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Many papers on the fully connected cubic networks have been published for the past 

several years due to its favorite properties. In this paper, we consider the fault-tol-  erant 
hamiltonian connectivity and fault-tolerant hamiltonicity of the fully connected cubic 
network. We use FCCNn to denote the fully connected cubic network of level n. Let G = 
(V, E) be a graph. The fault-tolerant hamiltonian connectivity H k

f (G) is defined to be the 
maximum integer l such that G − F remains hamiltonian connected for every F ⊂ V(G) ∪ 
E(G) with |F| ≤ l. The fault-tolerant hamiltonicity Hf (G) is defined to be the maximum 
integer l such that G − F remains hamiltonian for every F ⊂ V(G) ∪ E(G) with |F| ≤ l. We 
prove that H k

f (FCCNn) = 0 and Hf (FCCNn) = 1 if n ≥ 2. 
 
Keywords: hamiltonian, hamiltonian connected, fault-tolerant hamiltonian, fault-tolerant 
hamiltonian connected, fully connected cubic network 
 
 

1. INTRODUCTION 
 

As is customary in structure studies of parallel architectures, we focus on a set of 
identical processors and view the architectures of the underlying interconnection net-
works as graphs. The vertices of a graph represent the processors of architecture, and the 
edges of the graph represent the communication links between processors. Network to-
pology is a crucial factor for the interconnection networks since it determines the per-
formance of the networks. Many interconnection network topologies have been proposed 
in the literature for the purpose of connecting thousands of processing elements. The 
hypercube networks have received much attention over the past few years since they 
offer a rich interconnection structure with large bandwidth, logarithmic diameter, high 
degree of fault tolerance, and embedding of various interconnection. The hypercube net-
work has been chosen as the interconnection topology in several commercially available 
parallel computers [11]. However, the hypercube networks are not truly expandable be-
cause we have to change the hardware configuration of all the vertices whenever the 
number of vertices grows exponentially, as the vertices have to be provided with addi-
tional ports. Fortunately, hierarchical interconnection networks (HINs) provide excellent 
expandability to meet this need.  

For decades, two kinds of HINs were proposed addressing the issue of constructing 
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hierarchical interconnection networks. One is the HINs consisting of exactly two levels 
[3, 5, 8, 12-14], and another is recursively defined HIN [2, 15, 17, 18]. Moreover, the 
fully connected cubic networks (FCCNs) proposed in [15] are defined recursively by 
taking the 3-dimensional cube as the basis graph. It indicates that fully connected cube 
networks are a class of newly proposed hierarchical networks for multisystems, which en-
joy the strengths of constant vertex degree and good expandability. Some interesting prop-
erties about FCCNs are discussed in [15]. In particular, Yang et al. [16] presented the short-
est-path routing algorithm. Fault-tolerant hamiltonicity and fault-tolerant hamiltonian con-
nectivity are other important issues in the design and the analysis of interconnection net-
works [4, 6, 7, 9, 10]. In this paper, we discuss these two parameters for FCCNs.  

The remaining of this paper is organized as follows: Section 2 provides the formal 
definition of FCCNs and some preliminaries. In section 3, we discuss the fault-tolerant 
hamiltonian connectivity for FCCNs. In section 4, we discuss the fault-tolerant hamil-
tonicity for FCCNs. 

2. PRELIMINARIES 

An interconnection network is represented by a graph G = (V, E) with vertices and 
edges symbolizing the processors and communication links between processors, respec-
tively. For graph definitions and notations we follow [1]. An n-dimensional cube, Qn, is a 
graph with 2n vertices that can be one-to-one labeled with 0-1 binary strings so that two 
vertices are adjacent if and only if their labels differ in exactly one position. A path, 〈v0, 
v1, …, vk〉, is an ordered list of distinct vertices such that vi and vi+1 are adjacent for 0 ≤ i 
≤ k − 1. We also write the path 〈v0, v1, …, vk〉 as 〈v0, …, vi, Q, vj, …, vk〉 where Q is a path 
from vi to vj. A path is a hamiltonian path if its vertices are distinct and span V. A cycle, 
〈v0, v1, …, vk, v0〉, is a path with at least three vertices such that the first vertex is the 
same as the last vertex. A cycle is a hamiltonian cycle if it traverses every vertex of G 
exactly once. A graph is hamiltonian if it has a hamiltonian cycle. A graph G is hamilto-
nian connected if there exists a hamiltonian path joining any two vertices of G. A hamil-
tonian connected graph with at least three vertices is hamiltonian.  

The fault-tolerant hamiltonian connectivity of a graph G, H k
f (G), is defined to be the 

maximum integer l such that G − F remains hamiltonian connected for every F ⊂ V(G) ∪ 
E(G) with |F| ≤ l if G is hamiltonian connected and is undefined otherwise. A hamilto-
nian graph G is k fault-tolerant hamiltonian if G − F remains hamiltonian for every F ⊂ 
V(G) ∪ E(G) with |F| ≤ k. The fault-tolerant hamiltonicity of a graph G, Hf (G), is de-
fined to be the maximum integer k such that G is k fault-tolerant hamiltonian if G is ham-
iltonian and is undefined otherwise.   

Let Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. For m ≥ 1 and a ∈ Z8, let {... .m

m
a aa a=  

For n ≥ 1, an n-level FCCN, FCCNn, is a graph defined recursively as follows:  
 
(1) FCCN1 is a graph with V(FCCN1) = Z8 and E(FCCN1) = {(0, 1), (0, 2), (1, 3), (2, 3), 

(4, 5), (4, 6), (5, 7), (6, 7), (0, 4), (1, 5), (2, 6), (3, 7)}. Obviously, FCCN1 is isomor-
phic to Q3.  

(2) When n ≥ 2, FCCNn is built from eight vertex-disjoint copies of FCCNn-1 by adding 
28 edges. For 0 ≤ k ≤ 7, we let kFCCNn-1 denote a copy of FCCNn-1 with each vertex 
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being prefixed with k, then FCCNn is defined by  
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Let n ≥ 2. A vertex v in FCCNn is a boundary vertex if it is of the form pn and v is an 
intercubic vertex if it is of the form pqn-1 with p ≠ q. An intercubic edge is an edge join-
ing two intercubic vertices. 

Figs. 1 (a)-(c) show FCCN1, FCCN2 and FCCN3. In essence, each vertex of an 
FCCN has four links, with each boundary vertex having one I/O channel link that is not 
counted in the vertex degree. Obviously, kFCCNn-1 have 7 intercubic vertices and 1 
boundary vertex for 0 ≤ k ≤ 7 and n ≥ 2. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1. The graphs (a) FCCN1, (b) FCCN2, (c) FCCN3, and (d) FCCN 0
2. 

(a) 

(b) 

(c) (d) 
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In order to discuss the fault-tolerant hamiltonicity and fault-tolerant hamiltonian 
connectivity of fully connected cubic networks, we need to introduce the extended fully 
connected cubic networks. For every t ∈ Z8, the extended fully connected cubic network 
FCCN t

n is the graph obtained from FCCNn by joining the vertices in the set {pn⏐p ∈ Z8 − 
{t}} to an extra vertex w. For example, FCCN 0

2 is illustrated in Fig. 1 (d). Note that 
FCCN i

n is isomorphic to FCCN j
n for every i, j in Z8. We only discuss FCCN 0

n. 
Since FCCN2 has 64 vertices and FCCN 0

2 has 65 vertices, we can check the follow-
ing two lemmas by brute force.  
 
Lemma 1  FCCN2 and FCCN 0

2 are hamiltonian connected.   
 
Lemma 2  FCCN2 − f is hamiltonian for any f ∈ V(FCCN2) ∪ E(FCCN2) with | f | = 1. 
Moreover, FCCN 0

2 − f * is hamiltonian for any f * ∈ V(FCCN 0
2) ∪ E(FCCN 0

2) with |f *| = 1.  

3. FAULT-TOLERANT HAMILTONIAN CONNECTIVITY 

Lemma 3  Both FCCNn and FCCN 0
n are hamiltonian connected for n ≥ 2. 

 
Proof: We prove this lemma by induction. With Lemma 1, the statement holds for n = 2. 
We assume the statement holds for FCCNl with 2 ≤ l ≤ n.  

First, we prove that FCCNn+1 is hamiltonian connected. Let u and v be any two dis-
tinct vertices in FCCNn+1. We need to find a hamiltonian path of FCCNn+1 joining u to v.   

Suppose that u ∈ bFCCNn and v ∈ eFCCNn with b ≠ e. Let k0, k1, …, k7 be any 
permutation of Z8 such that k0 = b, k7 = e, k0k

n
 1 ≠ u, and k7k

n
 6 ≠ v. Let xi = kik

n
 i-1 for 1 ≤ i ≤ 7, 

yj = kjk
n
 j+1 for 0 ≤ j ≤ 6, x0 = u, and y7 = v. By induction, there exists a hamiltonian path Pi 

of kiFCCNn joining xi to yi for 0 ≤ i ≤ 7. Obviously, P = 〈u, P0, P1, …, P7, v〉 forms a 
hamiltonian path of FCCNn+1 joining u to v. See Fig. 2 (a) for an illustration.  

Suppose that {u, v} ⊂ bFCCNn. By induction hypothesis, there is a hamiltonian path 
Pb of bFCCN b

n joining u and v. Obviously, Pb can be written as 〈u, Pb1, bkn
 1, w, bkn

 7, Pb2, 
v〉 where w is an extra vertex of bFCCN b

n. Clearly, b ∉ {k1, k7}. Let k2, k3, …, k6 be any 
permutation of Z8 − {b, k1, k7}. We set k8 = k0 = b. Let xi = kik

n
 i-1 and yi = kik

n
 i+1 for 1 ≤ i ≤ 

7. By induction, there exists a hamiltonian path Pi of kiFCCNn joining xi to yi for 1 ≤ i ≤ 7. 
Obviously, P = 〈u, Pb1, P1, …, P7, Pb2, v〉 forms a hamiltonian path of FCCNn+1 joining u 
to v. See Fig. 2 (b) for an illustration.  

Second, we prove that FCCN 0
n+1 is hamiltonian connected. Let u and v be any two 

distinct vertices in FCCN 0
n+1. We need to find a hamiltonian path of FCCN 0

n+1 joining u 
to v.  

Suppose that u ∈ bFCCNn and v is the extra vertex w. Let k0, k1, …, k7 be any per-
mutation of Z8 such that k0 = b, k0k

n
 1 ≠ u, and k7 ≠ 0. Let xi = kik

n
 i-1 for 1 ≤ i ≤ 7, yj = kjk

n
 j+1 

for 0 ≤ j ≤ 6, x0 = u, and y7 = k77
n+1. By induction, there exists a hamiltonian path Pi of 

kiFCCNn joining xi to yi for 0 ≤ i ≤ 7. Obviously, P = 〈u, P0, P1, …, P7, v = w〉 forms a 
hamiltonian path of FCCN 0

n+1 joining u to v. See Fig. 2 (c) for an illustration.  
Suppose that u ∈ bFCCNn and v ∈ eFCCNn with b ≠ e. Let k0, k1, …, k7 be any per-  

mutation of Z8 such that k0 = b, k7 = e, k0k
n
 1 ≠ u, k7k

n
 6 ≠ v, and 0 ∉ {k1, k2}. Let xi = kik

n
 i-1 
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for 3 ≤ i ≤ 7, yj = kjk
n  
 j+1 for 2 ≤ j ≤ 6, x0 = u, x1 = k1k

n
 0, x2 = k2

n+1, y0 = k0k
n
 1, y1 = k1

n+1, and y7 
= v. By induction, there exists a hamiltonian path Pi of kiFCCNn joining xi to yi for 0 ≤ i ≤ 
7. Obviously, P = 〈u, P0, P1, w, P2, …, P7, v〉 forms a hamiltonian path of FCCN 0

n+1 join-
ing u to v. See Fig. 2 (d) for an illustration.  

Suppose that {u, v} ⊂ bFCCNn. By induction hypothesis, there is a hamiltonian path 
Pb of bFCCN b

n joining u and v. Obviously, Pb can be written as 〈u, Pb1, bkn
 1, w, bkn

 7, Pb2, 
v〉. Clearly, b ∉ {k1, k7}. Obviously, at least one of k1 and k7 is not 0. Without loss of 
generality, we assume k1 ≠ 0. Let k2, k3, …, k6 be any permutation of Z8 − {b, k1, k7} such 
that k2 ≠ 0. We set k8 = b. Let xi = kik

n
 i-1 for 3 ≤ i ≤ 7, yi = kik

n
 i+1 for 2 ≤ i ≤ 7, x1 = k1bn, x2 = 

k2
n+1, and y1 = k1

n+1. By induction, there exists a hamiltonian path Pi of kiFCCNn joining xi 
to yi for 1 ≤ i ≤ 7. Obviously, P = 〈u, Pb1, P1, w, P2, …, P7, Pb2, v〉 forms a hamiltonian 
path of FCCN 0

n+1 joining u to v. See Fig. 2 (e) for an illustration.                      
 

 

 

 

 

 

 

 
Fig. 2. Illustration for Lemma 3. 

 

Theorem 1  H k
f (FCCNn) = 0 if n ≥ 2 and is undefined if n = 1. 

 
Proof: Assume n ≥ 2. With Lemma 3, we have proved that H k

f (FCCNn) ≥ 0. Obviously, 
0n is a boundary vertex of FCCNn with exactly three neighbors, say x, y and z. It is easy 
to see that there is no hamiltonian path of FCCNn − {x} joining y to z. Thus, FCCNn − {x} 
is not hamiltonian connected. Thus, H k

f (FCCNn) = 0 if n ≥ 2. Note that FCCN1 is iso-
morphic to Q3. Since Q3 is a bipartite graph with 8 vertices, there is no hamiltonian path 
joining two vertices in the same partite set. Thus, FCCN1 is not hamiltonian connected. 
Therefore, H k

f (FCCN1) is undefined.                                         

(a) (b) (c) 

(d)  (e)
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4. FAULT-TOLERANT HAMILTONICITY 

Lemma 4  Both FCCNn and FCCN 0
n are 1 fault-tolerant hamiltonian for n ≥ 2. 

 
Proof: We prove this lemma by induction. It is sufficient to prove a graph G is 1 fault-  
tolerant hamiltonian by proving G − f is hamiltonian for any f ∈ V(G) ∪ E(G) with | f | = 
1. By Lemma 2, the statement holds for n = 2. We assume the statement holds for FCCNl 
and FCCN 0

l with 2 ≤ l ≤ n.  
First, we prove that FCCNn+1 − f is hamiltonian.  
Suppose that f ∈ V(bFCCNn) ∪ E(bFCCNn). By induction, there is a hamiltonian 

cycle 〈w, bkn
7, Pb, bkn

1, w〉 of bFCCN b
n − f. Clearly, b ∉ {k1, k7}. Let k2, k3, …, k6 be any 

permutation of Z8\{b, k1, k7}. We set k0 = k8 = b. Let xi = kik
n
i-1 and yi = kik n

i+1 for 1 ≤ i ≤ 7. 
By Theorem 1, there exists a hamiltonian path Pi of kiFCCNn joining xi to yi for 1 ≤ i ≤ 7. 
Obviously, 〈bkn

7, Pb, P1, …, P7, bk n
 7〉 forms a hamiltonian cycle for FCCNn+1 − f.  

Suppose that f is an intercubic edge between bFCCNn and eFCCNn. Thus, f = (ben, 
ebn). Let k0, k1, …, k7 be any permutation of Z8 such that k0 = b and k2 = e. Let xi = kik

n
i-1 

for 1 ≤ i ≤ 7, yj = kjk
n
j+1 for 0 ≤ j ≤ 6, x0 = k0k

n
7, and y7 = k7k

n
0. By Theorem 1, there exists a 

hamiltonian path Pi of kiFCCNn joining xi to yi for 0 ≤ i ≤ 7. Obviously, 〈bkn
7, P0, P1, …, 

P7, bkn
7〉 forms a hamiltonian cycle for FCCNn+1 − f.  

Second, we prove that FCCN 0
n+1 − f is hamiltonian.  

Suppose that f is the extra vertex w. Obviously, FCCN 0
n+1 − {w} = FCCNn+1. By 

Theorem 1, FCCN 0
n+1 − {w} is hamiltonian connected. Therefore, FCCN 0

n+1 − f is hamil-
tonian.  

Suppose that f ∈ V(bFCCNn) ∪ E(bFCCNn). By induction hypothesis, there is a ha- 
miltonian cycle C of bFCCN b

n − f. Since C can be traversed forward and backward, we 
can assume that C = 〈w, bkn

7, Pb, bkn
1, w〉 with k1 ≠ 0 and k7 ≠ 0. Let k2, k3, …, k6 be any 

permutation of Z8 − {b, k1, k7} such that k2 ≠ 0. We set k8 = b. Let xi = kik
n
i-1 for 3 ≤ i ≤ 7, 

yj = kjk
n
j+1 for 2 ≤ j ≤ 7, x1 = k1bn, x2 = k2

n+1, and y1 = k1
n+1. By Theorem 1, there exists a 

hamiltonian path Pi of kiFCCNn joining xi to yi for 1 ≤ i ≤ 7. Obviously, 〈bkn
7, Pb, P1, w, 

P2, …, P7, bkn
7〉 forms a hamiltonian cycle for FCCN 0

n+1 − f.  
Suppose that f is an edge of the form (rn+1, w). Let b and e be two indices in Z8 with 

{b, e} ∩ {0, r} = 0./  By Theorem 1, there is a hamiltonian path P of FCCNn+1 joining bn+1 
to en+1. Obviously, 〈w, bn+1, P, en+1, w〉 forms a hamiltonian cycle for FCCN 0

n+1 − f.  
Suppose that f is an intercubic edge between bFCCNn and eFCCNn. Thus, f = (ben, 

ebn). Let k0, k1, …, k7 be any permutation of Z8 such that k0 = b, k1 ≠ 0, k2 ≠ 0, and k3 = e. 
Let xi = kik

n
i-1 for 3 ≤ i ≤ 7, yj = kjk

n
j+1 for 2 ≤ j ≤ 6, x0 = k0k

n
7, x1 = k1k

n
0, x2 = k2

n+1, y0 = k0k
n
1, 

y1 = k1
n+1, and y7 = k7k

n
0. By Theorem 1, there exists a hamiltonian path Pi of kiFCCNn 

joining xi to yi for 0 ≤ i ≤ 7. Obviously, 〈bkn
7, P0, P1, w, P2, …, P7, bkn

7〉 forms a hamilto-
nian cycle for FCCN 0

n+1 − f.                                                
 
Theorem 2  Hf (FCCNn) = 1 if n ≥ 2 and Hf (FCCN1) = 0.  
 
Proof: Assume n ≥ 2. With Lemma 4, we have proved that H k

f (FCCNn) ≥ 1. Obviously, 
0n is a boundary vertex of FCCNn with exactly three neighbors, say x, y and z. Since there 
is only one vertex z adjacent to 0n

 in FCCNn − {x, y}, FCCNn − {x, y} is not hamiltonian. 
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Thus, Hf (FCCNn) = 1 if n ≥ 2. Note that FCCN1 is isomorphic to Q3. It is easy to check 
that Q3 is hamiltonian but Q3 − {0} is not hamiltonian. Therefore, Hf (FCCN1) = 0.    
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