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a b s t r a c t

It is proved that there exists a path Pl(x, y) of length l if dAQn (x, y) ≤ l ≤ 2n − 1 between
any two distinct vertices x and y of AQn. Obviously, we expect that such a path Pl(x, y)
can be further extended by including the vertices not in Pl(x, y) into a hamiltonian path
from x to a fixed vertex z or a hamiltonian cycle. In this paper, we prove that there exists a
hamiltonian path R(x, y, z; l) from x to z such that dR(x,y,z;l)(x, y) = l for any three distinct
vertices x, y, and z of AQn with n ≥ 2 and for any dAQn (x, y) ≤ l ≤ 2n − 1 − dAQn (y, z).
Furthermore, there exists a hamiltonian cycle S(x, y; l) such that dS(x,y;l)(x, y) = l for any
two distinct vertices x and y and for any dAQn (x, y) ≤ l ≤ 2n−1.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, a network is represented as a loopless undirected graph. For the graph definitions and notation, we
follow [1]. Let G = (V , E) be a graph if V is a finite set and E is a subset of {(a, b) | (a, b) is an unordered pair of V }.
We say that V is the vertex set and E is the edge set. Two vertices u and v are adjacent if (u, v) ∈ E. We use NbdG(u) to
denote the set {v | (u, v) ∈ E(G)}. The degree of a vertex u in G, denoted by degG(u), is |NbdG(u)|. We use δ(G) to denote
min{degG(u) | u ∈ V (G)}. A graph is k-regular if degG(u) = k for every vertex u in G. A path is a sequence of adjacent
vertices, written as 〈v0, v1, . . . , vm〉, in which all the vertices v0, v1, . . . , vm are distinct except that possibly v0 = vm. We
also write the path 〈v0, P, vm〉, where P = 〈v0, v1, . . . , vm〉. The length of a path P , denoted by l(P), is the number of edges
in P . Let u and v be two vertices of G. The distance between u and v denoted by dG(u, v) is the length of the shortest path of
G joining u and v. The diameter of a graph G, denoted by D(G), is max{dG(u, v) | u, v ∈ V (G)}. A cycle is a path with at least
three vertices such that the first vertex is the same as the last one. A hamiltonian cycle is a cycle of length V (G). A hamiltonian
path is a path of length V (G)− 1.
Interconnection networks play an important role in parallel computing/communication systems. The graph embedding

problem is a central issue in evaluating a network. The graph embedding problem asked if the guest graph is a subgraph of
a host graph, and an important benefit of the graph embeddings is that we can apply existing algorithm for guest graphs to
host graphs. This problem has attracted numerous studies in recent years. Cycle networks and path networks are suitable
for designing simple algorithmswith low communication costs. The cycle embedding problem,which deals with all possible
lengths of the cycles in a given graph, is investigated in a lot of interconnectionnetworks [2–6]. The path embeddingproblem,
which deals with all possible lengths of the paths between given two vertices in a given graph, is investigated in a lot of
interconnection networks [5–12].
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Fig. 1. The augmented cubes AQ1 , AQ2 , AQ3 and AQ4 .

The hypercube Qn is one of the most popular interconnection networks for parallel computer/communication
system [13]. This is partly due to its attractive properties, such as regularity, recursive structure, vertex and edge symmetry,
maximum connectivity, as well as effective routing and broadcasting algorithm. The augmented cube AQn is a variation of
Qn, proposed by Choudum and Sunitha [14], and not only retains some favorable properties of Qn but also processes some
embedding properties thatQn does not [14–17,6]. For example,AQn contains cycles of all lengths from3 to 2n, butQn contains
only even cycles.
For the path embedding problem on the augmented cube, Ma et al. [6] proved that between any two distinct vertices

x and y of AQn, there exists a path Pl(x, y) of length l with dAQn(x, y) ≤ l ≤ 2n − 1. Obviously, we expect that such a
path Pl(x, y) can be further extended by including the vertices not in Pl(x, y) into a hamiltonian path from x to a fixed
vertex z or a hamiltonian cycle. For this reason, we prove that for any three distinct vertices x, y and z of AQn, and for any
dAQn(x, y) ≤ l ≤ 2n − 1− dAQn(y, z) there exists a hamiltonian path R(x, y, z; l) from x to z such that dR(x,y,z;l)(x, y) = l. As
a corollary, we prove that for any two distinct vertices x and y, and for any dAQn(x, y) ≤ l ≤ 2n−1, there exists a hamiltonian
cycle S(x, y; l) such that dS(x,y;l)(x, y) = l.
In Section 2,we introduce the definition and someproperties of the augmented cubes. In particular, we introduce another

property, called 2RP, for augmented cubes. In Section 3, we prove that any AQn satisfies the 2RP-property if n ≥ 2. Then we
apply the 2RP-property to prove the aforementioned properties in Section 4.

2. Properties of augmented cubes

Assume that n ≥ 1 is an integer. The graph of the n-dimensional augmented cube, denoted by AQn, has 2n vertices, each
labeled by an n-bit binary string V (AQn) = {u1u2 . . . un | ui ∈ {0, 1}}. For n = 1, AQ1 is the graph K2 with vertex set {0, 1}.
For n ≥ 2, AQn can be recursively constructed by two copies of AQn−1, denoted by AQ 0n−1 and AQ

1
n−1, and by adding 2

n edges
between AQ 0n−1 and AQ

1
n−1 as follows:

Let V (AQ 0n−1) = {0u2u3 . . . un | ui = 0 or 1 for 2 ≤ i ≤ n} and V (AQ
1
n−1) = {1v2v3 . . . vn | vi = 0 or 1 for 2 ≤ i ≤ n}. A

vertex u = 0u2u3 . . . un of AQ 0n−1 is adjacent to a vertex v = 1v2v3 . . . vn of AQ
1
n−1 if and only if one of the following cases

holds.

(i) ui = vi, for 2 ≤ i ≤ n. In this case, (u, v) is called a hypercube edge. We set v = uh.
(ii) ui = v̄i, for 2 ≤ i ≤ n. In this case, (u, v) is called a complement edge. We set v = uc .

The augmented cubes AQ1, AQ2, AQ3 and AQ4 are illustrated in Fig. 1. It is proved in [14] that AQn is a vertex transitive,
(2n−1)-regular, and (2n−1)-connected graph with 2n vertices for any positive integer n. Let i be any index with 1 ≤ i ≤ n
and u = u1u2u3 . . . un be a vertex of AQn. We use ui to denote the vertex v = v1v2v3 . . . vn such that uj = vj with
1 ≤ j 6= i ≤ n and ui = v̄i. Moreover, we use ui∗ to denote the vertex v = v1v2v3 . . . vn such that uj = vi for j < i
and uj = v̄j for i ≤ j ≤ n. Obviously, un = un∗, u1 = uh, uc = u1∗, and NbdAQn(u) = {ui | 1 ≤ i ≤ n} ∪ {ui∗ | 1 ≤ i < n}.

Lemma 1. Assume that n ≥ 2. Then |NbdAQn(u) ∩ NbdAQn(v)| ≥ 2 if (u, v) ∈ E(G).
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Proof. We prove this lemma by induction. Since AQ2 is isomorphic to the complete graph K4, the lemma holds for n = 2.
Assume the lemma holds for 2 ≤ k < n. Suppose that {u, v} ⊂ V (AQ in−1) for some i ∈ {0, 1}. By induction, |NbdAQn(u) ∩
NbdAQn(v)| ≥ 2. Thus, consider the case that either v = uh or v = uc . Obviously, {u2∗,uc} ⊂ NbdAQn(u) ∩ NbdAQn(v) if
v = uh; and {u2∗,uh} ⊂ NbdAQn(u) ∩ NbdAQn(v) if v = uc . Then the statement holds. �

The following lemma can easily be obtained from the definition of AQn.

Lemma 2. Assume that n ≥ 3. For any two different vertices u and v of AQn, there exists two other vertices x and y of AQn such
that the subgraph of {u, v, x, y} containing a four cycle.

Lemma 3 ([16]). Let F be a subset of V (AQn). Then there exists a hamiltonian path between any two vertices of V (AQn) − F if
|F | ≤ 2n− 4 for n ≥ 4 and |F | ≤ 1 for n = 3.

Lemma 4 ([14]). Let u and v be any two vertices in AQn with n ≥ 2. Suppose that both u and v are in AQ in−1 for i = 0, 1. Then
dAQn(u, v) = dAQ in−1(u, v). Suppose that u is a vertex in AQ

i
n−1 and v is a vertex in AQ

1−i
n−1. Then there exist two shortest paths P1

and P2 of AQn joining u to v such that (V (P1)− {v}) ⊂ V (AQ in−1) and (V (P2)− {u}) ⊂ V (AQ
1−i
n−1).

With Lemma 4, we have Corollary 1.

Corollary 1. Assume that n ≥ 3. Let x and y be two vertices of AQn with dAQn(x, y) ≥ 2. Then, there are two vertices p and q in
NbdAQn(x) with dAQn(p, y) = dAQn(q, y) = dAQn(x, y)− 1.

Lemma 5 ([16]). Let {u, v, x, y} be any four distinct vertices of AQn with n ≥ 2. Then there exist two disjoint paths P1 and P2
such that (1) P1 is a path joining u and v, (2) P2 is a path joining x and y, and (3) P1 ∪ P2 spans AQn.

Werefer to Lemma5 as 2P-property of the augmented cube. This property is used formany applications of the augmented
cubes [15,16]. Obviously, l(P1) ≥ dAQn(u, v) and l(P2) ≥ dAQn(x, y), and l(P1)+ l(P2) = 2n − 2. We expect that l(P1), hence,
l(P2) can be an arbitrarily integer with the above constraint. However, such expectation is almost true. Let us consider
AQ3. Suppose that u = 001, v = 110, x = 101, and y = 010. Thus, dAQ3(u, v) = 1 and dAQ3(x, y) = 1. We can find
P1 and P2 with l(P1) ∈ {1, 3, 5}. Note that {x, y} = NbdAQ3(u) ∩ NbdAQ3(v). We cannot find P1 with l(P1) = 2. Again,
{u, v} = NbdAQ3(x) ∩ NbdAQ3(y). We cannot find P2 with l(P2) = 2. Hence, we cannot find P1 with l(P1) = 4. Similarly, we
consider AQ4. Suppose that u = 0000, v = 1001, x = 0001 and y = 1000. Thus, dAQ4(u, v) = 2 and dAQ4(x, y) = 2. We
can find P1 and P2 with l(P1) ∈ {3, 4, . . . , 11}. Note that {x, y} = NbdAQ4(u) ∩ NbdAQ4(v). We cannot find P1 with l(P1) = 2.
Again, {u, v} = NbdAQ4(x) ∩ NbdAQ4(y). We cannot find P2 with l(P2) = 2.
Now, we propose the 2RP-property of AQn with n ≥ 2: Let {u, v, x, y} be any four distinct vertices of AQn. Let l1 and l2 be

two integers with l1 ≥ dAQn(u, v), l2 ≥ dAQn(x, y), and l1 + l2 = 2n − 2. Then there exist two disjoint paths P1 and P2 such that
(1) P1 is a path joining u and v with l(P1) = l1, (2) P2 is a path joining x and y with l(P2) = l2, and (3) P1 ∪ P2 spans AQn except
for the following cases: (a) l1 = 2with dAQn(u, v) = 1 such that {x, y} = NbdAQn(u)∩NbdAQn(v); (b) l2 = 2with dAQn(x, y) = 1
such that {u, v} = NbdAQn(x) ∩ NbdAQn(y); (c) l1 = 2 with dAQn(u, v) = 2 such that {x, y} = NbdAQn(u) ∩ NbdAQn(v); and (d)
l2 = 2 with dAQn(x, y) = 2 such that {u, v} = NbdAQn(x) ∩ NbdAQn(y).

3. The 2RP-property of augmented cubes

Theorem 1. Assume that n is a positive integer with n ≥ 2. Then AQn satisfies 2RP-property.

Proof. Weprove this theoremby induction. By brute force, we check the theoremholds for n = 2, 3, 4. Assume the theorem
holds for any AQk with 4 ≤ k < n. Without loss of generality, we can assume that l1 ≥ l2. Thus, l2 ≤ 2n−1 − 1. By the
symmetric property of AQn, we can assume that at least one of u and v, say u, is in V (AQ 0n−1). Thus, we have the following
cases:
Case 1: v ∈ V (AQ 0n−1) and {x, y} ⊂ V (AQ

1
n−1).

Subcase 1.1: dAQn(x, y) ≤ l2 ≤ 2n−1 − 3 except that (1) l2 = 2n−1 − 4 and (2) l2 = 2 if dAQn(x, y) = 1 or 2 with
{u, v} 6= NbdAQn(x)∩NbdAQn(y). By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 joining u to v. Since l(R) = 2

n−1
−1,

we can write R as 〈u, R1, p, q, R2, v〉 for some vertices p and q such that {ph, qh} ∩ {x, y} = ∅. By induction, there exist two
disjoint paths S1 and S2 such that (1) S1 is a path joining ph to qh with l(S1) = 2n−1 − l2 − 2, (2) S2 is a path joining x to y
with l(S2) = l2, and (3) S1 ∪ S2 spans AQ 1n−1. We set P1 as 〈u, R1, p, p

h, S1, qh, q, R2, v〉 and set P2 as S2. Obviously, P1 and P2
are the required paths.
Subcase 1.2: l2 = 2 if dAQn(x, y) = 1 or 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). Obviously, there exists a path P2 of length 2
in AQn − {u, v} joining x to y. By Lemma 3, there exists a hamiltonian path P1 of AQn − V (P2) joining u to v. Obviously, P1
and P2 are the required paths.
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Subcase 1.3: l2 = 2n−1− 4. Obviously, there exists a vertex p in V (AQ 1n−1)−{x, y,u
h, vh}, a vertex q in NbdAQ 1n−1(p)−{x, y},

and a vertex r in NbdAQ 1n−1(q) − {x, y, p}. Suppose that r
h
6∈ {u, v}. By induction, there exist two disjoint paths Q1 and Q2

such that (1) Q1 is a path joining u to ph, (2) Q2 is a path joining rh to v, and (3) Q1∪Q2 spans AQ 0n−1. By Lemma 3, there exists
a hamiltonian path P2 of AQ 1n−1 − {p, q, r} joining x to y. We set P1 as 〈u,Q1, p

h, p, q, r, rh,Q2, v〉. Suppose that rh ∈ {u, v}.
Without loss of generality, we assume that rh = v. By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 − {v} joining u
to ph. We set P1 as 〈u, R, ph, p, q, r, rh = v〉. Obviously, P1 and P2 are the required paths.
Subcase 1.4: l2 = 2n−1 − 2. Obviously, there exist a vertex p ∈ V (AQ 1n−1) − {x, y,u

h,uc, vh, vc}. By Lemma 5, there exists
two disjoint paths Q1 and Q2 such that (1) Q1 is a path joining u and ph, (2) Q2 is a path joining pc and v, and (3) Q1∪Q2 spans
AQ 0n−1. By Lemma 3, there exists a hamiltonian path P2 of AQ

0
n−1 − {p} joining x to y. We set P1 as 〈u,Q1, p

h, p, pc,Q2, v〉.
Obviously, P1 and P2 are the required paths.
Subcase 1.5: l2 = 2n−1 − 1. By Lemma 3, there exists a hamiltonian path P1 of AQ 0n−1 joining u and v and there exists a
hamiltonian path P2 of AQ 1n−1 joining x to y. Obviously, P1 and P2 are the required paths.

Case 2: v ∈ V (AQ 0n−1) and exactly one of x and y is in V (AQ
0
n−1). Without loss of generality, we assume that x ∈ V (AQ

0
n−1).

Subcase 2.1: l2 = 1. Obviously, dAQn(x, y) = 1. We set P2 as 〈x, y〉. By Lemma 3, there exists a hamiltonian path P1 of
AQn − {x, y} joining u to v. Obviously, P1 and P2 are the required paths.
Subcase 2.2: l2 = 2 if dAQn(x, y) = 1 or 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). The proof is the same to Subcase 1.2.
Subcase 2.3: l2 = 3. Suppose that dAQn(x, y) = 1. There exists a vertex p in NbdAQ 0n−1(x) − {u, v}. By Lemma 3, there exists
a hamiltonian path P1 of AQn − {x, y, p, ph} joining u to v. We set P2 as 〈x, p, ph, y〉. Obviously, P1 and P2 are the required
paths.
Suppose that dAQn(x, y) = 2. By Lemma 4, there exists a path 〈x, p, y〉 from x to y such that p ∈ V (AQ 1n−1). By Lemma 1,

there exists a vertex q ∈ NbdAQ 1n−1(p) ∩ NbdAQ 1n−1(y). By Lemma 3, there exists a hamiltonian path P1 of AQn − {x, y, p, q}
joining u to v. We set P2 as 〈x, p, q, y〉. Obviously, P1 and P2 are the required paths.
Suppose that dAQn(x, y) = 3. By Lemma 4, there exists a path P2 from x to y such that (V (P2) − {x}) ⊂ V (AQ 1n−1). By

Lemma 3, there exists a hamiltonian path P1 of AQn − V (P2) joining u to v. Obviously, P1 and P2 are the required paths.
Subcase 2.4: 4 ≤ l2 ≤ 2n−1 − 2 except that l2 = 2n−1 − 3.
Suppose that dAQn(x, y) = 1 or 2. We first claim that there exists a vertex p in NbdAQn(x) ∩ NbdAQn(y). Assume that

dAQn(x, y) = 1. Obviously, either y = xh or y = xc . We set p = xc if y = xh; and we set p = xh if y = xc . Assume that
dAQn(x, y) = 2. By Lemma 4, there exists a path 〈x, p, y〉 from x to y such that p ∈ V (AQ 1n−1). Obviously, p satisfies our
claim. By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 − {x} joining u to v. Since l(R) = 2

n−1
− 3, we can write R as

〈u, R1, s, t, R2, v〉 such that {sh, th} ∩ {p, y} = ∅. By induction, there exist two disjoint paths S1 and S2 such that (1) S1 is a
path joining sh to th with l(S1) = 2n−1− 1− l2, (2) S2 is a path joining p to ywith l(S2) = l2− 1, and (3) S1 ∪ S2 spans AQ 1n−1.
We set P1 as 〈u, R1, s, sh, S1, th, t, R2, v〉 and P2 as 〈x, p, S2, y〉. Obviously, P1 and P2 are the required paths.
Suppose that dAQn(x, y) ≥ 3. By Lemma 4, there exists a vertex p in V (AQ 1n−1) such that dAQn(p, y) = dAQn(x, y) − 1.

By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 − {x} joining u to v. We can write R as 〈u, R1, s, t, R2, v〉 such
that {sh, th} ∩ {p, y} = ∅. By induction, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining sh to th
with l(S1) = 2n−1 − 1 − l2, (2) S2 is a path joining p to y with l(S2) = l2 − 1, and (3) S1 ∪ S2 spans AQ 1n−1. We set P1 as
〈u, R1, s, sh, S1, th, t, R2, v〉 and P2 as 〈x, p, S2, y〉. Obviously, P1 and P2 are the required paths.
Subcase 2.5: l2 = 2n−1 − 3 or l2 = 2n−1 − 1. Let k = 3 if l2 = 2n−1 − 3 and k = 1 if l2 = 2n−1 − 1. There exists a vertex p
in NbdAQ 0n−1(x)− {u, v, y

n
}. By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 − {x, p} joining u to v. We can write R

as 〈u, R1, s, t, R2, v〉 such that {s, t} ∩ {p, yn} = ∅. By induction, there exist two disjoint paths S1 and S2 such that (1) S1 is a
path joining sn to tn with l(S1) = k, (2) S2 is a path joining pn to y with l(S2) = 2n−1 − k − 2, and (3) S1 ∪ S2 spans AQ 1n−1.
We set P1 as 〈u, R1, s, sn, S1, tn, t, R2, v〉 and P2 as 〈x, p, pn, S2, y〉. Obviously, P1 and P2 are the required paths.
Case 3: {v, x, y} ⊂ V (Q 0n−1).
Subcase 3.1: l2 = 1. The proof is the same as Subcase 2.1.
Subcase 3.2: l2 = 2 if dAQn(x, y) = 1 or 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). The proof is the same as Subcase 1.2.
Subcase 3.3: dAQn(x, y) ≤ l2 ≤ 2n−2 − 1. By induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path
joining u to v with l(R1) = 2n−1 − l2 − 2, (2) R2 is a path joining x to y with l(R2) = l2, (3) R1 ∪ R2 spans AQ 0n−1. We
can write R1 as 〈u, R3, p, q, R4, v〉. By Lemma 3, there exists a hamiltonian path S of AQ 1n−1 joining p

h to qh. We set P1 as
〈u, R3, p, ph, S, qh, q, R4, v〉 and P2 as R2. Obviously, P1 and P2 are the required paths.
Subcase 3.4: 2n−2+ 1 ≤ l2 ≤ 2n−1− 1 except that l2 = 2n−2+ 2. By induction, there exist two disjoint paths R1 and R2 such
that (1) R1 is a path joining u to vwith l(R1) = 2n−2− 1, (2) R2 is a path joining x to ywith l(R2) = 2n−2− 1, and (3) R1 ∪ R2
spans AQ 0n−1. We can write R1 as 〈u, R3, p, q, R4, v〉 and write R2 as 〈x, R5, s, t, R6, y〉. By induction, there exist two disjoint
paths S1 and S2 such that (1) S1 is a path joining ph to qh with l(S1) = 2n−1− l2+2n−2−2, (2) S2 is a path joining sh to th with
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l(S2) = l2−2n−2, and (3) S1∪S2 spans AQ 1n−1. We set P1 as 〈u, R3, p, p
h, S1, qh, q, R4, v〉 and P2 as 〈x, R5, s, sh, S2, th, t, R6, y〉.

Obviously, P1 and P2 are the required paths.
Subcase 3.5: l2 = 2n−2 or 2n−2 + 2. Let k = 0 if l2 = 2n−2 and k = 2 if l2 = 2n−2 + 2. By induction, there exist two
disjoint paths R1 and R2 such that (1) R1 is a path joining u to v with l(R1) = 2n−2 − k, (2) R2 is a path joining x to y with
l(R2) = 2n−2 + k− 2, and (3) R1 ∪ R2 spans AQ 0n−1. We can write R1 as 〈u, R3, p, q, R4, v〉 and write R2 as 〈x, R5, s, t, R6, y〉.
By Lemma 3, there exists a hamiltonian path S of AQ 1n−1 − {s

n, tn} joining pn to qn. We set P1 as 〈u, R3, p, pn, S, qn, q, R4, v〉
and P2 as 〈x, R5, s, sn, tn, t, R6, y〉. Obviously, P1 and P2 are the required paths.
Case 4: {x, v, y} ⊂ V (AQ 1n−1).

Subcase 4.1: dAQn(x, y) ≤ l2 ≤ 2n−1 − 3 except that (1) l2 = 2n−1 − 4 and (2) l2 = 2 if dAQn(x, y) = 1 or 2 with
{u, v} 6= NbdAQn(x) ∩ NbdAQn(y). Obviously, there exists a vertex p in NbdAQ 1n−1(v) − {x, y,u

h
}. By induction, there exist

two disjoint paths S1 and S2 such that (1) S1 is a path joining p to vwith l(S1) = l1 − 2n−1, (2) S2 is a path joining x to ywith
l(S2) = l2, and (3) S1 ∪ S2 spans AQ 1n−1. By Lemma 3, there exists a hamiltonian path R of AQ

0
n−1 joining u and p

h. We set P1
as 〈u, R, ph, p, S1, v〉 and we set P2 as S2. Obviously, P1 and P2 are the required paths.
Subcase 4.2: l2 = 2 if dAQn(x, y) = 1 or 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). The proof is the same to Subcase 1.2.
Subcase 4.3: l2 = 2n−1 − 4. Obviously, there exists a vertex p in NbdAQ 1n−1(v) − {x, y}, and there exists a vertex q in
NbdAQ 1n−1(p) − {x, y, v,u

h
}. By Lemma 3, there exists a hamiltonian path R of AQ 0n−1 joining u to qh, and there exists a

hamiltonian path P2 of AQ 1n−1 − {v, p, q} joining x to y. We set P1 as 〈u, R, q
h, q, p, v〉. Obviously, P1 and P2 are the required

paths.
Subcase 4.4: l2 = 2n−1 − 2. Let v′ be an element in {vh, vc} − {u}. By Lemma 3, there exists a hamiltonian path R of AQ 0n−1
joining u to v′, and there exists a hamiltonian path P2 of AQ 1n−1 − {v} joining x to y. We set P1 as 〈u, R, v

′, v〉. Obviously, P1
and P2 are the required paths.
Subcase 4.5: l2 = 2n−1 − 1. Obviously, there exists a vertex p in NbdAQ 1n−1(v)− {x, y}. By induction, there exist two disjoint
paths S1 and S2 such that (1) S1 is a path joining p to v with l(S1) = 1, (2) S2 is a path joining x to y with l(S2) = 2n−1 − 3,
and (3) S1 ∪ S2 spans AQ 1n−1. Obviously, we can write S2 as 〈x, S

1
2 , r, s, S

2
2 , y〉 for some vertex r and s such that u 6∈ {r

h, sh}.
Again by induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path joining u to ph with l(R1) = 2n−1 − 3,
(2) R2 is a path joining rh to sh with l(R2) = 1, and (3) R1 ∪ R2 spans AQ 0n−1. We set P1 as 〈u, R1, p

h, p, v〉 and set P2 as
〈x, S12 , r, r

h, sh, s, S22 , y〉. Obviously, P1 and P2 are the required paths.

Case 5: v ∈ V (AQ 1n−1) and |{x, y} ∩ V (AQ
0
n−1)| = 1. Without loss of generality, we assume that x ∈ V (AQ

0
n−1).

Subcase 5.1: l2 = 1. The proof is the same to Subcase 2.1.
Subcase 5.2: l2 = 2 if dAQn(x, y) = 1 or 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). The proof is the same to Subcase 1.2.
Subcase 5.3: l2 = 3. Suppose that dAQn(x, y) = 1. Obviously, there exists a vertex p in NbdAQ 0n−1(x) − {u, v

h
}. We set P2 as

〈x, p, ph, y〉. By Lemma 3, there exists a hamiltonian path P1 of AQn − V (P2) joining u to v. Obviously, P1 and P2 are the
required paths.
Suppose that dAQn(x, y) = 2. Assume that {u, v} = NbdAQn(x) ∩ NbdAQn(y). Thus, we have either v = xh or v = xc .

Moreover, u = xα , and y = vα for some α ∈ {i | 2 ≤ i ≤ n} ∪ {i∗ | 2 ≤ i ≤ n− 1}. We set P2 as 〈x, xh∗, (xh∗)α, ((xh)α) = y〉
in the case of v = xh. Otherwise, we set P2 as 〈x, xh, (xh)α, ((xh∗)α) = y〉. By Lemma 3, there exists a hamiltonian path P1 of
AQn − V (P2) joining u to v. Obviously, P1 and P2 are the required paths. Now, assume that {u, v} 6= NbdAQn(x) ∩ NbdAQn(y).
By Lemma 1, there exists a vertex p in (NbdAQn(x)∩NbdAQn(y))−{u, v}. Without loss of generality, wemay assume that p is
in AQ 0n−1. By Lemma 1, there exists a vertex q in (NbdAQ 0n−1(p)∩NbdAQ 0n−1(x))− {u}. By Lemma 3, there exists a hamiltonian
path P1 of AQn − {x, q, p, y} joining u to v. We set P2 as 〈x, q, p, y〉. Obviously, P1 and P2 are the required paths.
Suppose that dAQn(x, y) = 3. By Lemma 4, there are two shortest paths R1 and R2 of AQn joining x to y such that R1

can be written as 〈x, r1, r2, y〉 with {r1, r2} ⊂ V (AQ 0n−1) and R2 can be written as 〈x, s1, s2, y〉 with {s1, s2} ⊂ V (AQ
1
n−1).

Suppose that u 6= r2 or v 6= s1. Without loss of generality, we assume that u 6= r2. By Corollary 1, there exists a
vertex t ∈ NbdAQ 0n−1(x) ∩ NbdAQ 0n−1(r2) − {u}. We set P2 as 〈x, t, r2, y〉. By Lemma 3, there exists a hamiltonian path P1
of AQn − V (P2) joining u to v. Obviously, P1 and P2 are the required paths. Thus, we consider u = r2 and v = s1. By
Corollary 1, there exists a vertex p in NbdAQ 0n−1(x) ∩ NbdAQ 0n−1(u). Obviously, dAQn(p, y) = 2. By Lemma 4, there exists a
vertex q in V (AQ 1n−1) ∩ NbdAQn(p) ∩ NbdAQn(y). Since dAQn(q, y) = 1 and dAQn(v, y) = 2, q 6= v. We set P2 as 〈x, p, q, y〉. By
Lemma 3, there exists a hamiltonian path P1 of AQn − V (P2) joining u to v. Obviously, P1 and P2 are the required paths.
Subcase 5.4: 4 ≤ l2 ≤ 2n−1 − 1 with dAQn(x, y) = 1. Suppose that l2 = 4. Obviously, there exists a vertex p in
NbdAQ 0n−1(x)− {u, v

h
}. By Lemma 1, there exists a vertex q in (NbdAQ 0n−1(x)∩NbdAQ 0n−1(p))− {u}. By Lemma 3, there exists a

hamiltonian path P1 of AQn−{x, y, p, ph, q} joining u to v. We set P2 as 〈x, q, p, ph, y〉. Obviously, P1 and P2 are the required
paths.
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Suppose that 5 ≤ l2 ≤ 2n−1 − 1 except that l2 = 2n−1 − 2. Obviously, there exist a vertex p in NbdAQ 0n−1(x)− {u, v
h, yh}

and a vertex s in NbdAQ 0n−1(u)−{x, p, v
h, yh}. By induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path

joining u to s with l(R1) = 2n−1 − 2 − l2, (2) R2 is a path joining p to x with l(R2) = l2 − 2, and (3) R1 ∪ R2 spans AQ 0n−1.
By Lemma 3, there exists a hamiltonian path S of AQ 1n−1 − {y, p

h
} joining sh to v. We set P1 as 〈u, R1, s, sh, S, v〉 and P2 as

〈x, R2, p, ph, y〉. Obviously, P1 and P2 are the required paths.
Suppose that l2 = 2n−1 − 2. Let s and p be two vertices in V (AQ 0n−1) − {u, x, v

h, yh}. By induction, there exist two
disjoint paths R1 and R2 such that (1) R1 is a path joining u to s with l(R1) = 2n−2, (2) R2 is a path joining p to x with
l(R2) = 2n−2− 2, (3) R1 ∪ R2 spans AQ 0n−1. Similarly, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining
sh to vwith l(S1) = 2n−2 − 1, (2) S2 is a path joining ph to ywith l(S2) = 2n−2 − 1, and (3) S1 ∪ S2 spans AQ 1n−1. We set P1 as
〈u, R1, s, sh, S1, v〉 and P2 as 〈x, R2, p, ph, S2, y〉. Obviously, P1 and P2 are the required paths.
Subcase 5.5: 4 ≤ l2 ≤ 2n−1 − 1 except l2 = 2n−1 − 3 with dAQn(x, y) ≥ 2. Suppose that dAQn(x, y) = 2 with
{u, v} = NbdAQn(x) ∩ NbdAQn(y). Thus, we have either v = xh or v = xc . Moreover, u = xα and y = (xh)α for some
α ∈ {i | 2 ≤ i ≤ n} ∪ {i∗ | 2 ≤ i ≤ n− 1}. Obviously, there exists a vertex t in NbdAQ 1n−1(v)− {x

h, y, xc,uh}. By induction,
there exist two disjoint paths R1 and R2 such that (1) R1 is a path joining t to v with l(R1) = 2n−1 − 1 − l2, (2) R2 is a
path joining xc to y with l(R2) = l2 − 1 in the case of v = xh; otherwise R2 is a path joining xh to y with l(R2) = l2 − 1,
and (3) R1 ∪ R2 spans AQ 1n−1. By Lemma 3, there exists a hamiltonian path S of AQ

0
n−1 − {x} joining t

h to u. We set P1 as
〈u, S, th, t, R1, v〉 and P2 as 〈x, xc, R2, y〉 in the case of v = xh; otherwise, we set P2 as 〈x, xh, R2, y〉. Obviously, P1 and P2 are
the required paths.
Suppose that dAQn(x, y) = 2 with {u, v} 6= NbdAQn(x) ∩ NbdAQn(y). Then, there exists a vertex p in (NbdAQn(x) ∩

NbdAQn(y)) − {u, v}. Without loss of generality, we may assume that p ∈ V (AQ 1n−1). Obviously, there exists a vertex t in
NbdAQ 1n−1(v) − {y, p,u

h, xh}. By induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path joining t to v
with l(R1) = 2n−1− 1− l2, (2) R2 is a path joining p to ywith l(R2) = l2− 1, and (3) R1 ∪ R2 spans AQ 1n−1. By Lemma 3, there
exists a hamiltonian path S of AQ 0n−1 − {x} joining t

h to u. We set P1 as 〈u, S, th, t, R1, v〉 and P2 as 〈x, p, R2, y〉. Obviously,
P1 and P2 are the required paths.
Suppose that dAQn(x, y) = k ≥ 3. By Lemma 4, there are two shortest paths S1 and S2 of AQn joining x to y

such that S1 can be written as 〈x = r0, r1, r2, . . . , rk−1, y〉 with (V (S1) − {y}) ⊂ V (AQ 0n−1) and S2 can be written as
〈x, s1, s2, . . . , sk−1, y〉 with (V (S2) − {x}) ⊂ V (AQ 1n−1). Suppose that u 6= rk−1. We set p = rk−1. Again, there exists a
vertex s in NbdAQ 0n−1(u) − {x, p, y

h, vh}. By induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path
joining u to swith l(R1) = 2n−1 − 1− l2, (2) R2 is a path joining p to xwith l(R2) = l2 − 1, and (3) R1 ∪ R2 spans AQ 0n−1. By
Lemma 3, there exists a hamiltonian path S of AQ 1n−1−{y} joining s

h to v.We set P1 as 〈u, R1, s, sh, S, v〉 and P2 as 〈x, R2, p, y〉.
Obviously, P1 and P2 are the required paths.
Now we assume that rk−1 = u and s1 = v. Since dAQn(rk−2, y) = 2, by Lemma 4, there exists a vertex p ∈ NbdAQn(rk−2)

in V (AQ 1n−1) such that dAQn(p, y) = 1. Suppose that l2 = 4 with dAQn(x, y) = 3. Thus, 〈x, r1, p, y〉 is a shortest path joining
x and y. By Lemma 1, there exists a vertex q ∈ NbdAQ 1n−1(p) ∩ NbdAQ 1n−1(y) − {v}. By Lemma 3, there exists a hamiltonian
path P1 of AQn − {x, r1, p, q, y} joining u to v. We set P2 as 〈x, r1, p, q, y〉. Obviously, P1 and P2 are the required paths.
Suppose that l2 = 4 with dAQn(x, y) = 4. Thus, P2 = 〈x, r1, r2, p, y〉 is a shortest path joining x and y. By Lemma 3,
there exists a hamiltonian path P1 of AQn − {x, r1, r2, p, y} joining u to v. Obviously, P1 and P2 are the required paths.
Suppose that 5 ≤ l2 ≤ 2n−2 with dAQn(x, y) ≥ 3. Obviously, there exists a vertex s in NbdAQ 0n−1(u) − {x, rk−2, y

h, vh}. By
induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path joining u to s with l(R1) = 2n−1 − l2, (2) R2
is a path joining rk−2 to x with l(R2) = l2 − 2, and (3) R1 ∪ R2 spans AQ 0n−1. By Lemma 3, there exists a hamiltonian path
S of AQ 1n−1 − {p, y} joining s

h to v. We set P1 as 〈u, R1, s, sh, S, v〉 and P2 as 〈x, R2, rk−2, p, y〉. Obviously, P1 and P2 are the
required paths. Suppose that 2n−2+ 1 ≤ l2 < 2n−1− 1 except 2n−1− 3 with dAQn(x, y) ≥ 3. Obviously, there exists a vertex
s in NbdAQ 0n−1(u) − {x, rk−2, y

h, vh}. By induction, there exist two disjoint paths R1 and R2 such that (1) R1 is a path joining
u to swith l(R1) = 2n−2 + 1, (2) R2 is a path joining rk−2 to xwith l(R2) = 2n−2 − 3, and (3) R1 ∪ R2 spans AQ 0n−1. Again by
induction, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining sh to vwith l(S1) = 2n−1− l2+ 2n−2− 4,
(2) S2 is a path joining p to ywith l(S2) = l2 − 2n−2 + 2, and (3) S1 ∪ S2 spans AQ 1n−1. We set P1 as 〈u, R1, s, s

h, S1, v〉 and P2
as 〈x, R2, rk−2, p, S2, y〉. Obviously, P1 and P2 are the required paths.
Subcase 5.6: l2 = 2n−1 − 3 or l2 = 2n−1 − 1 with dAQn(x, y) ≥ 2. Let t = 0 if l2 = 2n−1 − 3 and t = 1 if l2 = 2n−1 − 1.
Obviously, there exist two vertices s and p in AQ 0n−1 − {u, x, v

n, yn}. By induction, there exist two disjoint paths R1 and R2
such that (1) R1 is a path joining u to s with l(R1) = 2n−2 − t , (2) R2 is a path joining p to x with l(R2) = 2n−2 + t − 2,
and (3) R1 ∪ R2 spans AQ 0n−1. Similarly, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining s

n to vwith
l(S1) = 2n−2 − t , (2) S2 is a path joining pn to y with l(S2) = 2n−2 + t − 2, and (3) S1 ∪ S2 spans AQ 1n−1. We set P1 as
〈u, R1, s, sn, S1, v〉 and P2 as 〈x, R2, p, pn, S2, y〉. Obviously, P1 and P2 are the required paths.
Thus, Theorem 1 is proved. �
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4. The applications of the 2RP-property

Theorem 2. Assume that n is a positive integer with n ≥ 2. For any three distinct vertices x, y and z of AQn and for any
dAQn(x, y) ≤ l ≤ 2n − 1− dAQn(y, z), there exists a hamiltonian path R(x, y, z; l) from x to z such that dR(x,y,z;l)(x, y) = l.

Proof. Obviously, the theorem holds for n = 2. Thus, we consider that n ≥ 3. We have the following cases:
Case 1: dAQn(x, y) = 1 and dAQn(y, z) = 1. By Lemma 1, there exists a vertexw in (NbdAQn(y) ∩ NbdAQn(z))− {x}. Similarly,
there exists a vertex p in (NbdAQn(x)∩NbdAQn(y))− {z}. Suppose that l = 2. By Theorem 1, there exist two disjoint paths S1
and S2 such that (1) S1 is a path joining x to pwith l(S1) = 1, (2) S2 is a path joining y to zwith l(S2) = 2n−3, and (3) S1 ∪ S2
spans AQn. We set R as 〈x, p, y, S2, z〉. Obviously, R forms a hamiltonian path from x to z such that dR(x, y) = l. Suppose that
l = 2n−3. By Theorem 1, there exist two disjoint pathsQ1 andQ2 such that (1)Q1 is a path joining x to ywith l(Q1) = 2n−3,
(2) Q2 is a path joining w to z with l(Q2) = 1, and (3) Q1 ∪ Q2 spans AQn. We set R as 〈x,Q1, y,w, z〉. Obviously, R forms a
hamiltonian path from x to z such that dR(x, y) = l. Suppose that 1 ≤ l ≤ 2n − 2 with l 6∈ {2, 2n − 3}. By Theorem 1, there
exist two disjoint paths P1 and P2 such that (1) P1 is a path joining x to y with l(P1) = l, (2) P2 is a path joining w to z with
l(P2) = 2n − 2− l, and (3) P1 ∪ P2 spans AQn. We set R as 〈x, P1, y,w, P2, z〉. Obviously, R forms a hamiltonian path from x
to z such that dR(x, y) = l.
Case 2: dAQn(x, y) = 1 and dAQn(y, z) 6= 1. By Lemma 1, there exists a vertex p in NbdAQn(x)∩NbdAQn(y). Suppose that l = 2.
By Theorem 1, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining x to pwith l(S1) = 1, (2) S2 is a path
joining y to z with l(S2) = 2n − 3, and (3) S1 ∪ S2 spans AQn. We set R as 〈x, p, y, S2, z〉. Obviously, R forms a hamiltonian
path from x to z such that dR(x, y) = l. Suppose that 1 ≤ l ≤ 2n − 1 − dAQn(y, z) with l 6= 2. By Corollary 1, there exists a
vertex w in NbdAQn(y) − {x} such that dAQn(w, z) = dAQn(y, z) − 1. By Theorem 1, there exist two disjoint paths P1 and P2
such that (1) P1 is a path joining x to ywith l(P1) = l, (2) S2 is a path joiningw to zwith l(P2) = 2n − 2− l, and (3) P1 ∪ P2
spans AQn. We set R as 〈x, P1, y,w, P2, z〉. Obviously, R forms a hamiltonian path from x to z such that dR(x, y) = l.
Case 3: dAQn(x, y) 6= 1 and dAQn(y, z) = 1. This case is similar as Case 2 by interchanging the roles of x and z.
Case 4: dAQn(x, y) 6= 1 and dAQn(y, z) 6= 1. Let l be any integer with dAQn(x, y) ≤ l ≤ 2n − 1 − dAQn(y, z). Let w be a vertex
in NbdAQn(y). By Theorem 1, there exist two disjoint paths S1 and S2 such that (1) S1 is a path joining x to y with l(S1) = l,
(2) S2 is a path joiningw to zwith l(S2) = 2n − 2− l, and (3) S1 ∪ S2 spans AQn. We set R as 〈x, S1, y,w, S2, z〉. Obviously, R
forms a hamiltonian path from x to z such that dR(x, y) = l.
The theorem is proved. �

Corollary 2. Assume that n is a positive integer with n ≥ 2. For any two distinct vertices x and y and for any dAQn(x, y) ≤ l ≤
2n−1, there exists a hamiltonian cycle S(x, y; l) such that dS(x,y;l)(x, y) = l.

Proof. Let z be a vertex in NbdAQn(x) − {y}. By Theorem 2, there exists a hamiltonian path R joining x to z such that
dR(x,y,z;l)(x, y) = l. We set S as 〈x, R, z, x〉. Obviously, S forms the required hamiltonian cycle. �
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