered less
than a pair (𝑐, 𝑑) if 𝑎 < 𝑐 or 𝑎 = 𝑐 but 𝑏 < 𝑑. (Note that here
we use 𝑇 ′ on purpose to reflect the fact that 𝑇 is now under
construction. So, here 𝐼𝑇 ′ (𝑣𝑖) means the set of interference
nodes that 𝑣𝑖 knows so far, from overheard HELLOs.)

4. After 𝑣𝑖 chooses a parent node, there are two cases. (a)
If 𝑣𝑖 ∈ ℛ, it unicasts a JOIN TREE(𝑣𝑖) packet to the sink.
(b) If 𝑣𝑖 /∈ ℛ, it sets a timer Δ𝑇𝑗𝑜𝑖𝑛 and then waits for any
JOIN TREE(⋅) passing it. If it helps relay any JOIN TREE(⋅),
it should join 𝑇 . Otherwise, after Δ𝑇𝑗𝑜𝑖𝑛 expires, it truncates
itself from 𝑇 by sending a TRUNCATE packet to its parent
and flooding a TRUNCATE packet to its children. Note that
the selection of Δ𝑇𝑗𝑜𝑖𝑛 depends on the expected depth of 𝑇 .
A too small Δ𝑇𝑗𝑜𝑖𝑛 will cause some nodes in ℛ unable to
join 𝑇 . We suggest that Δ𝑇𝑗𝑜𝑖𝑛 should be proportional to the
depth of 𝑇 plus some guard time.

5. After receiving JOIN TREE(⋅) packets from all members
of ℛ, the sink will flood an ASSIGN SLOT(ℛ) packet to the
whole network to terminate this phase and start the next phase.

Slot-allocation phase: Nodes in 𝑇 will compete for slots
in a top-down manner. A loop is used to select a node’s slot,
and priority is given to nodes with larger interference sets.

1. After sending out the above ASSIGN SLOT(ℛ) packet,
the sink will assign slot 𝑘−1 to itself and repeatedly broadcast
a GET SLOT(𝑠𝑖𝑛𝑘, 𝑘 − 1) packet to its 2-hop neighbors for
a period of time.

2. When a node 𝑣𝑖 ∈ 𝑇 without a wake-up slot receives a
GET SLOT(𝑣𝑗 , 𝑠𝑗) from its parent node 𝑃𝑇 (𝑣𝑖), it will set a
tentative variable 𝑡𝑖 = (𝑠𝑃𝑇 (𝑣𝑖) − 1).

3. Then, 𝑣𝑖 will try to find a candidate slot 𝑠𝑖 as follows.
(a) Let 𝑆 ⊆ 𝐼𝑇 (𝑣𝑖) be the set of nodes in 𝑣𝑖’s interference
set that have already decided their wake-up slots (this can be
collected from GET SLOT(⋅) packets). (b) If slot (𝑡𝑖 mod 𝑘)
conflicts with any slot owned by nodes in 𝑆, decrement 𝑡𝑖 by
1 and repeat step (a); otherwise, go to step 4.

4. Node 𝑣𝑖 then sets 𝑠𝑖 = 𝑡𝑖 mod 𝑘 as a candidate
slot and repeatedly broadcasts a COMPETE SLOT(𝑣𝑖, 𝑠𝑖)
packet for a period of time Δ𝑇𝑐𝑜𝑚𝑝𝑒𝑡𝑒. Here, Δ𝑇𝑐𝑜𝑚𝑝𝑒𝑡𝑒

should be large enough for each node to disseminate/collect
information to/from its 1-hop and 2-hop neighbors. We suggest
that Δ𝑇𝑐𝑜𝑚𝑝𝑒𝑡𝑒 should be proportional to the square of the
maximum degree of the WSN.

5. During Δ𝑇𝑐𝑜𝑚𝑝𝑒𝑡𝑒, if 𝑣𝑖 receives any REJECT SLOT(𝑠𝑖)
packet, 𝑣𝑖 must go back to step 3 by decrementing 𝑡𝑖 by

1 and find another candidate slot. After Δ𝑇𝑐𝑜𝑚𝑝𝑒𝑡𝑒, if no
REJECT SLOT(⋅) packet is received, 𝑣𝑖 will confirm using
𝑠𝑖 by repeatedly broadcasting GET SLOT(𝑣𝑖, 𝑠𝑖) packets to
its 2-hop neighbors for a period of time.

6. When 𝑣𝑖 receives a COMPETE SLOT(𝑣𝑗, 𝑠𝑗) packet from
𝑣𝑗 and 𝑠𝑗 = 𝑠𝑖, 𝑣𝑖 has a higher priority over 𝑣𝑗 if (i) 𝑣𝑖 has
already broadcasted GET SLOT(𝑣𝑖, 𝑠𝑖) or (ii) 𝑣𝑖 has already
broadcasted COMPETE SLOT(𝑣𝑖, 𝑠𝑖) and ∣𝐼𝑇 (𝑣𝑖)∣ > ∣𝐼𝑇 (𝑣𝑗)∣
or (∣𝐼𝑇 (𝑣𝑖)∣ = ∣𝐼𝑇 (𝑣𝑗)∣ ∧ (𝑖 > 𝑗)). If so, 𝑣𝑖 unicasts a
REJECT SLOT(𝑠𝑗) to 𝑣𝑗 ; otherwise, 𝑣𝑖 will receive a RE-
JECT SLOT(⋅) packet in step 5 and then goes to step 3.

IV. SIMULATION RESULTS AND CONCLUSIONS

We randomly deploy 𝑛 nodes in a 200 × 200 𝑚2 region.
Each node has a transmission range of 20𝑚, and there are 𝑘 =
128 available slots. Let 𝑟 = ∣𝑅∣

∣𝑉 ∣ be the ratio of data collection
nodes. Note that when 𝑟 = 1.0, the problem is equivalent to
the convergecast problem [3]. We compare our scheme against
DSA [3] and Tx-based scheme [5], both of which use a BFS
tree to connect all nodes. In DSA, each node has a reception
slot by considering 2-hop neighbors as its interference set.
In Tx-based scheme, each node has a transmission slot by
considering its 1-hop neighbors, its siblings, and the children
of its neighbors as its interference set. Fig. 2(a) compares
𝐿𝑇 (denoted by lines) under various numbers of ∣𝑉 ∣ when
𝑟 = 1.0. Our scheme has around 62.60% and 32.28% less
latency than DSA and Tx-based scheme, respectively. This is
because the size of our interference set (i.e., 𝐼𝑇 (𝑣𝑖)) is only
about 42.56% and 83.12% of that in DSA and in Tx-based
scheme, respectively, as shown in Fig. 2(a) (denoted by bars).
Fig. 2(b) investigates the impact of 𝑟 on 𝐿𝑇 . It shows that 𝐿𝑇

will increase as 𝑟 increases, but our increasing rate, contributed
by Eq. (1), is relatively slower.

To conclude, this paper considers a data collection scenario
in WSNs which has less strict constraints on interference.
We then propose an efficient scheduling and verify it via
simulations. Our scheme can only handle one data collection
task. When there are multiple tasks, one direct extension is
to union all their sets ℛs and regard them as one task. A
future research direction is how to schedule multiple tasks at
the same time in an efficient way.

REFERENCES

[1] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor
networks,” in Proc. IEEE Int’l Parallel and Distributed Processing Symp.,
2004, pp. 224–231.

[2] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in
wireless sensor networks,” in Proc. ACM Int’l Symp. Mobile Ad Hoc
Networking and Computing, 2006, pp. 322–333.

[3] M.-S. Pan and Y.-C. Tseng, “Quick convergecast in ZigBee beacon-
enabled tree-based wireless sensor network,” Computer Comm., vol. 31,
no. 5, pp. 999–1011, 2008.

[4] L. Paradis and Q. Han, “TIGRA: timely sensor data collection using dis-
tributed graph coloring,” in Proc. IEEE Int’l Conf. Pervasive Computing
and Communications, 2008, pp. 264–268.

[5] H. Wu, Q. Luo, and W. Xue, “Distributed cross-layer scheduling for in-
network sensor query processing,” in Proc. IEEE Int’l Conf. Pervasive
Computing and Communications, 2006, pp. 180–189.

