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This paper is aimed at developing a robust algorithm (FBICS) to capture the interface between two immis-
cible fluids without the need of interface reconstruction. The advection equation of the volume fraction is
solved using the fully conservative finite volume method. Determination of the convective flux through
each cell face is based on blending of high resolution schemes and compressive schemes to preserve the
sharpness and boundedness of the interface. The flux-blending practice is fulfilled with the use of flux
limiters. Test on simple advection flow problems indicates that the well-known CICSAM and HRIC
schemes lose accuracy as the Courant number increases. In contrast, the present method maintains
high-accuracy performance for Courant numbers up to one. The capability of the method to cope with
the complicated dynamics of free surface flows is demonstrated via calculation of the collapsing flow
of a water column with an obstacle.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The flow involving two immiscible fluids with a free interface has
been of interest to many engineering applications, including
biochemical engineering, marine engineering, and casting, injection
or extrusion processes. In numerical simulation of this kind of flow,
an important issue is to track the motion of the interface. Meanwhile,
the sharpness of the interface must be maintained. The methods
developed in the past for free surface flows can be divided into two
categories: Lagrangian and Eulerian. In Lagrangian methods, the
flow field of the considered fluid is covered by a mesh moving with
the fluid. The fluid boundaries always coincide with the grid bound-
aries and the fluid inside each cell of the grid always remains in that
cell [1,2]. This method is not suited for flows undergoing large distor-
tions because the mesh will be greatly deformed, which degrades the
accuracy of the solution and causes instability of the solution
procedure. To soothe these problems, Muzaferija and Peric [3]
allowed the grid lines inside the flow field to move in an Eulerian–
Lagrangian manner. However, it still can not cope with breaking or
overturning of the interface.

In the category of Eulerian methods, the grids used for fluid flow
calculations are fixed without motion. The interface is treated as a
sharp front moving through the grid. Two basic approaches were
adopted to track the interface. In the front-tracking method, the
interface is represented by a connected set of points, which forms
a moving boundary, whereas a stationary grid is constructed for
the solution of the Navier–Stokes equations [4,5]. This method is
rather difficult to implement due to the interaction between the
ll rights reserved.
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interface grid and the Eulerian grid. The complexity is further
enhanced by the necessity of remeshing the interface grid during
time marching. Another problem results from the interaction of a
front with another front when both appear in a grid cell
simultaneously.

A different front-tracking approach is the level set method [6,7].
A continuous function (the level set function) is defined as the
shortest distance between the considered point and the interface.
The interface is, thus, located at a level set value of zero. The func-
tion is transported by the fluid via solving an advection equation,
similar to the VOF method addressed below. One of the disadvan-
tages is that it suffers numerical errors of interface smearing. The
main weakness of this method is loss of accuracy in highly dis-
torted flows because mass conservation is not guaranteed [8].

An alternative to front-tracking is volume-tracking. In volume-
tracking methods, different fluids must be marked by different
indicators. In the marked-and-cell (MAC) method of Harlow and
Welch [9], the considered fluid is covered by massless particles.
These marked particles are advected with the local fluid velocity.
Their distribution determines the fluid configuration. Because the
number density of particles is usually low, quantitative informa-
tion on interface orientation is poor. This problem becomes even
severe in regions subject to high shear flow. Thus, a large number
of marker particles are needed, resulting in significant computa-
tional overheads, especially for three-dimensional flows. It needs
to be addressed here that in MAC, the fluid flow velocities required
for the transportation of particles are determined by solving the
equations in a prescribed mesh. Particle methods without need
of mesh were developed by Monaghan [10] and Koshizuka et al.
[11]. A major disadvantage of these particle methods is that inflow
and outflow through boundaries can not be handled. To tackle this
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Nomenclature

CN Courant number
Fc convective flux of momentum
Fd diffusive flux of momentum
g gravitational acceleration
_m mass flux

P pressure
P0 boundary pressure at the node next to boundaries
Pb pressure on the boundary face
r gradient ratio
~S surface vector
t time
Dt time step size
~V ;Vj velocity vector
DV volume of the cell
xj Cartesian coordinates

Greek symbols
~d distance vector
/ Cartesian velocity components
c(r) flux limiter depending on the gradient ratio
l viscosity

h angle between grid line and fluid interface
q density
sij viscous stresses
x(h) weighting factor depends on the angle h

Subscripts
b boundary
C neighboring node
D downstream node
f control surface
P principal node
U upstream node
UU far upstream node

Superscripts
n new time level
o old time level
HR high-resolution scheme
BD bounded downwind scheme
� normalized variable
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problem, a hybrid scheme, consisting of Lagrangian and Eulerian
phases, was proposed by Yoon et al. [12]. After the Lagrangian
calculation, a one-dimension local grid is generated for convection
interpolation.

Another way to mark the fluid is the use of an indicator func-
tion, known as the volume fraction. This function represents the
fraction of a local cell volume occupied by one of the fluids. The
transport of the indicator function through the domain is governed
by a hyperbolic equation. This approach is generally referred to as
the VOF method. In the past, a variety of techniques have been
developed to maintain a well defined interface within the frame
of the VOF method. In one class of such schemes, the exact location
of the front is discarded and the interface is reconstructed in an
approximate manner using information of local fluid volumes.
The SLIC (simple line interface calculation) of Noh and Woodard
[13] approximate the interface in each cell as a vertical or horizon-
tal line, depending on the sweep direction, in an operator-splitting
scheme. In the PLIC (piecewise linear interface calculation) method
of Youngs [14], an oblique line is used in each cell, which gives a
better approximation to the interface and leads to higher accuracy.
After the interface is approximately reconstructed, new fluid frac-
tion values are computed by moving the fluid volume according to
the local velocity field [15,16].

In application of the above VOF methods, the computational
cells adopted are usually rectangular mainly due to the difficulty
of interface reconstruction for irregular meshes. Another approach,
requiring no explicit interface reconstruction, is to capture the
sharp interface by directly solving the hyperbolic equation of the
indicator function. As in the shock-capturing calculations for
high-speed compressible flows, it needs to overcome the problem
of numerical diffusion, which smoothes out the sharp gradient of
the interface, and that of numerical dispersion, which may cause
the volume fraction unbounded. A scheme based on the flux-cor-
rected transport (FCT) concept has been proposed by Rudman
[17,18] for interfacial flow calculations. The applied FCT schemes
were developed mainly based on one-dimensional theory, which
renders them not suitable for unstructured grids.

Other choices are the high-resolution schemes of TVD (total
variation diminishing) and NVD (normalized variable diagram).
However, direct use of these schemes cannot eliminate the numer-
ical diffusion and unboundedness of the interface. An effective way
to alleviate these problems is to blend high-resolution schemes
and compressive schemes together. These blending schemes
switch in a continuous manner from the high-resolution scheme
to the compressive scheme, depending on the angle between the
interface and the grid lines. Several such schemes have been intro-
duced, such as the CICSAM (compressive interface capturing
scheme for arbitrary meshes) of Ubbink and Issa [19], the HRIC
(high resolution interface capturing) of Muzaferija and Peric [20],
and the STACS (switching technique for advection and capturing
of surfaces) of Darwish and Moukalled [21].

In recent years, a pressure-based algorithm within the frame-
work of unstructured mesh was developed for incompressible
flows by the group of the present authors [22]. It was further
extended to deal with all-speed flows, including incompressible,
subsonic, transonic and supersonic flows [23,24]. To capture the
shock waves embedded in high-speed compressible flows without
causing smear and unboundedness, the amount of the convective
flux through cell faces is controlled with the use of flux limiters.
A variety of TVD and NVD schemes can easily be implemented in
the form of the limiting function. Based on the unstructured-grid
algorithm and the limiter technique, a methodology is introduced
in this study to capture the sharp front of the free-surface flows.

2. Mathematical model

The different fluid flows separated by an interface are assumed
to be incompressible and obey the same form of equations describ-
ing the conservation of mass and momentum:

@Vj

@xj
¼ 0 ð1Þ

@qVi

@t
þ @

@xj
ðqVjViÞ ¼ �

@P
@xi
þ @sij

@xj
þ qgi ð2Þ

where Vj is the velocity, q the density, P the pressure, sij the viscous
stress tensor, and gi the gravitational acceleration. The mixture of
fluids is considered as a single continuum. The fluid properties
can be expressed as a function of the volume fraction f. The density
and viscosity at a location are evaluated by
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q ¼ fq1 þ ð1� f Þq2 ð3aÞ
l ¼ fl1 þ ð1� f Þl2 ð3bÞ

where the subscripts 1 and 2 denote the two fluids.
The volume fraction f is advected as a Lagrangian invariant and

has zero material derivative:

Df
Dt
¼ @f
@t
þ Vj

@f
@xj
¼ 0 ð4Þ

With the help of the continuity equation, the advection equation
can be cast into the divergence form:

@f
@t
þ @

@xj
ðVjf Þ ¼ 0 ð5Þ
Fig. 2. Illustration of the downwind, upwind and far upwind nodes for (a)
structured grid and (b) unstructured grid.
3. Flux-blending interface-capturing scheme (FBICS)

For discretization the differential equations are integrated over
a control volume. Those terms in divergence form are transformed
into surface integrals according to the divergence theorem. The
convective flux through each face of the control volume can be
approximated using the mean value theorem. Thus, Eq. (5) for
the volume fraction can be approximately expressed as

DV
Dt
ðf n

P � f o
P Þ þ

X
f

Ff f f ¼ 0 ð6Þ

Here the superscripts n and o denote the new and old time values,
the subscripts P and f designate the centroids of the control volume
and the surrounding faces, and Ff is the volumetric flux through a
face defined by

Ff ¼ ~Vf �~Sf ð7Þ

where~Sf is the surface vector of the face (see Fig. 1). The sum is over
all the surrounding faces of the control volume.

To complete discretization, the volume fraction at each face re-
quires estimate from neighboring nodes:

ff ¼ fU þ
cðrÞ

2
ðfD � fUÞ ð8Þ

where, as seen in Fig. 2a, the subscript U denotes the node upstream
of the considered face and the subscript D is the one downstream.
The function c(r) is the flux limiter depending on the gradient ratio:

r ¼ fU � fUU

fD � fU
ð9Þ
Fig. 1. A typical control volume and its neighboring cells.
where fUU is the value at a node far upstream. This far upstream node
is easily identified in structured grids (see Fig. 2a). The determination
of the value at this node in unstructured grids is referred later to Eq.
(20). It is obvious that the expression represents the upwind differ-
ence scheme for c = 0, the central difference scheme for c = 1 and
the downwind difference scheme for c = 2. Thus the second term on
the right of Eq. (8) represents anti-diffusion to the upwind scheme.

In solving the advection equation, the upwind part of the con-
vection flow is treated by the Crank–Nicolson scheme whereas
the anti-diffusion part in the explicit manner. Thus, it is obtained

DV
Dt
ðf n

p � f o
p Þ þ

X
f

Ff
1
2
ðf n

U þ f o
UÞ þ

cðrÞ
2
ðf o

D � f o
UÞ

� �
¼ 0 ð10Þ

The limiters for linear difference schemes can be expressed as sim-
ple linear functions of the gradient ratio. For examples, c(r) = r is the
linear upwind scheme, c(r) = r/4 + 3/4 the QUICK scheme, and
c(r) = r/2 + 1/2 the Fromm’s scheme. Nonlinear schemes like TVD
and NVD schemes can also be easily implemented by expressing
the limiting functions in terms of r [23]. Tests of a variety of such
schemes on model problems had shown that the smear of interface
is serious even with the use of the SUPERBEE [25] which was re-
garded as the most non-diffusive among the TVD schemes.

It was recognized that in contrast to the upwind differencing,
the downwind scheme could cause significant oscillations and,
thus, instability of the solution due to the fact the sign of its artifi-
cial viscosity is negative. This anti-diffusion feature makes it capa-
ble to compress a smooth function into a step profile [26]. To take
advantage of this compression nature, a strategy is to blend slightly
diffusive high-resolution schemes (HR) with bounded downwind
schemes (BD):

c ¼ ½1�xðhÞ�cHR þxðhÞcBD ð11Þ

This approach is referred to as Flux-Blending Interface-Capturing
Scheme (FBICS). The flux limiters for the high-resolution scheme
and the bounded downwind scheme used in the present article
are given by
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cHR ¼max 0;min 4r;
1
2

r þ 1
2
;2

� �� �
ð12aÞ

cBD ¼max½0;minð4r;2Þ� ð12bÞ

The Fromm’s scheme c(r) = r/2 + 1/2 is employed as the basic
scheme in the HR.

The weighting factor x depends on the angle h between the grid
lines and the interface. A rule of thumb is that the bounded down-
wind scheme is used when the interface is parallel with the consid-
ered face and it is gradually switched to the high-resolution
scheme until the interface becomes orthogonal to the face. In the pre-
vious studies [19–21], schemes in the NVD form were blended in the
manner similar to Eq. (11) with various expressions for x. The differ-
ent functions have been tested using the present blending scheme. It
was found that the results are not sensitive to the choices of x. In the
following, the form x = cos4h [21] is employed, where h is given by

h ¼ cos�1 rff �~dUD

jrff jj~dUDj
ð13Þ

Here~dUD is the distance vector directing from the upwind node U to
the downwind node D (see Fig. 2b).

The flux limiters given in Eqs. (12a) and (12b) represent combi-
nations of different linear schemes, which can be more easily
understood using the normalized variables formulation (NVF).

~f ¼ f � fUU

fD � fUU
ð14Þ

Eq. (8) can then be rewritten as

~f f ¼ ~f U þ
cðrÞ

2
ð1� ~f UÞ ð15Þ

where

r ¼
~f U

1� ~f U

ð16Þ

It can be detected that in the NVF form, the face value ~f f depends on
the upwind value ~f U only.

NVD schemes must satisfy the convection boundedness criteria
(CBC) [27] which can be represented by the combination of the
upper triangle bounded by the lines ~f U ¼ 0;~f f ¼ 1, and the diagonal
line ~f f ¼ ~f U in Fig. 3.

The constraints on TVD schemes are more stringent, which is
bounded by an oblique line ~f f ¼ 2~f U instead of the vertical line
~f U ¼ 0 in the NVD schemes as shown in Fig. 3.
Fig. 3. CBC and TVD regimes in NVD diagram.
The aabove two schemes can then be reinterpreted using the NVF as

HR scheme ~f f ¼

3~f U 0 < ~f U � 1
8

~f U þ 1
4

1
8 <

~f U � 3
4 ðFDSÞ

1 3
4 <

~f U � 1 ðDDSÞ
~f U

~f U � 0 or ~f U � 1 ðUDSÞ

8>>>>><
>>>>>:

ð17aÞ

BD scheme ~f f ¼
3~f U 0 < ~f U � 1

3

1 1
3 <

~f U � 1 ðDDSÞ
~f U

~f U � 0 or ~f U � 1 ðUDSÞ

8>><
>>: ð17bÞ

In the above, FDS, DDS and UDS denote the Fromm’s difference
scheme, downwind difference scheme and upwind difference
scheme, respectively. These schemes are drawn on the normalized
variable diagram in Fig. 4a. Note that for schemes in the NVD range,
but out of the TVD regime, which is bounded by the line ~f f ¼ 2~f U as
shown in Fig. 3, are less diffusive. It is readily seen that both
schemes represented by Eqs. (17a) and (17b) fall out of the TVD
range for small values of ~f U because of the higher slope ~f f ¼ 3~f U ,
equivalent to c = 4r in the flux limiter.

It is emphasized that in the sketch of NVD, the diagonal repre-
sents the upwind scheme and the upper bound represents the
downwind scheme. Therefore, scheme curves closer to the
Fig. 4. Illustration of (a) scheme A and (b) scheme B.
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diagonal line have the character of higher diffusion and those clo-
ser to the upper line and the vertical line ~f U ¼ 0 are more compres-
sive. The line ~f f ¼ ~f U=CN is adopted as the left boundary in the NVD
diagram in the CICSAM scheme of Ubbink and Issa [19], where CN is
the local Courant number in the considered cell. When the Courant
number approaches zero, it becomes the vertical line ~f U ¼ 0 and
the CICSAM scheme is compressive. However, for CN close to one
it degenerates into the diagonal line and results in significant
diffusion.

To allow the present scheme to be more compressive for small
Courant numbers, the above schemes shown in Eqs. (12a) and
(12b) are modified as

cHR ¼max 0;min max 2
1

CN
� 1

� �
r;4r

� �
;
1
2

r þ 1
2
;2

� �� �
ð18aÞ

cBD ¼max 0;min max 2
1

CN
� 1

� �
r;4r

� �
;2

� �� �
ð18bÞ

In the NVD form, they become

HR schemef ~f f ¼

max 1
CN
;3

� �
~f U 0<~f U �min CN

4ð1�CN Þ
;1

8

� �
~f Uþ 1

4 min CN
4ð1�CN Þ

;1
8

� �
<~f U � 3

4 ðFDSÞ

1 3
4<

~f U �1 ðDDSÞ
~f U

~f U � 0 or~f U �1 ðUDSÞ

8>>>>>><
>>>>>>:

ð19aÞ

BD scheme ~f f ¼
max 1

CN
;3

� �
~f U 0<~f U �min CN ;

1
3

� 	
1 min CN ;

1
3

� 	
<~f U �1 ðDDSÞ

~f U
~f U � 0 or~f U �1 ðUDSÞ

8>>><
>>>:

ð19bÞ

In the above, the constraint ~f f ¼ 3~f U is utilized when the Courant
number is greater than 1/3 and replaced by ~f f ¼ ~f U=CN for CN < 1/3
(see Fig. 4b).

For non-rectangular meshes used in unstructured-grid methods
the far upstream value fUU is not available. An estimate can be ob-
tained with a pseudo node UU located at a distance of �2~dUD away
from the node D (see Fig. 2b). The solution around the cell U is as-
sumed to be distributed linearly. Thus, it can be estimated as

fUU ¼ fD � 2ðr/ÞU �~dUD ð20Þ

The volume faction obtained from the above linear extrapolation
may exceed the bounds 0 and 1. To ensure boundedness, the follow-
ing step is carried out [19]

fUU ¼ max½minðfUU ;1Þ;0� ð21Þ
4. Solution method

Similar to the volume fraction equation, the convective flux of
momentum through a face can be expressed as

Fc ¼ qf Ff /f ð22Þ

where / designates the Cartesian velocity components and, similar
to the above, the face value is approximated by

/f ¼ /U þ
cðrÞ

2
ð/D � /UÞ ð23Þ

The Van Leer scheme is used in the momentum calculation, which is
given by

cðrÞ ¼ r þ jrj
r þ 1

ð24Þ

In NVD form, it can be written as

~/f ¼
2~/U � ~/2

U 0 � ~/U � 1
~/U

~/U < 0 or ~/U > 1

(
ð25Þ
It is seen that unlike most other high-resolution schemes, this scheme
features a quadratic form and is, thus, continuously differentiable.

An approximation to the diffusive flux of momentum through a
face of a control volume, applicable to the unstructured grid
arrangement, is given by

Fd ¼
lS2

f

~dPC �~Sf

ð/C � /PÞ þ lðr/Þf ~Sf �
S2

f

~dPC �~Sf

~dPC

 !
ð26Þ

where the subscripts P and C denote the considered control volume
and the neighboring cell,~dPC is the vector connecting nodes P and C
(see Fig. 1), and ðr/Þf represents the gradients at the face obtained
by linear approximation from the gradients at nodes P and C.

The solution procedure is to solve the volume fraction equation
first to advance the interface. After the volume fraction is updated,
velocities are predicted by solving the momentum equation using
prevailing pressure. However, this velocity field does not satisfy
the continuity constraint and the pressure has not been upgraded.
A correction step is then conducted to adjust these variables. In
this step, a pressure-correction equation is derived by forcing the
corrected velocities to satisfy the mass conservation. Details about
this procedure are referred to reference [22]. To make the pressure
field get rid of the mass residual left by the predictor step and to
obtain better approximation to the momentum conservation, a fur-
ther correction to the velocities and pressure is performed, as in
the PISO algorithm [28]. This completes the calculation in one time
step and the solution procedure is advanced to the next time step.

It is common in interfacial flows to have open boundaries on
which pressures are specified. Mass flux through this boundary must
be derived using the prescribed pressure. In general, there are two
approaches to estimate the mass flux. One is to make an approxima-
tion to the momentum equation in a manner similar to the momen-
tum interpolation method for internal faces [29]. However, with this
method the mass is not conserved unless iteration on the solution is
undertaken. Therefore, it is not appropriate in the non-iterative pro-
cedure of the present method. An alterative is to make use of the
principle of mass conservation. Fig. 5 illustrates a control volume
next to an open boundary. The boundary pressure P0 is prescribed
at the centroid P of this boundary cell. The pressure on the boundary
face Pb is calculated using the relation

Pb ¼ P0 þrPP �~dPb ð27Þ

where the pressure gradient at node P is approximated by

rPP ¼
1

DV

X
f

Pf
~Sf ð28Þ

Combining the above two equations yields

Pb ¼
P0 þ ð

P
f –bPf

~Sf �~dPbÞ=DV

1� ð~Sb �~dPbÞ=DV
ð29Þ
Fig. 5. Illustration of implementation of the pressure condition at a boundary cell.
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where the summation is taken over all the faces of the cell except
the boundary face. With this boundary face pressure Pb, the velocity
at the node P can be calculated in the momentum predictor step in
the same way as the other internal nodes. After the mass fluxes
through all the internal faces are calculated using the momentum
interpolation method, the mass flux _mb through the boundary face
is obtained according to the mass conservation.

_mb þ
X
f –b

_mf ¼ 0 ð30Þ

where the summation is taken over all the internal faces apart from
the boundary face.

The velocities and the volume fraction need to be determined
on the open boundary. The convective boundary condition [30] is
imposed, in which a wave equation is solved.

@/
@t
þ uc

@/
@n
¼ 0 ð31Þ

where n designates the normal direction and uc is the local flow
velocity at the boundary. After the velocities on the boundary are
obtained, they are adjusted in a way that the mass flux through
the boundary face is consistent with that calculated from Eq. (30).
Fig. 6. A mesh with 22478 triangular cells.

Rectangular mesh 
Schemes 

0.75NC =  0.NC =

CICSAM 

HRIC 

FBICS-A 

FBICS-B 

Fig. 7. Results for the advection with uniform velocity
5. Results and discussion

The algorithm described above is tested via comparison against
analytical solutions and experimental measurements if available.
The cases selected for testing include (1) advection of hollow cylin-
ders in a uniform velocity field, (2) advection of a circle in a shear
flow, (3) collapse of a water column with or without an obstacle. In
the first two cases, the velocities are prescribed in advance and no
coupling exists between the volume fraction field and the velocity
field. They provide benchmark testing for evaluation of different
schemes.

5.1. Advection of hollow cylinders in a uniform velocity field

The velocities are assumed to be uniformly distributed with
~V ¼ 2~iþ~j. The computational domain is a 4 � 4 square. Two differ-
ent cylinder shapes are under consideration. One is a hollow
square with outer side length 0.8 and inner side length 0.4 and
the other is a hollow circle with outer diameter 0.8 and inner diam-
eter 0.4. The centers of the cylinders are initially placed at a loca-
tion (0.8, 0.8). They are advected to the position (2.8, 1.8) after 1
unit of time. The domain is partitioned into either 100 � 100 rect-
angular cells or 22478 triangular cells. The triangular mesh is illus-
trated in Fig. 6.

Theoretically, the geometry of the cylinders remains unchanged
during advection due to the uniform velocity field. To quantify the
errors produced by numerical methods, the solution error is de-
fined by

E ¼
P

ijf n
i DV � f e

i DV jP
if

i
i DV

ð32Þ

where fn is the numerical solution, fe the exact solution and fi the initial
condition. The sum is over all the cells in the computational domain.

The contours of the volume fraction over the range 0.05–0.95 in
intervals of 0.1 are displayed in Fig. 7 for cell Courant numbers 0.75
and 0.1. The schemes adopted for comparison are the CICSAM of
Ubbink and Issa [19], the HRIC of Muzaferija et al. [20], and the
two schemes represented by Eqs. (12) and (18), where the former
is termed scheme A and the latter scheme B. The CICSAM tested
here is the version without the correction step. The cell Courant
number is defined by
Triangular mesh 

1 57.0NC =

field (contour range: 0.05–0.95 in intervals of 0.1).
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Fig. 8. Numerical error against Courant number for (a) square cylinder and (b)
circular cylinder in uniform flow obtained using rectangular mesh.
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CN ¼
P

maxðFf ;0ÞDt
DV

ð33Þ

where Ff is the volumetric flux through the face and the sum is ta-
ken over all the faces of the cell. It is revealed from the figure that
with the rectangular mesh, the results obtained by the CICSAM
and HRIC are not acceptable for CN = 0.75. It was mentioned in the
last section that the CICSAM scheme is limited by a bound
~f f ¼ ~f U=CN . It is reduced to the upwind scheme as CN approaches
1. Thus, it is highly diffusive at Courant numbers close to 1. Even
higher diffusive phenomenon can be found in the HRIC as a result
of the use of upwind scheme for CN greater than 0.7 in this scheme.
It needs to be pointed out that in implementation of the HRIC in the
present calculations, it is the cell Courant number, instead of the
face Courant number (=FfDt/DV, which is usually smaller than the
cell Courant number) as used in the original study, adopted in
determining the flux blending. The contour plots for the schemes
A and B of the present method are exactly the same because these
two schemes are identical as the Courant number is greater than 1/
3. The accuracy of the results for CN = 0.1 is much more improved.
The HRIC scheme blends the upwind difference and a bounded
downwind difference for CN < 0.3. As a consequence of the effects
of the embedded upwind difference, smear of the interface is still
visible. Both the predictions by the CICSAM and the scheme B are
very satisfactory. Comparing with these two schemes, the contours
obtained by the scheme A is only slightly more diffusive. Similar
observations can be found for the case with circular cylinder. How-
ever, the circle tends to transform into an octagon for CN = 0.1 due to
the large compression effects of the downwind difference. This is
especially true for the CICSAM and HRIC schemes.

With use of the triangular mesh, the diffusion character of the
CICSAM and HRIC at the high Courant number of 0.75 is not signif-
icant. It should be noted that unlike the rectangular mesh, the Cou-
rant numbers for the cells of the triangular mesh are not constant.
Here the Courant number 0.75 simply represents the maximum
value of its distribution. An analysis of the cell Courant number
distribution indicates that nearly all the values fall in the range
0.4–0.5. It is also needs to be understood that the cell volumes of
the triangular mesh are about half of those of the rectangular
mesh. Keeping the same Courant numbers results in smaller time
steps for the runs on the triangular mesh.

The effects of Courant number on the prediction accuracy for
the considered schemes are shown in Fig. 8a and b for the square
cylinder and the circular cylinder, respectively. Due to the use of
upwind difference in the flux blending in the HRIC, the numerical
errors are much greater than the other schemes even at low Cou-
rant numbers. The sharp increase of the errors at high Courant
numbers for both the HRIC and CICSAM is owing to the approach
to the upwind difference scheme. In general, the CICSAM is accu-
rate for CN < 0.4. It can be identified that the present schemes A
and B perform satisfactorily, regardless of the Courant numbers.
As expected, the scheme A is identical to the scheme B for
CN > 0.33. For small Courant numbers the scheme B is slightly infe-
rior to the scheme A and the CICSAM.

5.2. Advection of a circle in a shear flow

In the above case, the cylinders are transported by the uni-
form velocity field without changing its shape. In realistic prob-
lems, the interface is subject to flow straining and deforms
continuously. To mimic this situation, the following velocities
are assumed.

~V ¼ sin x � cos y~i� cos x � sin y~j ð34Þ

with (x, y) e (0, p). Although triangular meshes were also adopted in
calculations, the results presented in the following are obtained
with a 100 � 100 rectangular mesh. The initial condition is a circle
of diameter 0.4p with its center located at (p/2, (1 + p)/5). The time
marching of the computation is carried out over N units of time. It is
followed by another N units of time in which the velocity field is re-
versed. The circle will be stretched by the velocity straining in the
forward step and recovers its original shape by the end of the back-
ward step.

Selected results for the CICSAM and the scheme A at CN = 0.25
and 0.75 for N = 8 and 16 are shown in Fig. 9. For CN = 0.25 the
scheme A is slightly better than the CICSAM by comparing the final
circles after the backward step. As the Courant number is increased
to 0.75, the wide spread of the contours lines for the CICSAM indi-
cates the smear caused by the numerical diffusion.

Fig. 10 presents the solution error against the Courant number for
the case with N = 16. As expected, the errors for the HRIC increases
sharply for CN > 0.3 whereas the corresponding point for the CICSAM
occurs at CN = 0.5. The schemes A and B are not sensitive to the Cou-
rant number with the scheme A as the winner. The two schemes have
less error throughout the entire range considered.
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Fig. 9. Results for the advection in shear flow obtained using rectangular mesh (contour range: 0.05–0.95 in intervals of 0.1).
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5.3. Collapse of a water column with or without an obstacle

Experiments have been made to investigate the collapse of a
water column [31,32], which has been widely used as a classic test
case in the modeling of free surface flows. We consider a water col-
umn with 0.146 m in width and 0.292 m in height, standing at the
left corner in a tank with 0.584 � 0.340 m in size. The top side is an
open boundary with the atmospheric pressure imposed. Since the
velocity is variable with time and space, the Courant number for
real flow calculations can not be fixed at a specific value. The time
step is determined by setting the Courant numbers for all cells not
greater than 0.25. Calculations were taken using the scheme A
incorporating a 80 � 50 or 120 � 70 rectangular mesh and a
6218 or 9698 triangular mesh.

The variation of the position of the leading front and the reduc-
tion of the height of the column are shown in Fig. 11a and b. Both
the distances and the time are nondimensionalized as shown in the
figures. The predictions follow the measurements [31] closely.
However, the calculated leading front moves faster than the exper-
imental one. This may be owing to the difficulty to determine the
exact position of the front in the experiments. Such a situation can
also be found in the calculations of other studies [32,33].

The collapsing flow becomes much more complicated when an
obstacle is placed in the way of the flow front. A rectangular block
in the size 0.024 � 0.048 m is placed at the center of the floor. The
height of the tank is increased to 0.584 m. The evolution of the re-
sulted interface and fluid velocity, predicted with the Scheme A on
a 200 � 200 rectangular mesh, is shown in Fig. 12 for the times
t = 0.1, 0.3, 0.4, and 0.6 s. In the early stage, the front of the collapsing
water column proceeds along the floor. The movement of the front is
then obstructed by the block. A tongue is formed due to the water



Fig. 12. Evolution of the collapsing flow of the water column with an obstacle
(contour range: 0.4–0.6).
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splash as seen at t = 0.3 s. It is followed by a strike of the tongue on
the side wall. It can be detected that at t = 0.4 s, the water sheet
formed on the wall has started to fall under the action of gravity.
Air is trapped underneath the water tongue. This results in Ray-
leigh–Taylor instability and, thus, a wavy form is seen on the lower
surface, where a number of small ‘fingers’ can be identified. This kind
of flow is very unstable. By the time t = 0.6 s, the structure of the
water tongue is completely destroyed. The interface has broken
and become extremely irregular. Photographs taken by Koshizuka
at the corresponding times have been made available in reference
[33]. Good qualitative agreement between the two studies can be
seen, which justifies the current methodology to cope with compli-
cated interfacial flows. However, small water droplets produced in
the splash procedure are not found in the present predictions. To
predict this behavior correctly, the mesh size needs to be refined
to a level smaller than the droplets, which is prohibited in the cur-
rent stage. The plots of velocity vectors indicate that the splash has
a great effect on the air flow. A number of vortex flows are generated
during evolution of the free surface flow.

6. Conclusions

A solution algorithm has been developed to deal with interfacial
flows in two-fluid flow systems. It is based on the finite volume
method and is applicable to unstructured meshes of arbitrary
topology. It features the use of flux limiters to blend high resolu-
tion schemes and compressive schemes to determine the convec-
tive fluxes through cell faces. The blending factor is a function of
the angle between the interface and the mesh lines. Two such
schemes have been introduced. The limiters of the first scheme
are independent of Courant number and the second scheme re-
duces to the first one as the Courant number is greater than 1/3.
Rigorous tests on these schemes reveal that they outperform the
well-known CICSAM and HRIC schemes, especially for large Cou-
rant numbers. To avoid the diffusion effects encountered by the
last two schemes, the cell Courant numbers are suggested to be
less than 0.4 for them. On the other hand, the present schemes
maintain their accuracy throughout the range 0 < CN < 1.
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