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Abstract—In this paper, we employed a new test structure
to characterize the alternating-current (ac) hot-carrier (HC)-
induced degradation in poly-Si thin-film transistors. High sen-
sitivity in detecting the damage and the capability of directly
resolving the damage location are demonstrated due to the unique
feature of the test structure. Our results indicate that the major
degradation is induced in the turn-off stages of the ac-stress
signal when applied to the gate and in the turn-on stages of the
ac-stress signal when applied to the drain. The availability and
energy relaxation of channel HCs are considered to explain the
experimental findings.

Index Terms—Alternating-current (ac) stress, hot carriers
(HCs), reliability, thin-film transistors (TFTs).

I. INTRODUCTION

OLYCRYSTALLINE-SILICON (Poly-Si) thin-film tran-
sistors (TFTs) are important building blocks for system-
on-panel products [1] and flexible electronics [2]. Owing to the
high carrier mobility, the operation speed of poly-Si circuits
greatly surpasses that of amorphous-silicon counterparts. Nev-
ertheless, this also raises the concern about the generation of
hot carriers (HCs) during circuit operation [3]. These energetic
carriers may lead to the occurrence of damage events inside the
device and degrade the device performance. Evaluations of HC
effects are thus important to understand the degradation mech-
anisms and to ensure good reliability for practical applications.
Since the damage associated with the HC effect is nonuni-
form along the channel of the transistor, it is desirable to
resolve and understand the detailed mechanisms responsible
at different portions of the stressed channel. In our previous
works [4], [5], we employed a new test structure, as shown
in Fig. 1, to study the characteristics of poly-Si devices under
static HC stress tests. Our results indicated that the major-
damage location can be directly resolved by the structure and
that the evolution of HC degradation can be easily observed
owing to its high sensitivity. In practical operations, high pulsed
voltages are applied to the transistors in peripheral circuits and
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Fig. 1. Top view of the test structure. The slashed regions are nT-doped

poly-Si serving as the source or drain of the embedded transistors.

pixel elements [6]. Because the voltage biases are varying with
repetitive waveforms during the pulse cycle, HC degradation
in such alternating-current (ac) operations behaves differently
from that in static operations [6], [7]. In this paper, we study
the ac HC effects by taking advantage of the unique feature of
the new test structure.

II. DEVICE STRUCTURE AND AC HC STRESS CONDITIONS

The top view of the test structure is shown in Fig. 1. Details
of the device fabrication can be found in our previous reports
[4], [5]. In brief, the poly-Si channel was prepared with solid-
phase crystallization performed at 600 °C in Ny ambient for
24 h. After the definition of the channel regions, an oxide layer
was deposited with low-pressure chemical vapor deposition to
serve as the gate dielectric. In this paper, the gate oxide thick-
ness of the test devices is 30 nm. The test structure actually con-
tains several transistors that can be characterized independently.
The test transistor along the x-direction, denoted as TT, is de-
signed to receive HC stressing. Three monitor transistors (MTs)
along the y-direction, denoted as S-MT, C-MT, and D-MT, re-
spectively, can be characterized independently before and after
stressing. With the unique design, damages induced at different
portions of the channel can be directly resolved [4], [5].

Two types of stress schemes were employed in this paper.
In the first configuration, as shown in Fig. 2(a) and denoted as
A-mode stress, the source and drain of TT are applied with 0 V
(i.e., grounded) and 15 'V, respectively, while a train of voltage
pulses with an amplitude of 7.5 V (Vz_nign) is applied to the
gate. The other stress configuration is shown in Fig. 2(b) and
denoted as B-mode stress. In this configuration, the source is
grounded, the gate is set at 7.5 V, while the drain is applied with
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Fig. 2. Configurations of (a) A-mode and (b) B-mode ac stresses. (c) Wave-

form of the voltage pulses. Vygp, stands for Vg _nigh and Vp_pign in A- and
B-mode stresses, respectively.

a train of voltage pulses with an amplitude of 15V (Vp_nigh).
The waveform of the voltage pulses is shown in Fig. 2(c). The
rising time (¢,) is defined as the time that the voltage signal
rises from 10% to 90% of the amplitude and vice versa for
the falling time (¢7). For comparison with static HC stress,
we define the accumulated stress time as the summation of the
durations when the voltage is at Vyen. The duty ratio of the ac
signal is defined as the ratio between the time when the voltage
iS Viiigh [thign in Fig. 2(c)] and the cycle time.

III. RESULTS AND DISCUSSION
A. A-Mode Stress

Fig. 3(a) shows the characteristics of TT before and after
receiving A-mode ac stress with a frequency of 500 kHz. For
comparisons, the results for static stress under Vp = 15 V and
Ve = 7.5V are shown in Fig. 3(b). The total accumulated stress
time is 1000 s for the measurements. In Fig. 3(b), owing to
the relatively mild drain and gate voltages used in the stress,
the degradation is indeed mild for the device receiving static
stress. In the case of ac stress, however, the characteristics are
significantly affected. As can be seen in Fig. 3(a), dramatic
degradations in subthreshold slope and mobility are observed
after ac stress. From the results of density of states (DOS)
extracted by the field-effect conductance (FEC) technique [8],
[9] (data not shown), we found that the damage mainly comes
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from the generation of a large amount of tail states near the
conduction-band edge of the poly-Si channel. In Fig. 3(a), we
can also see that the deviation in /-1 characteristics is larger
when measured at Vp = 0.1 V, implying that the damage sites
are mainly located near the drain side [4]. This implication can
be clearly illustrated using the MTs embedded in the test struc-
ture. Fig. 4 shows the characteristics of the three MTs contained
in the same test sample characterized in Fig. 3(a). Among the
three MTs, only the D-MT exhibits dramatic changes after ac
HC stress, providing direct evidence of the damage location.

The aforementioned results indicate that additional damage
is induced in A-mode ac stress. To further confirm this finding,
we also investigated the effect of frequency on degradation, and
the results are shown in Fig. 5. Here, the on-current is the drain
current of the TT extracted at Vo =10 V and Vp = 0.1 V.
The degradation of the on-current (in percent) is defined as
Alyy/Iono % 100%, where Al = Ion0 — Ion, Ton,o is the
initial on-current and I, is the on-current after stress. In this
figure, it is seen that the current degradation for both TT and
D-MT increases monotonically with increasing frequency. In
the mean time, the S-MT and C-MT exhibit negligible damage
and weak dependence on frequency. It is also worth noting that
the D-MT shows higher degradation than the TT, illustrating
the enhanced sensitivity of the new test structure.

Fig. 6 shows the degradation in on-current of TT and MTs
after stress as a function of duty ratio (thigh/tcycle). In the
measurements, the ac-stress time is fixed at 1000 s, which is
the summation of ¢, according to the definition mentioned
earlier. The results indicate that the on-current of both TT
and D-MT shows a much severe degradation over the case of
static stress (duty ratio = 100%). The situation becomes even
worse with decreasing duty cycle. Moreover, the D-MT always
shows higher degree of degradation as compared with the TT.
In contrast, the S-MT and C-MT exhibit negligible degradation
and very weak dependence on duty cycle. The trend shown
in the figure clearly indicates that the degradation induced in
periods other than Viz_pign also contributes to the degradation.

The aforementioned results indicate that additional and ma-
jor damages incur during the switching stages, and the damage
events are mainly associated with the generation of defects
in the channel region near the drain side. The periods when
V =0 during ac stress are not likely to induce damage in
the device due to the lack of carriers inside the channel. To
understand the cause more clearly, we have also investigated
the effects of rising and falling times. The results are shown
in Fig. 7(a) and (b), where the on-current degradation of TT
and D-MT after ac stress is expressed as a function of rising
and falling times, respectively. The results indicate that the
degradation shows very weak dependence on rising time. In
contrast, the degradation worsens significantly when the falling
time is reduced.

Based on the aforesaid findings, a scenario for the damage
process is proposed. The band diagram shown in Fig. 8(a)
corresponds to the situation under static HC stress or ac stress
when Vi = Vg pign. Owing to the high drain voltage, the
inversion electrons presenting in the channel are accelerated
near the drain side. This leads to the generation of hot electrons
and the resultant damage. During the transient period while
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Fig. 3. Transfer characteristics of TTs before and after (a) A-mode ac stress with a frequency of 500 kHz and (b) static stress. The accumulated stress time is

1000 s. The rising and falling times of ac stress are both 100 ns.
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Fig. 4. Transfer characteristics of the (a) S-MT, (b) C-MT, and (c) D-MT contained in the same test sample characterized in Fig. 3(a) before and after ac stress.
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Fig. 5. Degradation of on-current after A-mode ac stress is expressed as a
function of frequency. The rising and falling times of ac stress are both 100 ns.

V@ is turning off from Vg pign to zero, the inversion electrons
remaining in the channel are attracted by the positive drain
voltage and will be accelerated toward the drain. Moreover, the
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Fig. 6. On-current degradation of the testers after HC stressing as a function
of duty ratio.

potential difference between the gate and the drain increases as
the gate voltage is reduced, as shown in Fig. 8(b). As a result,
the population of “hot electrons” is expected to increase as well.
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degradation of TT and D-MT after A-mode ac HC stress.

As the falling time shortens, there is less time for the electrons
to relax, so excessive HCs would have more impact on the
region in the channel near the drain, leading to a higher level of
damage. In the present case, the damage is found to be related
to the generation of tail states in the poly-Si layer with the
effective DOS distribution extracted by the FEC technique [8].
The results are similar to those observed for devices under static
HC stress [9]. This indicates that energetic carriers presenting
in the channel near the drain tend to create new defects therein
by breaking some weak bonds at or near the grain boundaries
[10]. On the other hand, there are few free electrons presenting
in the channel when Vi is zero, so it is unlikely that a major
HC-induced damage will occur at the stage as Vi is rising.
This explains well the weak dependence on rising time shown
in Fig. 7(a).

B. B-Mode Stress

The transfer I-V characteristics of a device before and
after B-mode ac stress are shown in Fig. 9. As mentioned in
Section II, in this case, a train of pulse voltages with Vp_pign =
15 V is applied to the drain while the gate voltage is fixed at
7.5 V. The total accumulated stress time is 1000 s, which is
identical to that of the A-mode stress performed in Fig. 3(a). It
can be seen that, in the present case, a much reduced damage
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results with B-mode stress. Fig. 10 shows the characteristics
of MTs. Still, the major-damage location is near the drain of
the TT. However, unlike the situation encountered in A-mode

in drain current after B-mode stress decreases with increasing
rising time. In Fig. 11(b), basically, the damage is found to be
independent of the falling time for all three types of MTs.
These observations can be explained with the schemes shown
in Fig. 12. Fig. 12(a) shows the band diagram during the stage
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when Vp is set to zero. The inversion electrons presenting
are expected to not cause damage in the channel because the
lateral field (i.e., parallel to the channel) is not sufficiently high
to accelerate them. During the transient period while Vp is
switched from low to high level, as shown in Fig. 12(b), the
inversion electrons remaining in the channel are attracted by the
positive drain voltage and thus tend to be accelerated toward
the drain, resulting in additional damages. Moreover, as the
rising time is shortened, a faster change in the difference
between gate and drain voltages results in the generation of
extra hot electrons, so the damage is enhanced.

IV. CONCLUSION

In summary, in this paper, we have employed a new test
structure to characterize the ac HC effects. The test structure
has been demonstrated to exhibit high sensitivity and the unique
capability of directly resolving the damage location. It is also
interesting to observe that ac stress would result in additional
damage as compared with static stress. In addition, the transient
stage that is responsible for the additional damage is identified
to be dependent upon the configuration of ac stress. Specifically,
our results indicate that the major degradation is induced in the
turn-off stages of the ac stress signal when it is applied to the
gate, while it is induced in the turn-on stages of the ac stress
signal when it is applied to the drain.

REFERENCES

[1] S. Uchikoga, “Low-temperature polycrystalline silicon thin-film transistor
technologies for system-on-glass displays,” MRS Bull., vol. 27, pp. 881—
886, Nov. 2002.

[2] M. C. McAlpine, R. S. Friedman, S. Jin, K. H. Lin, W. U. Wang, and
C. M. Lieber, “High-performance nanowire electronics and photonics on
glass and plastic substrates,” Nano Lett., vol. 3, no. 11, pp. 1531-1535,
Nov. 2003.

[3] J. R. Ayres and N. D. Young, “Hot carrier effects in devices and circuits

formed from Poly-Si,” Proc. Inst. Elect. Eng.—Circuits Devices Syst.,

vol. 141, no. 1, pp. 38-441, Feb. 1994.

H.-C. Lin, M.-H. Lee, and K.-H. Chang, “Spatially resolving the hot

carrier degradations of poly-Si thin-film transistors using a novel test

structure,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 561-563,

Jul. 2006.

[5S] M. H. Lee, K. H. Chang, and H. C. Lin, “Spatially and temporally re-

solving the degradation of n-channel poly-Si thin-film transistors under

hot-carrier stressing,” J. Appl. Phys., vol. 101, no. 5, pp. 054518-054522,

Mar. 2007.

Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi,

“Reliability of high-frequency operation of low-temperature polysilicon

thin film transistors under dynamic stress,” Jpn. J. Appl. Phys., vol. 39,

no. 12A, pp. L1209-L1 212, Dec. 2000.

Y. Toyota, T. Shiba, and M. Ohkura, “A new model for device degra-

dation in low-temperature N-channel polycrystalline silicon TFTs under

AC stress,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 927-933,

Jun. 2004.

[8] G. Fortunato and P. Migliorato, “Determination of gap state density in
polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett.,
vol. 49, no. 16, pp. 1025-1027, Oct. 1986.

[4

=

[6

=

[7

—

2669

[9] M. H. Lee, K. H. Chang, and H. C. Lin, “Effective density-of-states dis-
tribution of polycrystalline silicon thin-film transistors under hot-carrier
degradation,” J. Appl. Phys., vol. 102, no. 5, pp. 054508-1-054508-6,
Mar. 2007.

[10] M. Hack, A. G. Lewis, and I. W. Wu, “Physical models for degradation
effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices,
vol. 40, no. 5, pp. 890-897, May 1993.

Horng-Chih Lin (S’91-M’95-SM’01) was born in
I-lan, Taiwan, on August 1, 1967. He received the
B.S. degree from the Department of Physics, Na-
tional Central University, Jhongli City, Taiwan, in
1989 and the Ph.D. degree from the Institute of Elec-
tronics, National Chiao Tung University (NCTU),
Hsinchu, Taiwan, in 1994.

From 1994 to 2004, he was with the National
Nano Device Laboratories, Hsinchu, where he was
engaged in the research projects of nanoscale device
technology development. He joined the faculty
of NCTU in 2004, where he is currently a Professor with the Department of
Electronics Engineering and the Institute of Electronics. He has authored or
coauthored over 200 technical papers in international journals and conferences
in the aforementioned areas. His research interests include thin-film-transistor
fabrication and characterization, reliability of CMOS devices, and nanowire
device technology.

Dr. Lin served on the Program Committee of the International Reliability
Physics Symposium (2001 and 2002) and the International Conference on Solid
State Devices and Materials (2005-2008).

Kai-Hsiang Chang was born in Tiachung, Taiwan,
on November 11, 1981. He received the B.S. degree
from the Department of Physics, National Chung
Hsing University, Taichung, Taiwan, in 2004 and
the M.S. degree from the Institute of Electronics,
National Chiao Tung University (NCTU), Hsinchu,
Taiwan, in 2008.

He is currently with the Department of Electronics
Engineering and the Institute of Electronics, NCTU.
His primary research interest is the reliability of
poly-Si thin-film transistors.

Tiao-Yuan Huang (F’95) received the B.S.E.E. and
M.S.E.E. degrees from National Cheng Kung Uni-
versity, Tainan, Taiwan, in 1971 and 1973, respec-
tively, and the Ph.D. degree from the University of
New Mexico, Albuquerque, in 1981.

After serving for two years in the Taiwanese navy
as a fulfillment of his conscription duty, he left for
the U.S. in 1977. He had worked in the U.S. semi-
conductor industry for 14 years prior to his return
to his native country, Taiwan. Since 1995, he has
been a Professor with the Department of Electronics
Engineering, National Chiao Tung University (NCTU), Hsinchu, Taiwan,
where he is also with the Institute of Electronics.

Prof. Huang was a recipient of Semiconductor International’s Technology
Achievement Award for his invention and demonstration of the fully overlapped
lightly doped drain MOS transistors.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


