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Short Papers

3-D Polyhedral Face Computation from Two
Perspective Views with the Aid of a

Calibration Plate

Jui-Man Chiu, Zen Chen, and Chao-Ming Wang

Abstract—The 3-D reconstruction of visible polyhedral faces from a
pair of general perspective views with the aid of a calibration plate is
addressed. A polyhedron is placed on a planar calibration plate and two
side views of both the polyhedron and the calibration plate are taken.
Through proper arrangements we may assume that in the two views a
number of polyhedral edges lying on the calibration plate and the whole
calibration plate boundary are visible. We present an on-line camera
calibration technique with the aid of the calibration plate and a two-stage
process to find the vertex/edge correspondences without encountering the
ambiguity problem of the conventional epipolar line technique. Then we
give a closed form solution to the 3-D polyhedral vertices visible in both
images. We also describe other advantages of using our method for the 3-
D polyhedron reconstruction. Experimental results show that the obtained
3-D polyhedral vertex coordinates are rather accurate.

Index Terms—Calibration plate, feature correspondence, on-line cam-
era calibration, polyhedron reconstruction, stereo vision.

I. INTRODUCTION

Three-dimensional (3-D) object reconstruction from two or more
images is an important problem in computer vision. It can be used
in the applications of robotics, industrial automation, and object
recognition, etc. Two major approaches can be used to reconstruct the
3-D information. One approach uses active sensing vision techniques
[1]–[4], and the other uses passive sensing stereo vision techniques
[5]–[11]. The passive sensing stereo vision approach does not need
extra light source besides the ambient light, e.g., a laser, so it has been
used in many applications. Reconstructing the 3-D object using the
conventional stereo vision technique requires to find the correspond-
ing object features (e.g., points or edges) in two images which is
called a feature correspondence problem. Once the correspondences
are found, one can use a triangulation procedure to obtain the 3-D
information.

It is well known that the point correspondence ambiguity often
arises in the epipolar line based stereo vision techniques [7]–[10]. In
what follows, we shall briefly describe how the ambiguity happens
and how to solve it. First of all, the epipolar line constructed in
view 2 of the stereo images for an image pointp1 in view 1 is
the intersection of the epipolar plane, which is defined by the image
pointp1 and the two lens centersO1 andO2; with the image plane of
view 2. Quite often, this epipolar plane contains other feature points
in addition to the object pointP whose image pointp1 is being
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considered. If this is the case, the feature points visible to the lens
centerO2 will all lie on the epipolar line in view 2. Nevertheless,
the epipolar line may or may not contain the perspective projection
of the particular object pointP; depending on whether pointP is
visible toO2: In order to decide the corresponding point for image
point p1 in view 1, some heuristic information such as the average
intensity of the neighborhood [10] or geometric constraints [7]–[9] is
used to resolve the ambiguity. However, there is no guarantee that
the heuristics will always work. Therefore, incorrect correspondence
pairs may be produced. The triangulation procedure applied to these
incorrect correspondence pairs results in superfluous or false 3-D
object points. Obviously, these 3-D object points do not fall on the
intended location of the object pointP: Based on the above fact on
the ambiguity problem, we are motivated to find the correspondences
between certain designated feature points in the two views using their
3-D coordinates. We call it the first-stage correspondence finding, as
explained later. In doing so, we use an auxiliary plane, also called
the calibration plate for the reason that it can be used for camera
calibration. The object is placed on the auxiliary plane so that the
object base face lie on the auxiliary plane. We shall use the visible
vertices of the object base face as the designated feature points for
finding the first-stage correspondences. We take two pictures of both
the object and the auxiliary plane in such a way that some boundary
part of the object base face and the whole boundary of the auxiliary
plane are visible. Since the 3-D auxiliary plane equation can be found
through the on-line camera calibration process described later, we can
derive the 3-D coordinates of the visible feature points of the base face
through the backprojection of these feature points in each image onto
the 3-D auxiliary plane. Then by the 3-D coordinate comparisons,
we can avoid the ambiguity in the point correspondence finding.
Fig. 1 illustrates the difference between our proposed method and
the epipolar line based method. Here two views of the polyhedron
and the calibration plate are shown. In view 1 some vertices of the
polyhedron base faceG;H; I; J; together with some other vertices
of the top face, are visible, while for view 2 let the lens centerO2 lie
on the extension of the line from vertexI to vertexD so that onlyD
is visible to lens centerO2: The pointsO0

1 andO0

2 are the individual
vertical projections of lens centersO1 and O2 on the calibration
plate (These points will be used later to find the image points of
some vertices of the object base face in each view). The epipolar
line associated with image pointi1 of view 1 is shown in Fig. 1(c).
The correspondence between image pointi1 (of view 1) and image
point d2 (of view 2), as revealed by the epipolar line, is obviously
incorrect. By using the proposed technique described later, it can be
shown that the image pointd2 is not the projection of a vertex of
the object base face, so it is ruled out as a possible candidate for the
corresponding point of image pointi1:

Furthermore, in the conventional stereo vision systems, the corre-
sponding coordinate axes of the two cameras are parallel to each
other, and the two camera origins are located on the baseline
which is along with the two alignedx-axes. The accuracy of the
reconstructed 3-D information of the object depends on the length of
the baseline. When the baseline is short, the accuracy of the obtained
3-D information is low. In contrast, a longer baseline yields a higher
accuracy; however, the common visible part of the object in the two
images is diminished, when the baseline becomes longer [6], [7], [9],
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(a)

(b) (c)

Fig. 1. Illustration for the difference between our method and the epipolar
line based method. (a) The setup of the lateral stereo imaging system. (b) The
view 1. (c) The view 2.

[11]. Once cameras are calibrated, their positions and orientations
cannot be changed. Thus, the camera setup is fixed and cannot be
adjusted in accordance with the shape and size of the object to be
reconstructed.

In this paper, we present a new stereo vision technique for recon-
structing the 3-D information of the visible faces of a polyhedron.
We place a polyhedron on a planar calibration plate (i.e., the auxiliary
plane) and two pictures are taken from two different viewing angles.
The major advantages of the proposed method include: 1) camera
calibration can be performed on-line, so one camera can be moved
around to take the stereo images; 2) the feature correspondence
ambiguity in the image pair can be completely avoided; and 3) the 3-
D reconstruction obtained by the method can be made accurate since
the method allows us to shoot two images with the two optical axes
of the cameras being nearly perpendicular.

The remainder of this paper is organized as follows. Section II
describes an on-line camera calibration process and a method for
computing the 3-D coordinates of a polyhedral vertex of the base
face from a single image. Section III describes the two-stage method
to solve the feature correspondence problem for the stereo vision.
Section IV gives the method for computing the polyhedral 3-D
information. Section V describes the implementation of our method
and presents the experimental results. Section VI is the conclusion.

Fig. 2. The geometry of the calibration plate and camera coordinate systems.

II. ON-LINE CAMERA CALIBRATION

A. Assumption

We place the polyhedron to be reconstructed on a calibration plate
preferably with a larger polyhedral face (called the base face) resting
on the calibration plate. When photographing the polyhedron, the
camera is in a side looking position so that one or more polyhedral
faces adjacent to the base face are visible in the image. In addition,
we also assume that the calibration plate is sufficiently large so that its
boundary is not blocked by the polyhedron and, therefore, is visible
in the image.

We can move the camera around to any advantageous position to
photograph the polyhedron, so the camera setup is very flexible. In
addition, we move the camera so that the common visible object
surface part of the two views can be made large. In contrast, the
two cameras in the conventional stereo vision system are calibrated
in advance, so the overlapping field of view of the two cameras is
predetermined.

B. On-Line Calibration

Given an image of a calibration plate whose shape is polygonal
or any closed curve, we can use the camera calibration method
developed in our laboratory [12], [13] to obtain the six extrinsic
camera parameters. The camera calibration is done for each image
in which both the calibration plate and the polyhedron are visible.
Then the same stereo images will be used later for 3-D polyhedral
reconstruction. Therefore, the camera calibration is said to be done
on line. For the self completeness of the paper, we briefly introduce
notations and fundamental equations for the camera calibration which
are borrowed from [12] and [13]:

First, the relevant coordinate systems are defined below.
i) (XR; YR; ZR): the right-handed reference coordinate system is

defined with respect to the calibration plate in which theXR and
YR axes lie on the plane of the calibration plate, theZR axis is
perpendicular to the calibration plate and points upward, and the
origin is located at the centroid of the calibration plate (refer to Fig. 2)

ii) (XC ; YC ; ZC): the left-handed camera coordinate system in
which the ZC axis is perpendicular to the image plane, pointing
toward the calibration plate, and theXC and YC axes are parallel
to the image plane; here the three axes constitute a left-handed
coordinate system. The origin of the(XC; YC ; ZC) coordinate system
is located at the lens center of the camera.

iii) (UC ; VC ; ZC): the image coordinate system which is identical
to the camera coordinate system except that its origin is located at
the point(XC; YC ; ZC) = (0; 0; f); f is the camera focal length.

Next, the six camera parameters and the necessary coordinate
system transformations are given as:

a) �: the angle between image plane and the calibration plate.
b) RZ (�): the rotation matrix that rotates the(XC; YC ; ZC)

coordinate system about theZC axis by a counterclockwise angle�
to obtain the(X0

C ; Y
0

C ; Z
0

C) coordinate system. AlsoRZ (') is used
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to rotate the(XR; YR; ZR) coordinate system about theZR axis by
a counterclockwise angle' to obtain the(X0

R; Y
0

R; Z
0

R) coordinate
system. Here theX 0

C andX 0

R axes are both parallel to the intersection
line between the calibration plate and the image plane. These rotations
lead to efficient camera parameter estimation.

c) FZ : the reflection matrix that is used to reverse theZ 0

R axis so
that the new(X 0

R; Y
0

R; Z
0

R) coordinate system becomes a left-handed
coordinate system.

d) T (dx; dy; dz): the translation matrix used to translate the refer-
ence coordinate system to coincide with the(X 0

C ; Y
0

C ; Z
0

C) coordinate
system. That is,(dx; dy; dz) is the corresponding translation vector.

The basic relationships between the reference coordinate system
and the camera coordinate system are

(X 0

C ; Y
0

C ; Z
0

C ; 1) = (XC; YC ; ZC ; 1)RZ (�) (1)

(X 0

R; Y
0

R; Z
0

R; 1) = (XR; YR; ZR; 1)RZ (') (2)

(X 0

C ; Y
0

C ; Z
0

C ; 1) = (X 0

R; Y
0

R; Z
0

R; 1)RX (�)FZ

� T (dx; dy; dz): (3)

Also, the image point(U 0

C ; V
0

C) projected by a calibration plate
boundary point(X 0

R; Y
0

R; Z
0

R) with Z 0

R = 0 is given by

U
0

C = fX
0

C=Z
0

C = f(X 0

R + dx)=(Y 0

R sin � + dz) (4)

V
0

C = fY
0

C=Z
0

C = f(Y 0

R cos � + dy)=(Y 0

R sin � + dz):

(5)

Under the mild assumptions thatjX 0

R=dzj � 1; jY 0

R=dzj �
1; jdx=dzj � 1 and jdy=dzj � 1; the six extrinsic camera
parameters relating the camera to the calibration plate can be effi-
ciently estimated [12], [13]. We shall use the above equations and
the estimated camera parameters as our bases to derive the 3-D
information of the visible polyhedral vertices below.

C. Derivation of the 3-D Polyhedral Vertices of the Base Face

In each image if a polyhedral vertex lies on the calibration plate,
then we can find its 3-D coordinates by backprojecting the 2-D
image point under consideration onto the calibration plate. Formally,
let the image point be represented as the homogeneous coordinates
(UC ; VC ; f; 1): Then based on (1), we have

(U 0

C ; V
0

C ; f; 1) = (UC ; VC ; f; 1)RZ (�); (6)

Then, from (4) and (5) we have

X
0

R = f[(f dy � V
0

C dz)=(V 0

C sin � � f cos �)]U 0

C sin �

+ U
0

C dz � f dxg=f; (7)

and

Y
0

R = (f dy � V
0

C dz)=(V 0

C sin � � f cos �): (8)

Finally, the 3-D polyhedral vertex of the base face expressed in the
(XR; YR; ZR) coordinate system is given by

(XR; YR; 0; 1) = (X 0

R; Y
0

R; 0; 1)RZ (�'): (9)

III. FINDING THE VERTEX/EDGE

CORRESPONDENCES IN THETWO IMAGES

We shall solve the vertex/edge correspondence problem in two
stages. In the first stage, we deal with the correspondences be-
tween the polyhedral vertices/edges (called the polyhedral base
vertices/edges), which lie on the calibration plate, in the two images.
In the second stage, we use a pair of corresponding polyhedral base
edges found in the first stage as the basis to find the other pairs of
corresponding polyhedral edges in the two images. The first stage is
done in the 3-D space with the aid of the 3-D calibration plate, and
the second stage is done in the 2-D image space.

Fig. 3. The projective geometry for illustrating the backprojection of the
polyhedral base edges onto the calibration plate.

A. The First Stage of the Vertex/Edge Correspondence Finding

We use the on-line calibration method described in Section II to
find the six camera parameters relating the camera to the calibration
plate. If a polyhedral base edge in an image is given, we can
backproject each vertex of the polyhedral base edge in the image
onto the plane of the calibration plate in the 3-D space. We then
find the 3-D coordinates for the polyhedral base vertex, as given in
(6)–(9). In this way, the 3-D polyhedral base vertices visible in each
image can be found. Next, we compare any two 3-D polyhedral base
vertices derived from the two images, one from each, to find if their
3-D coordinates are equal or nearly equal. If so, the existence of
such a vertex pair indicates that the two associated image points in
the stereo images are in correspondence. The detailed description of
the first stage procedure is given below.

First, we only need to consider the polyhedral boundary edges in
each image when we search for the possible polyhedral base vertices,
since the internal edges of the polyhedral image obviously cannot
be any polyhedral edges that lie on the calibration plate. Next, for
these polyhedral boundary edges, we can use (6)–(9) to find their
backprojected 3-D coordinates on the calibration plate. Under our
assumption about the polyhedron image, some of the found 3-D
backprojected points are the real polyhedral base vertices, while some
are the fake polyhedral base vertices which are backprojected through
the vertices of the polyhedral occluding edges. To distinguish between
the real and fake base vertices, we shall use the vertical projection
point (VPP) of the camera lens center on the calibration plate (or its
extended plane). To make this idea clearer, consider Fig. 3. Vertices
b; c, andd happen to be, as shall be shown later, the image points
associated with the polyhedral base vertices, while verticese; f; g; h

and a are not associated with the polyhedral base vertices. The
3-D backprojected pointsB;C and D are the real polyhedral 3-
D base vertices. However, the 3-D backprojected pointsI; J;K; L

and M obtained from image pointse; f; g; h; and a are not real
3-D polyhedral vertices. To decide which of these backprojected
points are the real 3-D polyhedral base vertices, we connect the
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points B;C;D; I; J;K; L and M to form a polygon, as shown
in Fig. 3. Also, we project the lens center vertically to the plane
of the calibration plate to obtain the vertical projection pointOg:

The triangle formed by pointOg and the backprojected edgeBC
does not overlap with the interior of the polygonBCDIJKLM:

Neither does the triangle formed by pointOg and the edgeCD: It
indicates that edgesBC andCD are closer to theCOP than the
other backprojected edges. According to our assumption, they are
the visible polyhedral base edges. On the other hand, the triangle
constructed by pointOg and the backprojected edgeDI overlaps
with the interior of the polygonBCDIJKLM; so edgeDI is not
a polyhedral base edge visible to the camera lens center. Therefore,
the associated edgede will not be considered in the first stage of
correspondence finding process. Similarly, other 2-D edges including
ef; fg; gh; ha, and ab will not be considered, either. The above
polygon overlapping check done on the calibration plate can be also
done on the image plane. In order to do so, let pointO0

g be the
projection of pointOg on the image plane. Then for the previous
polygon overlapping check, replace each backprojected edge on the
calibration plate by its edge projection on the image plane andOg

by O0

g: We shall use this check done on the image plane in the
implementation.

On the other hand, the method to compute the 3-D coordinates of
the VPP is based on (1) to (3). The 3-D coordinates of the camera lens
center in the camera coordinate system is(XC ; YC ; ZC) = (0; 0; 0):

The 3-D coordinates of VPP in the calibration plate coordinate system
is denoted by(XR; YR; 0) where

XR =�dx cos'+ (dy cos � + dz sin �) sin' (10)

YR =�dx sin'� (dy cos � + dz sin �) cos': (11)

B. The Second Stage of the Vertex/Edge Correspondence Finding

Once we have found a pair of corresponding polyhedral base edges
in the first stage of the correspondence finding procedure, it is a
simple matter to find other vertex/edge correspondences in the two
images. Since each edge of the first correspondence pair is a base edge
in its own image, it is contained by a single (side) face. For instance,
the edgebc is contained in the face specified by verticesa; b; andc in
Fig. 3. Therefore, we can find two faces, one from each image, are in
correspondence. All the edges in these two corresponding faces can
be matched by using their edge sequences arranged in the clockwise
(or counterclockwise) order. The matching of two faces is considered
successful, if the following two conditions hold: i) the lengths of the
two edge sequences are equal and ii) the new pairs of matched edges
do not conflict with any existing corresponding edge pairs. After a
successful matching of two faces, mark the two faces “matched” and
record all the new matching pairs of edges and put them at the end of
the “matching edge pair (MEP)” queue. Fetch the first matching edge
pair out of the MEP queue, if the queue is nonempty. Next, check
if the two fetched edges belong to two new faces. If the two faces
are new, do the above face matching for the two faces and record
any new pairs of matched edges in the MEP queue; if the two faces
are already matched, throw away the fetched pair of matching edges.
The above process continues until the MEP queue becomes empty.
The correspondence finding process is thus completed.

IV. 3-D POLYHEDRON RECONSTRUCTION

FROM TWO GENERAL IMAGES

After each pair of corresponding vertices are found from the
stereo images, we can find the 3-D coordinates of the corresponding

Fig. 4. The bilevel reference view of the calibration plate.

polyhedral vertex as follows. First, from (1)–(3), the relationships
between camera#i; i = 1, 2, coordinate system and the reference
calibration plate coordinate system can be derived as follows:

(XR; YR; ZR; 1)

= (X
0

R; Y
0

R; Z
0

R; 1)RZ (�'i)

= (X
0

C ; Y
0

C ; Z
0

C ; 1)T (�dxi;�dyi;�dzi)

� (FZ )
�1
RX (��i)RZ (�'i)

= (XC ; YC ; ZC ; 1)RZ (�i)T (�dxi;�dyi;�dzi)

� (FZ )
�1
RX (��i)RZ (�'i): (12)

So, the relationship between the camera #1 coordinate system and
camera #2 coordinate system is

(XC ; YC ; ZC ; 1)

= (XC ; YC ; ZC ; 1)RZ (�1)T (�dx1;�dy1;�dz1)

� (FZ )
�1
RX (��1)RZ ('2 � '1)

� RX (�2)FZ T (dx2; dy2; dz2)RZ (��2)

= (XC ; YC ; ZC ; 1)M (13)

whereM is a matrix.
Suppose we have obtainedn corresponding pairs of image points

in the two views. LetpC andpC denote the pairs of image points
for j = 1; 2; � � � ; n; and their coordinates be(UC ; VC ; f) and
(UC ; VC ; f): Also,pC andpC are the projection points of 3-D
physical pointPj when projected onto two image planes respectively.
A closed form solution to the 3-D coordinates(XC ; YC ; ZC ) of
object pointPj will be derived in the camera #1 coordinate system
as follows.

Let (XC ; YC ; ZC ) be the 3-D coordinates of the 3-D pointPj
in the camera#i coordinate system,i = 1, 2. From the perspective
projection, we can obtain the relationships between(UC ; VC ; f)

and (XC ; YC ; ZC ) as

UC =XC f=ZC ; for i = 1; 2;

VC =YC f=ZC ; for i = 1; 2: (14)

By representing(XC ; YC ; ZC ) in the camera #1 frame based
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Three views of both the polyhedron and the calibration plate and their extraction results. (a) View 1. (b) View 2. (c) View 3. (d) The extracted image
and the vertex numbering for view 1. (e) The extracted image and the vertex numbering for view 2. (f) The extracted image and the vertex numbering for view 3.

on (13), we can rewrite (14) as

AAAxxx = bbb

where

AAA =

1 0 �UC =f

0 1 �VC =f

m13UC �m11f m23UC �m21f m33UC �m31f

m13VC �m12f m23VC �m22f m33VC �m32f

xxx =

XC

YC
ZC

; and bbb =

0

0

m41f �m43UC
m42f �m43VC

:

The least squares solution toxxx is given by

xxx = (AAA
T
AAA)
�1

(AAA
T
bbb):

V. EXPERIMENTAL RESULTS

A. On-Line Camera Calibration

We measured the intrinsic camera parameters of our CCD camera:
the image center= (256, 240), the focal length= 25 mm, thex:y
aspect ratio= 1:1.198, and 1 mm= 90 pixels. Next, we estimated the
two sets of six extrinsic parameters relating the two camera positions

TABLE I
SIX EXTRINSIC CAMERA PARAMETERS FOR THETHREE VIEWS

TABLE II
THE BASE EDGE CORRESPONDENCES FOR THETWO-VIEW

COMBINATIONS OF VIEW 1, VIEW 2, AND VIEW 3

to the calibration plate. The reference view of the binary calibration
plate used for estimating the six camera parameters is shown in Fig. 4.

Next, we placed the polyhedron on the calibration plate and moved
the camera to three different positions to take three pictures of the
polyhedron and the calibration plate. The three views are called view
1, view 2, and view 3, as shown in Fig. 5(a)–(c). Table I lists the
estimated camera parameters for the cameras in the three setups with
respect to the calibration plate coordinate system.

B. Vertex/Edge Correspondences

In the experiment, we first determined the image coordinates of
each visible polyhedral vertex in the three views separately and
assigned a unique identification number to each vertex. The extracted
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TABLE III
THE OTHER EDGE CORRESPONDENCES FOR THETWO-VIEW

COMBINATIONS OF VIEW 1, VIEW 2, AND VIEW 3

TABLE IV
ESTIMATED EDGE ERROR RATES FOR THE TWO-VIEW

COMBINATIONS OF VIEW 1, VIEW 2, AND VIEW 3

images and the vertex numberings of views 1, 2 and 3 are shown
in Fig. 5(d)–(f). Table II shows the first stage correspondence result
of the polyhedral base edges for two-view combinations of view 1,
view 2 and view 3.

Based on any corresponding edge pair of the first stage cor-
respondence result, we can find the other corresponding pairs of
polyhedral edges in the two images. Table III lists the second stage
edge correspondences found from all two-view combinations.

C. Polyhedral Face Reconstruction

For the two-view combinations, we computed the 3-D vertex
coordinates for each corresponding vertex pair using the least squares
solution given previously. The estimation results of the reconstructed
edges for two-view combinations are shown in Table IV. Note that
view 1 and view 3 produce a more accurate result. This is because the
angle between the two associated optical axes is larger and closer to
90�. This fact indicates the advantage of our dynamic stereo camera
setup as compared to the conventional stereo vision system in which
the cameras are fixed after the camera calibration.

VI. CONCLUSION

In this paper we have presented a new stereo vision method for
reconstructing the 3-D information of a polyhedron. We place the
polyhedron on a calibration plate and take two pictures of them such

that the calibration plate boundary and some of polyhedral base edges
are made visible. We show that the camera calibration can be done on-
line. Also, we propose a two-stage 3-D edge correspondence finding
process that can avoid the ambiguity problem. Finally we use the
corresponding pairs of image points in the stereo views to find the
3-D coordinates of the polyhedral vertices. Since we can set up the
two cameras such that the angle between two optical axes is nearly
90�, the polyhedron thus reconstructed is very accurate, as reflected
by the experimental result. On the other hand, it is possible to apply
our method to any smooth curved object reconstruction, if the object
has a flat face to rest on the calibration plate and some proper surface
marking is available. The surface marking can be done by casting a
grid pattern on the curved surface using a structured light projector
[4] or the surface marking can be done by drawing or pasting a grid
pattern on the curved surface.
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