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a b s t r a c t

The optical properties of a superconducting annular Bragg reflector (SABR) are theoretically investigated
based on the transfermatrixmethod for the cylindricalwaves. For TMwave at an azimuthalmodenumber,
m ≥ 1, it is found that there exist some novelties compared with the usual superconducting planar Bragg
reflector (SPBR). An additional high-reflectance band is seen and some reflection dips near the threshold
wavelength of a superconductor are generated as well. These two special results arising from the higher
order azimuthalmode of the cylindricalwaves are not found in the SPBR. The results suggest that the SABR
could be used to design a narrowband transmission filter or an annular resonatorwithout introducing any
physical defect layer in the structure.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of a Bragg reflector (BR) or one-dimensional photonic
crystal (1DPC) is an interesting subject and has attracted a lot of
attention in recent years. There have been many reports on the
calculations of the photonic band structures in 1DPCs so far [1–3].
It is known that PCs have photonic band gaps (PBGs) at which
the electromagnetic waves cannot propagate through the layered
structures. Materials with PBGs play an important role in modern
photonic science and technology.
In the earlier stage, the PBG structures were mainly fabricated

by using the usual dielectrics, semiconductors and metals as well.
Recently, the studies of the photonic band structures in a periodic
multilayer structure consisting of superconducting and dielectric
materials have also been reported [4–8]. Such a superconducting
planar Bragg reflector (SPBR) has somebasic distinctions compared
to an all-dielectric plane Bragg reflector. For example, there exists
a low-frequency PBG due to the combined effects of periodicity
and of incorporating superconducting materials [5–7]. This low-
frequency PBG is further tunable as a function of the temperature
and the applied static magnetic field as well. This tunable feature
comes from the temperature- and field-dependent penetration
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length of a superconductor. Moreover, in the region near the
threshold frequency of the bulk superconductor, which plays a
similar role as the plasma frequency in metal, some extraordinary
optical properties in an SPBR can be seen [9].
A Bragg reflector with an annular geometric structure shown

in Fig. 1 has now been realized with the advance of modern
fabrication techniques. By creating a ring defect into the annular
periodic multilayer structure, an annular resonator or laser has
been recently reported [10,11]. Such an annular laser has a very
important feature of vertical emission whichmakes it of particular
use in optical electronics and communication. Motivated by these
facts, in this paper, instead of the SPBR, we shall theoretically
investigate the optical reflection properties of a superconducting
annular Bragg reflector (SABR). In our analysiswe use the two-fluid
model for the superconductor [12,13] together with the transfer
matrix method for the cylindrical waves developed by Kaliteevski
et al. [14]. With the fact that the field solutions of the cylindrical
waves are closely related to the azimuthal mode number, denoted
bym, for both the TE and TMwaves, optical properties at different
m-numbers will be examined. In this paper, we have found that an
additional high-reflectance band or some reflection dips near the
threshold wavelength of a superconductor can be found for the TM
wave at an azimuthal mode number m ≥ 1. These two distinct
features behave like the localized passbands, which provide a
feasible way of designing a narrowband transmission filter or an
annular resonator without physically introducing any defect layer
to break the periodicity of the structure. First we demonstrate that
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Fig. 1. The cross sectional view of an SABR, in which the constituent layers are 1
and 2 with refractive indices n1 and n2 , respectively. The superconductor is layer 1
and layer 2 is the dielectric.
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Fig. 2. Calculated wavelength-dependent reflectance for YBCO/MgO BRs., where
the solid curve is for the SPBR, and the dashed curve is for the SABR.

thewavelength-dependent reflectance atm = 0 is nearly identical
to that of the planar one-dimensional superconducting BR. Second,
the reflectance spectra for the TM wave are plotted and compared
at different values of m. Finally, the role played by the starting
radius ρ0 in this SABR will be illustrated.

2. Theory

The structure of an SABR is shown in Fig. 1, in which the inner
core region has a refractive index of n0 and a starting radius of ρ0,
the layer 1 with index n1 is assumed to be the superconductor,
and layer 2 having index n2 is the dielectric layer. In addition,
the index of refraction of the outer region is denoted by nf . To
calculate the reflectance at the first circular boundary, ρ = ρ0,
we use the transfer matrix method in the cylindrical waves [14].
The cylindrical wave is assumed to be diverging from the axis of
symmetry, ρ = 0, and then impinges normally on the first circular
interface of ρ = ρ0.
Assuming an exp (jωt) time dependence for the electromag-

netic fields, the source-free two curlMaxwell’s equations are given
by
∇ × E = −jωµH, (1)
∇ × H = jωεE. (2)

In the circular cylindrical coordinates there are two possible
modes, i.e., TE and TM modes. For TE wave, the nonzero fields,
Ez,Hφ , andHρ in each single layer satisfy the following three equa-
tions,

1
ρ

∂Ez
∂φ
= −jωµHρ, (3a)

∂Ez
∂ρ
= jωµHφ, (3b)

∂
(
ρHφ

)
∂ρ

−
∂Hρ
∂φ
= jωερEz . (3c)

With Eq. (3), the governing equation for tangential electric field Ez
is given by

ρ
∂

∂ρ

(
ρ
∂Ez
∂ρ

)
− ρ2

1
µ

∂µ

∂ρ

∂Ez
∂ρ
+

∂

∂φ

(
∂Ez
∂φ

)
+ω2µερ2Ez = 0. (4)

The solution of Eq. (4) can be obtained by themethod of separation
of variables, with the result

Ez (ρ, φ) = V (ρ)Φ (φ) = [AJm (kρ)+ BYm (kρ)] ejmφ, (5)

wherem is the azimuthal number and the radial partV (ρ) satisfies
the Bessel differential equation and therefore solution is written in
Eq. (5). Here A and B are constants, k = ω

√
µε is the wave number

in the layer, Jm is a Bessel function, and Ym is a Neumann function.
Then according to Eq. (3b), the azimuthal part of magnetic field is
given by

Hφ (ρ, φ) = U (ρ)Φ (φ) = −jp
[
AJ ′m (kρ)+ BY

′

m (kρ)
]
ejmφ, (6)

where p =
√
ε/µ is the intrinsic admittance of the layer. Eqs. (5)

and (6) enable us to construct a single layer matrix relating the
electric and magnetic fields at its two interfaces. For instance, the
matrix for the first layer (with refractive index n1 and interfaces at
ρ = ρ0 and ρ1) is written as [14][
V (ρ1)
U (ρ1)

]
= M1

[
V (ρ0)
U (ρ0)

]
, (7)

where the single layer matrix

M1 =
[
m11 m12
m21 m22

]
,

has the following matrix elements

m11 =
π

2
k1ρ0

[
Y ′m (k1ρ0) Jm (k1ρ1)− J

′

m (k1ρ0) Ym (k1ρ1)
]
,

m12 = j
π

2
k1
p1
ρ0 [Jm (k1ρ0) Ym (k1ρ1)− Ym (k1ρ0) Jm (k1ρ1)] ,

m21 = −j
π

2
k1ρ0p1

[
Y ′m (k1ρ0) J

′

m (k1ρ1)− J
′

m (k1ρ0) Y
′

m (k1ρ1)
]
,

m22 =
π

2
k1ρ0

[
Jm (k1ρ0) Y ′m (k1ρ1)− Ym (k1ρ0) J

′

m (k1ρ1)
]
,

(8)

where p1 =
√
ε1/µ1. Obviously, the matrix elements are depen-

dent on the radii of the two interfaces. Similarly, for ith layer the
matrix can be obtained by some simple replacements, i.e., ρ0 →
ρi−1, ρ1 → ρi, k1 → ki = ω

√
µiεi, and p1 → pi =

√
εi/µi. In

addition, with structure being periodic, one has εi = ε1 if i = odd,
and εi = ε2 if i = even. For an N-period bilayer periodic reflector
we have, in total, 2N layers and therefore there should be 2N ma-
trices in order to set up the total system matrixM that relates the
first and final interfaces as[
V
(
ρf
)

U
(
ρf
) ] = M

[
V (ρ0)
U (ρ0)

]
, (9)
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Fig. 3. Calculated reflectance spectra of TM wave at different azimuthal mode numbers, (a)m = 0, (b)m = 1, (c)m = 2 and (d)m = 3, respectively, under the conditions
of d1 = 130 nm, d2 = 80 nm, ρ0 = 500 nm and N = 9.
where

M =
[
M11 M12
M21 M22

]
= M2N · · ·M2M1. (10)

Unlike usual planar 1DPC, the analytic expressions for the matrix
elements of M for an annular BR cannot be obtained because the
elements of each single layer matrix are functions of the radii of
the two interfaces. It thus has to be numerically calculated. With
the calculated matrix elements, the reflection and transmission
coefficients can be determined through the relationships given in
Box I [14], where p0 =

√
ε0/µ0 and pf =

√
εf /µf are the admit-

tances of the starting and the last medium for the incident wave,
M ′11,M

′

12,M
′

21 andM
′

22 are the matrix elements of the inverse ma-
trix ofM, K = ω

√
µ0ε0 is the free-space wave number, and

C (1,2)ml =
H(1,2)′m (klρl)

H(1,2)m (klρl)
, l = 0, f . (11)

where H(1)m and H(2)m are the Hankel function of the first and sec-
ond kind. The results for TM wave are also obtainable by simply
replacing ε↔ µ, and j↔ −j in the formulas of TE wave.
Regarding the permittivity of the superconducting layer, we

shall adopt the two-fluid model. According to the two-fluid this
model the conductivity of a lossless superconductor is expressed
as [5,6]
σ = −j
1

ωµ0λ
2
L
, (12)

where the temperature-dependent London penetration depth is
given by

λL (T ) =
λ0√

1−
(
T
Tc

)4 , (13)

where λ0 is the penetration depth at 0 K, and Tc is the critical
temperature for the superconductor. The condition of a lossless
superconductor is well described in Ref. [5]. With Eq. (12), the
relative permittivity and the associated refractive index can be
obtained and are given by

ε1r = 1−
c2

ω2λ2L
, (14)

n1 =
√
ε1r =

√
1−

c2

ω2λ2L
. (15)

It is seen, from Eq. (15), that there is a threshold wavelength
λth = 2πλL at which n1 is equal to zero. The threshold frequency,
or the threshold wavelength, similar to the plasma frequency in
metal characterizes the electromagnetic wave properties of a bulk
superconductor.
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Fig. 4. Calculated reflectance spectra of TM wave at m = 1 for different starting radii (a) ρ0 = 200 nm, (b) ρ0 = 700 nm, (c) ρ0 = 1200 nm and (d) ρ0 = 2000 nm,
respectively, under the conditions of d1 = 130 nm, d2 = 80 nm and N = 9.
3. Numerical results and discussion

To calculate the reflection response, the layer 1 is taken to
be the typical high-Tc superconductor, YBa2Cu3O7 (YBCO) with
Tc = 92 K and λ0 = 140 nm [15], and the layer 2 is MgO with
ε2r = 10. The operating temperature is T = 77 K in our simulation.
The penetration depth λL and the permittivity ε1r of YBCO can
be calculated according to Eqs. (14) and (15). With these material
parameters, the threshold wavelength of YBCO is calculated to be
λth = 1245 nm. In addition, the SABR is immersed in free space,
i.e, n0 = nf = 1. The thicknesses of YBCO and MgO layers are set
to be d1 = 130 nm and d2 = 80 nm, respectively, and the number
of periods is N = 9.
In Fig. 2,weplot thewavelength-dependent reflectance for both

the SABR and SPBR in TE wave, where the dashed curve is for
SABR with ρ0 = 1000 nm at the lowest mode, m = 0, and the
solid curve is for SPBR. It is seen that both of the reflection spectra
almost coincide. This indicates that means the effect of the curved
interfaces in an SABR at m = 0 can be neglected compared to the
SPBR. In addition, there are two high-reflection bands (PBGs) in
Fig. 2. The larger bandwidth covering the range from the orange
light to the near infrared has the two bandedges of 598 nm and
1059 nm (bandwidth∆λ = 461 nm). The small bandwidth falling
from the violet to the ultraviolet (UV) has two bandedges, 329 nm
and 421 nm, and a bandwidth of∆λ = 92 nm.We can see that the
λth = 1245 nm is not located within these two PBGs in this case.
Let us now investigate the reflectance at various values of m-

number. Fig. 3 depict the TM-reflectance at m = 0 (a), 1 (b), 2
(c), and 3 (d), respectively, under the conditions of d1 = 130 nm,
d2 = 80 nm, ρ0 = 500 nm and N = 9. It is of interest to see that
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Fig. 5. Calculated reflectance spectra of TM wave for different azimuthal mode numbers (a)m = 0, (b)m = 1, (c)m = 2 and (d)m = 3, respectively, under the conditions
of d1 = 90 nm, d2 = 160 nm, ρ0 = 1000 nm and N = 9.
at m ≥ 1 there is an additional PBG within which the threshold
wavelength is contained. Such a PBG is referred to as a near-zero-
n gap because within this gap the refractive index of a supercon-
ductor is much less than one and very close to zero. This gap is
strongly dependent on the m-value, increasing largely as the m-
value increases. This additional PBG however cannot be seen for
the TE wave. This gap is due to the existence of radial component
of the electric field, Eρ . This Eρ interacts with the superelectrons in
the superconductor and thus a superpolariton gap is created. It is
noted that this superpolariton gap seen only for the higher order
azimuthal mode of the cylindrical wave has not been found in an
SPBR in the TM wave. It also should be mentioned that here we do
not present the results of TE wave because, in fact, at m = 0, the
reflectance of TEwave is nearly identical to that of TMwave.More-
over, only a little distinction in reflectance atm = 1, 2, or 3 is seen
when they are compared to that of atm = 0.
In Fig. 4, we plot TM-reflectance spectra of the SABR at four

different starting radii, 200, 700, 1200, and 2000 nm at m = 1.
It is seen that the size of superpolariton gap is strongly affected
by ρ0. The size apparently decreases as ρ0 increases. That is, a
narrowband gap could be obtained at a larger ρ0. This feature
suggests that we can control the superpolariton gap size by simply
changing the starting radius. However, other PBGs are not changed
pronouncedly as a function of the starting radius.
Finally, we shall investigate the PBG at which the threshold

wavelength of the superconductor is located within it. To reach
this end, we have chosen d1 = 90 nm, d2 = 160 nm, and ρ0 =
1000 nm, and the TM-reflectance is plotted in Fig. 5. It is seen from
Fig. 5(a) that the threshold wavelength λth = 1245 nm indeed
falls within the PBG at m = 0. It is of interest to observe that,
at m ≥ 1, a sharp dip is seen in the vicinity of λth, as shown in
Fig. 5(b)–(d). In addition to the enhancement of the dip due to the
higher mode number, the number of dips is also increased. This
phenomenon only arising from the higher order azimuthal mode
of the cylindrical wave is not present in the SPBR in the normal
incidence case, but similar dip(s) can be found in the oblique
incidence in the TM wave [9]. The existence of such dips possibly
enables us to design a circular transmission narrowband filter or
resonator without introducing any physical defect. Moreover, a
multi-resonance filter is also possible because of the presence of
the multiple resonant dips. All these peculiar features are, in fact,
not observed in a usual all-dielectric annular BR.

4. Summary

The photonic band structures of an SABR have been analyzed
in this paper. At m = 0, the reflectance characteristics of an SABR
is similar to that of an SPBR. At m ≥ 1, we find that there is an
additional PBG called the superpolariton gap only for the TMwave.
We also find that there exist some dips when the wavelength of
interest is near the threshold wavelength λth of a superconductor.
Both these results are closely related to the higher order azimuthal
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mode of the cylindrical wave in an SABR, which has not been seen
in the SPBR. These special features make it possible for the SABR
to be used for designing a narrowband transmission filter without
inserting any physical defect layer in the structure.
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