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This work investigates zeta functions for d-dimensional shifts of finite type, d > 3. First,

the three-dimensional case is studied. The trace operator Ty, 4,:,, and rotational matrices
a1 biz  bag

Ra.a1 0001, a0d Ryq, a0:b,, are introduced to study 8 a02 bes | -periodic patterns. The rota-
as

tional symmetry of Ty, 4,:b,, induces the reduced trace operator 74, q,:p,, and then the associ-
ated zeta function Cu, ay:b,, = (det(I —sM927,, 405,,)) 7. The zeta function ¢ is then expressed
as ¢ = [[o -1 Tlo—y HZIIQ;lO Cay,as:bins @ reciprocal of an infinite product of polynomials. The
results hold for any inclined coordinates, determined by unimodular transformation in GL3(Z).
Hence, a family of zeta functions exists with the same integer coefficients in their Taylor series
expansions at the origin, and yields a family of identities in number theory. The methods used
herein are also valid for d-dimensional cases, d > 4, and can be applied to thermodynamic zeta

functions for the three-dimensional Ising model with finite range interactions.

Keywords: Zeta function; shift of finite type; patterns generation problem; phase-transition; Ising

model; cellular neural networks.

1. Introduction

This study investigates the zeta functions for shifts
of finite type on Z¢, d > 3. Zeta functions are
important subjects in the fields of number the-
ory, geometry, dynamical systems and statistical
physics. They have been extensively studied for
many years. This work is an extension of our previ-
ous results on Z? [Ban et al., 2008a], following the
works of Artin and Mazur [1965], Bowen and Lan-
ford [1970], Ruelle [1978] and Lind [1996]. Let ¢ be
an action of Z? on X. Lind [1996] defined a zeta

function (y as

Go() = exp [ 3 T

LeLly [ ] ’

(1)

where L, is the set of finite-index subgroups of Z,
[L] = index[Z¢/L] and T'1(¢) is the number of fixed
points by ¢™ for all n € L.

Our two-dimensional work [Ban et al., 2008a]
is reviewed first. Based on Eq. (1), Ban et al
[2008a] studied the two-dimensional zeta func-
tions (2, of shifts of finite type, which are
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generated by admissible local patterns B. Cg is
defined by

_exp(iinzlnk ([O iDs”’“) (2)

n=1k=1 [=0

and the nth order zeta function (g.,(s) is
oo n—1

CBin(s —exp( ZZ% <[n lDW) (3)

for any n > 1, where FB<|:0 kD is the number of

[8 k} -periodic patterns that can be generated by

B. The zeta function (g(s) is now given by

=TT cunts). (4)
n=1

In deriving Eq. (3), the trace operator T, (B) and
rotational matrix R, are introduced to accommo-
date the periodic patterns. Based on the rota-
tional symmetry of the trace operator, the reduced
trace operator 7,(B) is defined. (s, and (g can be
expressed as

(B:n = (det(I — SnTn))_l (5)
and
s =[] (det( — s"m))~". (6)
n=1

The latter is a reciprocal of an infinite product of
polynomials. The results also hold when inclined
coordinates are used for any unimodular transfor-
mation v € GLy(Z). Therefore, there exists a family
of zeta functions with the same integer coefficients
of their Taylor series expansions at s = 0 and the
family of zeta functions yields a family of identities.
The two-dimensional thermodynamic zeta functions
for the Ising model with finite range interactions are
also studied.

It is clear that in many situations the three-
dimensional problems are more related to our real
world phenomena. In this work, the zeta functions
of d-dimensional shifts of finite type are studied for
d > 3, and the previous results of Z? are extended.
For simplicity, only the zeta functions for three-
dimensional shifts of finite type are introduced and
the general case is studied in Sec. 5.

Let Ziyxmxm be the m x m x m cubic lattice
in Z3 and S be the finite set of symbols (alphabets
or colors). SZmxmxm is the set of all local patterns
on Zmxmxm. Denote B C SZmxmxm a3 a basic set

of admissible local patterns and P(B) the set of all
periodic patterns that are generated by B on Z3.

As in two other works [Lind, 1996; Ban et al.,
2008a], the Hermite normal form [MacDuffie, 1956]
can be used to parameterize L3 as

a1 bz b3
L35=X 10 ay by|Z:a;,>1,1<i<3,
0 0 as

0<bj;j<a;—1,i+1<5j<3

a1 biz bis

Given a basic set B, let L = |0 a2 b|Z3 €
0 0 as

a1 biz bis

L3, denote 735([0 as b23:|> as the set of all

0 0 as
L-periodic patterns that are generated by B

a1 bz bis
on Z? and FB([O az 523]) as the number of

0 0 as

ar biz big

735<[0 az bz ) Then, the zeta function in
0
)

X 0 a9 523 g1 @203 . (7)
0 0 as

Similar to Egs. (3) and (4), the (a1, az;b12)th zeta
function is defined by

co ai—1 az—1

CB§al,a2§b12( ) €xp 3103 Z Z Z _FB

a3=1b13=0boz= 0

ar bz bis
X 0 as b23 5414243 (8)
0 0 as

and the zeta function (g(s) is given by

oo a;—1

H H H CBala@,le s). (9)

a1=1a2=1b12=0

The trace operator Ty, 4,:4,,(B) and rotational
matrices Ru.q;a00, a0d  Ryg) anby, are  intro-
duced. After the rotational symmetry of Ty, 4:015
is demonstrated the reduced trace operator
Taras:b1o(B) can be defined. Finally, as in Eq. (5),
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CBiarasibio(S) can be represented as a rational
function:

CB;aLaQ;bm (3) = (det(l - 5a1a27a1,a2;512))71' (10)

Hence,

oo ai1—1

(B(s) = H H H (det(I — 3a1a27—a1,a2;512))71

a1=1a2=1b12=0
(11)

is a reciprocal of an infinite product of polynomi-
als. The proof of Eq. (10) in this paper is new and
simpler than in an earlier wok [Ban et al., 2008a],
in which the proof is also valid for any d > 3.

Additionally, for any v € GL3(Z), the zeta
function can also be represented in -coordinates.
Therefore, a family of zeta functions exists that have
the same integer coefficients in their Taylor series
expansions at s = 0.

According to [Lind, 1996] and [Ruelle, 1978],
the thermodynamic zeta function with weight func-
tion 6 : X — (0, 00) is defined as

4‘2,9(8)
gL

—ew| 4 X T eka p 3y

LeLly\ zefixzr(¢) keZ/L
(12)

where fizr(¢) is the set of points fixed by ¢"
for all n € L. Let ¢ be a shift of finite type
given by B. As in the two-dimensional case [Ban
et al., 2008al, the thermodynamic zeta function for
the three-dimensional Ising model with finite range
interactions can also be represented as a recip-
rocal of an infinite product of polynomials. The
three-dimensional model can be applied to study
three-dimensional phase-transition problems. Fur-
ther results need to be investigated.

Various works relate to this study, includ-
ing zeta functions and related topics [Artin &
Mazur, 1965; Ban et al., 2008a; Bowen & Lan-
ford, 1970; Fried, 1987; Hardy & Ramanujan, 1918;
Hardy & Wright, 1988; Kitchens & Schmidt, 1989;
Ledrappier, 1978; Lind, 1996; Lind & Marcus, 1995;
Lind et al., 1990; Manning, 1971; Markley & Paul,
1979, 1981; Pollicott & Schmidt, 1996; Ruelle, 1978;
Schmidt, 1995], patterns generation problems and
lattice dynamical systems [Ban et al., 2001a, 2002;
Ban & Lin, 2005; Ban et al., 2007, 2008b, 2001b;
Chow & Mallet-Paret, 1995; Chow et al., 1996a,
1996b; Chua et al., 1995; Chua & Roska, 1993; Chua

& Yang, 1988a, 1988b; Chua, 1998; Chua & Itoh,
2003, 2005; Juang & Lin, 2000; Juang et al., 2000;
Lin & Yang, 2000, 2002], and phase-transitions in
statistical physics [Baxter, 1971, 1982; Lieb, 1967a,
1967b; Onsager, 1994].

The rest of this article is organized as fol-
lows. Section 2 discusses periodic patterns, the trace
operators and rotational matrices. Section 3 shows
the rotational symmetry of trace operator and intro-
duces the reduced trace operator. The rational-
ity of (4y,a0:01, 1S then obtained for aq,az > 1,
0 < bys < a; — 1. Section 4 studies the zeta func-
tion in 7-coordinates for v € GL3(Z). Section 5
extends the previous result to d-dimensions, d > 4,
and to more symbols on a larger lattice. The ther-
modynamic zeta function for the three-dimensional
Ising model with finite range interactions is also
investigated.

2. Periodic Patterns, Trace Operator
and Rotational Matrices

This section studies the properties of the periodic

patterns and derives trace operator and rotational
a1 biz bis

matrices. Furthermore, I'p| [0 a2 b2
0 0 as

expressed in terms of the trace of the products of
the trace operator and rotational matrices.

For clarity, two symbols on 2 x 2 x 2 lat-
tice Zoxoxo are examined first. For given positive
integers Ni, Ny and N3, the rectangular lattice
ZN1><N2><N3 is defined by

can be

Z]\/'1><J\72><]\73 - {(n17n27n3) : O S ni S NZ - 17
1<i<3}.
In particular,
Zaxax2 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),
(1,0,0),(1,0,1),(1,1,0),(1,1,1)}.

Define the set of all global patterns on Z3 with two
symbols {0,1} by

23 ={0,1}% = {U|U : Z° - {0,1}}.
Here, Z3 = {(ni,n2,n3) : ni,n2,n3 € 7Z}, the
set of all three-dimensional lattice points (vertices).

The set of all local patterns on Zy,xN,xn; 1S
defined by

3
ENlXNQXNg = {U‘ZN1XN2xN3 : U S 22}7
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and a local pattern of a global pattern U on
Z N, xNyx N3 1s denoted by

UN1 ><N2><N3 = U|ZN1 X Nog x N3
= (Uay,a2,03)0<a; <N;—1,1<i<35

where  Uq; 005 € {0,1}. To simplify the
notation, the subscripts of Upn,xn,xn; and
(ua17a27a3)0§0¢¢SNi*171§l'§3 are omitted whenever
such omission will not cause confusion.

Now, for any given B C Yaoyoxo, B is called
a basic set of admissible local patterns. In short,
B is a basic set. A local pattern Uy, xn,xn; =
(Uay,a0.04) 18 called B-admissible if for any vertex
(lattice point) (n1,ng,ng) with 0 < n; < N; — 2,
1 <7 < 3, there exists a 2 x 2 x 2 admissible local
pattern (B, ko ks )0<ki.koks<1 € B such that

Uny+ki,no+ko,ns+ks — ﬂkhkmks

for 0 < ]{31,]{32,]{33 <1
Given a lattice L € L3 with Hermite normal
form,

a1 bz b3
L=10 ay byg|Z3 (13)
0 0 as

where a; > 1 for 1 < ¢ < 3 and 0 < b <

a; — 1 for i +1 < j < 3. A global pattern

U = (Uay,a0,03)a1,00,05cz 18 called L-periodic or
a; biz big o

0 as bas|-periodic if for every oy, s, a3 € Z

0 0 as

Ui +a1p+biag+bisr,as+asg+basr,az+asr — Uay,o0,03

(14)

for all p,q,r € Z.
a1 b1z b1z ai; 0 O
The periodicity of 8 az bes| and |0 a} ©

0

as 0 aj

are closely related as follows.

Proposition 2.1. Fora; > 1,1 <i<3,0 <05 <
a; —1,14+1<35<3, let
a1

(a1,bi2)

where (m,n) is the greatest common divisor of m
and n and [p,q| is the least common multiple of

S1 =

a1 51042
and S9 = ,

(a1,b13)’ (s1a2,bag)

a1 biz bis o
p and q. Then, |0 a2 bas|-periodic patterns are
0 0 as

al 0 0
0 sia2 0 |-periodic.
0 0 Sa2a3

ar biz b3
Proof. By Eq. (14), the [0 as b23] -periodic pat-
0 0 as
ar mibiz mabiz
0 mias m2b23:| —periodic
0 0 maas3
for all my, ms € N. By taking my = s; and my = $9,

the result holds. W

tern is easily identified as [

Given a basic set B C Ygxox2, defined on
cubic lattice Zoyxoxo, the L-periodic patterns that
are B-admissible must be verified on Zsyoxo. For
ni,ng,n3 € 7, let ZQXQXQ((nl,ng,ng)) be the cubic
lattice with the smallest vertex (nq,ne,ns):

Zoxax2((n1,n2,n3))
= {(m + k1,n9 + ko,ng + k3) :
0 < ki, ko k3 <1}

Now, the admissibility of L-periodic patterns is
demonstrated to be verified on finite cubic lattices.

Proposition 2.2. An L-periodic pattern U is B-
admissible if and only if

U‘Z2x2x2((a17a27a3)) €bB

for0<a; <a;—1,1<i<3.
Proof. Sine B C Yoyx9x9, it is sufficient to prove

{U‘szzxz((ahag,ag)) o, 0,03 € Z}
= {Ulzsxoxa((ar,ania) 1 0 S i <a; = 1,
1<i<3).

The proof follows easily from Eq. (14). The details
are left to the reader. WM

According to Proposition 2.2, the admis-
sibility of an L-periodic pattern U is deter-
mined by U’Z(a1+1)><(a2+l)><(a3+1) = (ual,aQ,a3) and
U\Z(aﬁl)x(aﬁnx(ag“) has the periodic property that
is given by Eq. (14), which can be divided into two
parts:

{uahaz,a:s = U0,a2,03 (15)

Uay ,a2,03 = u[al—bm}al ,0,03

for 0 < oy < a3, 1 < i < 3, where [m], = m
(mod n);
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Uloy —b12—b13]ay,0,0

Uay,az,a3 = § Yo —bis]a, ,02—b23,0

Uloy+b12—b13)ay ;02 —b23+az,0

for 0 < a3 <ag, 0<as <as.

Notably, (ua1,a2,a3)0Sa1§a1,0§a2§a2,a3 has the
same structure Eq. (15) for all 0 < a3 < as;
this fact is useful in constructing the cylindrical
ordering matrix. Then, the set of all local patterns
in ¥g +1,a0+1,a3+1 that satisfy the periodic prop-
erty Eq. (15) is denoted by Pg; 49:b19:a5+1- How-
ever, Eq. (16) is important in allowing patterns in
P, az:b12:a3+1 to become L-periodic and it will be
used to define the rotational matrices later.

Now, the counting function for U, xnyxns =
(uoq,ag,a3) in anxngxn3a niy,ng, N3 > 1a is

defined by
¢(Un1 ><n2><n3)

ni—1ns—1n3—1

=1+ D D D umaray

a1=0 a2=0a3=0

X 2n1n2(n3717a3)+n1 (n2717a2)+n1717a1 )
(17)

Similar to Eq. (17), the counting function W for pat-
terns U in Py, o1, 0 <1< ny — 1, is defined by

V() = P02, ey xr)- (18)
Notably, 1 is bijective from Py, n,01 to {i]l <i <
2mn2

Givell ni,no >1,0<1<n;—1, h>1, alocal
pattern U in Py, ,,,...» can be represented as

U=Uy®, U1, &, Up_1, (19)

where U; € Py, pp11, 0 < i < h—1,and U’ &, U"
means that U” is put on the top (in the z-direction)
of U’. Therefore, the cylindrical ordering matrix
Cnl,ng;l;h = [Cnl,ng;l;h;i7j]2"1"2 xgninz of patterns in
Pp, nou:n is defined by

Cnl,ng;l;h;i,j = {UO D, D2 Uh—l‘%(UO) =1 and
PUn-1) = 3} (20)

In particular, for h = 2, C,, n,.4.2 can be applied
to construct the associated trace operator. Notably,

the set Cy,, n,.:2.5,j contains exactly one pattern.
|

Uay,a0,0 =

(2) {u[al—l}np%ﬁ-l—nmo

u[oq]nl ,az+1,0

ifozg—bgg,zag
ifogag—bgggag—l (16)
if —as+1<ap—0b3<—1

Now, given B C Yoxox2, the associated trace
operator T, nyu(B) = [tny nogtsijl, With oy nosij €
{0,1}, can be defined by

tnymoilii,y = 1 if and only if the pattern in
Chi nosl:2:4,5 1 B-admissible.  (21)
aq b12 0

Remark 2.3. Given L' = [0 az 0
0 0 as

}23, Egs. (15)
and (16) easily verify that
{Ulza, 1.0+ 1,a5+1 : U is L'-periodic}
={U=Up®: - ®.Uq
€ Payasiprniast1 U0 =Uas}. (22)

Furthermore, given B C Xoxax2, from Proposi-
tion 2.2 and the construction of the transition
matrix Ty, g0:615 (B),

al blg 0
I's 0 a O = tr(TZ?’a%bu (B)) (23)
0 0 as

The shift maps and the related rotational matri-
ces are considered below for general L =

a1 biz bis 3
0 a2 bas|Z°.
0 0 as

Let nq,m2 > 1, 0 <1 < ny — 1; the shift (to the
left) in the z-direction of any pattern U = (uqa; as,0)
in Pp, noiti1s Uay,a0,0 € {0,1}, is defined by

1
Oziny ol (Var,a0,0)) = (u((ll),ag,o)oéal <n1,0<az<nsz

where
u(l) B U[a1+1,l]n1 ,0,0 lf g = Mg,
b 70 - 3 —
1,02 u[a1+1}n1,a2,0 if 0 S a9 S 9 1.

(24)
Similarly, the shift (to the below) in the y-direction
is defined by
( (2

Tyiny mast (Uaya2,0)) = gy, ,a2,0)0§a1 <n1,0<az<na

where

if ag +1 > ng,

25
fo<as+1<ny—1. ( )
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Notably, 0.0, no; and 0y, nyy are automorphisms — and
on P nyiis1-

The following example illustrates o, n,. and z0 Vo 10 Va0 Nz
Oysni,na;l-
A. oys21 (U) =
Example 2.4. Let Y;3,2; w200 110,00 1%1,0.0 1%2,0,0
U2,0,0
U= = Up,1,0 U1,1,0 Uz21,0 U0,1,0
U= (tay.az.0) = wor0 € P3,25151

Moreover, both 01;3,2;1(U) and O'y;372;1(U) also

u0,0,0 U1,0,0 U2,0,0 U0,0,0

belong to Pg 2:1:1-

14y dy

be a local pattern that lies on the plane {(z1, 22,0) :

21,20 € L} Now, consider 0.3 2,1 and 0,3 2,1 which From Egs. (24) and (25), for 0 < r; < n; — 1,
are acting on U. Then it is easy to see i = 1,2, the following can be straightforwardly
verified;
1%2,0,0 | %0,0,0
Ty 1 2
O-I,B,Q,l (U) - %1.1.0 O—x;n17n2;l(0-y;n17n2;l((ualaOCQ,O)))
_ . 3) )
= (Uay 00,0)0<a1 <n1,0<as<ny
U1,0,0 U2,0,0 Up.0,0 U1,0,0
where
@) _ ) Uoatri—lln aztraonp0 N2 Sz 41y < 2np — 1, (26)
ag,02,0 ; _
Ul +71]ny 02 +72,0 if0<ag+ry<ng—L
Furthermore,
Oyininasl © Oxing,nosl = Oxingngsl © Oying na;l (27)
and
ni _ 1 n2 — 1 1
Oy il = Ozt (O, ngpa) = identity map. (28)
Hence,
—1 — ni—1 —1 — no—1
Uac;nl,ng;l — Yxni,na;l and O-y;nl,ng;l - O-x;n1,n2;l(0-y;n1,n2;l)' (29)
Therefore, for 0 <r; <n; —1,i=1,2,
ot st (Tt 02.0))) = (b o, 0)
x;n1,no;l \Yying ne;l \\WHa1,a2,0 — Maq,09,0/0<a1<n1,0<a2<n2
where
u[Oél—Tl—l}nl,(),O if a2 - T2 = n2’
4) _ ; _ _
ua17a270 - u[alf"‘l]nl 7a277‘270 lf 0 S aQ rQ S n2 1’ (30)

Ulay 11+l a2 —r2+12,0 if —no+1<ay—1ry<—1.
Now, the two rotational matrices Ry.n, n,i and Ry, n,. are defined as follows.

Definition 2.5. The 2™"2 x 2™M"2 g-rotational matrix Ry, noit = [Raingmeitiijls Raenimetiy € 10,1}, is
defined by

Rynynozij =1 if and only if ¢ = Yp(U) and j= &(O-x;nhnz;l(ﬁ))a (31)
where U € Py, nous1- From Eq. (31), for convenience, denote by

Jj = o0a(i). (32)


http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218127409025055&iName=master.img-093.png&w=239&h=70
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218127409025055&iName=master.img-095.png&w=205&h=81
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218127409025055&iName=master.img-098.png&w=213&h=81
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Similarly, the 2™"2 x 2™M"2 g rotational matrix

Rymninot = [Byminoitsij] Bymanatsiy € {0,1}, 18

defined by

Ry moitiiy =1 if and only if i = Y (U) and

j = '(Z(Uy;m,nQ;l(U))a (33)

where U € Py, nosis1- From Eq. (33), for conve-
nience, denote by

J = oy(i). (34)

Obviously, Ry n.y and Ry, . are per-

: : ni —

mutation matrices. By Eq. (28), R ., =
l 2 —

vt Ly mail = Ioniny, where I, is the n x n

identity matrix.
Example 2.6. Let ny =2, no=1and [ =1,
1 0 0

Ry = Rypp i =

o O O
o = O O

1 0
0 0
0 1
Then,

2 pr— J—
Rx;2,1;1 = Rx;Q,l;lRy;2,1;1 = I but Ry;?,l;l 7& 1.

The following proposition shows the permuta-
tion characters of Ry, noy and Ry poiil-

Proposition 2.7. Let M = [Mi7j]2n1nzxgn1n2 be a
matriz where M; ; denotes a number or a pattern
or a set of patterns. Then

(MRx;nLHQ;l)iJ = Mi,agl(j) and (35)
(MRy;m,nz;l)i,j = Mz‘,ay‘l(j)'
Furthermore, for any r > 1

(MR?

x;nl,ng;l)iyj = and

MZ}U;T(J‘) (36)
(MR” )ij =M,

y;n1,n2;l ioy ' (4)°

Proof. For any 1 < 1,7 <2™"2 by Eq. (32),

(MRI m,n27 E : M; qu“ in1,nasliq,j
q
=M, o1y R mastioz1().d
— Mo tG)
Similarly,
(MRy;m,nQ;l)i,j = E :Mi,qRymhm;l;q,j
q

~1,.R 1y
oy (7)) ymna,melhoy (5),7

=M 515

Applying Eq. (35) r times yields Eq. (36). The proof
is complete. W

Now, the following lemma can be obtained.

) a1 biz bis 3
Lemma 2.8. Given L = |0 a2 b |Z7,
0 0 as

{UZ0, 11 ¢ (ag sy x(agin) © U is L-periodic}

= {U = UO @D, - Dy Uag S Pal,ag;blg;a3+l :
_ b b _
Uas = Uﬂc;all?:azbm (O—y§@21?:(12§b12 o))} (37)

Proof. From Egs. (1
{U = UO @D, - Dy Uag S Pal,ag;blg;a3+l :
_ b b _
Uas = Ul“;allgza%bm (Jy;aia:az;blz (UO))}

={U € P, apibrsiast1 : U satisfies Eq. (16)}.

6) and (30),

Then, by the construction of Py, 4,:515:05+1, the last
set is equal to

{U € X4 41,a0+1,a5+1 : U satisfies
Egs. (15) and (16)}
={U € X4, +1,a0+1,a5+1 : U satisfies Eq. (14)}.
Therefore, Eq. (37) follows. The proof is complete.
|

Propositions 2.2, 2.7 and Lemma 2.8 yield the
a; bz b1
following main results for I'g ( [ 0 az b2§] ) .

0 0 as
Theorem 2.9. Given a basic set B C Yoxoxa. For
ai21,1§i§3,0§bij§ai—1,i+1§j§3,

ar bz b3
I's 0 az b3

0 0 as
as b1 bas
- tr(Tal az;b12 (B)Rﬂc ja1,a2;b12 Ry;a17a2;b12)‘ (38)
Furthermore,
a1—1 az—1 aip b b3
> D Ts| |0 a2 by
b13=0b23=0 0 0 a3
— as
- tr(Tal,G,Q;blg (B)Ral,az;blz)v (39)
where
a1—1 as—1
bl3 b23
Rayazibiz = Z Z wan,a2;b12 Foyar azibra” (40)
b13=0b23=0
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Proof. From Proposition 2.2, Lemma 2.8 and the
construction of Cy; 4y:b15:a5+1

ar b2 b3
I's 0 az b3
0 0 as

2a1a2

= Z h{U € Ca17a2;b12;a3+1;i7j U
=1

is B-admissible and j = o, "3 (U;b% (7))},

where £S5 is the cardinal number of set S.

Then, Proposition 2.7 and the construction of
Ta1 053012 (B)s Rasay 0010 and Ryiay az3p,, €asily yield
Eq. (38). Equation (39) holds from Egs. (38) and
(40). The proof is complete. W

The (a1, ag; bi2)th zeta function (g, gy:6,,(s) can
now be obtained as follows.

Theorem 2.10. Given a basic set B C Yoyoxo. For
ai21,1§i§3,0gbijgai—l,i—i—lgjg&

o0

1
Z _tr(TZ?,(m;le (B)

ala a
102 = a3

<a1,a2;b12 (3) = €xXp (

X Rahaz;bu)sal@%) : (41)
Proof. The results follow from Theorem 2.9. W

3. Rationality of (a4, a,:6:,

This section proves that (4, 4,:5,, is a rational func-
tion. First, the rotational symmetry of Ty, 4.5, iS
introduced.

Theorem 3.1. Given B C Xoxox2. Denote by
Tal,a2;bl2(6) = [tm,ag;blg;i,j]- For ai,as > 1, 0 <
b2 <ap —1,

= tal,a2;b12;i7j (42)

tal,az;bu;ﬂ;l (1),05 ' (4)

and

(43)

ta17a2;bl2;0y_1(i)70y_l(j) = layazsbizi.g
for all 1 <i,j < 2%9% [yrthermore,

= ta17a2;b12;i,j

(44)

t — —r9 . — —r9 .
a1,a2;b12;05 oy "2 (1),05 oy 2 (5))

foralll1 <i,j <2m%2 —qg;+1<7r; <a;—1 and
—as+1<1ryg<ag—1.

Proof. The proof of Eq. (43) is similar to that of
Eq. (42) and is omitted. We now prove Eq. (42).

Given 1 < 4,5 < 299 Oy ay:h1052;i,; and

ar,a:b12:2505 L (i),05 L () contain only one pattern

respectively. Let
U=U¢®.U; = (Yar,a2,05) € Cayazibini2iing
with ¥ (Ug) =i and ¢ (U1) = j, and

T =T e, T,

:(u' )GC —1.

o1,02,03 a1,a2;b12;2;05 1 (4),05 * (5)

with ¢ (U}) = o,;1(i) and ¥(U}) = o, '(j). Since

T

B C Yaxax2 and Eq. (21), to prove Eq. (42) is equal,

LUy k1 no ko ks )0<ky o ks<1 1 0 <y <ag — 1,
0 S %) S ay — 1}

= {(u%1+k1,n2+k‘2,k3)0§k17k27k3§1 :
0§n1§a1—1,0§n2§a2—1}. (45)

Since ¥ (Ug) = i and ¢ (U})) = o, (i), by
Eq. (30),

/ _ {u[allbm}al,oﬂ

ap,az,0 7 Ul —1]ay 02,0
Similarly, from ¥ (U1) = j and ¥ (U}) = o1 (5),

if g = ag,

/ ) Yo —1-b12]a, 0,1
ifogaggag—l.

ag,a2,l T
Ulog—1]q, 02,1

Then, Eq. (45) is directly obtained.

Therefore, Egs. (42) and (43) hold. For 0 <
rr < ap—1and 0 < r9 < ag — 1, by applying
Eq. (43) ro times and Eq. (42) 71 times, Eq. (44)
holds. From Egs. (27)-(29), Eq. (44) follows. The
proof is complete. W

To study the rationality of (4, 4y:5,,, We need
more definitions and properties about the two shifts
in Egs. (32) and (34) as follows.

Given ai, ag Z 1, 0 S 512 S a; — 1, for
1 < i <299 the equivalent class Cg, gy:,,(7) Of
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1 is defined by
Ca1,a2;b12 (’L) = {Ux_rl (Uy_r2 (2)) 0<r1<a;—1,
0<ry<ap—1}. (46)
Clearly,

either Ca17a2§b12 (2) - Cahaz;blz (]) or
Ca17a2§b12 (Z) N Cahaz;blz (]) = 0. (47)

The cardinal number of Cg, 4,:5,, (%) is denoted by
Way,az:b12:i- Let 7 be the smallest element in its equiv-
alent class, and the index set Z,, 4,1, is defined by

Taransprs = {:1 <0 <2992 5 < 5
for all j € Ca; a9:b15 (1)} (48)

Therefore,

(jili<j<2uey= |

€T,

Ca1 ,a2;b12 (Z) (49)

1,a2;b12

The cardinal number of Z,, 4,.4,, is denoted by

Xai,a2;b12-
The following example illustrates Cz 2.;(%).

Example 3.2.

(Co0(1) = {1}

6272;0(2) ={2,3,5,9}
Ca2,0(4) = {4,13}
6272;0(6) = {6, 11}
C2,2:0(7) = {7,10}
Cazo(8) = {8,12, 14,15}
C22.0(16) = {16}

Ir9.0 = {1,2,4,6,7,8,16}
(Ca2.1(1) = {1}

02,21 8) = {8 12 14 15}
C221 16 ) = {16}
Tooa = {1,2,4,6,8,16}

The equivalent classes are invariant under the
two shift maps. Therefore, the following proposition
is directly obtained and the proof is omitted.

Proposition 3.3. Given aj,ao > 1 and 0 < b1y <
a;—1. Let N =299 qnd V = (vy,v2,...,0x)¢, for

1<i<N,

ar—1las—1

PDPILH

r1=0 ro=0

=12 N g (50)

Way,az;bio;i . )
e ]ecal,aQ;blg(l)

Tl (0._7“2

For the rationality of (4, a0:01,, the reduced
trace operator 7, 4.:p1, Of Ty a0, is introduced
as follows.

Definition 3.4. For ai,as > 1, 0 < bio < a1 — 1,
the reduced trace operator 74, a:b10 = [Tar,a0:bi2:i,j]

of Ta17a2,612 - [ta17a2;612;i7]'] is a Xai,az;b12 X Xai,a2;b12
matrix and is defined by

Tay,a2;b1258,5 = § :

kecal,QQ;bIQ (.])

Lay,asbiz;i,k (51)

for each i, € Zy, anib1s-

The following theorem expresses the average of
I'z in terms of the trace of the reduced trace oper-
ator 7 and plays a crucial role in proving the ratio-
nality of (4, a9:01,- The proof here is simpler and
more straightforward than the proofs in [Ban et al.,
2008a] for d = 2.

Theorem 3.5. Given B C Yoxoxo. For a; > 1,
1§i§3,0§bij§ai—1,i+1§j§3,

a1—1 az—1 ap bz b3

2.2 Ts| [0 a2 by

a1a9

b13=0 b23=0 0 0 as

o a

- tr(TaiaQ;blz)

- ¥

)‘EE(TalA,GQ;le)

Xai,a2;b12 (>‘)>‘a3a (52)

where X(Tqy az:b1) 5 the spectrum of T4, ayb1, and
Xai,as:b12(A) 18 the algebraic multiplicity of Ta, as:brs
with eigenvalue \.

Proof. For simplicity, let N = 2912 and T, 4,:p,, =
[ti ;]. From Proposition 2.7 and Theorem 2.9,

ai—1 as—1 ar bz b3

iy Z Z I's 0 az b3

b13=0b23=0 0 0 as

- LYY

b13=00b23=0
as b13 ba3
X tr(Tth ,a2;b12 Rw;al,tm;bm Ry;al ,a2;b12 )
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a1—1 a2—1 N az—1

P IDID NI

b13=00b23=0 i=1 j=1 k;

Xik ke by, oot ot )

Now, by Eq. (49), the last sum becomes
a1—1 as—1 az3—1 N

Ly Y YYyYy

€201 ,a93b19 9€Ca7 ag;:byy (1) 013=00b23=0 j=1 k;=1

Xlgkithy kot tka3_1,0';b13 (0523 (q))" (53)

Fixed q € Cy; a9:b1, (), there exist 0 < r; < a3 —
land 0 <7y < as — 1 such that ¢ = 0;7’1(057’2(1')).
Then, by Theorem 3.1,

a1—1 as—1 az—1 N

D IDIDY

b13=0by3=0 j=1 k;=1
X tq,kltkhkz e 'tk a3—1,0 b13( —ba3 @)

a1—1 as—1 az—1

TEY Y

b13=00b23=0 j=1 k;=1
Xt _ri, ro 1 Tzktrl "2 (L "L(o"2 (K
oz (0y? (0),02" (0y? (k1)) "o (0 (k1)),02" (0y* (k2))

o (092 (kag—1)),05 (042 (02 13 (0, 723 ())))

a1—1 as—1 az3—1 N

=22 2.

b13=00b23=0 j=1 k;=1
X 1 (072 (k) Lol (o2 (k)0 (o3 (ko))

Lot (672 (kay 100 1% (022 ()

Since {o3!(0y2(m)) : 1 <m < N} ={m:1<
m < N}, the last sum becomes

b13=0b23=0 j=1 k;=1

Xigathiks by, | grtiaortagy  (04)

az—1
tl7q1 e t

qaz—2,9a3—1
]:1 q5 Gcal,ag;blg (kj)

az—2

-y g

J=1 q5€Cay ag;b15 (Kj)

Ga3—1€Cay ag:byp (Kag—1)

Therefore, Eq. (53) is equal to

az—1 N ai1—1 az—1
: Z
a1an

Way,a2;b123i § : § : § : § :
it

7j=1 k]—lblg 0 b23=0

1,a23b12
X il = tkag 100 13 (0 "8 (1))

(55)
According to Proposition 3.3, Eq. (55) is equal to

Z Z Z biky " 75’<?¢137271<3¢1371

1€ZL01 agibyo J=1 kj=1

>

qecal ,a93b19 (Z)

tka3—1 q

az—1

P IND VDY 2.

€701 ,a9:b12 J=1 Kj€Tag ag;b19 qJGCal,az;blg(kj)

Xligr gy 2,051 Z

qecal ,a93b19 (Z)

t‘]a3 —1,9

(56)

For any gu;—1 € Ca, ag:bis(Kaz—1), there exist
0<7r1<a;—1and 0<r7ry <ag—1such that

daz—1 = O-:;rl (U;m (kasfl))'
Then, by Theorem 3.1,

: : tqag—lvq

qecal ,a9;b12 (4)

= > oy

qecal ,a9:b1o (Z)

- ¥

qecal ,a9;b19o (Z)

= 2

qecal ,a9;b12 (4)

TQ(kagfl)Lq
t T T2
kag—1,02" (0y*(q))

tka3717Q°

Therefore,

tqa371 q

qecal ,a93b19o (Z)

tQa3—27Qa3—l § tkagflaq

qecal ,a9;b12 (4)
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az—2

= Z Z bigy Z

Gaz—1€Cay anibyg (Fag—1)

J=1 g, eca1¢a2;512 (kj)

az—1

= 2 w1 X

qjecayaz;bm (kj)

QIECal,CLQ;b12 (kl) .]:2
= Tay,a2;b12;i,k1 Tar,a2;b12;k1,k2 *°

Finally, Eq

az—1

2. 2 2

€701 ,a9:b12 J=L Kj€Tag,a9;b19

. (56) is equal to

XTay,ag;biasi k1 Tay,az;biski ke Tax,a2;b12:kay—1,i

= tr(1"

a1 ,a2; 612)

- ¥

)\EE(Tal ,a2;b12)

Xai,a2;b12 ()\))\ag .

The proof is complete. M

Therefore, the rationality of (4, 4q:0,, and ¢ can
be obtained as follows.

Theorem 3.6. For aj,as > 1, 0 <bjs <a; —1,

<a17a2;b12 (5) = (det( st Ta17a2;bl2))71

- H (1

)‘EE(Tal ,a2;b12)

_ )\Sala2)7Xa1,a2;b12 ()‘)’

(57)

co ai—1

C(s) = H H H (det (1 — a1a27a1,a2;b12))71

al= 1(12 1b12 O

oo ar—1

“HII 1

ar=laz=1b12= OAEZ(TalﬁaQ,blg)
X (1 _ )\SQIQQ)_Xal,aQ;blg()‘)‘ (58)

Proof. By using the power series

Z - (59)

Eq. (57) follows from Eq. ( ) and Theorem 3.5.
Equation (58) follows from Egs. (9) and (57). W

—log(1—1t) =

The following example is used to demonstrate
the application of the above result.

tk'a3727Qa371 Z

qecal ,a9;b12 (%)

tk'a3 —1,9

tkg 1,95 Z

qecal,CLQ;blg (Z)

tkag—lvq

“Tar,a2;b12;kag 1,0

|
Example 3.7. Consider

B = {Usxax2 =

= Uo,1,5 = U1,1,5 for ] = 07 1}

(ual,az,as) € Yoxax2: U0,0,j

= U1,0,5

Clearly, the set P(B) of all B-admissible and peri-
odic patterns is

{U = (uaLaQ,as) € E% c Uik
for all i, 7,k € Z}.

= UQ,0,k

Then, it is easy to verify that

ar b b3
FB 0 a9 b23 = 2%

0 as

forai21,1§i§3,0§bij§ai—
Therefore,

1,i+1<j5<3.

Ca17a2;b12 (3) - (1 - 23a1a2)_1 (60)

and
H H §0102) a1, (61)
a1=1as=1

However, Egs. (60) and (61) can be obtained
from Egs. (57) and (58). The trace operator

Ta17a2;b12 (B) = Ta17a2;0(8)
1 0 --- 0 17
O 0 --- 0 O
0 0
0 1

L e d gajag yoajas
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Since Ca1,a2;b12(1) = {1} and Cay az:bro (2002) =
{29192} " the reduced trace operator

0 --- 0 17

00 --- 00
Tay,a2;b12 (B) =

00 --- 00

10 -~ 0

= Xay,ag;bip X Xay,ag;bia

Therefore,

Ca17a2;b12 (3) = (det(I - 3a1a27—a1,a2;b12))_1

= (1 —2sm02)~1

and

Cs) =[] JJ@—2sme) .

a1=1as=1

Equations (60) and (61) are recovered.

4. Zeta Functions in Inclined
Coordinates

This section presents the zeta function with respect
to inclined coordinates, determined by applying
the unimodular transformations in GL3(Z). Z3 is
known to be invariant under the unimodular trans-
formation in GL3(Z). Indeed, Lind [1996] proved
that the zeta function Cg, is independent of a choice
of basis for Z3. Recall that

GL4(Z) ={y= [%'jhgi,jgd :7vij € Z for 1 <,
j <dand | det(y)| = 1}.

This section presents the construction of the
trace operator T..q 40, (B) and the reduced
trace operator T..q, a,:b,(B), and then determines
Cysar,az:brs and (p.~. Finally, (g, is obtained as

co ai—1

o= 11 II 11

a1:1a2:1b12=0
X (det(I = s™T 0y aybyy)) - (62)
For simplicity, only B C Xoxaxo with two

symbols are considered. The general cases can be
treated analogously.

Y11 Y12 Y13
For a given v = |:“/21 Y22 “/23:| S GL3(Z), the
Y31 Y32 Y33
lattice points in y-coordinates are

(1,0,0)y = (711,712, 713);
(Oa 170)’}/ — (72157225723) and
(Oa 0, 1)7 = (731a V32, 733)a

and the unit vectors are

1 Y1
0 =172,
0/ V13

0 Y21 0 Y31

Ll =172 and 01 =12

0/, Y23 1 V33

100
Notably, when v = [0 1 of, standard rectangular

00 1
coordinates are used and the subscript v is omitted.

The matrix M, is defined by

ar bz bis ar bz bis
My= {0 az by| =710 ax bog
0 0 as 0 0 as

Let Ly = MWZg. Then,

ar b b3
Ly=9"10 ay by|Z® (63)

is easily verified.
A global pattern U, = (u(al,a27a3),‘/)a1,a2,a3€Z

a1 biz bis

is called L.-periodic or [0 az 523:| -periodic if for
0 0 as
¥

every ag, e, a3 € Z

U(aq+a1p+biag+bisrastasqtbesr,azt+asr)y — U(ar,as,as)y
(64)

for all p,q,r € Z. Therefore, the (a1, as;bi2)th zeta

function of Cg(s) with respect to v is defined by

CB;’Y;QLQQ?(HQ (s)

x | [0 ay bog| | sero20s (65)

0 0 613’y
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and the zeta function (g, with respect to v is
defined by

co ai—1

(Biry(8) = H H H CBiysar,azibiz- (66)

a1:1 CLQ:I b12=0

The following introduces the cylindrical order-
ing matrix, the trace operator and the rotational
matrices. The proofs of the results as in previous
sections are omitted.

Fix a v € GL3(Z). Let Zym xnoxny be the
n1 X no X ng lattice with the basis

1 Y1 0 Vo1
Y1=10] =72, 7=[1] =72
0 N Y13 0 N V23

0 731

and y3=10] = | 732

1 y Y33

The total number of lattice points on Z..n; xnsxns
1S N1 - Ny - N3.

Since the basic set B C Yax2x2, the L.-periodic
patterns that are B-admissible must be verified on
Zaxaxa. Let (ni,n2,n3), = (my, ma, m3),

Zaxax2((n1,n2,m3)~)
= {(m1 + k1,ma + kg, m3 +k3) : 0
< ki, kg, kg < 1}

Now, the admissibility is demonstrated to be veri-
fied on finite lattice as follows.

Y11 Y12 Y13

Y21 Y22 Y23 S

Y31 Y32 Y33

GL3(Z). An L-periodic pattern U is B-admissible
if and only if

Proposition 4.1. Given v =

U’ZQXQXQ((a17a27a3)’Y) ebB
for0<q; <a; —1,1<i<3.

For a1, a9,a3 > 1, it is easy to verify that there
exist positive integers aj(7), az(y) and as(vy) such
that

3 a;—1

U U Zioxax2((§1 + a1,&e + a2, 3 + a3))

i=1a;=0
g Z’y;al XEQ Xa3

for some &1,&2,&3 € Z.

According to Proposition 4.1, the admissibil-
ity of an L.-periodic pattern U is determined by
Ulz

iy Xy X (W(ar,a2,a3), J0<ai<a;—1,1<i<3 and

U] Zoya xay«a, D88 the the periodic condition that is
given by Eq. (64), which can be divided into two
parts: (i) for 0 < oy < @;— 1,1 < ¢ < 3 and
p,q € Z,if 0 < a3 + a1p + bi2g < a3 — 1 and
0 < ag+azq <ax—1,

U(ay+arptbiag,astasg,az)y — W(ar,az,as)y) (67)
(ii) for 0 < a; < a;— 1,1 <1 <3, p,q € Z and
r € Z\ {0}, if 0 < ay 4+ a1p + biag + bizr <ay — 1,
0 < agtagq+bozr <ap—1and0 < ag+azr < az—1,

Uy +a1p+biagbisr,astasqtbesr,astasr)y
= U(ay,00,03) " (68)
Then, for h > 1, the set of all local patterns on
Loy, xan 1 that satisfy Eq. (67) with 0 < a3z < h—1
is denoted by Pr.q; as:b10:h-
Similar to Eq. (18), the counting function Vs
for patterns U in P4, a0:b10:4 is defined by

a1—1 az—1 h—1
Vy(Uy) =1+ Z Z Z U(ay,02,003)
a1=0 a2=0 a3=0

w 90102 (h—l—a3)+a1 (ag—1—a2)+a1—1—aq )

A local pattern U, in Py.gy a0ib1p:h can be repre-
sented as

(77 = (77;0 Dy (77;1 Dz - Doy Uw;h*h

where Ui € Prajanbe, 0 < 7 < h — 1,
and Ulw D, (71; means that (71; is put on the top
(in the ~s-direction) of U'T For 0 < i < j <
h — 1, let U%i;j = U%i @73 @73 U’y;j' There-
fore, for h > as, the cylindrical ordering matrix

C'Y§a1702;b12§h [C’Y;m,az;b12;h;i,j]2a1a2(h—1)><2a1a2(h—1)
of patterns in P4, a,:b,0;n is defined by

C"y;al ,az;bi2;hii,g

={U5 € Pravasibroih : ¥y (Un0a,—2) = i and
Vy(U yih—z41:n-1) = 4 }-
In particular, for h = @3, C,.q; 4s:10:a; can be used
to construct the associated trace operator. Notably
the set C..q) a0:b105a5:1,; €ither contains exactly one
pattern or is an empty set.

Now, given B C Xoxax2, the associated
trace operator T..q, aibo(B) = [tyiai,a0ibi0:i)s
with 1.4, 4001055 € 10,1}, can be defined by
tyiar,azibrozi,j = 1 if and only if

C’Y;al,az;bu;as;i,j # 0
C

and the pattern in

is B-admissible. (69)

v;a1,a2;b12;a351,7
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Now, the shift (to the left) in the v;-direction of any pattern U., = (U(ar,a2,03),) 1 Priag agibiaias—1s
U(ar,az,a3), € {0, 1}, is defined by

(1)

Oy1;a1,a2;b12 ((u(al ,012,043)—y)) = (u(ahamag)ﬁ, )o<a <a1—1,0<az <tz —1,0<as <dsz—2

where
(1) o u(a1+1,a2,a3)7 if 0 S aq S /a/\l -2 (70)
(o1,002,008) u([011+1}a170127043)-y if ] = al — 1.
Similarly, the shift (to the below) in the s-direction is defined by
2
072;a17a2;b12((u(m,az,ag)y)) = (uga)l7a2’a3)7)0§a1Sal71,0§a2§6271,0§a3§6372
where
(2) ) Won,00+1,03) if 0 <oy <ap—2 (71)
(a17a27a3)’Y u([QI*bIQ]al7C¥2+1*a27a3)"/ if a9 = 62 — 1.

Notably, 0.,.41,a0:010 a0 Oryi01 0050, are automor-

phism on P..,, 4,:515:a;—1. Furthermore, Moreover,
a1—1 as—1
Ory 1o O Ty - 1o = Ony: h1o O On: b _ bi3 ba3
2;a1,a2;b12 15a1,a2;b12 1;a1,a2;b12 2;a1,a2;b12 =
TR e T T R%al’a?;bl? R’Yl;a17a2;b12R’72;a17a2;b12'
and b13=0 b23=0
76
ai _ b1z (0_0,2 ) ( )
Y1;a1,a2;b12 Y13a1,a2;b12 \7 v2501,02;b12
. . X ar  biz big .
= identity map. The main results for I'g| |0 a2 b2 as in
0 0 as
y

Now, the rotational matrices with respect to v  Theorems 2.9 and 2.10 are obtained as follows and
are defined as follows. the proofs are omitted.

Definition 4.2. The 20192(@—1) y omna(@—1)  _ Theorem 4.3. Given a basic set B C Yoyaxa, for
rotational matrix Ry g asibre = [Ryiarasbiejl, @ > 1,1<1<3,0<bj;; <a;—1,i+1<7<3,

R a1 ,a0:b10:4,5 € {0,1}, is defined by a1 bz b

R\ ar.asibiniy = 1 if and only if i =4 (U ) and Ip| |0 a2 b
. - = 0 0 as
J = wv(a’yl;aha%blz (U’Y))a v
b b
(72) - tr(T:?alm;bm (B)Rvﬁahambm Rvi%alm;bm)
where U, € P01 asibrasas—1- From Eq. (72), for con- (77)
venience, denote by and
J =0, (3). (73) a1—1 ap—1 ar bz big
Similarly, the 212(@=1 x omn2@=1) ., Z Z Is 0 a2 b
’ b13=0 b23=0
rotational matrix R,,.q; a0b10 = [R'Y2;a1,a2;b12;i,j]a 13=0 b23 0 0 as §
Ropar avpizsig € 10,1}, is defined by = tr(T%,, 1o B R i) (78)
Royiar.anibiniy = 1 if and only if i =4 (U ) and Furthermore,
— — [e.e]
= (Oroar anbo (Ux)), (T4 1 1
- J ¢7( 'Yz,a1,a2,b12( 7)) (74) Cyia,az:bio (s) = eXp<a1a2 Z a_gtr(Tg?ah@;bm (B)
where U, € Py.q; a:b10:a5—1- From Eq. (74), for con- az=1
venience, denote by
X Royay a0ibia) 8™ 2% ] (79)
j =0 (0). (75) B
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The equivalent class Cy.q; 4055 (%), the cardinal
number wy.q; asibrosi Of Ciayanibio (i), the index set
Tyia1,a0:01, and the cardinal number of X..a1 40610
can be defined as in Sec. 3 and are omitted here.

Definition 4.4. For aj,as > 1,0 < by < a;—1, the

reduced trace operator T..q; as;b, =

of T'y;a1,a2;b12 [t'y;alya%blz;i,j] 1S a Xyar,ag;012 X
Xn:a1,a0:b1, Matrix defined by

Tysa1,a2;b1250,5 — E :

kec’y;alﬁag;h? (])

[T'Y;al,a%bm;i,j]

Lya1,a2;b123i,k (80)

for each 7,7 € T4, a0:b10-

By the argument as in Sec. 3, the rotational
symmetry of T..,, 4.5, can be obtained, yielding
then the rationality of the (a1, as;bi2)-th zeta func-
tion (B.yia1,a0:b1.- The results are stated as follows.

Theorem 4.5. Given B C Yaxoxo andy € GL3(Z).
Foral-z1,1§i§3,0§bijgai—l,i+1§j§3,

| w-lal a; bz b3
S S K
172 b13=0b23=0 0 0 as

v

as
- tr(T’YﬂlyaQ;le)

- ¥

AEE(Tysaq,a9:b19)

Xv;a1,a2;b12 (>‘)>‘a3 ) (81)

where X(Tyia; anibyy) 15 the spectrum of Ty.a asibro
and Xeiai,asibro(A) s the algebraic multiplicity of
Tryiar,a0:b12 With eigenvalue X. Moreover,
Cyian,azibiz (s)
_ aia -1
= (det(f — s QT’Y;al,az;bm))

-

)‘62(7—'7;0,1 ,a9:b1o )

(1 — Ag™92) " Xvag,azibiz (A)’

(82)

and
0 oo ai—1

Gy(s) = H H H (det(1 — SalaQT’Y;al,m;bm))_l'
a1=1a2=1b12=0

(83)

Corollary 4.6. For any B C Yoxoxo and v €
GL3(Z), the Taylor series expansions for (p., at
s = 0 has integer coefficients.

Proof.  Since T4, a0, has integer entries for any
ar,as > 1, 0 < bjg <aj — 1, the result follows. MW

Now, that (s,, are meromorphic extensions of
Cg is obtained as follows.

Theorem 4.7. Given B C Yoxoxo. For any v €
GLB(Z)a

(Biy(s) = CI%(S) (84)
for |s| < exp(—g(B)), where
1
g(B) = limsup— log I'p(L). (85)
[L]—oc L]
Moreover, (g, has the same (integer) coefficients
in its Taylor series expansions at s = 0, for all
v € GLs (Z)

Proof. By [Lind, 1996], Cl% has radius of con-
vergence exp(—g(B)) and is analytic in [s| <
exp(—g(B)). Since (s, is a rearrangement of (g,
Eq. (84) holds. From [Lind, 1996] or Corollary
4.6, (p,y has the same integer coefficients in its

Taylor series expansions at s = 0. The proof is
complete. W
Remark 4.8. From Theorem 4.5, for any B C

Yoxox2, there exists a family of zeta functions
{(B~y : v € GL3(Z)}. For certain B, the other
v € GL3(Z) may give a different description to
(B; see Example 3.7 and the following Example 4.9.
Those different descriptions of Cg, may be useful in
studying zeta functions.

Example 4.9. Consider the basic set B in Exam-

100
ple 3.7 and v = [0 0 1} . It is easy to verify that
01 0
Taranib12 = Trsar,a2:0

for a1,as > 1, 0 < b1s < a1 — 1. Moreover, after the
zero columns and rows of T4, 4s:b10 (OF Tyia a0ibis)
were deleted, T, as:b10 (Ty:a1,a0:610) 15 Teduced to
TV;LQQ;O (T'y;l,ag;O)- Clearly

Tyita0:0 = L2902
and

TyiLa2:0 = Lyay

where

1
Xn n d§ ¢(d)2 9

and ¢(d) is the Euler totient function. Note that
Xrn is the number of necklaces that can be made
from n beads of two colors when the necklaces can
be rotated but not turned over [Plouffe & Sloane,
1995].
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Hence,

C’Y;al,@;bm = (1 - 5a1a2)7xa2 (86)

and
Gy = H H g142) a1 Xag (87)
ai1=1as=1

It can be proved that g(B) = log2. Therefore,
from Example 3.7 and Theorem 4.7,

SIS
|| || _ a1a2 —a1Xay
a1=1

as=1

for |s| < %, and they have the same integer coeffi-
cients in their Taylor series expansions at s = 0.

5. Further Results

This section briefly describes the results for Z¢,
d > 4, and more symbols on larger lattice. The ther-
modynamic zeta function for the three-dimensional
Ising model with finite range interactions is also
studied.

5.1. Higher-dimensional shifts

of finite type
This subsection considers the zeta functions for
shifts of finite type on Z%, d > 4. Only brief state-

H H graz)ma (88) ments are made here.
a1=1as=1 As in [Lind, 1996], £, can be parameterized by
| using Hermite normal form [MacDuffie, 1956]:
([ar b2 b1z -+ bid] )
0 az by -+ by
Ly=410 0 a3 oo bsal 7?0, >1,1<i<d,0<by<a;—1,i+1<j<dyp. (89)
L0 0 0 - agl

Let the lattice Ly = {(n1,n2,...,nq) :
1§i§d—1,0§bij§ai—

CB;(ai,bij)(S) = eXp
ad 1i=1b;4=0

and
oo d—1 a;—1

zﬁ T TI I Gy (1)

1a;=1j=i+1b;;=0

As in Secs. 2 and 3, the cylindrical ordering
matrix, the trace operator, the rotational matrices
and the reduced trace operator can be defined. The
method in Secs. 2 and 3 can also be applied to verify
that (g,(a; ;) I a rational function. Therefore, (3
is an infinite product of rational functions. Further-
more, given any v € GLy4(Z), the result also holds
in vy-coordinates. Hence, a family of zeta functions
exists with the same integer coefficients in their
Taylor series expansions at s = 0, and yields a fam-
ily of identities in number theory.

0 <n; <1,1 <i<d}. Fix a basic set B C {0,1}. For a; > 1,
1,1+ 1<j<d-1, the (a;, b;j)-th zeta function is defined by

a1 bi2 biz - big
0 a2 bag -+ by

Z Z Z a_dFB 0 0 as b3d 5017°0d (90)

|
5.2. More symbols on larger lattice

This subsection extends the results of the previ-
ous sections and subsections to any finite number
of symbols and any finite lattice. For simplicity,
only the zeta functions for three-dimensional shifts
of finite type are discussed. Given a set of symbols
S, = {0,1,...,p — 1}, p > 2, a set of finite lat-
tice points I C Z3 and a basic set B(IL) C Sg‘. Let
Zonxmxm be the smallest cubic lattice that contains
L and B(Zyxmxm) be the set of all admissible pat-
terns that are generated by B(L). Then, it is easy
to verify that
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Therefore, only B C ngxmxm, for m > 2, need to
be considered. The definitions of cylindrical order-
ing matrix and the rotational matrices must be
adjusted and the details are omitted here. Then, the
associated trace operator and reduced trace opera-
tor can also be defined. Hence, by the arguments
similar to those made in Secs. 2—4, the results for

B C ngXme also hold.

5.3. Ising model with finite range
interactions

This subsection will extend the results to the Z3

lattice Ising model with finite range interactions.
|

E(UTL1><TL2><713) - _\.71 Z

Uay ag,03Uar +1,a2,08 — J2 E

For simplicity, only the case of the nearest neighbor
interactions is considered. Let the Z? lattice Ising
model be with the external field H, the coupling
constant J; in the z-direction, the coupling con-
stant J5 in the y-direction and the coupling con-
stant J3 in the z-direction. Each site (a1, as,as)
of Z3 lattice has a spin Ua, ay.as With two pos-
sible values, +1 or —1. Assume that the state
space is given by B C {0,1}%2x2x2, Given a state
U = (tay,a0,05) € {0, 1}23, denote by Uy, xnyxng =
UlZy xngxng = (Uar,a2,08)0<a;<ni—1,1<i<3-

Now, the Hamiltonian (energy) &(Uy, xnyxns) 1S
defined by

Uay,op,03Wary,c0+1,03

0<a1<n1—2 0<a1<n;—1
0<az<ns—1 0<ags<ns—2
0<az<nz—1 0<az<nz—1

- j3 Z Uy 00,03 Wy ,o0,03+1 — H Z Uy ,a,003 -
0<a1<n;—1 0<a1<n;—1
0<a2<ny—1 0<a2<ny—1
0<az<nz—2 0<az<nz—1

a1 biz bis

(92)

Given L = |0 > bs|Z3 € L3, the set of all B-admissible and L-periodic patterns is denoted by Pg(L).

0 0 as

Then, the partition function for B with L-periodic patterns is defined as

ar b2 b3
ZB(L) = ZB 0 a9 523

= E exXp § Uay,az,003 (Klua1+1,a2,a3 + K2u0¢1,a2+1,013 + K3u0¢1,a2,013+1 + h) (93)
UePi(L) 0<ai<ni—1
0<a2<na—1
[ 0<az<nz—1 d

where K; = J;/kpT, 1 < i < 3, kp is Boltzmann’s constant and 7' is the temperature. Therefore, the

thermodynamic zeta function is defined by

Sl

C?sing;B(S) = exp Z ZB(L)W . (94)

LeLs

As Egs. (8) and (9), for any aj,az > 1, 0 < bjg < a; — 1, the (a1, az;bi2)-th thermodynamic zeta

function (reing:Bia1,a0:b10 () is defined as

0o ai—1 as—1 a1 bz b3

1 1
Clsing;Bsar az;bi2 () = €xp o Z Z Z Q_ZB 0 ap bos| | 19298 (95)
12 =1b13=0bo3=0 > 0 0 oas
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and the thermodynamic zeta function (sing:5(s) is given by

<Ising;l§' (3) = H

oo ai—1

H H <ISing;B;a1,a2;b12 (3)

(96)

a1=1a2=1b12=0

Since the spin Ua; a0, €

{+1, -1}, the cylindrical ordering matrix Ciging:a;,a0:b10:h

[Clsing;ar,as:b10:h:4,5] 15 obtained by replacing all symbols “0” in Cg; 49:p,;n With the symbols “—1". Notably,
exactly one pattern exists in Clsing;a;,a0;b10:2:4,; and the pattern is given by Utsing.a1 az;bro:2:i, = (Uar,a0,03)-

Define

Z(UIsing;al,aQ;blg;Q;i,j) = exXp E Ual,az,O(Kluqurl,az,O + KQua17a2+170 + K3ua1,012,1 + h) (97)
0<ai1<a;—1
0<a2<as—1
Then, the trace operator Tising:a; ,a0:b10 = [Lsing:ar,a0:b105i,5] 15 defined by
{tlsing;aw%bmm =0 if Utsing;a1,az:b10:2;i,5 15 not B-admissible, (98)

Using;ar,a9;b12;i,j = Z(Ulsing;al ,a2;b12;2;i7j)

Therefore, the associated reduced operator
Tising;a,an;bi.  Canl be defined as in  Definition
3.4. Since all arguments for the rationality of
Clsing;B;ar,a0:b1» are similar to those in Secs. 2 and 3,
only the final result is stated, as follows.

Theorem 5.1. For aj,as > 1, 0<bjs <a; —1,

CIsing;B;al,ag;bm (S)
= (det([ — 5a1a27_lsing;a1,a2;b12))_1 (99)

and
co ai—1

CIsing;B(s): H H H

a1=1a2=1b12=0
X (det([ — 3a1a27—Ising;a1,a2;b12))_1'
(100)

Notably, this result also holds in «-coordinates for
v € GL3(Z).
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