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新型態的影像分享技術 

 

學生：方文聘 

 

指導教授：林志青博士 

國立交通大學資訊工程學系(研究所)博士班 
 

摘    要 
 

  本論文提出四種新型的影像分享方法。在翻轉型影像分享，我們產生出兩張

投影片。直接將這兩張投影片相疊會看到一張機密影像﹔而如果將其中一張翻轉

後再相疊，則可以看到另一機密影像。在兩層型影像分享，我們也產生出兩張投

影片。如果直接對齊相疊, 則可以看到機密影像，如果將某一張偏移到特定位置

後再將兩張投影片相疊， 則可以看到驗證用的更進一層資訊。在通用型影像分

享，我們設計出一張由公司召集人持有的特殊分存。此特殊分存可以通用於任意

多張機密影像之分享，召集人可持此特殊分存參加任一張機密影像之解碼會議。

這可以解決公司有太多機密影像要分享時，召集人手上的分存數量日益增加的問

題。最後，在快速解碼型影像分享，我們用位元平面的分解法去分享灰階影像。

在影像的解碼會議上，解碼可快速達成。 
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ABSTRACT 

 

This dissertation proposes four new types of image sharing: turnover, two-level, universalizing, and 

fast decoding. In the turnover type, for any two given secret images, two corresponding 

transparencies are produced. Both transparencies look noisy. If we stack the front view of both 

transparencies, then we can see the first secret image. On the other hand, if we stack the front view 

of Transparency 1 with the back view (the turnover) of Transparency 2, then the second secret image 

is unveiled. 

    In the two-level type, we present a two-in-one visual cryptography scheme, which not only 

shares an image of moderate confidentiality between two noisy transparencies, but also hides in 

these two transparencies a more confidential text file, which is either the information for 

authentication purpose or the information describing the image. More specifically, if we stack the 

two transparencies without any shift, then we can see the secret image. On the other hand, if we shift 

Transparency 1 to a predefined amount before stacking with Transparency 2, then we can see some 

other information of more confidential level in the shifted stacking.  
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   In the third type, we design a so-called universal share. A company’s organizer can hold this 

special share to attend any unveiling meeting of any secret image shared in his company. No matter 

how many secret images are shared in his company, the organizer only have to hold this special 

share, rather than thousands or millions of shares.  

   Finally, in the forth type, we use bit-plane decomposition to design a scheme to share gray-value 

secret images. The decoding speed is fast. The method is particularly useful if the threshold r in the 

(r,n) sharing scheme equals n. In this case, not only the decoding speed, but also the encoding speed, 

is very fast. 
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Chapter 1 

Introduction 

The motivation is stated first in Sec. 1.1. The background knowledge for the 

related topics is then introduced in Sec 1.2. Overview of the proposed methods is in 

Sec. 1.3. The organization of the dissertation is in Sec 1.4. 

1.1 Motivation 

Image sharing is used when nobody alone can be trust. No one can get the secret 

image without enough shares. While being applied in practice, the sharing procedure 

may encounter problems including forge shares, difficult management, and slow 

decoding. In this dissertation, we try to find solutions to these problems. We can 

check the shares’ validity by means of the first two image sharing styles introduced in 

this dissertation, namely, the turnover style and two-level style. In the two-level style 

design, the decoding has two levels, and the two levels are of different importance. 

Level 1’s decoding is easier and less confidential than Level 2’s. Also, using the 

universal share designed in this dissertation, a company leader no longer has the 

problem of difficult management due to the increasing amounts of shares. Finally, 

using the image sharing technique designed in our fast-decoding style, the shared 

images can be decoded quickly.  
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1.2 Notations and Background for the related topics 

Visual cryptography (VC) was introduced by Naor and Shamir [NS1995] to 

protect secret images. The important feature is that in visual cryptography, people can 

use their eyes (rather than the computer’s computation) to recover a secret image by 

simply stacking the corresponding shares, while any share alone cannot reveal the 

given secret image. To know the simplest design of VC, the readers may inspect Fig.  

where they can find some very simple pattern blocks that can be used repeatedly to 

decompose a black-and-white secret image. Note that each pixel of the secret image 

yields a 2×2 block in Share 1 and another 2×2 block in Share 2. In fact, for every 

pixel of the secret image, according to whether the pixel is black or white, people just 

use Fig. 1.1 to randomly choose a pair of 2×2 blocks (related to that pixel’s brightness) 

to paint the corresponding position in Shares 1 and 2. For example, if the given pixel 

is white, then use one of the two upper rows to do the painting; if the given pixel is 

black, then use one of the two lower rows. It is obvious that stacking these two blocks 

yields the corresponding block shown in the rightmost column of Fig. 1.1. Notably, 

after stacking, if all four elements in the resulting 2×2 stacked block are black, then 

the input pixel of the secret image must be a black pixel; on the other hand, if just two 

of the four elements in the resulting stacked block are black, then the input pixel must 

be a white pixel. Therefore, the resulting recovered image (2×2=4 times larger than 
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the original secret image) can be utilized to unveil the original secret image easily. 

There are many extended reports or modified works [ABSS2001, BSS1999, NP1997, 

Shamir1998, BSN2002, HLC1999, HCL1999, Hou2003, NS1997, BC1994, CC2002, 

ABSS1996, BS1998] of Naor and Shamir’s work[NS1995], including the extension 

from black-and-white to gray-valued secret images (the extension to color images was 

reported less frequently [LT2003, Stinson1997, ABSS1996]). 

 

A pixel in  

secret  

image 

 Corresponding  

 blocks in  

 Share 1 

Corresponding 

 blocks in  

 Share 2 

 Resulting block 

 from stacking 

 the two shares 

 

    

   

    

   

Fig. 1.1 Some sharing blocks found in Ref. [NS1995] (not used here in the 
dissertation). 
 

1.3 Overview of the proposed methods 

We briefly describe below each of the methods proposed in this dissertation.  

1.3.1 Visual cryptography in turnover style  
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We propose a brand new type of visual cryptography (VC), namely, the VC in 

turnover style. For any two given secret images, two corresponding transparencies S1 

and S2, also known as shares, can be produced. Both transparencies look noisy. 

However, if we stack the front views of both transparencies, then the first secret 

image is unveiled. On the other hand, if we stack the front view of S1 with the back 

view (the turnover) of S2, then the second secret image is unveiled. 

1.3.2 Visual Cryptography in Two-level style: The VC with Extra 

Ability of Hiding Confidential Data.   

Chapter 3 presents a two-in-one Visual Cryptography scheme, which not only 

shares an image of moderate confidentiality between two noisy transparencies, but 

also hides in these two transparencies a more confidential text file describing the 

image. None of the transparencies alone can reveal anything about the image or text. 

Later, people can view the image by simply stacking the two transparencies; on the 

other hand, after certain simple computations, the more confidential text data can also 

be extracted. We also introduce here an alternative version in which the decoding of 

both the image and text needs no computer.  

 

1.3.3 Universal share for the sharing of multiple images  

To share numerous grey-valued images (or numerous color-valued images), chapter 4 
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presents a system with a universal share. A company organizer can use this universal 

share to attend the recovery meeting of any shared image. No storage space is wasted; 

i.e. for each shared image, the total storage space occupied by all generated shares 

(including the universal share) is identical to the image size. 

 

1.3.4 Fast-decoding sharing of a gray-value image: by using bit-level 

sharing and economic size shares  

Chapter 5 proposes a method to distribute images over network, or store images 

among several storage places. The reconstruction of the images is lossless and fast. 

The size of each transmitted share is also competitive, as compared with an earlier 

work which is also bit-level based.    

1.4 Dissertation Organization 

In the rest of this dissertation, Chapter 2 discusses the visual cryptography in 

turnover style. Chapter 3 discusses another visual cryptography with extra ability of 

hiding confidential data. Chapter 4 proposes the universal share for the sharing of 

multiple images.  By using bit-level sharing and economic size shares, Chapter 5 

introduces a fast-decoding type sharing for gray-value images. Finally, the 

conclusions and suggestions for future works are in Chapter 6.  
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Chapter 2  

Visual Cryptography in Turnover Style 

In this Chapter, we propose a visual cryptography scheme of turnover style. 

Traditionally, only one secret image can be unveiled when two shares are 

collected.[ ABSS1996, ABSS2001, BC1994, BS1998, BSN2002, BSS1999, CC2002, 

HLC1999, HCL1999,  Hou2003, LT2003, NP1997, NS1995, NS1997, Shamir1998, 

Stinson1997] In this chapter, how the two shares generated by our method can unveil 

two secret images will be described. The rest of this chapter is organized as follows. 

The problem is stated formally in Section 2.1. The analysis of the problem is in 

Section 2.2. Our design based on the analysis is in Section 2.3. Experimental results 

are shown in Section 2.4. The perturbed version of the design is in Section 2.5. Finally, 

the discussion is presented in Section 2.6.  

   The notation is given below. Notably, when a pair of pixels (one from secret 

image 1, and the other from secret image 2) is decomposed to generate a pair of 

blocks (one in Share 1 and and the other in Share 2), the block size of both blocks will 

always be 3-by-3 in our method. Therefore, the stacked blocks are also 3-by-3.  

Notation:  

S1 and S2: the two generated transparencies (shares). 

(x, y): the 3-by-3 block at location (x, y) of each share. Note that 1≤x≤256 and 
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1≤y≤256 if the given secret images are 256-by-256 (because then there 

will be 256×256 blocks for each share). 

B: a black block. (In the recovered images obtained from stacking shares, a 

black block is a 3-by-3 block consisting of 8 black elements and 1 white 

element). 

W: a white block. (In the recovered images obtained from stacking shares, a 

white block is a 3-by-3 block consisting of 6 black elements and 3 white 

elements). 

 

2.1 The goal 

In this chapter, we will try to design two transparencies S1 and S2 meeting the 

following two requirements: if we stack S1 and S2 directly, then the stacked result will 

be the first secret image (say, ″LENA″); if we turn over the transparency S2, and then 

stack it with S1 (S1 is without turnover), then the stacked result will become the second 

secret image (say, ″PEPPERS″). The idea is illustrated in Fig 2.1.  
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Fig. 2.1. Visual Cryptography in turnover style 

 

 Before designing our method, we have to define the problem more precisely. 

Note that in visual cryptography, it is hard to design the transparencies without 

size-expansion. [ABSS1996, ABSS2001, BC1994, BS1998, BSN2002, 

BSS1999, CC2002, HCL1999, HLC1999, Hou2003, LT2003 ,NP1997, NS1995, 

NS1997, Shamir1998, Stinson1997]In our design, if the two input images Lena 

and Peppers are both 256-by-256 in size, then each of our two transparencies 

will be 768-by-768 (where 768=3×256), and each of the two recovered images 

LENA and PEPPERS will also be 768-by-768. This is because we always use 

(Noisy) 
transparency  

S2 
 

The turnover 
of S2 

 (still noisy) 

(Noisy) 
transparency

S1  
 

Turnover 

1st image 
″LENA″ 
recovered 

from stacking 

2nd image  
″PEPPERS″ 

recovered 
from stacking 
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blocks of size 3-by-3 to expand pixels. Also, we have to define the so-called 

black blocks and white blocks in the recovered images LENA and PEPPERS. In 

our approach, as listed in the notation part of this chapter, each 3-by-3 block in 

the recovered images will be called a white block if its 9 elements consist of 6 

black elements and 3 white elements. On the other hand, it will be called a black 

block if it consists of 8 black elements and 1 white element. Now we can state 

the problem precisely, as follows: 

 

The Problem 

Given: two input images, say, Lena and Peppers. (Both are 256-by-256 and 

black-and-white [2-level].) 

Goal: to generate two 768-by-768 transparencies (S1 and S2) so that stacking S1 

and S2 will give us the recovered image LENA (defined below); while 

stacking S1 and S~ 2 (the back-view of the S2) will give us the recovered 

image PEPPERS (defined below). 

Recovered images: a 768-by-768 ″LENA″ and a 768-by-768 ″PEPPERS″. Note 

that each recovered image is a 768-by-768 black-and-white image 

consisting of 768/3×768/3=256×256 non-overlapping blocks. Each 3-by-3 

block (x,y) in LENA is a black block if and only if the corresponding 
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(1-by-1) pixel (x,y) in the original 256×256 image Lena is a black pixel. 

Each 3-by-3 block (x,y) in PEPPERS is required to meet the same 

statement (except that the term ″Lena″ is replaced by the term ″Peppers″). 

 

2.2. Analysis 

2.2.1 The turnover operation 

Fig. 2.2 below easily describes the turnover operation of a transparency. The 

dashed line is a rotation axis to rotate the image in order to get the turnover version of 

a transparency. 

Fig. 2.2 The ″turnover″ operation of a transparency. (a) is a transparency, and (b) is its 

turnover version (the back view of the transparency in (a)). 

 

2.2.2 Stacking the two transparencies 

We may use Fig. 2.3 to illustrate how two transparencies S1 and S2 are stacked to get 

(a) (b) 



 11

LENA and PEPPERS. When we stack S1 and S2, i.e. when we stack S1 with the front 

view of S2, then, each 3-by-3 block (x, y) of S1 is stacked precisely on the 

corresponding block (x,y) of S2, and becomes the block (x, y) of the recovered image 

LENA. This statement holds for all 1≤ x≤ 256 and 1≤ y≤ 256. On the other hand, when 

we turn over the transparency S2 and stack it with S1 (note that S1 is without turnover) 

to get the recovered image PEPPERS, the block (x,y) of PEPPERS is in fact the stacked 

result of stacking the block (x,y) of the transparency S1 with the turnover version (for 

example, the symbol ″E″ becomes ″∃ ″) of a block which was originally the block 

(256-x,y) of (the front view of ) the transparency S2. 

 An argument similar to the above paragraph also shows that, when we stack S1 

and S2, the block (256-x,y) of the transparency S1 is stacked with the block (256-x,y) of 

the transparency S2 to get the block (256-x,y) of the recovered image LENA. On the 

other hand, when we turn over the S2 and stack it with the transparency S1 to get the 

recovered image PEPPERS, the block (256-x,y) of PEPPERS is in fact the stacked 

result of stacking the block (256-x,y) of the transparency S1 with the turnover version 

of a block which was originally the block (x,y) of (the front view of) the transparency 

S2. 

Based on the observations stated in the above two paragraphs, we know that (see Fig. 

2.3): 
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Lααα =⊕ 21  ,      (2.1) 

Lβββ =⊕ 21  ,      (2.2) 

p
overturn αβα =⊕ − )( 21 ,    (2.3) 

and 

P
overturn βαβ =⊕ − )( 21 .   (2.4) 

Here, ″⊕ ″ means the stack operation; iα  means the block (x, y) of the transparency 

iS  (i=1 and 2); while Lα and Pα mean the block (x,y) of the recovered image LENA 

and PEPPERS, respectively. Similarly, iβ  means the block (256-x, y) of the 

transparency iS  (i=1 and 2); while Lβ  and Pβ means the block (256-x, y) of the 

recovered images LENA and PEPPERS, respectively. The above four equations (1)-(4) 

give us the rules to design our transparencies, and the design is discussed in next section. 
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Fig. 2.3 Two types of stacking. 
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2.3. The design of the shares (transparencies) S1 and S2 

 Using the requirement (1)-(4), we may now design our two transparencies S1 

and S2. Note that if we inspect the blocks αL , βL, αP, and  βP, and keep in mind that 

each of these four stacked blocks is either a black block or a white block (because we 

require that, say, block αL is a black block if and only if the corresponding pixel (x,y) 

in the original black-and-white image Lena is a black pixel), we know that there are 

16 possible cases for the blackness-whiteness of the four stacked blocks (αL, βL, αP, 

βP), namely, (W,W,W,W), (W,W,W,B), (W,W,B,W), (W,W,B,B), (W,B,W,W), 

(W,B,W,B), (W,B,B,W), (W,B,B,B), (B,W,W,W), (B,W,W,B), (B,W,B,W), 

(B,W,B,B), (B,B,W,W), (B,B,W,B), (B,B,B,W), and (B,B,B,B). Therefore, according 

to these 16 possible cases, we may design our pattern blocks and use these pattern 

blocks to ″paint″ the two transparencies S1 and S2. The pattern blocks are sketched in 

Fig.2.4. 

 To illustrate how to use Fig. 2.4, without the loss of generality, assume that the 

two pixels (x,y) and (256-x,y) in the original image 1 (Lena) are both black, and the 

two pixels (x,y) and (256-x,y) in the original image 2 (Peppers) are both black too. In 

other words, assume that we have a (B,B,B,B) case here. We can look up the first 

column of the table in Fig.2.4 and find that the (B,B,B,B) case is shown in the last row. 

As a result, we can paint the two corresponding blocks (x,y) and (256-x,y) of the 
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transparency S1 by the two pattern blocks sketched in the last row of the two columns 

marked as (α1) and (β1), respectively. Similarly, we can paint the two corresponding 

blocks (x,y) and (256-x,y) of the transparency S2 using the two pattern blocks sketched 

in the last row of the two columns (α2) and (β2), respectively. It is obvious that the 

stacked results {αL (which is α1 ⊕ α2) , βL (which is β1 ⊕ β2) , αP (which is 

)( 21
overturn−⊕ βα ), βP (which is )( 21

overturn−⊕ αβ ) } really meet the expected 

blackness/whiteness values, namely, they are all black blocks, as shown in the last 

columns of the last row of Fig.2.4.  
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 Design of the two 
 transparencies 

Our goal for 
the stacked 
results 

Transparency 

   S1 
Transparency 

   S2 

 Stacked results really 
 meet our goal 

(W,W,W,W) 
(W,W,W,B) 
(W,W,B,W) 
(W,W,B,B) 
(W,B,W,W) 
(W,B,W,B) 
(W,B,B,W) 
(W,B,B,B) 
(B,W,W,W) 
(B,W,W,B) 
(B,W,B,W) 
(B,W,B,B) 
(B,B,W,W) 
(B,B,W,B) 
(B,B,B,W) 
(B,B,B,B)    

                  (α1) (β1)    (α2) (β2)      (αL) (βL) (αP) ( βP) 

Fig.2.4. The pattern blocks {α1, β1, α2, β2} used in our method to paint the two 

transparencies. Columns (α1) and (β1) are, respectively, the pattern 

blocks in position α=(x,y) and position β=(256-x,y), for transparency S1. 

Analogously, columns (α2) and (β2) are for transparency S2; (αL) and (βL) 

are for the stacked result ″LENA″; (αP) and (βP) are for the stacked result 

″PEPPERS″. Note that the stacked result are Lααα =⊕ 21 , Lβββ =⊕ 21 , 

p
overturn αβα =⊕ −

21 , and P
overturn βαβ =⊕ −

21  (to understand, see Fig.  

2.3, which corresponds to the last row (B,B,B,B) here). 
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2.4. Experiment 

 Fig. 2.5 shows the experimental result. The two binary images (a) and (b) in Fig. 

2.5 are the original secret images (Lena and Peppers), both are 256-by-256. We then 

use the pattern listed in Fig.2.4 to create the two transparencies S1 and S2 ((c) and (d)). 

If we stack S1 and S2, the stacked result is (e). If we stack S1 and the back-view of S2, 

that is, stack (c) and the turnover version of (d), then we get another stack image (f).  

   

(a)         (b)                  

  

              (c)           (d)                            
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(e)        (f) 

Fig. 2.5 The experiment of the turnover-style visual cryptography. (a) and (b) are 

the two original black-and-white images; (c) and (d) are the two generated 

transparencies S1 and S2; whereas (e) and (f) are the two recovered images ((e) 

is the result of stacking the pair {(c),(d)}, while (f) is the result of stacking 

the pair { (d)turnover , (c) }). 

2.5 Perturbed version of the design 

 If we inspect Fig. 2.5(d) carefully, we can see that some rough contours of Lena 

appear in this transparency. The reason of this phenomenon might be that sometimes 

the same case (e.g. the (B,W,B,B) case) repeats along one side of the original contour 

of the input secret image Lena. For example, Lena’s (139,36) is black, Lena’s 

(256-139,36) is white; Peppers’ (139,36) is black, and Peppers’ (256-139,36) is black. 

Then, again, Lena’s (139,37) is black, Lena’s (256-139,37) is black; Peppers’ (139,37) 

is black, Peppers’ (256-139,37) is black. We will then repeatedly use the same pattern 

blocks listed in row 12 (the (B,W,B,B) row) of Fig.2.4 to paint transparencies S1 and 

S2 on the corresponding positions. The above analysis also holds on the other side of 

the original contour of the input secret image Lena. Therefore, the contour might also 

appear in the produced transparencies. In order to reduce this phenomenon, we use the 

three rules shown in Fig. 2.6 (b-d) to perturb each row of Fig.2.4 to obtain more 

combinations of pattern blocks {α1, β1, α2, β2}. In summary, the general guideline is to 

avoid using a single combination of pattern blocks repeatedly to represent a case (say, 
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the (B,W,B,B) case). 

 Below, we discuss how to perturb each row of Fig. to obtain more combinations. 

At least three possible ways exist. Notably, although Fig. 2.6 only shows how the three 

kinds of operation can be applied to perturb the case in which the stacking result is 

(W,W,W,W), these three types of operations can be attempted to operate each of the 

2×2×2×2=16 cases listed in Fig.2.4 to generate more combinations.   

Among the three types of operations, the first type is the so-called ″external 

interchanging″, i.e. interchanging between transparencies S1 and S2 in a 

position-by-position manner. In other words, swap the (α1) and (α2) columns in Fig. 

2.4 because both correspond to the position (x,y); then swap the (β1) and (β2) columns 

because both correspond to position (256-x,y). (See Fig. 2.6 (b) for the external 

interchanging.) The second type of operation that can be used is the so-called 

″internal permutation″, i.e. permute the 3 rows of the elements for each 3-by-3 pattern 

block in (α1), then do the same permutation of rows for each pattern block in (β1), (α2) 

and (β2). (See Fig. 2.6 (c) for the internal permutation.) The third type of operation 

that may be used is to re-design the pattern blocks without referring to the pattern 

blocks listed in Fig.2.4. For example, if our goal is that the stacked result appearing 

on LENA’s (x,y), LENA’s (256-x,y), PEPPERS’ (x,y),  and PEPPERS’ (256-x,y), are  

W, W, W, and W, respectively; then we can see that not only 2.6 (a)-(c) but also 2.6 (d) 
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meet our goal: the stacked results ( Lααα =⊕ 21 , Lβββ =⊕ 21 , p
overturn αβα =⊕ −

21 , 

P
overturn βαβ =⊕ −

21 ) are indeed (W, W, W, W). 

Finally, as a very specific remark to benefit the readers, although internal 

permutation always guarantee that the output case is always the same as the input case 

(e.g. if the input case is (W, W, B, W), the output case must also be (W, W, B, W)), the 

external permutation does not guarantee this. For example, when the 

external-interchanging operation is applied to the (W, W, B, W) case of Fig. 2.4, the 

generated combination will be suitable for the (W, W, W, B) case, but not the (W, W, B, 

W) case. On the other hand, when the external interchanging operation is applied to 

the (W, B, W, W) case of Fig. 2.4, the generated combination will still be suitable for 

(W, B, W, W) case. In fact, for 8 of the 16 cases in Fig. 2.4, each will switch to another 

case when external-interchanging operation is applied. So, only 16-8=8 cases can use 

external-interchanging; and these 8 cases are (W, B,W, W),(B, W, W, W),(W, W,W, 

W),(B, B, W, W),(W, W, B, B),(B, B, B, B). 

After perturbing each row of Fig. 2.4 using the three operations mentioned above 

(or equivalently, mentioned in Fig. 2.6 (b)-(d)), we will have more choices when we 

want to paint the two transparencies S1 and S2. We just randomly select one of the 

many choices to do the painting. For example, for the (W, W, W, W) case, sometimes 

we use Fig. 2.6(b), sometimes we use Fig. 2.6 (c), which has 3!=6 possible 
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combinations (one of them is shown in Fig. 2.6(a)), and sometimes we use  

Fig. 2.6(d). Then, the generated transparencies S1 and S2 are as shown in Fig. 2.7 

(c)-(d). Fig. 2.8 is another experiment for this perturbed version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. Three kinds of perturbation operation to get some other combinations of 

pattern blocks whose stacked results ( Lααα =⊕ 21 , Lβββ =⊕ 21 , 

p
overturn αβα =⊕ −

21 , P
overturn βαβ =⊕ −

21 ) are all (W,W,W,W). (a) is the first row 

(the (W,W,W,W) row) of Fig. (b) is obtained from (a) by switching α1 with α2, then 

followed by switching β1 with β2. (c) is obtained from (a) by permuting the 3 rows 

of α1, then permuting the 3 rows (using the same permutation order) for each of α2, 

β1 and β2. (d) is obtained using a new design (not necessarily related to (a)).  
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         (a)         (b)                  

   

(c) (d) 

.    

              (e)                   (f) 

Fig. 2.7 The experiment (perturbed version). (a) and (b) are the two original images; 

(c) and (d) are the two generated transparencies S1 and S2; whereas (e) and (f) 

are the two recovered images ((e) is from stacking {(c),(d)}, while (f) is from 

stacking {(d)turnover , (c)}). 
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 (a)         (b) 

  

               (c)          (d)                        

                     

     (e)                      (f) 

Fig. 2.8 Another experiment for the perturbed version. (a) and (b) are the two 
original images; (c) and (d) are the two generated transparencies S1 and S2; 
whereas (e) and (f) are the two recovered images ((e) is from stacking {(c),(d)}, 
while (f) is from stacking {(d)turnover , (c)}). 

 

2.6. Summary 

 A new style of visual cryptography, called the visual cryptography in the 
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turnover style, has been proposed in this chapter. After the analysis using Fig. 2.3, we 

set up Equations (1)-(4) as the requirement for the design. Then we designed in 

Fig.2.4 the 16 basic combinations of pattern blocks to handle the 16 possible cases 

WWWW, WWWB,…,BBBB. In order to reduce the original-image-related contours 

from appearing in transparencies, we used the perturbation technique (Fig. 2.6) to get 

a perturbed version. The final result was shown in Fig. 2.7 and 2.8. The major 

contributions of this chapter might be stated as: a) the back-view of the transparency 

was also used; and b) the design showed that two noisy transparencies (S1 and S2) 

could share more than one secret image. In the future, we may try to find more 

efficient ways to perturb the patterns in Figures 2.4 and 2.6 to deal with the contour 

problem. It is also an interesting challenge to reduce the left-to-right discontinuity 

behavior across the vertical middle line {(x,y) | x=128 and y=1,2,…,256} of the 

stacked results (assuming that the input images are 256-by-256). 

 Below, we explain why all the blocks used in this chapter are 3-by-3 instead of 

2-by-2. Let PT be the number of black elements in a transparency block (i.e. a block in 

either transparency S1 or S2), Pb be the number of black elements in a recovered 

image’s black block (i.e. a black block in LENA or PEPPERS), and Pw be the number 

of black elements in a recovered image’s white block (i.e. a white block in LENA or 

PEPPERS). For example, if the blocks being used are 3-by-3, then PT =5, Pw=6, and 
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Pb=8 in Fig. 2.4. Now, if the blocks used in the method are all n-by-n, then, regardless 

of the value of n, the constraints stated in Eq. (2.5)-(2.6) below must always be 

satisfied. 

Since the number of black elements in any n-by-n block must not exceed n×n, we 

have 

    n  n0 ×<< TP              (2.5)                        

In Eq. (2.5), the value of PT cannot be 0 or nn× . If PT  is 0, then all of the blocks in 

the whole transparency has no black elements at all, so the whole transparency S1 is 

white everywhere (so is S2). If one stacks the two transparencies, one will only yield 

an image which is white everywhere. Therefore, PT cannot be 0. Analogous argument 

also explains why PT cannot be nn× .  Now, consider what will happen when a 

transparency block of S1 is stacked with a transparency block of S2. If none of the PT 

black elements of S1 overlap the PT black elements of S2, then the stacked result will 

have 2PT black elements. On the other hand, if all black elements overlap in pairs 

when the two transparency blocks are stacked, then the stacked result will have only 

PT black elements. Therefore, after stacking, the black elements appearing in the 

resulting block must be in the range between PT and 2PT . As a result, the values of Pb 

and Pw must satisfy  

     ≤<≤ bwT PPP TP2 .                 (2.6) 
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Here, Pw < Pb is due to the natural requirement that the number of black elements 

appearing in a white block of the stacked results is always smaller than that appearing in 

a black block. 

With the requirements (2.5) and (2.6) above, if we use 2×2 blocks in the method, then 

PT cannot be 0 and 4 by Eq. (2.5). Since PT is 1, 2, or 3, Eq. (2.6) implies that the only 

possible cases of (PT, Pw ,Pb) are (1,1,2), (2,2,3), (2,2,4), (2,3,4), and (3,3,4). After 

checking Eq. (2.1)-(2.4) carefully, we find that none of the (PT, Pw ,Pb)-triples in the 

candidate set {(1,1,2), (2,2,3), (2,2,4), (2,3,4), (3,3,4)} can generate all the 16 expected 

cases listed in Fig. 2.4. For example, the (W,W,W,B) case cannot be generated when 

(PT, Pw ,Pb)=(1,1,2), i.e. we cannot find the four 2-by-2 blocks {α1,β1,α2,β2} such that 

each block has only one black element (because PT =1), and the stacked results 

defined by Eq. (2.1)-(2.4) are W,W,W, and B, respectively. We therefore abandoned 

2×2 blocks and used 3×3 blocks in this chapter. With the decision of using 3×3 blocks, 

we have tried several other kinds of settings to satisfy Eq. (2.5)-(2.6) (for example, 

using PT =6, Pw =7, Pb =8). However, we found that designing the pattern blocks to 

satisfy Eq. (1)-(4) for all 16 cases was hard for most of these settings. For example, the 

(PT =7, Pw =7, Pb =9) setting cannot generate the pattern blocks needed for the 

(W,W,W,B) case. As for the (PT =6, Pw =7, Pb =8) setting, although we did obtain some 

pattern blocks (for each of the 16 cases) that meet all the requirements in Eq. 
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(2.1)-(2.4), the recovered images are darker and have smaller contrast values than 

those appeared in Fig. 2.5, 2.7, and 2.8. We therefore still used PT =5, Pw=6, and Pb=8 

in our design. 
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Chapter 3  
Visual Cryptography in Two-level 

Style: the VC with Extra Ability of Hiding 
Confidential Data 

We try to design in this chapter a VC scheme whose decoding has two levels, and 

these two levels are of distinct importance. The proposed VC scheme shares an image 

Lena of moderate confidentiality using two transparencies; and these two 

transparencies together can also extract a more confidential text data file describing 

the image Lena. More specifically, simply stacking the two transparencies can show 

the image Lena directly; meanwhile, after certain computations (or after shifting one 

of the transparencies before stacking), one can also extract the more sensitive text data. 

Of course, none of the transparencies alone can reveal anything about the image Lena 

or the more sensitive text.   

   There are several kinds of application for this scheme. Perhaps the most direct 

application is to store or transmit an image of moderate confidentiality (for example, 

the photo of an employee, a suspect, or a VIP member) using the two generated 

transparencies, whose stacking together can yield the image. In addition, the 

background description of the image (for example, the employee’s name, address, 
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birthday, nationality, salary, and professional training) can only be extracted from 

joint information of the two transparencies by a high-ranking officer who knows the 

decoding key discussed in Sec. 3.3. As a result, if the two shares are collected, both of 

the lower rank officers and their commander can view the image; however, only the 

commander can decrypt the background text.  

   Another application is to authenticate the transparencies generated by the VC 

system so that the combination containing faked transparencies can be identified, as 

will be discussed later in Sec. 3.3. 

The rest of this chapter is organized as follows: the method is stated in Sec. 3.1; 

the experimental results are in Sec. 3.2; the application to the authentication of the 

transparencies is in Sec. 3.3; the security concern is discussed in Sec. 3.4; an 

alternative version, whose decoding does not need any computer, is given in Sec. 3.5; 

finally, the conclusions are in Sec. 3.6. Throughout the chapter, ″Lena″ is an input 

image of size 256-by-256, whereas ″LENA″ is the corresponding 512-by-512 

stacking result obtained from stacking the two transparencies (both are 512-by-512) 

generated by the proposed method. 

3.1. The method 

We describe here how to create the two transparencies. Before doing so, we will 
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need to introduce six fundamental blocks (Type 0 - Type 5, see Fig. 3.1) and the 

combinations to expand a white pixel or a black pixel (see Fig. 3.2 and 3.3, 

respectively) of a given image Lena. 

The simplest design is to use 2x2 as the expansion rate, i.e. each share is 2x2 

times greater than the input image Lena in size. Then, to define the fundamental 

blocks, we consider all possible cases in which a 2-by-2 block has 2 white elements 

and 2 black elements. Therefore, we obtain C(4,2)=4x3/2=6 types of fundamental 

blocks, called Types 0,1,2,3,4,5, as shown in Fig. 3.1.  

 

 
Fig.3.1. The six types of fundamental blocks (Types 0-5) 

 

When we stack two shares and obtain the stacking result, it is an image 2x2 times 

greater than the input image Lena; for each pixel of Lena is expanded to a 2-by-2 

block of the stacking image LENA. In order to maintain the black-and-white 

distribution (and hence the visual appearance) of the input image, the number of black 

elements in each black block of the stacking result LENA (a 2-by-2 block expanded 

from a black pixel of Lena) should be more than that of each white block of the 

stacking result LENA (a 2-by-2 block expanded from a white pixel of Lena). For 

simplicity of the design, we assume that each black block has four black elements, 
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and each white block has two white elements. (This obviously meets the rule that each 

black block has more black elements than each white block has.) Under this 

assumption, it is easy to see that if we want to share a white pixel of Lena, we may 

use one of the six combinations {(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)} sketched in Fig. 

3.2 to paint the corresponding position of the two shares. For example, the 

combination (3,3) means that , when we encode a white pixel, we may paint both 

Shares 1 and 2 (at the block position corresponding to the white pixel being processed) 

using the fundamental block of Type 3. Then in the decoding process, stacking these 

two shares will generate a white block (a 2-by-2 block having 2 white elements and 2 

black elements) at the corresponding position. Analogously, we may use Fig. 3.3 to 

encode a black pixel of the input image Lena. 

Also note that, in order to hide the more sensitive text file, we first transfer the text 

file to a sequence of digits of base 6, since we have six types of fundamental blocks. 

(Therefore, all digits are in the range 0-5.) Then this sequence is hidden.  
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Fig.3. 2 The pairs whose stacking results represent white blocks. 

 
 
 
 
 

Combinations (0,1) (1,0) (2,3) (3,2) (4,5) (5,4) 

Blocks in 
Share 1 

 
 
  

 
 
  

 

 

 

 

 

 

 
  
   

Blocks in 
Share 2 

 
 
  

 
 
  

 

 

 

 

 

 

 
  
   

Stacking 
result 

 
 
  

 
 
  

 

 

 

 

 

 

 
  
   

 
Fig. 3.3 The pairs whose stacking results represent black blocks. 

 

 

Below is the algorithm of the proposed method. The more sensitive text file is 



 33

hidden first using Part I of the algorithm; the input image Lena is then hidden using 

Part II.  

Encoding algorithm. 

 Part I. (To hide the confidential text data d = (d1, d2, d3,…, d8 , d9,…) where each 

di is a digit in the range 0-5.) 

Step 1. Split each digit di into two parts xi and yi so that if a person only acquires one 

of the two numbers in {xi ,  yi}, he cannot extract di  . More precisely, we 

randomly select a number xi in the range 0-5, then find the corresponding yi  

in the range 0-5 so that (xi + yi)= di mod 6. For example, if the confidential 

text data d = (d1 , d2, d3,…, d8 , d9,…) = (1035004234…), then we may 

decompose d as 

1=3+4 mod 6 , 

0=1+5 mod 6 ,  

3=1+2 mod 6 , 

5=0+5 mod 6, 

0=2+4 mod 6, 

0=0+0 mod 6 , 

etc. 

Step 2. In an interleave manner, the process sequentially generates half of the pixels in 
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each of the two transparencies.  For instance, 1=3+4 mod 6, 0=1+5  mod 6, 

and 3=1+2 mod 6 in the above example, so the 2-by-2 fundamental blocks of 

Types 3, 1, 1 are the 1st ,  3rd , and 5th  blocks of Transparency 1,  while 

the 2-by-2 fundamental blocks of Types 4, 5, 2 are the 2nd, 4th, and 6th  

blocks of Transparency 2. As for the remaining blocks, they are to be 

determined later in Part II to share the image Lena. In other words, as is 

shown in Fig. 3.4, right now we have 

Transparency 1 :     3  ?  1  ?  1  ?  0  ?  2  ?  0   ? …, 

Transparency 2:      ?  4  ?  5  ?  2  ?  5  ?  4  ?   0  …., 

Part II. (To share the input image Lena) 

Step 3.To determine the block types of the remaining blocks (the question marks 

written at the end of Step 2 above) of the two transparencies,  we sequentially 

read the pixel values of the input image Lena. Without the loss of generality, 

assume that, according to the scanning order, the pixel values are 

BBWBWB…. Since the desired visual decoding property requires that, after 

stacking,  the 2-by-2 blocks had better also appear in the sequence 

BBWBWB…, thus the block types of the ″?″ can be determined by looking up 

the table in Fig. 3.2 (or Fig. 3.3) if a ″W″ (or a ″B″) is the current pixel value 

of Lena. This results in the two transparencies shown in Fig. 3.5; in other 

words, we now have: 
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      Transparency 1:           3    5    1     4     1      3    …,   
      Transparency 2:           2    4    1     5     1      2    …,     
      Expected stacking:         B   B    W    B    W      B   …. 

       —END of the Algorithm— 
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Fig. 3.4 Hiding the confidential text file (see Steps 1 and 2 of the encoding 
algorithm). 
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Fig. 3.5 Sharing the secret image Lena (see Step 3 of the encoding algorithm) by 
filling in the undetermined parts of Fig. 3.4. 
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   In the decoding phase, directly stacking the two transparencies can reveal the 

(enlarged) image LENA without any computation, while the hidden text file d = (d1 , 

d2, d3,…, d8 , d9,…) = 1035004234…can be extracted by the formula (xi + yi)= di 

mod 6 from the two transparencies. Here, xi is the block type of the (2i-1)-th block of 

Transparency 1, and yi is the block type of the (2i)-th block of Transparency 2.  

3.2 Experimental results 

The experimental results are shown in Fig. 3.6. The size of each transparency is 

512x512, which is 2x2 times larger than the 256x256 input image Lena. The 

transparencies are noise like. If we stack them, then we can get the visible image 

directly as shown in Fig 3.6(d). The two transparencies can also cooperate together to 

extract a sequence of 128x256 digits (each digit is in the range 0-5) hidden earlier, 

and this sequence is the confidential text for the purpose of validity-verification or 

background-description. The contrast (defined in Ref. [HKS2000]) of our stacked 

result (Fig. 3.6(d)) is always (4-2)/(2x2)4=50% because each 2-by-2 block of our 

stacked result always has 4 black elements if it is a black block, and 2 black elements 

if it is a white block. Notably, according to Ref [HKS2000], the contrast is good if it 

reaches 50%. Therefore, the visual quality of our stacked result is not worse than 

those obtained using reported VC methods, while we have the extra advantage to hide 

the confidential text describing the unveiled image. 
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      a                  b                       c 

     
       d                       e                  f 

 
         g 

 

Fig. 3.6 An example illustrating the proposed method. 

(a) is the original halftone secret image ″Lena″; (b) and (c) are the two transparencies 

generated by our method;  (d) is the image ″LENA″ obtained by  stacking  (b) and 

(c) (note that (b) and (c) can also be used to extract the hidden confidential text); (e) is 
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a faked halftone image ″Girl″ owned by a hacker; (f) is a faked transparency; (g) is 

the faked image ″GIRL″ obtained by stacking (b) and (f). (However, by extracting the 

hidden text from (b) and (f), our ally can know that (g) is faked.) 

 

3.3 Application to the authentication of the transparencies   

  As mentioned in Sec. 3.1, one of the applications of the proposed scheme is to 

authenticate the transparencies so that the combination of faked transparencies can be 

identified. This is explained below. We only have to transform an authentication 

message to a sequence d of digits in the range 0-5, and then hide this sequence 

according to Part I of the algorithm to obtain Shares 1 and 2. Now, assume that a 

hacker intercepts Share 1 (Fig 3.6(b)). Using Share 1 and his own faked input image 

″Girl″ (Fig. 3.6(e)), the hacker may create a faked share (Fig. 3.6(f)), called Share 2’, 

so that stacking Shares 1 and 2’ will yield the faked stacking result ″GIRL″ (Fig. 

3.6(g)). However, the hacker cannot fool our agent/ally who is waiting at the receiver 

end of our network, since the faked pair {Share 1, Share 2’} cannot extract d (and 

hence, cannot extract our authentication message).  

3.4 Techniques to improve the security 

Because Shares 1 and 2 are transmitted using two distinct channels or stored in two 

different places, the chance that both shares are intercepted is very low. However, to 
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reduce the damage that might be caused by a super-hacker (or an internal betrayer of a 

company) who might intercept or access both Shares 1 and 2, the security department 

can modify our algorithm by using their own manner to reassign the locations of the 

{xi} in Share 1 and {yi} in Share 2. ({xi} are not necessarily in the odd positions of 

Share 1, and {yi} are not necessarily in the even positions of Share 2 [see the final 

sentence of Step 2 of the algorithm].) For example, to paint the two shares (also called 

transparencies), the sequence (x1,  y1 ,  x2 , y2 ,  x3 ,  y3 ,  x4 ,  y4 ,  x5 ,  

y5  , …) can be permuted by a random-position generator using a security seed. For 

instance, it becomes (x1,  x2 ,  x3 ,  y3 ,  y2  ,   y4 ,  x7 ,  y1 ,  y5 ,    x4 ,  x8 , 

x9 ,   …) after the permutation. Then the last two lines of Step 2 becomes 

 Transparency 1:  x1   x2   x3  ?    ?   ?   x7   ?  ?   x4    x8  x9   …, 

 Transparency 2:  ?    ?   ?   y3  y2    y4  ?    y1  y5     ?    ?  ?    ….         

In the hidden-message extraction phase, the inverse of the random position generator 

is applied using the same seed in order to reverse the sequence (x1 , x2   ,  x3 ,  y3 ,  

y2  ,   y4 , x7 , y1 , y5 ,    x4 ,  x8 , x9 ,   …)  back to ( x1 , y1 ,  x2 , y2   , x3 , y3 , x4 ,  

y4 , x5 ,  y5  , …) . Then, as usual, (xi + yi)= di mod 6  are utilized to generate (d1 , 

d2   ,  d3 ,  …). Because the super-hacker does not know how the designer 

distributes the {xi} and {yi}, two things can be assured even if both Shares 1 and 2 are 

intercepted. First, the super-hacker is very unlikely to extract the confidential text d. 
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Second, the super-hacker is very unlikely to use the information grabbed from the two 

intercepted shares {Shares 1 and 2) to produce two faked shares {Shares 1’ and 2’} 

which can also pass our authentication test. (In addition, stacking them yield a faked 

image similar to the ″GIRL″ image in Fig. 3.6(g).) Of course, if the pixels of the input 

image Lena are also permuted using a random-position generator, then the image 

LENA itself is also free from being viewed by the super-hacker intercepting both 

Shares 1 and 2. But this operation (permuting pixels of Lena) is seldom used unless 

the image Lena itself is also highly confidential, because this operation reduces the 

advantages of visual cryptography: the image LENA can no longer be viewed by 

simply stacking the shares.  (Recall that VC is a tool that balances between security 

and the benefit of ″without-a-computer visual decoding″ of images. If we only 

permute the locations of {xi,yi}, the disclosure of the image LENA still does not need 

a computer; although the disclosure of the confidential text d will then need a 

computer.) 

3.5 When a decoding-computer is not available  

In the above approach, the decoding of the Lena image by VC does not need a 

computer, but the decoding of the confidential text d does. Therefore, the method can 

be used in an environment in which the decoding-computer is not always available. 

For example, consider a system in which a single decoding-computer serves, say, 100 
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teams, in turn. Then, each team can decode its own moderately-confidential image 

immediately (and begin the within-team discussion about the visually-decoded image 

immediately); although each team leader must wait (until it is his turn) for the 

computer server to help him to decode the confidential text.  

  Below, we discuss how to modify the design so that the two new transparencies 

(generated by the modified design) can decode both Lena and the confidential text 

without using a decoding-computer. 

  Apparently, if the confidential text can also be visually decoded, then there is no 

need to use a decoding-computer. In this kind of approach, we have two images to 

deal with: the Lena image, and its background description image. What we can do is 

to create two transparencies T1 and T2 having the following two properties: 1) 

stacking T1 with T2 yields Lena; 2) after the stacking mentioned in 1, if we fix T1, and 

then shift T2 by u units horizontally and v units vertically, then the stacking result 

becomes the confidential text image. Notably, the values of the u and v are kept by the 

higher-ranking officer. If the higher-ranking officer thinks that it is not easy to shift a 

transparency by u units horizontally and v units vertically in the decoding phase, then 

he may use an auxiliary ″non-noisy″ transparency T3 prepared earlier, in which only 

the boundaries of the transparency T1 and T2 are sketched. 

An encoding algorithm for this modified approach is given below, followed by a 
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description example and an experiment. In the algorithm, the image C is either a 

confidential text image describing Lena, or a logo image for authentication purpose. 

The coordinate (i,j) indicates a pixel at location (i,j) of the image Lena (or the image 

C), or equivalently, the 2-by-2 block at location (i,j) of the transparency T1 (or the 

transparency T2). 

The Modified Encoding Algorithm (No decoding-computer is needed later) 

Input: Two natural numbers u and v (u is the Horizontal-shift-amount, and v is the 

Vertical-shift-amount), an image Lena of size 256-by-256, and a confidential text 

image C. 

Output: two noise-like transparencies T1 and T2 (both are of size 512-by-512) useful 

in visually decoding of both Lena and C. 

Steps: 

Step 1: For each coordinate (i,j) in the ″easier-to-construct″ areas, namely, {(i,j):0≤i<u, 

0≤j≤255} and {(i,j): u≤i≤255, 0≤j<v}, do the following: 

   1a. Randomly assign one of the six fundamental block types to T1(i,j); 

1b. If Lena(i,j) is a white pixel, then copy the block type of T1(i,j) to T2(i,j);  

else copy the complement of the block type of T1(i,j) toT2(i,j).  

Step 2: (for the remaining area whose construction is a little more complicated): 

2a:  Initially, let the value of the counter k be 0 .         
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2b:  For each (i,j) satisfying u x k≤i<u x (k+1) and 0≤j<255-v, do the following: 

2b-1: If C(i,j) is a white pixel, then copy the block type of T2(i,j) to T1(i+u,j+v); 

else copy the complement of the block type of T2(i,j) to T1(i+u,j+v).  

2b-2: If Lena(i+u,j+v) is a white pixel, then copy the block type of T1(i+u,j+v) 

to T2(i+u,j+v); else copy the complement of the block type of T1 (i+u,j+v) 

to T2(i+u,j+v).    

2c: 

  2c-1:  Add 1 to the value of k.  

2c-2. If k<(256/u)-1, then go to 2b; else stop the algorithm.    

——End of the Algorithm— 

To help the readers understand Step 2, we give below an example. In the example, 

assume that T1⊕ T2 means stacking T1 with T2, i.e. ″⊕ ″ is the stacking operator. 

 

Example.  

To make the explanation easier, we assume that the horizontal-shift-amount is u=3, 

and the vertical-shift-amount is v = 0.Without the loss of generality, assume that the 

pixel values of the input image Lena and confidential text image C are 

Lena:      BWBWBBBWWWBW… 

Image C:      WWBWBWBWB… 
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Because the horizontal-shift-amount is u=3, we split Lena and C into sectors of 3 

pixels each. Therefore, we have 

Lena:     BWB    WBB    BWW    WBW… 

Image C:     WWB   WBW    BWB     … 

Iteration 0a. Initially, because u=3, randomly assign the block types to the three 

blocks of the first sector of T1; for example, assign (0,4,3). So we 

have 

Transparency T1 : 0 4 3  ? ? ?   ? ? ?  ? ? ? … 

            Transparency T2 : ? ? ?  ? ? ?   ? ? ?  ? ? ?    … 

Iteration 0b. In order that the first three blocks of the stacking result (T1⊕ T2) can be 

(B,W,B), which are the 3 blocks in the first sector of Lena, the first sector 

of T2 should be ( 0~ , 4, 3~ ), due to the fact that the first sector of T1 is 

(0,4,3). Here, 0~  is the complement of the block type 0, i.e. 10~ = . (See 

Fig. 3.3 for understanding; note that stacking block type 0 with block type 

1 yields a black block.) Similarly, 01~ = , 32~ = , 23~ = , 54~ = , and 45~ = . 

Anyway, we now know the first sector of T1, and the first sector of T2. i.e. 

             T1:   0 4 3     ? ? ?     ? ? ?     ? ? ?     … 

             T2 :   1 4 2     ? ? ?     ? ? ?     ? ? ?     … 

  Iteration 1a. In order that the three blocks of the first sector in (T1⊕ T2
shifted) can be 
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(W,W,B), which are the first 3 blocks of the confidential text image C, let the 

three blocks of the second sector of T1 be of types (1,4,3). Again, block type 3 is 

the complement of block type 2 implies (1,4,3) ⊕  (1,4,2)=(W,W,B). So we 

have 

 Transparency T1:  0 4 3    1 4 3    ? ? ?   ? ? ?  … 

 Transparency T2 :  1 4 2    ? ? ?    ? ? ?   ? ? ?  … 

Iteration 1b. Because the second sector of Lena is (W,B,B), we let the second sector of 

T2 be )2,5,1()3~,4~,1( = . So we have 

   Transparency T1: 0 4 3    1 4 3   ? ? ?  ? ? ?  … 

   Transparency T2 : 1 4 2    1 5 2   ? ? ?  ? ? ?  … 

Iteration 2a. Read in next sector, i.e. (W,B,W), of  the confidential text image C. 

Then, in order that (T1⊕ T2
shifted) can be (W,B,W) at current location, the 7th,8 

th,9 th blocks of T1 should be (1,4,2), since )2,4,1()2,5~,1( = . Now we have 

     Transparency T1:   0 4 3    1 4 3   1 4 2    ? ? ?   … 

  Transparency T2 :  1 4 2    1 5 2   ? ? ?    ? ? ?    … 

Iteration 2b. Because the third sector of the input image Lena are (B,W,W), let the 

third sector of T2 be )2,4,0()2,4,1~( = , so we have 

   Transparency T1:   0 4 3    1 4 3   1 4 2    ? ? ?  … 

   Transparency T2 :  1 4 2    1 5 2   0 4 2   ? ? ?  … 
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Iteration 3a. Read in next sector, i.e. (B,W,B), of  the confidential text image C. Then, 

in order that (T1⊕ T2
shifted) can be (B,W,B) at current location, the 10th,11 th,12th blocks 

of T1 should be )3,4,1()2~,4,0~( = , so we have 

 Transparency T1:   0 4 3    1 4 3   1 4 2    1 4 3    … 

Transparency T2 :  1 4 2    1 5 2   0 4 2    ? ? ?    … 

Iteration 3b. because the fourth sector of the input image Lena are (W,B,W), let the 

fourth sector of T2 be )3,5,1()3,4~,1( = , so we have 

 Transparency T1:  0 4 3    1 4 3   1 4 2       1 4 3     … 

Transparency T2 :  1 4 2    1 5 2   0 4 2       1 5 3      …   

Remaining iterations: similar to above iterations. 

—End of the example— 

An experiment using the modified encoding algorithm is done here, and the results are 

shown in Fig. 3.7. No computer is used in the decoding process. Only stacking 

operation is used to get Fig. 3.7 (c) and (d). 

 

3.6 Summary 

      In this chapter, we have proposed a two-in-one method that has two decoding 

levels. The method not only visually shares an input image of moderate 
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confidentiality, but also hides extra text file which is more confidential. The extra 

hiding ability is achieved without giving any artificial appearance in the unveiled 

image. The unveiled LENA is lossless, in the sense that we can sequentially map 

from the 2-by-2 blocks of LENA back to the ″exact″ pixel values of Lena. The 

method can also be applied to the authentication of the transparencies.  In this 

chapter, some other versions with improved security or easier decoding are also 

discussed. 

      Notably, in the design introduced in Sec. 3.2, if the more confidential text is 

too long (for example, if Lena’s personal information text needs more than 

256x256/2 digits to express, but the input image Lena is only 256×256), then we 

may enlarge the block size of the transparencies to solve the problem. (When we use 

2-by-2 blocks [as we did so far], there are only six types of blocks. By using 3-by-3 

blocks, there are many more block types that can be used.) 

For possible future works, people may consider the following two topics: 1) If 

there is no computer available for decoding, then people can still use the proposed 

visual cryptography method (Sec. 3.6) to handle both Lana image and the 

confidential text image; however, due to the natural limitation of visual resolution, 

the hidden text is much shorter (as compared with the data amount carried by the 

transparencies when a computer is available for decoding). Therefore, it is an 
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interesting topic to find a solution to increase the length of the text being carried, 

assuming that no computer can be used for decoding. 2). So far, our method deals 

with binary images. If we apply the method to the eight bit-planes of gray-value 

images, there might exists some new applications. 

 
 
 

 

       

(a)               (b) 

  

   ( c ) 
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(c)  

(d) 

Fig. 3.7. Double-decoding without using a decoding-computer. (a) and (b) are the two 

transparencies T1 and T2; (c) is the result of stacking (a) and (b); (d) is the result of 

stacking T1 with ″shifted T2″.  

u 

v 

Shifted T2 

T1 
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Chapter 4 

Universal share for the sharing of multiple 

images 

 In an (n, n) image sharing system [TLIEEE2003, TL2002, WTL2004], n shares 

{L1,L2,...,Ln} are created for a given image, say, Lena. (For simplicity, temporarily 

assume the image is grey-valued; although our method can be applied to color images, 

too.) The image can be unveiled when all n shares are received, while less than n shares 

reveal nothing about the image. With sharing, nobody (including the company’s 

organizer) can unveil the image without attending a public meeting. Therefore, sharing 

is a safety process useful in a company where no employee/investor alone should be 

trusted. Notably, the original image can be discarded after the sharing; moreover, each 

of the n shares is 1/n times smaller than the given image. Therefore, the sharing process 

causes no storage-space waste. 

 To share another image Monkey (which is grey-valued if Lena is grey-valued), 

another n shares {M1,M2,...,Mn} will be created likewise. Each employee/partner of a 

company can thus get a share from each image related to his job/investment. As a result, 

if a company’s organizer gets 1 share from each of the 100 important images being 

shared, the management of the 100 shares will be a large burden to him. As the number 

of images increases, the management of the shares becomes more difficult. By 
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combining the techniques of sharing with that of hiding [LC1999,MB2004, 

TLPR2003,WLL2001, WL2003], we design here an ″universal″ share for company’s 

organizer; and he only has to take this special share (single share with compact size) to 

attend any image’s recovery meeting.  

 Notably, although the method show below deals with grey images; by processing the 

three color components one by one, our method can also be applied to color images.  

4.1. The method 

4.1.1 Embedding U in the LSB of the secret image 

   Let p×q denote be the standard size of each image to be shared. The company 

organizer randomly grabs or creates an extra image U of size p×q/n (all pixel values of U 

are less than 251, as they are used later in Eq. (4.1)). This image U, whether noisy or not, 

has 8pq/n bits, which are embedded in the p×q image Lena by the least-significant-bits 

(LSB) replacement method [LC1999, MB2004, TLIEEE2003, TL2002, TLPR2003, 

WLL2001]. For instance, if n ≥ 8, then Image U has at most p×q bits, so U can be hidden 

using the least-significant-bits (1 bit per pixel) of Lena, which has p×q pixels. If 4 ≤ n ≤ 7, 

then U is hidden using the last two bits of Lena’s pixels. After embedding, Lena becomes 

a distorted image called Lena*. Since only some less-important bits of Lena are replaced 

(assuming n≥4), the distortion is invisible when comparing Lena* and Lena.  
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4.1.2 Partitioning each sector  

   Decompose Lena* into non-overlapping sectors of n pixels each (8n bits per sector). 

Then share the 8n bits of each sector among the n shares. We assume n=8 below; other 

values of n are handled analogously.  

(1.2.i). The LSBs of the n=8 pixels of the sector form an 8-bit number, called a0. Notably, 

a0<251 by Sec. 2.1. 

(1.2.ii). The remaining 8×7=56 bits of the sector are then partitioned into another 7 

numbers {a1, …, a7} of 8 bits each (see Fig. 4.1); i.e., {ai=(ai1, ai2, …, ai8)|1≤i≤7}. For 

1≤i≤7, Fig. 4.1 ensures that the most significant bit (MSB) ai1 of every ai=(ai1, ai2, …, ai8) 

is the bit next to the LSB of a Lena* pixel. This property avoids visible damage to the 

image Lena* if the bit value of some ai1 is changed from 1 to 0 so that all ai stay in the 

0–250 range before utilizing Eq. (4.1) (as noted below Eq. (4.1)).  
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Fig 4.1 The partitioning of a section 

 

4.1.3 Sharing  

  We already have {a0,a1,…,a7}. Affix to each Share k, where 0 ≤ k ≤ n−1=7, a value 

f(k)=(a0+a1k+a2k2+…+an−1kn−1 ) mod 251     (4.1)        

where 251 is the prime number suggested in [TL2002]. In Eq. (4.1), for recovery purpose, 

each ai must be in the range 0–250. Therefore, some bits in the sector might need 

adjustment before (4.1) can be applied. The image after this minor adjustment is still 

called Lena*. Since each n-pixel sector only contributes a value f(k) to Share k, each share 

is n times smaller than the image Lena* (and hence Lena). The total size of the n shares is 

therefore identical to that of Lena; hence, no storage space is wasted.  

a18 a17 a27 a37 a47 a57 a67 a77 

a28 a16 a26 a36 a46 a56 a66 a76 

a38 a15 a25 a35 a45 a55 a65 a75 

a48 a14 a24 a34 a44 a54 a64 a74 

a58 a13 a23 a33 a43 a53 a63 a73 

a68 a12 a22 a32 a42 a52 a62 a72 

a78 a11 a21 a31 a41 a51 a61 a71 

a01 a02 a03 a04 a05 a06 a07 a08 

Pixel 1   Pixel 2   Pixel 3  Pixel 4  Pixel 5   Pixel 6   Pixel 7  

MSB of Lena 

LSB of Lena
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4.1.4 Using the universal share U 

The company organizer keeps Share 0, whose value is f(0) = a0 for each sector. Since the 

set {a0} is formed of the LSB of image Lena*, it is also formed of image U, because U is 

embedded in Lena’s LSB to obtain Lena* in Sec. 4.1.1. Hence, Share 0 is identical to U, 

the image created earlier by the organizer. This statement is true even if Lena is replaced 

by any other image (e.g., Monkey). Share 0, i.e. image U, is thus the desired universal 

share.  

During the recovery phase, when all n shares are collected, recover the values {a0,…, 

an−1} from {f(0),…, f(n−1)} using the Lagrangian interpolation polynomials, which is an 

ordinary and routine procedure used in sharing field, as described in Ref. [WTL2004]. 

The modified image, regardless whether it is Lena* or Monkey*, can thus be recovered 

sector-by-sector.  

4.2. Experiments 

Assume that n=8. Fig. 4.2(a) depicts the input image Lena, and the company organizer 

arbitrarily creates his own share (the top-most noisy image U in Fig 4.2(c), whose pixel 

values are all below 251). Fig. 4.2(b) is the modified image Lena*, which not only hides 

the entire image U in its LSB, but also has the property that all ai extracted from it are in 

the range 0–250 (see the explanations in Sec. 4.1.1 and 4.1.2). Then, Lena* is shared. 

Share 0 is the given image U, and the remaining n−1=7 shares are generated using 
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k=1,2,…,n-1 in Eq. (4.1). All 8 shares are shown in Fig. 4.2(c). These 8 shares can 

together recover the Lena* displayed in Fig. 4.2(b). Fig. 4.3 shows another experiment in 

which Lena is replaced by Monkey. Its Share 0 (the top-most noisy image in 4.3(c)) is 

identical to Share 0 in Fig. 4.2(c), because both are identical to U. Notably, as stated 

earlier, by processing the three color components one by one, our method can also be 

applied to color images. In Fig. 4.4, we show the result of using our method on an input 

color image Lena. 

 

   

      (a)      (b)    (c) 

Fig 4.2 A sharing result for n=8. 

(a) is the important image Lena;  

(b) is the modified image Lena*, which contains the image U, and all ai   extracted 

from it are in 0-250 (see Eq. (4.1));  

(c) is the 8 shares that can recover (b) together. The top-most share in (c) is the 
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universal share, which is identical to the image U. 

 

 

    

      (a)       (b)            (c) 

Fig 4.3 Another sharing result for n=8.  

(a) is the important image Monkey; 

(b) is the modified image Monkey*; 

(c) is the 8 shares that can recover (b) together; and the top-most share is identical to 

the top-most share in Fig. 4.2(c). 

    

       (a)       (b)            (c) 
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Fig 4.4 An experiment for a color image Lena.   

(a) is the important image Lena;  

(b) is the modified image Lena*. 

(c) is the n=8 shares that can recover (b) together. The top-most share in (c) is the 

universal share, which is identical to the image U. 

 

4.3. Comparison  

   Below we compare our method with Ref. [TCC2002, FWTC2005] (but not with Ref. 

[CC2005], because there is no experiment there). Tsai et al [TCC2002] proposed an 

elegant method using visual cryptography and LSB hiding to deal with multiple secrets 

images. For c(4,2)=6 secret images of size 200x200 each, Ref. [TCC2002] hid the 

corresponding 6×200×200 bytes using just 4 stego images (each is of size 600×600 and 

about 42.5 dB in PSNR). Any two of the four can be combined to extract one of the six 

secrets. For our universal approach, assuming n=4 shares are created for each image. 

Before hiding the generated shares, our storage space is 200×200×((1/4) ×1+(3/4) ×6) 

=4.75×200×200 bytes where (1/4) ×1=1/n is for the universal share, and 

(3/4)x6=((n-1)/n)x6 is for the non-universal shares of the six secret images. Ours thus 

saves more space than [TCC2002] does (4.75 : 6, before hiding). If we also hide the 

generated shares, the total space for the stego images are 4×4.75×200×200=19×200×200 
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bytes to obtain stego images of PSNRs much better than 42.5 dB; while theirs is 

4×600×600=36×200×200 bytes to obtain their 42.5dB stego images. However, their secret 

image can be recovered losslessly, ours is lossy. In their system, there is no super share 

(the company’s organizer’s share), but we have one. So, ours is suitable when the boss of 

a company wants to control every secret, while [TCC2002] (and [FWTC2005] mentioned 

below) is suitable for team work in which every teammate is of equal importance.  

    By summing up the variables used in the sharing polynomials, Feng et al proposed in 

[FWTC2005] another gorgeous sharing method for multiple secret images. They can use, 

say, 5 shares {a,b,c,d,e}, and unveil secret image 1 using {a,b,c}, unveil secret image 2 

using {a,d,e}, etc. In general, before hiding the sharing result, their total size of the 

sharing result is 1 to 2 times larger than the total size of the input secret images. So, size 

expansion occurs. To the contrary, ours has size reduction effect, because our total size of 

the sharing result is even smaller than the total size of the input secret images. More 

precisely, our size is only (1-(1-S-1)/n) ×100% of the input, where S is the number of 

secret images, and n is the number of shares for each secret image. So, our benefit is again 

the economic size. However, just like [TCC2002], the method in [FWTC2005] can get 

lossless recovery of the secret images. 

4.4. Summary  

In summary, the proposed sharing method is space-saving and with a convenient 
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universal share. The advantages are achieved by tolerating an invisible distortion in the 

recovered images. For instance, the recovered images in Fig. 4.2(b) and 4.3(b) are 52.5 dB 

in PSNR, when being compared with the original images in Fig. 4.2(a) and 4.3(a). As a 

remark, our program can be run repeatedly to handle any number of secret images, for 

instance, 1000 secret images, without the need for reprogramming. Additionally, the 

universal share U can be non-noisy, because U can be any kind of images, including 

ordinary photos. Hence, only non-universal shares, which always look noisy, need 

post-processing hiding.  

 

 

 

 

 

 

 

 

 

 



 60

Chapter 5 

Fast-decoding sharing: by using bit-level 

sharing and economic size shares 

Image sharing can deal with the need of transmitting or storing an image against 

interceptor. In an (r,n) image sharing system (r≤n), the given image is shared among n 

shares. Each share is like a random noise image, and some people might hide these 

noisy shares in other less important images to increase security further. The n shares 

are then transmitted through (or stored in) n of the many existing channels. If there are 

100 channels, then there are n ″used″ channels, and the remaining 100-n channels are 

just channels not used by this image. To recover the image, any r of the n used 

channels can cooperate to recover it, but less than r used channels cannot. As a result, 

sharing among n of the many existing channels can balance between fault-tolerance 

(up to n-r used channels can be disconnected) and security (up to r-1 of the n used 

channels can be intercepted, not to mention that each of the much-more-than-n 

channels is usually filled with many other coy or ordinary images not related to the 

given important image). 

To share an image, a possible way is to use polynomial-style sharing (PSS) (see Ref. 

[TLIEEE2003, TL2002, WTL2004]). Using PSS can get shares of smaller size, but it 

is ″extremely″ time-consuming in the decoding phase to recover the image from the r 
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received shares. There is another way to share an image, as stated below. In Ref. 

[LP2005], Lukac and Plataniotis successfully applied visual-cryptography (VC) 

techniques in a bit-level manner (using VC on each bit-planes) and obtain another 

type of image sharing method having the following good properties: 

1. real-time decoding, as opposed to PSS approach; 

2. lossless recovery of images (PSS is also lossless).   

The only disadvantage in [LP2005] is that each (grey or colour) share is several times 

bigger than the given image. In the current paper, we propose an alternative method 

that is also bit-level based. This new method keeps the above advantages of [LP2005], 

and uses shares of size smaller than that of [LP2005] (thus reduce their transmission 

time and storage space). In the case where r = n, our share-size is even smaller than 

the size of the input image; while the share-size in [LP2005] is, say, 4 times greater 

the input image. (As for the (r,n) case (with r<n), our share-size is a little smaller than 

that in [LP2005].) 

5.1. The method 

  For a given H×W gray-value or color-value image G, and for a given pair of 

parameters (r,n), our method to create the n expected shares is as follows (also see Fig. 

5.1): 

1 Physically split the secret image G, whose size is H×W, into two parts: upper 
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parts and lower parts (see Fig. 5.2). For the given parameter pair (r, n), the 

upper part is the first [n/(n+1)]×H×W pixels of the input image; while the 

lower part is the remaining [1/(n+1)]×H×W pixels. (So, the upper part is 

always bigger than the lower part, since n>1.) 

2 Notably, there are 8 bit-planes for a grey image (or, 24 bit-planes if color). 

Each bit-plane B = BU ∪  BL also has its own upper part BU and lower part 

BL. The upper part BU is the first [n/(n+1)]×H×W bits of plane B; while the 

lower part BL is the remaining [1/(n+1)]×H×W bits. 

3. Sequentially pick a not-yet-processed bit-plane B = BU ∪  BL to process, 

until all 8 (or 24) bit-planes are processed. Each bit-plane is processed by two 

sub-steps to generate n binary-value shares {S1,…,Sn} for this bit-plane. The 

two sub-steps are:  

         (3-i) Share the lower part. 

(3-ii) Then, share the upper part. 

(The details of (3-i) and (3-ii) are described later in Sec. 5.2.1 for the case r=n; 

and then described again in Sec. 5.2.2 for the case r<n.) 

   4. For each share-index m in {1,2,..,n}, combine the 8 binary-value shares (or 24 

binary-value shares) of the same share-index m (but from 8 or 24 distinct 

bit-planes) to form a grey (or color) share. Therefore, we get n grey (or color) 



 63

shares. 

 

 

Fig .5.1 Flowchart of the proposed method. 
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                   (a)        (b1)          (b2) 

Fig. 5.2. An example of split. (a) is the original, (b1) is the upper part, and (b2) is the 

lower part. 

 

5.1.1. Sharing a bit plane B in the (n,n) case. 

Algorithm (n,n) : Sharing a ″bit-plane″ B which has H rows and W columns.  

INPUT:   The H×W bits of a bit-plane B. 

OUTPUT:  The n binary-value shares {S1, S2 , … , Sn}. Each share has H × W × 

n/(n+1) ″bits″.  

PRE-PROCESSING: Split the bit-plane B into upper part BU and lower part BL. 

(The first HW
1+n

n  bits of B are the BU. The remaining HW
1

1
+n

bits are BL). 

Note that BU is n times bigger than BL. 

MAIN STEPS: 

Step 1. (Sharing the Lower part (BL) of B.) 

For each share Sm, where m =1,2,…,n-1, randomly assign its bits located at {n×i+m: 
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i=0,1,2,….}.  As for the last share, i.e. Share Sn , we do not randomly assign its bits 

located at {n×i+n; i=0,1,2,….}. Instead, we use the lower part (BL) of B to compute 

the bit-values of the share Sn at location {n×i+n; i=0,1,2,….}. More specifically, for 

each i=0,1,2, …, we compute the value of Sn(n×i+n) by 

Sn (ni+n) =[ S1 (n×i+1)  S♁ 2 (ni+2) …  ♁ ♁ Sn-1 (n×i+[n-1]) ]  B♁ L(i) 

where  is the exclusive♁ -OR operator. Note that Sn (n×i+n) is computed this way 

because later we can recover the lower part of B by using 

BL(i) = S1 (n×i+1) ♁S2 (n×i+2) …♁ ♁Sn-1 (n×i+[n-1])  ♁ Sn (n×i+n) 

Step 2. (Sharing the Upper part (BU) of B.) 

Use data BU (the upper part of B) to determine the remaining bits of all shares. The 

requirement is very simple: at each position t, we require that 

BU (t) = S1 (t) ♁S2 (t) …♁ ♁Sn (t).  

In other words, we only requires that: there are ″odd″ number of 1s appearing in the 

n-bits set {S1 (t), S2 (t), …, Sn (t)} if and only if BU (t)=1.   ♦♦ 

 

Example (k=3,n=3) 

Assume the upper n/(n+1)=3/(3+1)=3/4 part of the original bit-plane B is BU= 

1010101…; and assume the lower 1/(n+1)=1/(3+1)=1/4 part of B is BL=1110…. Then, 

we show how to use the above algorithm to produce the n=3 shares {S1, S2, S3}, 
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where each share has (3H/4)×W bits when the bit-plane B has H×W bits. 

Step 1. For Share S1, randomly assign its bits at {1,4,7,…} = {3i+1:  i=0,1,2,….}.  

For Share S2, randomly assign its bits at {2,5,8,…} = {3i+2:  i=0,1,2,….}. However, 

for the last share, i.e. Share S3 (because n=3), we do not randomly assign its bits at 

{3,6,9,…} = {3i+3: i=0,1,2,….}. Instead, we use the lower part (BL) of B to compute 

the values of these bits at location {3,6,9,…} of Share 3. More specifically, for each 

i=0,1,2,3,4…, we require that  

S3 (3i+3) = S1(3i+1) ♁S2 (3i+2)  B♁ L ( i ) 

for the purpose that later we can recover the lower part of B by using 

BL( i ) = S1 (3i+1) ♁S2 (3i+2) ♁S3 (3i+3). 

For example, since BL is assumed to be 1110...  in this example, the above idea of 

Step 1 can be illustrated by Fig. 5.3.  

 

Fig. 5.3. Step 1 of the (k=3,n=3) example. 

 

S1 (Random values at 1,4,7, …) 1 ? ? 1 ? ? 0 

S2 (Random values at 2,5,8, …) ?   0 ? ?   1 ? ? 

Data BL (Lower part of B)     1    1  

S3 (Compute bits 3,6,9,.. by ♁) ? ? 0 ? ? 1 ? 
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Step 2.  Use data BU (the upper part of B) to determine the remaining bits of all 

shares. The requirement is very simple: at each position t, we require that 

BU (t) = S1 (t) ♁S2 (t) ♁S3 (t).  

In other words, there are ″odd″ number of 1s appearing in these three bits {S1(t), S2(t), 

S3(t)} if and only if BU (t)=1. One of the many solutions is shown in Fig. 5.4. Note 

that all three shares have been created after Step 2. 

 

S1  1 ?=0 ?=1 1 ?=0 ?=1 0 

S2  ?=0 0 ?=0 ?=1 1 ?=0 ?=0 

S3  ?=0 ?=0 0 ?=0 ?=0 1 ?=1 

data BU (upper part of B)  1 0 1 0 1 0 1 

Fig. 5.4. Step 2 of the (k=3,n=3) example. 

 

5.1.2. Sharing a bit plane B in the (r,n) case, i.e. when r<n. 

(r,n) Algorithm (The (r,n) algorithm that shares a bit-plane B which has H×W 

bits.) 

INPUT: The H×W bits of a bit-plane B. 

OUTPUT: The n shares {S1, S2 , … , Sn}. Each share has H×W×n/(n+1) ″blocks″ 

rather than H×W×n/(n+1) ″bits″.    
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PRE-PROCESSING: As before, split the bit-plane B into upper part BU and lower 

part BL. (The first HW
1+n

n bits of B are the BU. The remaining HW
1

1
+n

bits are 

BL). Again, BU is n times bigger than BL. 

MAIN STEPS: 

Step 0: Create a pair of basis matrices C0 and C1 for the (r,n) system. (The creation of 

C0 and C1 is introduced in many other papers, see Ref. [NS1994] for example, 

we do not introduce the detail here.) No matter how they are created, this pair 

must have the following properties: 

● Each matrix has n rows. Each entry of the two matrices is just a 

single bit whose value is either 0 or 1; each 1 means a black dot 

while each 0 means a white dot. 

● ″Stacking″ r of the n rows of C0 (or C1) is defined as getting a row 

whose ith element is the result of using the ″OR″ operator (not 

″exclusive-OR″) on the ith elements of the corresponding r rows.  

● Stacking any r rows of C0 together always get a row whose number 

of 1s are less than the number of 1s obtained from stacking any r 

rows of C1. 

Step 1 (To share the information of BL, i.e. the lower part of B). 

(1-i) Initially, let q=1. 
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(1-ii) Let p be the q-th bit of the string BL, i.e. p=BL(q). 

(1-iii) For m=1,2,…,n, use the m-th row of Cp to paint the ([q-1]n+m)-th block of 

the share Sm (m=1,2,…,n).  

(1-iv). If q reaches H
1

1
+n

, then Step 1 ends here, and we go to Step 2. Else, q 

q+1and go to (1-ii). 

Step 2 (To share the information of BU, i.e. the upper part of B). 

(2-i) Initially, let q=1. 

(2-ii) Let p be the q-th bit of the string BU. Also, let m=q (mod n) 

(2-iii-A) If the mth row of Cp
 is identical to the qth block of the share Sm, then, for 

all k=1,…,n, paint the qth block of the share Sk using the kth row of Cp. 

Then go to Step (2-iv). 

(2-iii-B) If the mth row of Cp
 is different from the qth block of the share Sm, then, 

we need to permute the columns of Cp to get a temporary matrix Cp´ 

whose mth row is identical to the qth block of the share Sm. (This 

permutation subroutine is quite easy to design, so we omit it here.) Then, 

for all k=1,…,n, paint the qth block of the share Sk using the kth row of 

Cp´.Then go to Step (2-iv). 

(2-iv). If q reaches H
1+n

n , then go to post-processing. Else, let q q+1and go 

to (2-ii). 
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C0 : 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 1 0

POST-PROCESSING: We already have n shares, and each share is a sequence of 

H
1+n

n ×W blocks. Now, convert each sequence of blocks from 1-dim block-string to 

its 2-dim image version. In other words, for each share, divide its H
1+n

n × W blocks 

into H
1+n

n  rows. (The first W blocks form the first row; the next W blocks form 

the second row; etc.)           ♦♦ 

 

Example (k=2,n=6) 

Assume the upper n/(n+1)=6/(6+1)=6/7 part of the original bit-plane B is BU= 1001…; 

and assume the lower 1/(n+1)=1/(6+1)=1/7 part of B is BL=1011…. Then, we show 

how to use the above algorithm to produce the n=6 shares {S1, …, S6}, where each 

share has (6H/7)×W ″blocks″ when the bit-plane B has H×W bits. 

Step 0. Create a pair of basis matrices C0 and C1 for the (2,6) system. Since n=6, each 

matrix has 6 rows. The two matrices in Fig. 5 obviously meet the requirements stated 

in the Step 0 of the algorithm.  

 

 

 

 

 

C1 : 

1 1 0 0 

1 0 1 0 

1 0 0 1 

0 1 1 0 

0 1 0 1 
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Fig. 5.5. The basis matrices C0 and C1 used for the (2,6) system in the example. 
 

Step 1: (To share BL=1011… , i.e. to share the lower part of B.) 

See Fig. 5.6 to understand Step 1. Because the 1st bit of BL is 1, We look up the 

matrix C1. Then, use the 1st row of C1 , i.e. use 1100 to paint 1st  block of share 

S1.(Since 1100 means BBWW, we may use the first two entries (BB) to paint the 

upper half of the block, then use the next two entries (WW) to paint the lower half of 

the block.) Analogously, the share S2 uses 1010 (the 2nd row of C1) to paint its 2nd 

block. The share S3 uses 1001 (the 3rd row of C1) to paint its 3rd block. The share S4 

uses 0110 (the 4th row of C1) to paint its 4th block. The share S5 uses 0101 (the 5th row 

of C1) to paint its 5th block. The share S6 uses 0011 (the 6th row of C1) to paint its 6th 

block. Then the cycle repeats itself again using next bit of BL. Since BL(2)=0, we use 

C0 now. The rows 1-6 of C0 are copied respectively (one row per share), to 7th block of 

S1, 8th block of S2, 9th block of S3, 10th block of S4, 11th block of S5, and 12th block of 

S6. This is Cycle 2. Third cycle uses BL(3)=1 to grab C1 to paint the (12+i)ith block of 

the share Si (i=1,2,..6). The process repeats again and again until all bits of BL are 

used.  
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(e) 

 

              

              

              

              

              

(f) 

Fig. 5.6 Step 1 for the (r=2, n=6) example. Here, (a)-(f) are, respectively, the six 
shares S1 – S6. 

     

 

Step 2: (To share BU , i.e. to share the upper part of B.) 

See Fig. 5.7. to understand Step 2. Note that the upper part of B is 1001…; so, we 

look up first C1, then C0, then C0 again, then C1 again, and so on. First, because BU(1) 

= 1, we use the six rows of C1 to paint the 1st blocks of shares S1-S6. In this painting, 

the painted pattern of the 1st block of the 1st Share (S1) has no contradiction with what 

it had been painted earlier in Step 1. (The block had been painted earlier in Step 1 as 

1100 (i.e. BBWW), so, no contradiction if we use the 1st row of C1 to paint it.) 

Therefore, the 1st blocks of all six shares are done using the six rows of C1. Now we 
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proceed to BU(2). Since BU(2)=0, we use the six rows of C0  to paint the 2nd blocks of 

shares S1-S6. Again, this painting is accepted because the painted pattern of the 2nd 

block of the 2nd share (S2) has no contradiction with what it had been painted earlier in 

Step 1. Now we proceed to BU (3).Because BU (3)=0, we also try to use the six rows of 

C0  to paint the 3rd blocks for Shares S1-S6. However, we find that this will cause the 

3rd block of the 3rd share (S3) has contradiction with what it is already painted in Step 

1 earlier. (The block had been painted in Step 1 as 1001 (i.e. BWWB), rather than 

1010 (i.e. BWBW) ). Therefore, we permute the columns of C0 to get a temporary 

matrix C0´ whose 3rd row is also 1001. Then, we use the six rows of the new matrix 

C0´ to paint the 3rd blocks of the six shares. Notably, all six rows of C0´ become 1001 

after this permutation of columns; that explains why the 3rd blocks of all six shares are 

painted as 1001 (BWWB) in Fig. 7. Now, we proceed to the 4th bit of BU and find that 

BU(4)=1, so we use the six rows of C1  to paint the 4th blocks for Shares S1-S6. In the 

painting, the painted pattern of the 4th block of the 4th Share (S4) has no contradiction 

with what it had been painted in Step 1 earlier. (The block had been painted earlier in 

Step 1 as 0110 (i.e. WBBW), so, no contradiction if we use 4th row of C1 to paint it.) 

Therefore, the 4th blocks of the six shares are done using the six rows of C1. Our 

explanation ends here, for the remaining process are similar. 
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 (f) 

Fig. 5.7 Step 2 for the (r=2, n=6) example. Here, (a)-(f) are, respectively, the six 
shares S1 – S6. Darker elements were determined earlier in Step 1, and hence cannot be 
changed now in Step 2.  

 

5.2. Experiments 

In the first experiment, the (r,n) is (2,2). The result is shown in Fig 5.8, of which 

(a) is the input gray-value image Lena; (b) and (c) are the two gray-value shares (the 

size of each share is just n/(n+1)=2/3 of that of (a)); (d) is the restored error-free result 

using (b) and (c). The result can be compared with Fig. 5.9, which is a result appeared 

in Ref. [LP2005]. In Fig. 5.9, their recovery is also error-free (just like ours), but each 

of their shares is 4 times lager than the input image, while each of our shares is 

n/(n+1)=2/3 times smaller than the input image. In other words, their share-size is 

(2×2)×(3/2)=6 times bigger than ours if the input image is the same. 

    
(a)        (b)       (c)         (d) 

Fig. 5.8. An (r=2,n=2) experiment using our method. (a) is the input gray-value image; 

(b) and (c) are the two gray-value shares (the size of each share is just n/(n+1)=2/3 of 

that of (a)); (d) is the restored error-free result (identical to (a)) using (b) and (c). 
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Fig. 5.9. An (r=2, n=2) experimental result in Ref. [LP2005]. (a) is the input 

grey-value image; (b-c) are the two grey-value shares (each share is 2×2=4 times 

bigger than (a)); (d) is the restored error-free result (identical to (a)) using (b) and (c). 

 

In the second experiment, the (r,n) is (2,6). The result is shown in Fig 5.10, of which 

(a) is the input gray-value image Lena; (b) is one of the six gray-value shares (each 

share is (n/(n+1))×(2×2)= (6/7) ×(2×2) =3.43 times greater than (a)). Using any two 

of the six shares, we can get the error-free recovery of the input image (identical to 

(a)). The result can be compared with Fig. 5.11, which is a result appeared in Ref. 

[LP2005]. In Fig. 5.11, their recovery is also error-free (just like ours), and each of 

their shares is 4 times lager than the input image, while each of our shares is (2×2) × 

6/7 =3.43 times larger than the input image. Therefore, their share-size is (n+1)/n = 

7/6 times bigger than ours if the input image is the same.  
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(a) (b)                                        (c) 

Fig. 5.10. An (r=2, n=6) experiment using our method. (a) is the input gray-value 

image; (b) is one of the six gray-value shares (each share is 

(n/(n+1))×(2×2)=(2×2)×6/7=3.43 times greater than (a)); (c) is the restored error-free 

result (identical to (a)) using any two of the six shares 

 

        (a)          (b)                     (c) 

Fig. 5.11. An (r=2, n=6) experimental result in Ref. [LP2005]. (a) is the input 

grey-value image; (b) is one of the six grey-value shares (each  share is 2×2=4 times 

bigger than (a)); (c) is the restored error-free result (identical to (a)) using any two of 

the six shares. 

 

In general, in the (n,n) cases, e.g. the (2,2), or (3,3), or (4,4) cases, each of their 

shares is 2×2×(n+1)/n times larger than ours. Note that 2×2×(n+1)/n is a number 



 79

between 4 and 6. We can therefore save more transmission time or storage space than 

the method in [LP2005] does. On the other hand, in the (r,n) cases, then each of their  

shares is (n+1/n) times larger than ours. Note that (n+1)/n is a number between 1 and 

4/3=1.33 (for n>2 in the (r,n) case, because r cannot be 1.) Of course, as compared 

with [LP2005], we still have a little advantage of space-saving or 

communication-time-saving in the (r,n) cases, although the advantage is not as sharp 

as in the (n,n) cases. 

Table 5.1 provides a look of the processing time. The computer being used is a 

Pentium IV PC, and the image being shared is a 256×256 gray-value image. The unit 

used is millisecond (0.001 seconds per unit; therefore, 3.7 means 0.0037 seconds).  

When it is (r,n) case, our performance is similar to [LP2005], no matter it is encoding 

or decoding. But, when it is (n,n) case, our method is obviously faster than [LP2005], 

no matter it is encoding or decoding. The reason is that, in the (n,n) case, we did not 

use any kind of blocks (for example, the 2×2 blocks) to expand any pixel. For readers’ 

interest, we also list the processing time of the polynomial-style-sharing (PSS, see 

[TL2002]). Its decoding time is definitely much slower than bit-level methods (ours 

and [LP2005]). As for its encoding time, PSS beats us and [LP2005] in the (r,n) case, 

but lose to us and [LP2005] in the (n,n) case. The reason is that in the (n,n) case our 

system is extremely simple. 
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 In summary, in the (n.n) case, we lead both [LP2005] and PSS [TLIEEE2003], 

no matter it is encoding or decoding. In the (r,n) case, PSS takes the lead in encoding, 

but falls far behind ours and [LP2005] in decoding. 

 

Table 5.1. Comparison of the processing time; the unit is ″millisecond″. ([LP2005] 

did not give the detail about (3,3) case, so we did not list data here, although we know 

that the time for (3,3) is longer than that in the (2,2) case.) 

 

 encoding encoding encoding decoding decoding  decoding 
 (r,n)  
( or (n,n) )   

(2,2)  (3,3)  (2,6)  (2,2)  (3,3)  (2,6)  

       

Ours 11.7 11.8 234.2 3.7 4.4 13.1 
[LP 2005] 243.7 N/A 243.7 17.4 N/A 17.4 
Polynomial 34.3 182.9 115.5 185.5 418.8 206.3 

 

5.3. Summary 

In this chapter, we have proposed a sharing method for grey or color images. The 

decoding speed, just like the one in [LP2005], is real-time. The recovered image is 

lossless; so is [LP2005]. But our method uses shares of size smaller than those used in 

[LP2005], and hence, transmission time and storage space can be saved. This 

advantage is particularly obvious in the (n,n) systems, i.e. when r=n. In that case, each 

grey/colour share is 4 to 6 times smaller than that used in [LP2005], and the 
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processing speed (no matter it is encoding or decoding) is also much faster than in 

[LP2005]. 

Both [LP2005] and our method are bit-level based; and each bit-plane is 

processed independently. Therefore, if the transmission time (or storage space) is too 

limited, people may discard some less important bit-planes. For example, discard the 

last 2 bit-planes and only use the most important 8-2=6 bit-planes, then each 

grey-value share is actually a physical-combination of six bit-plane shares rather than 

a combination of eight bit-plane shares. Therefore, each share is reduced in size to 6/8 

of the original grey-value share.  As a remark, if only the least important one of the 

eight bit-planes is removed, then the PSNR of the reconstructed image is about 52 db. 

If two least important planes are removed, then the PSNR is at least 39 db. 
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Chapter 6 

Conclusions and Future works 

6.1 Conclusions 

    Four new types of image sharing have been proposed in this dissertation, and 

they are: turnover, two-level, universalizing, and fast decoding. The first two types 

can both be used in the authentication of the shares, or used in the background 

description of the secret image being shared. The universalizing sharing is for easy 

management of the shares, and the fast-decoding sharing is for the real-time 

reconstruction of the shared secret images. 

    In the turnover style, for any two given secret images, two corresponding noisy 

transparencies are produced. If we stack the front view of both transparencies, then 

we can see the first secret image. On the other hand, if we stack the front view of 

Transparency 1 with the back view (the turnover) of Transparency 2, then the second 

secret image is unveiled. We have also analyzed why 3-by-3 extension, rather than 

2-by-2, is needed in turn-over design. 

    In the  two-level style, we have presented a two-in-one visual cryptography 

scheme, which not only shares an image of moderate confidentiality between two 

noisy transparencies, but also hides in these two transparencies a more confidential 
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text file, which is either the information for authentication purpose or the information 

describing the image. The method can therefore be applied to the authentication of the 

transparencies. Notably, the decoding is of two levels. In level 1, we stack the two 

transparencies without any shift, and we can see the secret image. In level 2, we shift 

Transparency 1 to a predefined amount before stacking with Transparency 2, and we 

can see some other information of more confidential level in the shifted stacking. We 

have also provided another version in which the decoding in Level 2 uses a computer. 

The information carried in Level 2 can be more complicated in this version. 

     In the universalizing style, we have designed a so-called universal share. This 

share can be either noisy or just an ordinary image. A company’s organizer can hold 

this special share to attend any unveiling meeting of any secret image shared in his 

company. No matter how many secret images are shared in his company, the organizer 

only have to hold this special share, rather than thousands or millions of shares. This 

reduces the burden of the organizer. Also, the same program can be run repeatedly to 

handle any number of secret images, for instance, 1000 secret images, without the 

need for reprogramming.  

    In the fast-decoding style, we have used bit-plane decomposition to design a 

scheme to share gray-value secret images. The decoding speed is fast. The method is 

particularly useful if the threshold r in the (r, n) sharing scheme equals n. In this case, 
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as shown in Table 5.1, not only the decoding speed, but also the encoding speed, is 

extremely fast. Its share size is also better than a fast-decoding method [LP2005] 

reported recently. For example, in the case (r, n) =(2,2), the size of each share is just 

n/(n+1)=2/3 of the input image, while each share in [LP2005] is 4 times larger than 

the input image. 

6.2 Future works 

   In the future, we aim to add some features to the proposed methods, as follows: 

1. Try to add the feature of fault tolerance to the turnover style and two-level style. 

2. Try to add the ability of progressive viewing,  when the number of collected 

shares reach a predefined thresholds; 

3. Try to increase the capacity of the hidden data disclosed in Level 2 of the 

two-level sharing.  
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