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kwithdg(x,y) <k < |V(G)|/2 and (k — d¢(x, y)) being even. A bipartite graph G is k-cycle
bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with

. - dc(x,y) = land |V(C)| = k for any integer [ with d¢(x, y) <1 < ¥ and (I — dg(x, )) being
Bipanpositionable . . L. .. . i 2 . A
Bipancyclic even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for
Hypercube every even integer k,4 < k < |V(G)|. We prove that the hypercube Q, is bipanpositionable
Hamiltonian bipancyclic forn > 2.
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1. Introduction

For the graph definitions and notations we follow Bondy and Murty [1]. Let G = (V, E) be a graph, where V is a finite
set and E is a subset of {(u, v) | (u, v) is an unordered pair of V}. We say that V is the vertex set and E is the edge set of G.

Two vertices u and v are adjacent if (u, v) € E. A path is represented by (v, v1, va, ..., V), Where all vertices are distinct
except possibly vop = vy. The length of a path Q is the number of edges in Q. We also write the path (vg, vy, v2, ..., vx) as
(vo, Q1, Vi, Vig1 ..., Vj, Q2, Vg, ..., Vk), where Qq is the path (vg, vy, ..., vi_1, v;) and Q, is the path (v}, vjy1, ..., Ve—1, Vr).

We use d;(u, v) to denote the distance between u and v in G, i.e., the length of the shortest path joining u to v in G. A cycle is
a path of at least three vertices such that the first vertex is the same as the last vertex. We use d. (u, v) to denote the distance
between u and v in a cycle C, i.e., the length of the shortest path joining u to v in C. A hamiltonian cycle of G is a cycle that
traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G = (Vo U V1, E)
is bipartite if V(G) = Vo, U V7 and E(G) is a subset of {(u, v) | u € Vpand v € V1}.

The n-dimensional hypercube, Q,,, consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if
and only if their binary labels are different in exactly one bit position. Let u = u,,_1uy_3...uUjlUgand Vv = v,_1v;_3...V1g
be two n-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits
in the corresponding strings of both vertices. Let Qr’l be the subgraph of Q, induced by {u,_1tp_5 - - - ujtgy | up—q = i} for
i = 0, 1. Therefore, Q, can be constructed recursively by taking two copies of Q,_1, Q2 and Q, and adding a perfect matching
between these two copies. For a vertex uin Q? (resp. Q,!), we use @i to denote the unique neighbor of win Q! (resp. Q?). The
hypercube is a widely used topology in computer architecture, see Leighton [2].

A graph is pancyclic if it contains a cycle of every length from 3 to |V (G)| inclusive. The concept of pancyclic graphs was
proposed by Bondy [3]. Since there is no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed
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by Mitchem and Schmeichel [4]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to
|[V(G)] inclusive. It is proved that the hypercube Q, is bipancyclic if n > 2 [5,6]. A graph is panconnected if, for any two
different vertices x and y, there exists a path of length I joining x and y for every [ with dg(x,y) < | < |V(G)| — 1. The
concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with
at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph
is bipanconnected if, for any two different vertices x and y, there exists a path of length [ joining x and y for every [ with
de(x,y) <1< |V(G)|—1and (I—dgs(x, y)) being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian
graph G is panpositionable if for any two different vertices x and y of G and for any integer k with ds(x,y) < k < |[V(G)|/2,
there exists a hamiltonian cycle C of G such that dc(x,y) = k. A hamiltonian bipartite graph G is bipanpositionable if for
any two different vertices x and y of G and for any integer k with dg(x,y) < k < |V(G)|/2 and (k — d¢(x, y)) being even,
there exists a hamiltonian cycle C of G such that d¢(x, y) = k. The concepts of panpositionable and bipanpositionable were
proposed by Kao et al. [8]. They proved that the hypercube Q, is bipanpositionable if n > 2 [8]. A bipartite graph G is
edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to |V (G)| traversing through this edge. The
concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex
in G, there is a cycle of every even length from 4 to |V (G)| going through this vertex. The concept of vertex-bipancyclic was
proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Q,
is edge-bipancyclic if n > 2 [5].

In this paper, we propose a more interesting property about hypercubes. A k-cycle is a cycle of length k. A bipartite graph
G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer [ with dg(x,y) < | < % and

(I — dg(x,y)) being even, there exists a k-cycle C of G such that dc(x, y) = L (Note that dc(x,y) < % for every cycle C of
length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with
4 < k < |V(G)|. In this paper, we prove that the hypercube Q, is bipanpositionable bipancyclic for n > 2. As a consequence
of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is
bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these
results in a general sense.

2. The bipanpositionable bipancyclic property
We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Qs is bipanpositionable bipancyclic.

Proof. Letx andy be two different vertices in Q3. Obviously, dg, (X, y) = 1, 2 or 3. Since the hypercube is vertex symmetric,
without loss of generality, we may assume that x = 000.

Case 1: Suppose that dg, (X, y) = 1. Since Q3 is edge symmetric, we assume thaty = 001.

y=001 4cycle dc(x,y)=1 (000,001,011,010, 000)
6-cycle dc(x,y)=1 (000,001, 101, 111, 110, 100, 000)
de(x,y) =3 (000, 100, 101,001, 011, 010, 000)
8-cycle dc(x,y)=1 (000,001,101, 111,011,010, 110, 100, 000)
de(x,y) =3 (000, 100, 101,001, 011, 111, 110, 010, 000)

Case 2: Suppose that dg, (X, y) = 2. By symmetry, we assume thaty = 011.

y=011 4cycle dc(x,y)=2 (000,001,011, 010, 000)
6-cycle dc(x,y)=2 (000,001, 011,010, 110, 100, 000)
8-cycle dc(x,y)=2 (000,001,011, 010, 110, 111, 101, 100, 000)
de(x,y) =4 (000,001, 101, 111, 011, 010, 110, 100, 000)

Case 3: Suppose that dg, (X, y) = 3. We havey = 111.

y=111 6-cycle dc(x,y)=3 (000,001,011, 111, 110, 100, 000)
8-cycle dc(x,y)=3 (000,001,011, 111, 101, 100, 110, 010, 000)

Thus, Q3 is bipanpositionable bipancyclic. O

Theorem 1. The hypercube Q, is bipanpositionable bipancyclic for n > 2.
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Proof. We observe that Q; is not bipanpositionable bipancyclic. So we start with n > 2. We prove Q, is bipanpositionable
bipancyclic by induction on n. It is easy to see that Q is bipanpositionable bipancyclic. By Lemma 1, this statement holds for
n = 3. Suppose that Q,_1 is bipanpositionable bipancyclic for some n > 4. Let x and y be two distinct vertices in Q,, and let
k be an even integer with k > max{4, 2dy, (X, y)} and k < 2". For every integer | with do,(X,y) <[ < g and (I — dg, (X, y))
being even, we need to construct a k-cycle C of Q, with d¢(x,y) = L

Case 1: dg, (X, y) = 1. Without loss of generality, we may assume that both x and y are in Q.?- (I — dg,(x,y)) is even, so
I is an odd number. Since Q? is isomorphic to Q,_, by introduction, there is a k-cycle of Q¥ with dc(x,y) = I for every
4 < k < 2™ 1. Thus, we consider that k > 2"~ + 2.

Case 1.1: | = 1. By induction, there is a (2"~ 1)-cycle C' = (x, P, z,y, x) of Q° where dp(x,z) = 2"~! — 2. Suppose that
k—2""1' = 2.ThenC = (x,P,z,2,Y¥,Y, X) forms a (2" + 2)-cycle with dc(X,y) = 1. Suppose that k — 2"~! > 4. By
induction, there is a (k—2"1)-cycle C” of Q! such thatdc»(Z, §) = 1. We write C” = (z, R, ¥, Z) with dg(Z, §) = k—2""1—1.
ThenC = (x, P, z,Z,R,y,Y, X) forms a k-cycle of Q, withdc(x,y) =1 = 1.

Case 1.2: ] > 3. Suppose that k — | — 1 < 2", By induction, there is an (I + 1)-cycle C’ on,? with dc (X, y) = 1. We write
C' = (x, P, y, x) where dp(x,y) = L By induction, there is a (k — | — 1)-cycle C” of Q, with d¢~(X,y) = 1. We then write
C” = (y,R, X, y) such that dg(y, X) = k—[—2.ThenC = (X, P, y, y, R, X, X) forms a k-cycle of Q, with d¢ (X, y) = L. Suppose
thatk—I—2 > 2"~! 41, By induction, there is a (k—2"~")-cycle C’ on,? with de (x,y) = L. We write C’ = (x, P, y, R, u, X)
with dp(x, y) = land dg(y, X) = k— (2"~! — 1) —— 2. By induction, there is a (2"~ !)-cycle C” of Q;} with dc» (X, 1) = 1. We
write C” = (X, u, S, X) withds(u, X) = 2" ! — 1.Then C = (x, P,y, R, u, 4, S, X, x) forms a k-cycle of Q, with dc(x,y) = L.
Case 2:dg, (X,y) > 2and | = 2. Since dg, (X,y) < land [ = 2,s0dg,(x,y) = 2. Without loss of generality, we may assume
that x is in Qr? andyisin Q.. Then dg, (X, y) = 1and dg, (¥, X) = 1.

Suppose that k = 4. Then C = (x, X, y, ¥, X) forms a 4-cycle of Q, with dy, (X, y) = 2. Suppose that 6 < k < 2"~! +2 By
induction, there is a (k—2)-cycle C' = (x, P, ¥, x) of QC such that dp (X, §) = k—3.ThenC = (x, P, ¥, ¥, X, X) forms a k-cycle
of Q, with d¢(x, y) = 2. Suppose that k > 2"~! + 4. By induction, there is a 2"~ !-cycle C’' of Q¥ with d¢(x, §) = 1. We write
C' = (x, P, z,y,x) withdp(x,z) = 2"~! — 2. By induction, there is a (k — 2"~ ")-cycle C” of Q] with d¢~ (y, Z) = 1. We write
C" =y, z, R, y) withdg(y,z) =k —2""1—1.ThenC = (X, P, z,Z, R, y,¥, X) forms a k-cycle of Q, with dc(x, y) = 2.
Case 3:dy, (X,y) > 2and ! > 3. Without loss of generality, we may assume that X is in Q,? and y is in Qn] Suppose that
k — 1 —dg,(x,y) +2 < 2"!, By induction, there is an (I + dg,(x,y) — 2)-cycle C’ = (x,P, ¥, u, R, x) of Q,? such that
dp(X,y) =1—Tand dg(u, X) = dg,(X,y) — 2. For k — [ — dg, (X, y) + 2 < 2, by induction, thereisa (k — [ — dg, (X, y) + 2)-
cycle C” of Q] with der(y, ) = 1. We write C” = (y, S, &, y) with ds(y, ) = k — | — dg,(X,y) + 1. We then set
C = xPyyuuRx) ifk—1—dy,xy)+2 =20rC = (X,P,y,y,S,u,u,RX) if k — | —do,(x,y) +2 < 4.
Then C forms a k-cycle of Q, with d¢ (X, y) = I. Suppose that k — I —dg, (X, y) +4 > 2"1, By induction, there is a (k — 2" 1)-
cycleC’ = (x,P,y, u, R, X) on,? such that dp(x, ) = [ — 1 and dg(u, X) = k — 2"~ ! — . By induction, there is a 2"~ !-cycle
C” of Q] with dcv (y, 1) = 1. We write C” = {y, S, 11, y) with ds(y, 1) = 2"~' — 1.Then C = (x, P, ¥,y, S, i, u, R, X) forms
a k-cycle of Q, withdc(x,y) = L

The theorem is proved. O
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