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a b s t r a c t

A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to |V (G)|
inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two different
vertices x and y, there exists a hamiltonian cycle C ofG such that dC (x, y) = k for any integer
kwith dG(x, y) ≤ k ≤ |V (G)|/2 and (k− dG(x, y)) being even. A bipartite graph G is k-cycle
bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with
dC (x, y) = l and |V (C)| = k for any integer lwith dG(x, y) ≤ l ≤ k

2 and (l− dG(x, y)) being
even. A bipartite graphG is bipanpositionable bipancyclic ifG is k-cycle bipanpositionable for
every even integer k, 4 ≤ k ≤ |V (G)|. We prove that the hypercube Qn is bipanpositionable
bipancyclic for n ≥ 2.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the graph definitions and notations we follow Bondy and Murty [1]. Let G = (V , E) be a graph, where V is a finite
set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set of G.
Two vertices u and v are adjacent if (u, v) ∈ E. A path is represented by 〈v0, v1, v2, . . . , vk〉, where all vertices are distinct
except possibly v0 = vk. The length of a path Q is the number of edges in Q . We also write the path 〈v0, v1, v2, . . . , vk〉 as
〈v0,Q1, vi, vi+1 . . . , vj,Q2, vt , . . . , vk〉, where Q1 is the path 〈v0, v1, . . . , vi−1, vi〉 and Q2 is the path 〈vj, vj+1, . . . , vt−1, vt〉.
We use dG(u, v) to denote the distance between u and v in G, i.e., the length of the shortest path joining u to v in G. A cycle is
a path of at least three vertices such that the first vertex is the same as the last vertex.We use dc(u, v) to denote the distance
between u and v in a cycle C , i.e., the length of the shortest path joining u to v in C . A hamiltonian cycle of G is a cycle that
traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G = (V0 ∪ V1, E)
is bipartite if V (G) = V0 ∪ V1 and E(G) is a subset of {(u, v) | u ∈ V0 and v ∈ V1}.
The n-dimensional hypercube, Qn, consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if

and only if their binary labels are different in exactly one bit position. Let u = un−1un−2 . . . u1u0 and v = vn−1vn−2 . . . v1v0
be two n-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits
in the corresponding strings of both vertices. Let Q in be the subgraph of Qn induced by {un−1un−2 · · · u1u0 | un−1 = i} for
i = 0, 1. Therefore,Qn can be constructed recursively by taking two copies ofQn−1,Q 0n andQ

1
n , and adding a perfectmatching

between these two copies. For a vertex u in Q 0n (resp. Q
1
n ), we use ū to denote the unique neighbor of u in Q

1
n (resp. Q

0
n ). The

hypercube is a widely used topology in computer architecture, see Leighton [2].
A graph is pancyclic if it contains a cycle of every length from 3 to |V (G)| inclusive. The concept of pancyclic graphs was

proposed by Bondy [3]. Since there is no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed
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by Mitchem and Schmeichel [4]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to
|V (G)| inclusive. It is proved that the hypercube Qn is bipancyclic if n ≥ 2 [5,6]. A graph is panconnected if, for any two
different vertices x and y, there exists a path of length l joining x and y for every l with dG(x, y) ≤ l ≤ |V (G)| − 1. The
concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with
at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph
is bipanconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with
dG(x, y) ≤ l ≤ |V (G)|−1 and (l−dG(x, y)) being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian
graph G is panpositionable if for any two different vertices x and y of G and for any integer k with dG(x, y) ≤ k ≤ |V (G)|/2,
there exists a hamiltonian cycle C of G such that dC (x, y) = k. A hamiltonian bipartite graph G is bipanpositionable if for
any two different vertices x and y of G and for any integer k with dG(x, y) ≤ k ≤ |V (G)|/2 and (k − dG(x, y)) being even,
there exists a hamiltonian cycle C of G such that dC (x, y) = k. The concepts of panpositionable and bipanpositionable were
proposed by Kao et al. [8]. They proved that the hypercube Qn is bipanpositionable if n ≥ 2 [8]. A bipartite graph G is
edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to |V (G)| traversing through this edge. The
concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex
in G, there is a cycle of every even length from 4 to |V (G)| going through this vertex. The concept of vertex-bipancyclic was
proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Qn
is edge-bipancyclic if n ≥ 2 [5].
In this paper, we propose a more interesting property about hypercubes. A k-cycle is a cycle of length k. A bipartite graph

G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer l with dG(x, y) ≤ l ≤ k
2 and

(l − dG(x, y)) being even, there exists a k-cycle C of G such that dC (x, y) = l. (Note that dC (x, y) ≤ k
2 for every cycle C of

length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with
4 ≤ k ≤ |V (G)|. In this paper, we prove that the hypercube Qn is bipanpositionable bipancyclic for n ≥ 2. As a consequence
of this result, we can see thatmany previous results on hypercubes follows directly from ours. For example, the hypercube is
bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these
results in a general sense.

2. The bipanpositionable bipancyclic property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Q3 is bipanpositionable bipancyclic.

Proof. Let x and y be two different vertices in Q3. Obviously, dQ3(x, y) = 1, 2 or 3. Since the hypercube is vertex symmetric,
without loss of generality, we may assume that x = 000.
Case 1: Suppose that dQ3(x, y) = 1. Since Q3 is edge symmetric, we assume that y = 001.

y = 001 4-cycle dC (x, y) = 1 〈000, 001, 011, 010, 000〉
6-cycle dC (x, y) = 1 〈000, 001, 101, 111, 110, 100, 000〉

dC (x, y) = 3 〈000, 100, 101, 001, 011, 010, 000〉
8-cycle dC (x, y) = 1 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

dC (x, y) = 3 〈000, 100, 101, 001, 011, 111, 110, 010, 000〉

Case 2: Suppose that dQ3(x, y) = 2. By symmetry, we assume that y = 011.

y = 011 4-cycle dC (x, y) = 2 〈000, 001, 011, 010, 000〉
6-cycle dC (x, y) = 2 〈000, 001, 011, 010, 110, 100, 000〉
8-cycle dC (x, y) = 2 〈000, 001, 011, 010, 110, 111, 101, 100, 000〉

dC (x, y) = 4 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

Case 3: Suppose that dQ3(x, y) = 3. We have y = 111.

y = 111 6-cycle dC (x, y) = 3 〈000, 001, 011, 111, 110, 100, 000〉
8-cycle dC (x, y) = 3 〈000, 001, 011, 111, 101, 100, 110, 010, 000〉

Thus, Q3 is bipanpositionable bipancyclic. �

Theorem 1. The hypercube Qn is bipanpositionable bipancyclic for n ≥ 2.
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Proof. We observe that Q1 is not bipanpositionable bipancyclic. So we start with n ≥ 2. We prove Qn is bipanpositionable
bipancyclic by induction on n. It is easy to see that Q2 is bipanpositionable bipancyclic. By Lemma 1, this statement holds for
n = 3. Suppose that Qn−1 is bipanpositionable bipancyclic for some n ≥ 4. Let x and y be two distinct vertices in Qn, and let
k be an even integer with k ≥ max{4, 2dQn(x, y)} and k ≤ 2n. For every integer lwith dQn(x, y) ≤ l ≤

k
2 and (l− dQn(x, y))

being even, we need to construct a k-cycle C of Qn with dC (x, y) = l.
Case 1: dQn(x, y) = 1. Without loss of generality, we may assume that both x and y are in Q 0n . (l − dQn(x, y)) is even, so
l is an odd number. Since Q 0n is isomorphic to Qn−1, by introduction, there is a k-cycle of Q

0
n with dC (x, y) = l for every

4 ≤ k ≤ 2n−1. Thus, we consider that k ≥ 2n−1 + 2.
Case 1.1: l = 1. By induction, there is a (2n−1)-cycle C ′ = 〈x, P, z, y, x〉 of Q 0n where dP(x, z) = 2

n−1
− 2. Suppose that

k − 2n−1 = 2. Then C = 〈x, P, z, z̄, ȳ, y, x〉 forms a (2n−1 + 2)-cycle with dC (x, y) = 1. Suppose that k − 2n−1 ≥ 4. By
induction, there is a (k−2n−1)-cycle C ′′ ofQ 1n such that dC ′′(z̄, ȳ) = 1.Wewrite C

′′
= 〈z̄, R, ȳ, z̄〉with dR(z̄, ȳ) = k−2n−1−1.

Then C = 〈x, P, z, z̄, R, ȳ, y, x〉 forms a k-cycle of Qn with dC (x, y) = l = 1.
Case 1.2: l ≥ 3. Suppose that k− l− 1 ≤ 2n−1. By induction, there is an (l+ 1)-cycle C ′ of Q 0n with dC ′(x, y) = 1. We write
C ′ = 〈x, P, y, x〉 where dP(x, y) = l. By induction, there is a (k − l − 1)-cycle C ′′ of Q 1n with dC ′′(x̄, ȳ) = 1. We then write
C ′′ = 〈ȳ, R, x̄, ȳ〉 such that dR(ȳ, x̄) = k− l−2. Then C = 〈x, P, y, ȳ, R, x̄, x〉 forms a k-cycle of Qn with dC (x, y) = l. Suppose
that k− l−2 ≥ 2n−1+1. By induction, there is a (k−2n−1)-cycle C ′ of Q 0n with dC ′(x, y) = l. Wewrite C

′
= 〈x, P, y, R,u, x〉

with dP(x, y) = l and dR(y, x) = k− (2n−1−1)− l−2. By induction, there is a (2n−1)-cycle C ′′ of Q 1n with dC ′′(x̄, ū) = 1.We
write C ′′ = 〈x̄, ū, S, x̄〉with dS(ū, x̄) = 2n−1 − 1. Then C = 〈x, P, y, R,u, ū, S, x̄, x〉 forms a k-cycle of Qn with dC (x, y) = l.
Case 2: dQn(x, y) ≥ 2 and l = 2. Since dQn(x, y) ≤ l and l = 2, so dQn(x, y) = 2. Without loss of generality, we may assume
that x is in Q 0n and y is in Q

1
n . Then dQn(x̄, y) = 1 and dQn(ȳ, x) = 1.

Suppose that k = 4. Then C = 〈x, x̄, y, ȳ, x〉 forms a 4-cycle of Qn with dQn(x, y) = 2. Suppose that 6 ≤ k ≤ 2n−1+ 2. By
induction, there is a (k−2)-cycle C ′ = 〈x, P, ȳ, x〉 ofQ 0n such that dP(x, ȳ) = k−3. Then C = 〈x, P, ȳ, y, x̄, x〉 forms a k-cycle
of Qn with dC (x, y) = 2. Suppose that k ≥ 2n−1+ 4. By induction, there is a 2n−1-cycle C ′ of Q 0n with dC ′(x, ȳ) = 1. We write
C ′ = 〈x, P, z, ȳ, x〉with dP(x, z) = 2n−1− 2. By induction, there is a (k− 2n−1)-cycle C ′′ of Q 1n with dC ′′(y, z̄) = 1. We write
C ′′ = 〈y, z̄, R, y〉with dR(y, z̄) = k− 2n−1 − 1. Then C = 〈x, P, z, z̄, R, y, ȳ, x〉 forms a k-cycle of Qn with dC (x, y) = 2.
Case 3: dQn(x, y) ≥ 2 and l ≥ 3. Without loss of generality, we may assume that x is in Q 0n and y is in Q 1n . Suppose that
k − l − dQn(x, y) + 2 ≤ 2n−1. By induction, there is an (l + dQn(x, y) − 2)-cycle C ′ = 〈x, P, ȳ,u, R, x〉 of Q 0n such that
dP(x, ȳ) = l− 1 and dR(u, x) = dQn(x, y)− 2. For k− l− dQn(x, y)+ 2 ≤ 2, by induction, there is a (k− l− dQn(x, y)+ 2)-
cycle C ′′ of Q 1n with dC ′′(y, ū) = 1. We write C ′′ = 〈y, S, ū, y〉 with dS(y, ū) = k − l − dQn(x, y) + 1. We then set
C = 〈x, P, ȳ, y, ū,u, R, x〉 if k − l − dQn(x, y) + 2 = 2 or C = 〈x, P, ȳ, y, S, ū,u, R, x〉 if k − l − dQn(x, y) + 2 ≤ 4.
Then C forms a k-cycle of Qn with dC (x, y) = l. Suppose that k− l−dQn(x, y)+4 ≥ 2n−1. By induction, there is a (k−2n−1)-
cycle C ′ = 〈x, P, ȳ,u, R, x〉 of Q 0n such that dP(x, ȳ) = l− 1 and dR(u, x) = k− 2n−1 − l. By induction, there is a 2n−1-cycle
C ′′ of Q 1n with dC ′′(y, ū) = 1. We write C ′′ = 〈y, S, ū, y〉with dS(y, ū) = 2n−1 − 1. Then C = 〈x, P, ȳ, y, S, ū,u, R, x〉 forms
a k-cycle of Qn with dC (x, y) = l.
The theorem is proved. �
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