The bipanpositionable bipancyclic property of the hypercube ${ }^{\text {为，㸚 }}$

Yuan－Kang Shih ${ }^{\text {a }}$ ，Cheng－Kuan Lin ${ }^{\text {a }}$ ，Jimmy J．M．Tan ${ }^{\text {a，＊}}$ ，Lih－Hsing Hsu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science，National Chiao Tung University，Hsinchu，30010，Taiwan，ROC
${ }^{\mathrm{b}}$ Department of Computer Science and Information Engineering，Providence University，Taichung，43301，Taiwan，ROC

A R T I C L E I N F O

Article history：

Received 31 August 2007
Received in revised form 8 June 2009
Accepted 8 July 2009

Keywords：

Bipanpositionable
Bipancyclic
Hypercube
Hamiltonian

Abstract

A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$ inclusive．A hamiltonian bipartite graph G is bipanpositionable if，for any two different vertices x and y ，there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$ for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$ and $\left(k-d_{G}(x, y)\right)$ being even．A bipartite graph G is k－cycle bipanpositionable if，for any two different vertices x and y ，there exists a cycle of G with $d_{C}(x, y)=l$ and $|V(C)|=k$ for any integer l with $d_{G}(x, y) \leq l \leq \frac{k}{2}$ and $\left(l-d_{G}(x, y)\right)$ being even．A bipartite graph G is bipanpositionable bipancyclic if G is k－cycle bipanpositionable for every even integer $k, 4 \leq k \leq|V(G)|$ ．We prove that the hypercube Q_{n} is bipanpositionable bipancyclic for $n \geq 2$ ．

© 2009 Elsevier Ltd．All rights reserved．

1．Introduction

For the graph definitions and notations we follow Bondy and Murty［1］．Let $G=(V, E)$ be a graph，where V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\}$ ．We say that V is the vertex set and E is the edge set of G ． Two vertices u and v are adjacent if $(u, v) \in E$ ．A path is represented by $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ ，where all vertices are distinct except possibly $v_{0}=v_{k}$ ．The length of a path Q is the number of edges in Q ．We also write the path $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ as $\left\langle v_{0}, Q_{1}, v_{i}, v_{i+1} \ldots, v_{j}, Q_{2}, v_{t}, \ldots, v_{k}\right\rangle$ ，where Q_{1} is the path $\left\langle v_{0}, v_{1}, \ldots, v_{i-1}, v_{i}\right\rangle$ and Q_{2} is the path $\left\langle v_{j}, v_{j+1}, \ldots, v_{t-1}, v_{t}\right\rangle$ ． We use $d_{G}(u, v)$ to denote the distance between u and v in G ，i．e．，the length of the shortest path joining u to v in G ．A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex．We use $d_{c}(u, v)$ to denote the distance between u and v in a cycle C ，i．e．，the length of the shortest path joining u to v in C ．A hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once．A hamiltonian graph is a graph with a hamiltonian cycle．A graph $G=\left(V_{0} \cup V_{1}, E\right)$ is bipartite if $V(G)=V_{0} \cup V_{1}$ and $E(G)$ is a subset of $\left\{(u, v) \mid u \in V_{0}\right.$ and $\left.v \in V_{1}\right\}$ ．

The n－dimensional hypercube，Q_{n} ，consists of all n－bit binary strings as its vertices and two vertices \mathbf{u} and \mathbf{v} are adjacent if and only if their binary labels are different in exactly one bit position．Let $\mathbf{u}=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $\mathbf{v}=v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be two n－bit binary strings．The Hamming distance $h(u, v)$ between two vertices u and v is the number of different bits in the corresponding strings of both vertices．Let Q_{n}^{i} be the subgraph of Q_{n} induced by $\left\{u_{n-1} u_{n-2} \cdots u_{1} u_{0} \mid u_{n-1}=i\right\}$ for $i=0,1$ ．Therefore，Q_{n} can be constructed recursively by taking two copies of Q_{n-1}, Q_{n}^{0} and $Q_{n}{ }^{1}$ ，and adding a perfect matching between these two copies．For a vertex \mathbf{u} in Q_{n}^{0}（resp．Q_{n}^{1} ），we use $\overline{\mathbf{u}}$ to denote the unique neighbor of \mathbf{u} in Q_{n}^{1}（resp．Q_{n}^{0} ）．The hypercube is a widely used topology in computer architecture，see Leighton［2］．

A graph is pancyclic if it contains a cycle of every length from 3 to $|V(G)|$ inclusive．The concept of pancyclic graphs was proposed by Bondy［3］．Since there is no odd cycle in bipartite graph，the concept of a bipancyclic graph was proposed

[^0]by Mitchem and Schmeichel [4]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$ inclusive. It is proved that the hypercube Q_{n} is bipancyclic if $n \geq 2[5,6]$. A graph is panconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with $d_{G}(x, y) \leq l \leq|V(G)|-1$. The concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph is bipanconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with $d_{G}(x, y) \leq l \leq|V(G)|-1$ and $\left(l-d_{G}(x, y)\right)$ being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$, there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$. A hamiltonian bipartite graph G is bipanpositionable if for any two different vertices x and y of G and for any integer k with $d_{G}(x, y) \leq k \leq|V(G)| / 2$ and $\left(k-d_{G}(x, y)\right)$ being even, there exists a hamiltonian cycle C of G such that $d_{C}(x, y)=k$. The concepts of panpositionable and bipanpositionable were proposed by Kao et al. [8]. They proved that the hypercube Q_{n} is bipanpositionable if $n \geq 2$ [8]. A bipartite graph G is edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to $|V(G)|$ traversing through this edge. The concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex in G, there is a cycle of every even length from 4 to $|V(G)|$ going through this vertex. The concept of vertex-bipancyclic was proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Q_{n} is edge-bipancyclic if $n \geq 2$ [5].

In this paper, we propose a more interesting property about hypercubes. A k-cycle is a cycle of length k. A bipartite graph G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer l with $d_{G}(x, y) \leq l \leq \frac{k}{2}$ and $\left(l-d_{G}(x, y)\right.$) being even, there exists a k-cycle C of G such that $d_{C}(x, y)=l$. (Note that $d_{C}(x, y) \leq \frac{k}{2}$ for every cycle C of length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with $4 \leq k \leq|V(G)|$. In this paper, we prove that the hypercube Q_{n} is bipanpositionable bipancyclic for $n \geq 2$. As a consequence of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these results in a general sense.

2. The bipanpositionable bipancyclic property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Q_{3} is bipanpositionable bipancyclic.
Proof. Let \mathbf{x} and \mathbf{y} be two different vertices in Q_{3}. Obviously, $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=1,2$ or 3 . Since the hypercube is vertex symmetric, without loss of generality, we may assume that $\mathbf{x}=000$.
Case 1: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=1$. Since Q_{3} is edge symmetric, we assume that $\mathbf{y}=001$.

$\mathbf{y}=001$	4-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,011,010,000\rangle$
	6-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,101,111,110,100,000\rangle$
		$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,100,101,001,011,010,000\rangle$
	8-cycle	$d_{C}(\mathbf{x}, \mathbf{y})=1$	$\langle 000,001,101,111,011,010,110,100,000\rangle$
		$d_{C}(\mathbf{x}, \mathbf{y})=3$	$\langle 000,100,101,001,011,111,110,010,000\rangle$

Case 2: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=2$. By symmetry, we assume that $\mathbf{y}=011$.

$$
\begin{array}{llll}
\hline \mathbf{y}=011 & \text { 4-cycle } & d_{C}(\mathbf{x}, \mathbf{y})=2 & \langle 000,001,011,010,000\rangle \\
& \text { 6-cycle } & d_{C}(\mathbf{x}, \mathbf{y})=2 & \langle 000,001,011,010,110,100,000\rangle \\
& \text { 8-cycle } & d_{C}(\mathbf{x}, \mathbf{y})=2 & \langle 000,001,011,010,110,111,101,100,000\rangle \\
& & d_{C}(\mathbf{x}, \mathbf{y})=4 & \langle 000,001,101,111,011,010,110,100,000\rangle
\end{array}
$$

Case 3: Suppose that $d_{Q_{3}}(\mathbf{x}, \mathbf{y})=3$. We have $\mathbf{y}=111$.

$$
\begin{array}{llll}
\hline \mathbf{y}=111 & \text { 6-cycle } & d_{C}(\mathbf{x}, \mathbf{y})=3 & \langle 000,001,011,111,110,100,000\rangle \\
& \text { 8-cycle } & d_{C}(\mathbf{x}, \mathbf{y})=3 & \langle 000,001,011,111,101,100,110,010,000\rangle
\end{array}
$$

Thus, Q_{3} is bipanpositionable bipancyclic.

Theorem 1. The hypercube Q_{n} is bipanpositionable bipancyclic for $n \geq 2$.

Proof. We observe that Q_{1} is not bipanpositionable bipancyclic. So we start with $n \geq 2$. We prove Q_{n} is bipanpositionable bipancyclic by induction on n. It is easy to see that Q_{2} is bipanpositionable bipancyclic. By Lemma 1 , this statement holds for $n=3$. Suppose that Q_{n-1} is bipanpositionable bipancyclic for some $n \geq 4$. Let \mathbf{x} and \mathbf{y} be two distinct vertices in Q_{n}, and let k be an even integer with $k \geq \max \left\{4,2 d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right\}$ and $k \leq 2^{n}$. For every integer l with $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \leq l \leq \frac{k}{2}$ and $\left(l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right)$ being even, we need to construct a k-cycle C of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.
Case 1: $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=1$. Without loss of generality, we may assume that both \mathbf{x} and \mathbf{y} are in $Q_{n}^{0} .\left(l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})\right)$ is even, so l is an odd number. Since Q_{n}^{0} is isomorphic to Q_{n-1}, by introduction, there is a k-cycle of Q_{n}^{0} with $d_{C}(\mathbf{x}, \mathbf{y})=l$ for every $4 \leq k \leq 2^{n-1}$. Thus, we consider that $k \geq 2^{n-1}+2$.
Case 1.1: $l=1$. By induction, there is a (2 2^{n-1})-cycle $C^{\prime}=\langle\mathbf{x}, P, \mathbf{z}, \mathbf{y}, \mathbf{x}\rangle$ of Q_{n}^{0} where $d_{P}(\mathbf{x}, \mathbf{z})=2^{n-1}-2$. Suppose that $k-2^{n-1}=2$. Then $C=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, \overline{\mathbf{y}}, \mathbf{y}, \mathbf{x}\rangle$ forms a $\left(2^{n-1}+2\right)$-cycle with $d_{C}(\mathbf{x}, \mathbf{y})=1$. Suppose that $k-2^{n-1} \geq 4$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} such that $d_{C^{\prime \prime}}(\overline{\mathbf{z}}, \overline{\mathbf{y}})=1$. We write $C^{\prime \prime}=\langle\overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \overline{\mathbf{z}}\rangle$ with $d_{R}(\overline{\mathbf{z}}, \overline{\mathbf{y}})=k-2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, R, \overline{\mathbf{y}}, \mathbf{y}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l=1$.
Case 1.2: $l \geq 3$. Suppose that $k-l-1 \leq 2^{n-1}$. By induction, there is an $(l+1)$-cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \mathbf{y})=1$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{y}, \mathbf{x}\rangle$ where $d_{P}(\mathbf{x}, \mathbf{y})=l$. By induction, there is a $(k-l-1)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=1$. We then write $C^{\prime \prime}=\langle\overline{\mathbf{y}}, R, \overline{\mathbf{x}}, \overline{\mathbf{y}}\rangle$ such that $d_{R}(\overline{\mathbf{y}}, \overline{\mathbf{x}})=k-l-2$. Then $C=\langle\mathbf{x}, P, \mathbf{y}, \overline{\mathbf{y}}, R, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$. Suppose that $k-l-2 \geq 2^{n-1}+1$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \mathbf{y})=l$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \mathbf{x}\rangle$ with $d_{P}(\mathbf{x}, \mathbf{y})=l$ and $d_{R}(\mathbf{y}, \mathbf{x})=k-\left(2^{n-1}-1\right)-l-2$. By induction, there is a $\left(2^{n-1}\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\overline{\mathbf{x}}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\overline{\mathbf{x}}, \overline{\mathbf{u}}, S, \overline{\mathbf{x}}\rangle$ with $d_{S}(\overline{\mathbf{u}}, \overline{\mathbf{x}})=2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{y}, R, \mathbf{u}, \overline{\mathbf{u}}, S, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.
Case 2: $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \geq 2$ and $l=2$. Since $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \leq l$ and $l=2$, so $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=2$. Without loss of generality, we may assume that \mathbf{x} is in Q_{n}^{0} and \mathbf{y} is in Q_{n}^{1}. Then $d_{Q_{n}}(\overline{\mathbf{x}}, \mathbf{y})=1$ and $d_{Q_{n}}(\overline{\mathbf{y}}, \mathbf{x})=1$.

Suppose that $k=4$. Then $C=\langle\mathbf{x}, \overline{\mathbf{x}}, \mathbf{y}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ forms a 4-cycle of Q_{n} with $d_{Q_{n}}(\mathbf{x}, \mathbf{y})=2$. Suppose that $6 \leq k \leq 2^{n-1}+2$. By induction, there is a $(k-2)$-cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=k-3$. Then $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, \overline{\mathbf{x}}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=2$. Suppose that $k \geq 2^{n-1}+4$. By induction, there is a 2^{n-1}-cycle C^{\prime} of Q_{n}^{0} with $d_{C^{\prime}}(\mathbf{x}, \overline{\mathbf{y}})=1$. We write $C^{\prime}=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ with $d_{P}(\mathbf{x}, \mathbf{z})=2^{n-1}-2$. By induction, there is a $\left(k-2^{n-1}\right)$-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{z}})=1$. We write $C^{\prime \prime}=\langle\mathbf{y}, \overline{\mathbf{z}}, R, \mathbf{y}\rangle$ with $d_{R}(\mathbf{y}, \overline{\mathbf{z}})=k-2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \mathbf{z}, \overline{\mathbf{z}}, R, \mathbf{y}, \overline{\mathbf{y}}, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=2$.
Case 3: $d_{Q_{n}}(\mathbf{x}, \mathbf{y}) \geq 2$ and $l \geq 3$. Without loss of generality, we may assume that \mathbf{x} is in Q_{n}^{0} and \mathbf{y} is in Q_{n}^{1}. Suppose that $k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2 \leq 2^{n-1}$. By induction, there is an $\left(l+d_{Q_{n}}(\mathbf{x}, \mathbf{y})-2\right)$-cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{u}, R, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=l-1$ and $d_{R}(\mathbf{u}, \mathbf{x})=d_{Q_{n}}(\mathbf{x}, \mathbf{y})-2$. For $k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2 \leq 2$, by induction, there is a $\left(k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2\right)-$ cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{y}\rangle$ with $d_{S}(\mathbf{y}, \overline{\mathbf{u}})=k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+1$. We then set $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, \overline{\mathbf{u}}, \mathbf{u}, R, \mathbf{x}\rangle$ if $k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2=2$ or $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{u}, R, \mathbf{x}\rangle$ if $k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+2 \leq 4$. Then C forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$. Suppose that $k-l-d_{Q_{n}}(\mathbf{x}, \mathbf{y})+4 \geq 2^{n-1}$. By induction, there is a $\left(k-2^{n-1}\right)$ cycle $C^{\prime}=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{u}, R, \mathbf{x}\rangle$ of Q_{n}^{0} such that $d_{P}(\mathbf{x}, \overline{\mathbf{y}})=l-1$ and $d_{R}(\mathbf{u}, \mathbf{x})=k-2^{n-1}-l$. By induction, there is a 2^{n-1}-cycle $C^{\prime \prime}$ of Q_{n}^{1} with $d_{C^{\prime \prime}}(\mathbf{y}, \overline{\mathbf{u}})=1$. We write $C^{\prime \prime}=\langle\mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{y}\rangle$ with $d_{S}(\mathbf{y}, \overline{\mathbf{u}})=2^{n-1}-1$. Then $C=\langle\mathbf{x}, P, \overline{\mathbf{y}}, \mathbf{y}, S, \overline{\mathbf{u}}, \mathbf{u}, R, \mathbf{x}\rangle$ forms a k-cycle of Q_{n} with $d_{C}(\mathbf{x}, \mathbf{y})=l$.

The theorem is proved.

References

[1] J.A. Bondy, U.S.R Murty, Graph Theory with Applications, North-Holland, New York, 1980.
[2] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays • Trees • Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[3] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory, Series B 11 (1971) 80-84.
[4] J. Mitchem, E. Schmeichel, Pancyclic and bipancyclic graphs - A survey, Graphs and Applications (1982) 271-278.
[5] T.-K. Li, C.-H. Tsai, J.J.-M. Tan, L.-H. Hsu, Bipanconnected and edge-fault-tolerant bipancyclic of hypercubes, Information Processing Letters 87 (2003) 107-110.
[6] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers 37 (1988) 867-872.
[7] Y. Alavi, J.E. Williamson, Panconnected graphs, Studia Scientiarum Mathematicarum Hungarica 10 (1975) 19-22.
[8] S.-S. Kao, C.-K. Lin, H.-M. Huang, L.-H. Hsu, Panpositionable hamiltonian graph, Ars Combinatoria 81 (2006) 209-223.
[9] B. Alspach, D. Hare, Edge-pancyclic block-intersection graphs, Discrete Mathematics 97 (1997) 17-24.
[10] A. Hobbs, The square of a block is vertex pancyclic, Journal of Combinatorial Theory, Series B 20 (1976) 1-4.

[^0]: This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96－2221－E－009－137－MY3．
 动动 This research was partially supported by the Aiming for the Top University and Elite Research Center Development Plan．
 ＊Corresponding author．
 E－mail addresses：ykshih＠cs．nctu．edu．tw（Y．－K．Shih），cklin＠cs．nctu．edu．tw（C．－K．Lin），jmtan＠cs．nctu．edu．tw（J．J．M．Tan），lhhsu＠pu．edu．tw（L．－H．Hsu）．

