Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

The bipanpositionable bipancyclic property of the hypercube*.**

Yuan-Kang Shih^a, Cheng-Kuan Lin^a, Jimmy J.M. Tan^{a,*}, Lih-Hsing Hsu^b

^a Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC

^b Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC

ARTICLE INFO

Article history: Received 31 August 2007 Received in revised form 8 June 2009 Accepted 8 July 2009

Keywords: Bipanpositionable Bipancyclic Hypercube Hamiltonian

ABSTRACT

A bipartite graph is *bipancyclic* if it contains a cycle of every even length from 4 to |V(G)| inclusive. A hamiltonian bipartite graph *G* is *bipanpositionable* if, for any two different vertices *x* and *y*, there exists a hamiltonian cycle *C* of *G* such that $d_C(x, y) = k$ for any integer *k* with $d_G(x, y) \le k \le |V(G)|/2$ and $(k - d_G(x, y))$ being even. A bipartite graph *G* is *k*-cycle *bipanpositionable* if, for any two different vertices *x* and *y*, there exists a cycle of *G* with $d_C(x, y) = l$ and |V(C)| = k for any integer *l* with $d_G(x, y) \le l \le \frac{k}{2}$ and $(l - d_G(x, y))$ being even. A bipartite graph *G* is *bipanpositionable* bipancyclic if *G* is *k*-cycle bipanpositionable for every even integer $k, 4 \le k \le |V(G)|$. We prove that the hypercube Q_n is bipanpositionable bipancyclic for $n \ge 2$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the graph definitions and notations we follow Bondy and Murty [1]. Let G = (V, E) be a graph, where V is a finite set and E is a subset of $\{(u, v) \mid (u, v) \text{ is an unordered pair of } V\}$. We say that V is the vertex set and E is the edge set of G. Two vertices u and v are adjacent if $(u, v) \in E$. A path is represented by $\langle v_0, v_1, v_2, \ldots, v_k \rangle$, where all vertices are distinct except possibly $v_0 = v_k$. The length of a path Q is the number of edges in Q. We also write the path $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ as $\langle v_0, Q_1, v_i, v_{i+1}, \ldots, v_j, Q_2, v_t, \ldots, v_k \rangle$, where Q_1 is the path $\langle v_0, v_1, \ldots, v_{i-1}, v_i \rangle$ and Q_2 is the path $\langle v_j, v_{j+1}, \ldots, v_{t-1}, v_t \rangle$. We use $d_G(u, v)$ to denote the distance between u and v in G, i.e., the length of the shortest path joining u to v in G. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. We use $d_c(u, v)$ to denote the distance between u and v in a cycle C, i.e., the length of the shortest path joining u to v in C. A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph $G = (V_0 \cup V_1, E)$ is bipartite if $V(G) = V_0 \cup V_1$ and E(G) is a subset of $\{(u, v) \mid u \in V_0$ and $v \in V_1\}$.

The *n*-dimensional hypercube, Q_n , consists of all *n*-bit binary strings as its vertices and two vertices **u** and **v** are adjacent if and only if their binary labels are different in exactly one bit position. Let $\mathbf{u} = u_{n-1}u_{n-2} \dots u_1u_0$ and $\mathbf{v} = v_{n-1}v_{n-2} \dots v_1v_0$ be two *n*-bit binary strings. The Hamming distance h(u, v) between two vertices *u* and *v* is the number of different bits in the corresponding strings of both vertices. Let Q_n^i be the subgraph of Q_n induced by $\{u_{n-1}u_{n-2} \dots u_1u_0 \mid u_{n-1} = i\}$ for i = 0, 1. Therefore, Q_n can be constructed recursively by taking two copies of Q_{n-1}, Q_n^0 and Q_n^1 , and adding a perfect matching between these two copies. For a vertex **u** in Q_n^0 (resp. Q_n^1), we use $\bar{\mathbf{u}}$ to denote the unique neighbor of **u** in Q_n^1 (resp. Q_n^0). The hypercube is a widely used topology in computer architecture, see Leighton [2].

A graph is *pancyclic* if it contains a cycle of every length from 3 to |V(G)| inclusive. The concept of pancyclic graphs was proposed by Bondy [3]. Since there is no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed

^{*} This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-009-137-MY3.

[🕸] This research was partially supported by the Aiming for the Top University and Elite Research Center Development Plan.

^{*} Corresponding author. E-mail addresses: ykshih@cs.nctu.edu.tw (Y.-K. Shih), cklin@cs.nctu.edu.tw (C.-K. Lin), jmtan@cs.nctu.edu.tw (J.J.M. Tan), lhhsu@pu.edu.tw (L.-H. Hsu).

by Mitchem and Schmeichel [4]. A bipartite graph is *bipancyclic* if it contains a cycle of every even length from 4 to |V(G)| inclusive. It is proved that the hypercube Q_n is bipancyclic if $n \ge 2$ [5,6]. A graph is panconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with $d_G(x, y) \le l \le |V(G)| - 1$. The concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph is bipanconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with $d_{G}(x, y) < l < |V(G)| - 1$ and $(l - d_{G}(x, y))$ being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer k with $d_G(x, y) < k < |V(G)|/2$, there exists a hamiltonian cycle C of G such that $d_C(x, y) = k$. A hamiltonian bipartite graph G is bipanpositionable if for any two different vertices x and y of G and for any integer k with $d_G(x, y) < k < |V(G)|/2$ and $(k - d_G(x, y))$ being even, there exists a hamiltonian cycle C of G such that $d_C(x, y) = k$. The concepts of panpositionable and bipanpositionable were proposed by Kao et al. [8]. They proved that the hypercube Q_n is bipanpositionable if $n \ge 2$ [8]. A bipartite graph G is *edge-bipancyclic* if for any edge in G, there is a cycle of every even length from 4 to |V(G)| traversing through this edge. The concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex in G, there is a cycle of every even length from 4 to |V(G)| going through this vertex. The concept of vertex-bipancyclic was proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Q_n is edge-bipancyclic if $n \ge 2$ [5].

In this paper, we propose a more interesting property about hypercubes. A *k*-cycle is a cycle of length *k*. A bipartite graph *G* is *k*-cycle bipanpositionable if for every different vertices *x* and *y* of *G* and for any integer *l* with $d_G(x, y) \le l \le \frac{k}{2}$ and $(l - d_G(x, y))$ being even, there exists a *k*-cycle *C* of *G* such that $d_C(x, y) = l$. (Note that $d_C(x, y) \le \frac{k}{2}$ for every cycle *C* of length *k*.) A bipartite graph *G* is *bipanpositionable bipancyclic* if *G* is *k*-cycle bipanpositionable for every even integer *k* with $4 \le k \le |V(G)|$. In this paper, we prove that the hypercube Q_n is bipanpositionable bipancyclic for $n \ge 2$. As a consequence of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these results in a general sense.

2. The bipanpositionable bipancyclic property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Q₃ is bipanpositionable bipancyclic.

Proof. Let **x** and **y** be two different vertices in Q_3 . Obviously, $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 1$, 2 or 3. Since the hypercube is vertex symmetric, without loss of generality, we may assume that $\mathbf{x} = 000$.

Case 1: Suppose that $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 1$. Since Q_3 is edge symmetric, we assume that $\mathbf{y} = 001$.

y = 001	4-cycle	$d_C(\mathbf{x}, \mathbf{y}) = 1$	(000, 001, 011, 010, 000)
	6-cycle	$d_C(\mathbf{x}, \mathbf{y}) = 1$	(000, 001, 101, 111, 110, 100, 000)
		$d_C(\mathbf{x}, \mathbf{y}) = 3$	(000, 100, 101, 001, 011, 010, 000)
	8-cycle	$d_C(\mathbf{x},\mathbf{y})=1$	(000, 001, 101, 111, 011, 010, 110, 100, 000)
		$d_{\mathcal{C}}(\mathbf{x},\mathbf{y})=3$	(000, 100, 101, 001, 011, 111, 110, 010, 000)

Case 2: Suppose that $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 2$. By symmetry, we assume that $\mathbf{y} = 011$.

y = 011	4-cycle	$d_{\mathcal{C}}(\mathbf{x},\mathbf{y})=2$	(000, 001, 011, 010, 000)
	6-cycle	$d_C(\mathbf{x}, \mathbf{y}) = 2$	(000, 001, 011, 010, 110, 100, 000)
	8-cycle	$d_C(\mathbf{x}, \mathbf{y}) = 2$	(000, 001, 011, 010, 110, 111, 101, 100, 000)
		$d_C(\mathbf{x},\mathbf{y})=4$	(000, 001, 101, 111, 011, 010, 110, 100, 000)

Case 3: Suppose that $d_{Q_3}(\mathbf{x}, \mathbf{y}) = 3$. We have $\mathbf{y} = 111$.

y = 111	6-cycle	$d_C(\mathbf{x}, \mathbf{y}) = 3$	(000, 001, 011, 111, 110, 100, 000)
	8-cycle	$d_{\rm C}(\mathbf{x},\mathbf{y})=3$	(000, 001, 011, 111, 101, 100, 110, 010, 000)

Thus, Q_3 is bipanpositionable bipancyclic. \Box

Theorem 1. The hypercube Q_n is bipanpositionable bipancyclic for $n \ge 2$.

Proof. We observe that Q_1 is not bipanpositionable bipancyclic. So we start with $n \ge 2$. We prove Q_n is bipanpositionable bipancyclic by induction on n. It is easy to see that Q_2 is bipanpositionable bipancyclic. By Lemma 1, this statement holds for n = 3. Suppose that Q_{n-1} is bipanpositionable bipancyclic for some $n \ge 4$. Let \mathbf{x} and \mathbf{y} be two distinct vertices in Q_n , and let k be an even integer with $k \ge \max\{4, 2d_{Q_n}(\mathbf{x}, \mathbf{y})\}$ and $k \le 2^n$. For every integer l with $d_{Q_n}(\mathbf{x}, \mathbf{y}) \le l \le \frac{k}{2}$ and $(l - d_{Q_n}(\mathbf{x}, \mathbf{y}))$ being even, we need to construct a k-cycle C of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l$.

Case 1: $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 1$. Without loss of generality, we may assume that both \mathbf{x} and \mathbf{y} are in Q_n^0 . $(l - d_{Q_n}(\mathbf{x}, \mathbf{y}))$ is even, so l is an odd number. Since Q_n^0 is isomorphic to Q_{n-1} , by introduction, there is a k-cycle of Q_n^0 with $d_C(\mathbf{x}, \mathbf{y}) = l$ for every $4 \le k \le 2^{n-1}$. Thus, we consider that $k \ge 2^{n-1} + 2$.

Case 1.1: l = 1. By induction, there is a (2^{n-1}) -cycle $C' = \langle \mathbf{x}, P, \mathbf{z}, \mathbf{y}, \mathbf{x} \rangle$ of Q_n^0 where $d_P(\mathbf{x}, \mathbf{z}) = 2^{n-1} - 2$. Suppose that $k - 2^{n-1} = 2$. Then $C = \langle \mathbf{x}, P, \mathbf{z}, \mathbf{\bar{z}}, \mathbf{\bar{y}}, \mathbf{y}, \mathbf{x} \rangle$ forms a $(2^{n-1} + 2)$ -cycle with $d_C(\mathbf{x}, \mathbf{y}) = 1$. Suppose that $k - 2^{n-1} \ge 4$. By induction, there is a $(k - 2^{n-1})$ -cycle C'' of Q_n^1 such that $d_{C''}(\mathbf{\bar{z}}, \mathbf{\bar{y}}) = 1$. We write $C'' = \langle \mathbf{\bar{z}}, R, \mathbf{\bar{y}}, \mathbf{\bar{z}} \rangle$ with $d_R(\mathbf{\bar{z}}, \mathbf{\bar{y}}) = k - 2^{n-1} - 1$. Then $C = \langle \mathbf{x}, P, \mathbf{z}, \mathbf{\bar{z}}, R, \mathbf{\bar{y}}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l = 1$.

Case 1.2: $l \ge 3$. Suppose that $k - l - 1 \le 2^{n-1}$. By induction, there is an (l + 1)-cycle C' of Q_n^0 with $d_{C'}(\mathbf{x}, \mathbf{y}) = 1$. We write $C' = \langle \mathbf{x}, P, \mathbf{y}, \mathbf{x} \rangle$ where $d_P(\mathbf{x}, \mathbf{y}) = l$. By induction, there is a (k - l - 1)-cycle C'' of Q_n^1 with $d_{C''}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 1$. We then write $C'' = \langle \bar{\mathbf{y}}, R, \bar{\mathbf{x}}, \bar{\mathbf{y}} \rangle$ such that $d_R(\bar{\mathbf{y}}, \bar{\mathbf{x}}) = k - l - 2$. Then $C = \langle \mathbf{x}, P, \mathbf{y}, \bar{\mathbf{y}}, R, \bar{\mathbf{x}}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l$. Suppose that $k - l - 2 \ge 2^{n-1} + 1$. By induction, there is a $(k - 2^{n-1})$ -cycle C' of Q_n^0 with $d_{C'}(\mathbf{x}, \mathbf{y}) = l$. We write $C' = \langle \mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \mathbf{x} \rangle$ with $d_P(\mathbf{x}, \mathbf{y}) = l$ and $d_R(\mathbf{y}, \mathbf{x}) = k - (2^{n-1} - 1) - l - 2$. By induction, there is a (2^{n-1}) -cycle C'' of Q_n^1 with $d_{C''}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = 1$. We write $C'' = \langle \bar{\mathbf{x}}, \bar{\mathbf{u}}, \mathbf{y}, \bar{\mathbf{x}} \rangle = 1$. Then $C = \langle \mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \bar{\mathbf{u}}, S, \bar{\mathbf{x}}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_{C''}(\bar{\mathbf{x}}, \bar{\mathbf{u}}) = 1$. We write $C'' = \langle \bar{\mathbf{x}}, \bar{\mathbf{u}}, S, \bar{\mathbf{x}} \rangle$ with $d_s(\bar{\mathbf{u}}, \bar{\mathbf{x}}) = 2^{n-1} - 1$. Then $C = \langle \mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \bar{\mathbf{u}}, S, \bar{\mathbf{x}}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l$. **Case 2:** $d_{Q_n}(\mathbf{x}, \mathbf{y}) \ge 2$ and l = 2. Since $d_{Q_n}(\mathbf{x}, \mathbf{y}) \le l$ and l = 2, so $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 2$. Without loss of generality, we may assume that \mathbf{x} is in Q_n^0 and \mathbf{y} is in Q_n^1 . Then $d_{Q_n}(\bar{\mathbf{x}}, \mathbf{y}) = 1$ and $d_{Q_n}(\bar{\mathbf{y}}, \mathbf{x}) = 1$.

Suppose that k = 4. Then $C = \langle \mathbf{x}, \bar{\mathbf{x}}, \mathbf{y}, \bar{\mathbf{y}}, \mathbf{x} \rangle$ forms a 4-cycle of Q_n with $d_{Q_n}(\mathbf{x}, \mathbf{y}) = 2$. Suppose that $6 \le k \le 2^{n-1} + 2$. By induction, there is a (k-2)-cycle $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = k-3$. Then $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{x}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = 2$. Suppose that $k \ge 2^{n-1} + 4$. By induction, there is a 2^{n-1} -cycle C' of Q_n^0 with $d_{C'}(\mathbf{x}, \bar{\mathbf{y}}) = 1$. We write $C' = \langle \mathbf{x}, P, \mathbf{z}, \bar{\mathbf{y}}, \mathbf{x} \rangle$ with $d_P(\mathbf{x}, \mathbf{z}) = 2^{n-1} - 2$. By induction, there is a $(k-2^{n-1})$ -cycle C'' of Q_n^1 with $d_{C''}(\mathbf{y}, \bar{\mathbf{z}}) = 1$. We write $C'' = \langle \mathbf{y}, \bar{\mathbf{z}}, R, \mathbf{y} \rangle$ with $d_R(\mathbf{y}, \bar{\mathbf{z}}) = k - 2^{n-1} - 1$. Then $C = \langle \mathbf{x}, P, \mathbf{z}, \bar{\mathbf{z}}, R, \mathbf{y}, \bar{\mathbf{y}}, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = 2$.

Case 3: $d_{Q_n}(\mathbf{x}, \mathbf{y}) \ge 2$ and $l \ge 3$. Without loss of generality, we may assume that \mathbf{x} is in Q_n^0 and \mathbf{y} is in Q_n^1 . Suppose that $k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2 \le 2^{n-1}$. By induction, there is an $(l + d_{Q_n}(\mathbf{x}, \mathbf{y}) - 2)$ -cycle $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$ and $d_R(\mathbf{u}, \mathbf{x}) = d_{Q_n}(\mathbf{x}, \mathbf{y}) - 2$. For $k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2 \le 2$, by induction, there is a $(k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2)$ -cycle C'' of Q_n^1 with $d_{C''}(\mathbf{y}, \bar{\mathbf{u}}) = 1$. We write $C'' = \langle \mathbf{y}, S, \bar{\mathbf{u}}, \mathbf{y} \rangle$ with $d_S(\mathbf{y}, \bar{\mathbf{u}}) = k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 1$. We then set $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, \bar{\mathbf{u}}, \mathbf{u}, R, \mathbf{x} \rangle$ if $k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2 = 2$ or $C = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, S, \bar{\mathbf{u}}, \mathbf{u}, R, \mathbf{x} \rangle$ if $k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 2 \le 4$. Then C forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l$. Suppose that $k - l - d_{Q_n}(\mathbf{x}, \mathbf{y}) + 4 \ge 2^{n-1}$. By induction, there is a $(k - 2^{n-1})$ -cycle $C' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$ and $d_R(\mathbf{u}, \mathbf{x}) = k - 2^{n-1}$. By induction, there is a 2^{n-1} -cycle $C'' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$ and $d_R(\mathbf{u}, \mathbf{x}) = k - 2^{n-1}$. By induction, there is a 2^{n-1} -cycle $C'' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$ and $d_R(\mathbf{u}, \mathbf{x}) = k - 2^{n-1} - l$. By induction, there is a 2^{n-1} -cycle $C'' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{u}, R, \mathbf{x} \rangle$ of Q_n^0 such that $d_P(\mathbf{x}, \bar{\mathbf{y}}) = l - 1$ and $d_R(\mathbf{u}, \mathbf{x}) = k - 2^{n-1} - l$. By induction, there is a 2^{n-1} -cycle $C'' = \langle \mathbf{x}, P, \bar{\mathbf{y}}, \mathbf{y}, S, \bar{\mathbf{u}}, \mathbf{u}, R, \mathbf{x} \rangle$ forms a k-cycle of Q_n with $d_C(\mathbf{x}, \mathbf{y}) = l$.

The theorem is proved. \Box

References

- [1] J.A. Bondy, U.S.R Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [2] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays Trees Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
- [3] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory, Series B 11 (1971) 80-84.
- [4] J. Mitchem, E. Schmeichel, Pancyclic and bipancyclic graphs A survey, Graphs and Applications (1982) 271–278.
- [5] T.-K. Li, C.-H. Tsai, J.J.-M. Tan, L.-H. Hsu, Bipanconnected and edge-fault-tolerant bipancyclic of hypercubes, Information Processing Letters 87 (2003) 107–110.
- [6] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers 37 (1988) 867–872.
- [7] Y. Alavi, J.E. Williamson, Panconnected graphs, Studia Scientiarum Mathematicarum Hungarica 10 (1975) 19–22.
- [8] S.-S. Kao, C.-K. Lin, H.-M. Huang, L.-H. Hsu, Panpositionable hamiltonian graph, Ars Combinatoria 81 (2006) 209–223.
- [9] B. Alspach, D. Hare, Edge-pancyclic block-intersection graphs, Discrete Mathematics 97 (1997) 17-24.
- [10] A. Hobbs, The square of a block is vertex pancyclic, Journal of Combinatorial Theory, Series B 20 (1976) 1-4.