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a b s t r a c t

By the method of quadratic optimum control, a quadratic optimal regulator is used for syn-
chronizing two complex chaotic systems in series form. By this method the least error with
less control energy is achieved, and the optimization on both energy and error is realized
synthetically. The simulation results of two Quantum-CNN chaos systems in series form
prove the effectiveness of this method. Finally, chaotization of the system is given by opti-
mal control.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos synchronization has been widely investigated and many effective methods have been presented recently. Thus, as a
key technique of secret communication, chaos synchronization has become a very important goal. Since Pecora and Corrall
discovered the synchronization of chaotic systems [1–5], many synchronization methods have been developed [6–9]. For
chaos synchronization of practical engineering systems, the control cost must be taken into account. Optimal control method
is preferable in such cases [10–13].

In this paper, a quadratic optimal regulator is used for chaos synchronization. In practical system, it is difficult to obtain the
precise mathematical model, so in practical applications the investigators would like to employ simple and efficient controllers.
Therefore, how to design a simple controller with limited information of a chaotic system is still an open problem [20-26].

As numerical example, recently developed Quantum Cellular Neural Network (Quantum-CNN) chaotic oscillator in series
form is used. Quantum-CNN oscillator equations are derived from a Schrödinger equation taking account of quantum dots
cellular automata structures to which in the last decade a wide interest has been devoted, with particular attention towards
quantum computing [19].

Furthermore, chaotization is studied. Chaotization aims at creating or enhancing the system complexity. Chaotization of
Quantum-CNN system is accomplished by an optimal control method.

This paper is organized as follows. In Section 2, a linearly coupled chaos synchronization scheme by optimum control is
given. In Section 3, numerical results of the synchronization of two Quantum-CNN oscillator systems by unidirectional and
by mutual linear coupling are presented, respectively. In Section 4, chaotization of Quantum-CNN chaotic system and
simulation results are obtained. Finally, conclusions are given in Section 5.

2. Linearly coupled chaos synchronization scheme by optimum control

The optimum control is defined as a method by which the specified performance index of a system has optimum value
when the desired control assignment is fulfilled.
. All rights reserved.
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The state equation of a linear system is
_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð1Þ
where x(t) is an n-dimensional state variable of the system, A is an n � n dimensional constant matrix and B is an appropriate
n � r dimensional constant matrix. The matrix [A B] is controllable entirely and u(t) is an r-dimensional control input of the
system. Assuming that u(t) has no restriction and u(0) = 0, the performance index is
J ¼
Z 1

0
ðxT Qxþ uT RuÞdt: ð2Þ
In Eq. (2), Q is an n � n dimensional positive semidefinite real symmetric constant matrix; R is an r � r dimensional po-
sitive definite real symmetric constant matrix. The choice of the weighting matrix Q or R is based on eclectic considerations
which can enhance the control performance and reduce the control energy consumption. The aim of the optimum control is
to get u(t) = Kx(t) and then make the performance index Eq. (2) to be minimum, where Kalman gain K is an r � n dimensional
matrix.

So the design of the optimum control system is simplified to get the elements of matrix K. By stability theory, the opti-
mization of the quadratic performance index indicated by Eq. (2) can be solved.

The feedback gain matrix K of the quadratic optimal regulator is obtained as follows [29]:
K ¼ R�1BT S: ð3Þ
The matrix S in Eq. (3) is a positive definite matrix and must satisfy the following Riccati equation [9]:
AT Sþ SA� SBR�1BT Sþ Q ¼ 0: ð4Þ
Then the following nonlinear chaotic system is considered:
_xðtÞ ¼ AxðtÞ þ Fðt; xÞ þ Bu1ðtÞ; ð5Þ
where A is an n � n dimensional constant matrix, x = (x1,x2, . . . ,xn) 2 Rn is the state variable of the system,
F(x) = (F1,F2, . . . ,Fn)T is the nonlinear terms of the chaotic system and u1(t) = ka(y(t) � x(t)) is an r-dimensional control input
where ka is a constant vector. The second chaotic system is
_yðtÞ ¼ AyðtÞ þ Fðt; yÞ þ Bu2ðtÞ; ð6Þ
where B is an appropriate constant matrix, u2(t) = ks(x(t) � y(t)) is an r-dimensional control input where ks is also a constant
vector.

Define error vector e = x � y. From Eqs. (5) and (6), the error system is
_eðtÞ ¼ ½A� Bðks þ kaÞ�eþ Fðt; xÞ � Fðt; yÞ: ð7Þ
In current schemes of chaos synchronization, maximum values of states must be determined by simulation [15–18]. They
are half analytic method but not pure analytic method. In [14] F(t,x) � F(t,y) nonlinear item is ignored. This is incorrect since
there exist linear terms of e in F(t,x) � F(t,y), which cannot be ignored. In this paper, the series expansion analysis offers a
correct method.

The series expansion form of Eq. (7) is
_e ¼ AþMðxðtÞ; yðtÞÞ � Bðks þ kaÞ½ �eþ HðxðtÞ; yðtÞ; eÞ; ð8Þ
where M(x(t),y(t))e + H(x(t),y(t),e) = F(t,x) � F(t,y). The elements of M(x(t),y(t)) depend on state vectors x, y, and all of them
are bounded convergent infinite series of x, y. H(x(t),y(t),e) contains higher degree terms of e only.

If we choose appropriate ka and ks to make A + M(x(t),y(t)) � B(ks + ka) asymptotically stable, then by first approximation
theory, the zero solution e = 0 of Eq. (8) is asymptotically stable, i.e., systems (5) and (6) are synchronized.

Now we construct an optimal regulator, which is used to synchronize chaotic systems according to the theory of the qua-
dratic optimal regulator, respectively, and the aim is to get the feedback gain matrices ka and ks of system (5) and of system
(6), respectively. The steps to get matrices ka and ks are: (a) selecting an n � n dimensional positive semidefinite real sym-
metric constant matrix Q, an r � r dimensional positive definite real symmetric constant matrix R and a constant matrix B,
with the constant matrix A we can get a Riccati equation as shown in Eq. (4). Then, we should solve this equation to get ma-
trix S. If the positive definite matrix S exists, the matrix A + M(x(t),y(t)) � B(ks + ka) is asymptotically stable and the design of
control for the synchronization of two systems is successful. Otherwise we should reselect Q, R and B and calculate again. (b)
Putting the matrix S in Eq. (3), we can get the gain matrices ka and ks of the regulators. After getting the matrices ka and ks

according to the above steps, we put ka, ks and the matrix B in Eqs. (5) and (6). Then we get two synchronized systems.

3. Numerical results of the synchronization of two Quantum-CNN oscillator systems by unidirectional and by mutual
linear coupling

Case I. The synchronization by unidirectional linear coupling.
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For a two-cell Quantum-CNN, the following differential equations are obtained [19]:
_x1 ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q
sin x2;

_x2 ¼ �x1ðx1 � x3Þ þ 2a1
x1ffiffiffiffiffiffiffiffi
1�x2

1

p cos x2;

_x3 ¼ �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

3

q
sin x4;

_x4 ¼ �x2ðx3 � x1Þ þ 2a2
x3ffiffiffiffiffiffiffiffi
1�x2

3

p cos x4;

8>>>>>>>><
>>>>>>>>:

ð9Þ
where x1 and x3 are polarizations, x2 and x4 are quantum phase displacements, a1 and a2 are proportional to the inter-dot
energy inside each cell and x1 and x2 are parameters that weigh effects on the cell of the difference of the polarization
of neighboring cells, like the cloning templates in traditional CNNs. Let a1 = a2 = 2.47, x1 = 1, x2 = 1, chaos is obtained for this
system [20,23,24].

Two Quantum-CNN chaotic systems using the unidirectional linear coupling can be written as
_x1 ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q
sin x2;

_x2 ¼ �x1ðx1 � x3Þ þ 2a1
x1ffiffiffiffiffiffiffiffi
1�x2

1

p cos x2;

_x3 ¼ �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

3

q
sin x4;

_x4 ¼ �x2ðx3 � x1Þ þ 2a2
x3ffiffiffiffiffiffiffiffi
1�x2

3

p cos x4

8>>>>>>>><
>>>>>>>>:

ð10Þ
and
_y1 ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

1

q
sin y2 þ k1ðx1 � y1Þ;

_y2 ¼ �x1ðy1 � y3Þ þ 2a1
y1ffiffiffiffiffiffiffiffi
1�y2

1

p cos y2 þ k2ðx2 � y2Þ;

_y3 ¼ �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

3

q
sin y4 þ k3ðx3 � y3Þ;

_y4 ¼ �x2ðy3 � y1Þ þ 2a2
y3ffiffiffiffiffiffiffiffi
1�y2

3

p cos y4 þ k4ðx4 � y4Þ:

8>>>>>>>><
>>>>>>>>:

ð11Þ
The initial values for these linearly coupled Quantum-CNN systems are taken as x1(0) = 0.8, x2(0) = �0.77, x3(0) = �0.72,
x4(0) = 0.57, y1(0) = �0.2, y2(0) = 0.41, y3(0) = 0.25 and y4(0) = � 0.81.

Expand the right hand sides of Eqs. (10) and (11) into power series:
_x1 ¼ �2a1 � 1
2 x2

1x2 þ 1
12 x2

1x3
2 � 1

8 x4
1x2 þ x2 � 1

6 x3
2 þ 1

120 x5
2 þ � � �

� �
;

_x2 ¼ �x1ðx1 � x3Þ þ 2a1 x1 � 1
2 x1x2

2 þ 1
24 x1x4

2 þ 1
2 x3

1 � 1
4 x3

1x2
2 þ 5

8 x5
1 þ � � �

� �
;

_x3 ¼ �2a2 � 1
2 x2

3x4 þ 1
12 x2

3x3
4 � 1

8 x4
3x4 þ x4 � 1

6 x3
4 þ 1

120 x5
4 þ � � �

� �
;

_x4 ¼ �x2ðx3 � x1Þ þ 2a2 x3 � 1
2 x3x2

4 þ 1
24 x3x4

4 þ 1
2 x3

3 � 1
4 x3

3x2
4 þ 5

8 x5
3 þ � � �

� �

8>>><
>>>:

ð12Þ
and
_y1 ¼ �2a1 � 1
2 y2

1y2 þ 1
12 y2

1y3
2 � 1

8 y4
1y2 þ y2 � 1

6 y3
2 þ 1

120 y5
2 þ � � �

� �
þ k1ðx1 � y1Þ;

_y2 ¼ �x1ðy1 � y3Þ þ 2a1 y1 � 1
2 y1y2

2 þ 1
24 y1y4

2 þ 1
2 y3

1 � 1
4 y3

1y2
2 þ 5

8 y5
1 þ � � �

� �
þ k2ðx2 � y2Þ;

_y3 ¼ �2a2 � 1
2 y2

3y4 þ 1
12 y2

3y3
4 � 1

8 y4
3y4 þ y4 � 1

6 y3
4 þ 1

120 y5
4 þ � � �

� �
þ k3ðx3 � y3Þ;

_y4 ¼ �x2ðy3 � y1Þ þ 2a2 y3 � 1
2 y3y2

4 þ 1
24 y3y4

4 þ 1
2 y3

3 � 1
4 y3

3y2
4 þ 5

8 y5
3 þ � � �

� �
þ k4ðx4 � y4Þ:

8>>><
>>>:

ð13Þ
From Eqs. (12) and (13), the error dynamics is:
_e ¼ ½AþMðxðtÞ; yðtÞÞ � Bks�eþ Hðx; y; eÞ; ð14Þ
where e = (y1 � x1,y2 � x2,y3 � x3,y4 � x4)T and
MðxðtÞ; yðtÞÞ ¼

M11 �2a1 þM21 0 0
2a1 þM12 M22 0 0

0 0 M33 �2a2 þM43

0 0 2a2 þM34 M44

0
BBB@

1
CCCA
in which
M11 ¼ a1 2x1y2 �
1
6

x1y3
2 þ

1
4
ðx1y2

1y2 þ 3x2
1y1y2Þ þ � � �

� �

� � �
and H(x,y,e) contains higher degree terms of e only.
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The infinite power series of the first element of M, i.e., M11 is
2x1y2 �
1
6

x1y3
2 þ

1
4
ðx1y2

1y2 þ 3x2
1y1y2Þ þ � � � ð15Þ
It is well-known [28] that a necessary and sufficient condition for the convergence of the infinite series
u1 þ u2 þ � � � þ un þ � � �
is that for any previously assigned positive e there exists an N such that, for any n > N and for positive p,
unþ1 þ unþ2 þ � � �unþp

�� �� < e: ð16Þ
From Fig. 1, we know that
xij j < 1; yij j < 1 ði ¼ 1;2;3;4Þ: ð17Þ
Therefore, M11 and series contained in other elements of M(x(t),y(t)) are convergent series and they have bounded sums.
We can get the optimum gain ks = [k1,k2,k3,k4]T by the method of constructing a quadratic optimal regulator. With
A ¼

0 0 0 0
�x1 0 x1 0

0 0 0 0
x2 0 �x2 0

2
6664

3
7775
we choose
B ¼ 0 0 0 1½ �T ; R ¼ 1½ �; Q ¼

1 0 0 0
0 2 0 2
0 0 1 0
0 2 0 2

2
6664

3
7775: ð18Þ
After solving the corresponding Riccati equation, we get the gain matrix ks = [k1,k2,k3,k4]T = [0,1,0,1]T.
From the simulation results of Fig. 1, it is shown that master system and slave system reach the synchronization state

after they are controlled by the quadratic optimal regulator. It is noticed that the synchronization effect is good.
Case II. The synchronization by mutual linear coupling.
Two Quantum-CNN systems with mutual linear coupling are given:
_x1 ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q
sin x2 þ k11ðy1 � x1Þ;

_x2 ¼ �x1ðx1 � x3Þ þ 2a1
x1ffiffiffiffiffiffiffiffi
1�x2

1

p cos x2 þ k12ðy2 � x2Þ;

_x3 ¼ �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

3

q
sin x4 þ k13ðy3 � x3Þ;

_x4 ¼ �x2ðx3 � x1Þ þ 2a2
x3ffiffiffiffiffiffiffiffi
1�x2

3

p cos x4 þ k14ðy4 � x4Þ

8>>>>>>>><
>>>>>>>>:

ð19Þ
and
_y1 ¼ �2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

1

q
sin y2 þ k21ðx1 � y1Þ;

_y2 ¼ �x1ðy1 � y3Þ þ 2a1
y1ffiffiffiffiffiffiffiffi
1�y2

1

p cos y2 þ k22ðx2 � y2Þ;

_y3 ¼ �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

3

q
sin y4 þ k23ðx3 � y3Þ;

_y4 ¼ �x2ðy3 � y1Þ þ 2a2
y3ffiffiffiffiffiffiffiffi
1�y2

3

p cos y4 þ k24ðx4 � y4Þ:

8>>>>>>>><
>>>>>>>>:

ð20Þ
Expand the right hand sides of Eqs. (19) and (20) into power series:
_x1 ¼ �2a1 � 1
2 x2

1x2 þ 1
12 x2

1x3
2 � 1

8 x4
1x2 þ x2 � 1

6 x3
2 þ 1

120 x5
2 þ � � �

� �
þ k11ðy1 � x1Þ;

_x2 ¼ �x1ðx1 � x3Þ þ 2a1 x1 � 1
2 x1x2

2 þ 1
24 x1x4

2 þ 1
2 x3

1 � 1
4 x3

1x2
2 þ 5

8 x5
1 þ � � �

� �
þ k12ðy2 � x2Þ;

_x3 ¼ �2a2 � 1
2 x2

3x4 þ 1
12 x2

3x3
4 � 1

8 x4
3x4 þ x4 � 1

6 x3
4 þ 1

120 x5
4 þ � � �

� �
þ k13ðy3 � x3Þ;

_x4 ¼ �x2ðx3 � x1Þ þ 2a2 x3 � 1
2 x3x2

4 þ 1
24 x3x4

4 þ 1
2 x3

3 � 1
4 x3

3x2
4 þ 5

8 x5
3 þ � � �

� �
þ k14ðy4 � x4Þ

8>>><
>>>:

ð21Þ
and
_y1 ¼ �2a1 � 1
2 y2

1y2 þ 1
12 y2

1y3
2 � 1

8 y4
1y2 þ y2 � 1

6 y3
2 þ 1

120 y5
2 þ � � �

� �
þ k21ðx1 � y1Þ;

_y2 ¼ �x1ðy1 � y3Þ þ 2a1 y1 � 1
2 y1y2

2 þ 1
24 y1y4

2 þ 1
2 y3

1 � 1
4 y3

1y2
2 þ 5

8 y5
1 þ � � �

� �
þ k22ðx2 � y2Þ;

_y3 ¼ �2a2 � 1
2 y2

3y4 þ 1
12 y2

3y3
4 � 1

8 y4
3y4 þ y4 � 1

6 y3
4 þ 1

120 y5
4 þ � � �

� �
þ k23ðx3 � y3Þ;

_y4 ¼ �x2ðy3 � y1Þ þ 2a2 y3 � 1
2 y3y2

4 þ 1
24 y3y4

4 þ 1
2 y3

3 � 1
4 y3

3y2
4 þ 5

8 y5
3 þ � � �

� �
þ k24ðx4 � y4Þ:

8>>><
>>>:

ð22Þ
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Fig. 1. Time histories of states, state errors for unidirectional linear coupling case.
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From Eqs. (21) and (22), the error dynamics is:
_e ¼ ½AþMðxðtÞ; yðtÞ � Bðks þ kaÞÞ�eþ Hðx; y; eÞ; ð23Þ
where e = (y1 � x1,y2 � x2,y3 � x3,y4 � x4)T and
MðxðtÞ; yðtÞÞ ¼

M11 �2a1 þM21 0 0
2a1 þM12 M22 0 0

0 0 M33 �2a2 þM43

0 0 2a2 þM34 M44

0
BBB@

1
CCCA
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in which
(

M11 ¼ a1 2x1y2 �
1
6

x1y3
2 þ

1
4
ðx1y2

1y2 þ 3x2
1y1y2Þ þ � � �

� �

� � �
Similar to Case I, from Fig. 2, jxij < 1, jyi j < 1 (i = 1,2,3,4), the infinite power series elements of M(x(t),y(t)) are all convergent
and have bounded sums [27,28].

The optimum gains ka = [k11,k12,k13,k14]T and ks = [k21,k22,k23,k24]T can be obtained by the method of constructing a qua-
dratic optimal regulator. With
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Fig. 2. Time histories of states, state errors for mutual linear coupling case.
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A ¼

0 0 0 0
�x1 0 x1 0

0 0 0 0
x2 0 �x2 0

2
6664

3
7775
we choose
B ¼ 0 0 0 1½ �T ; R ¼ 1½ �; Q ¼

1 0 0 0
0 2 0 2
0 0 1 0
0 2 0 2

2
6664

3
7775: ð24Þ
After solving the corresponding Riccati equation, we then get two gain matrices ka = [k11,k12,k13,k14]T = [0,0.5,0,0.5]T and
ks = [k21,k22,k23,k24]T = [0,0.5,0,0.5]T.

From the simulation results of Fig. 2 two systems reach the synchronization state after they are controlled by the qua-
dratic optimal regulator. It is noticed that the synchronization effect is also satisfactory.
4. Chaotization of Quantum-CNN chaotic system scheme and simulation

Optimal control is a well-established engineering control strategy, and is useful for both linear and nonlinear system with
linear or nonlinear controllers [3]. Now, we use a typical optimal control for the chaotization of Quantum-CNN system. Con-
sider the system (9) with a controller u and define the Hamilton function:
Hðx1; x2; x3; x4; u;pÞ ¼ pT Fðx1; x2; x3; x4;u; pÞ;
pT ¼ ½p1 p2 p3 p4�;

ð25Þ
where p is a Lagrange multiplier, called a co-state vector, F is the right hand side of Eq. (9). Following the variational principle
of optimal control, we can obtain
p2 �x1ðx1 � x3Þ þ 2a1
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

q cos x2

0
B@

1
CAþ p3 �2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

3

q
sin x4

� 	
þ p4 �x2ðx3 � x1Þ þ 2a2

x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

3

q cos x4

0
B@

1
CA ¼ 0;

ð26Þ

p2
�2a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q sin x2 ¼ 0: ð27Þ
This yield a non-trivial solution for (p2,p3,p4) if and only if
�2a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q sin x2 ¼ 0: ð28Þ
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Fig. 3. Lyapunov exponents of controlled Quantum-CNN system.
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It gives an optimal surface singularly in the state space. This type of control assumes values on the two allowable bound-
aries (27) and (28) alternatively according to a switching surface. Locating system trajectories on the surface, a typical feed-
back control in the form
u ¼ �kbsgn
�2a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

q sin x2

2
64

3
75 ð29Þ
can be used. By adjusting the value of kb from zero initial value to kb = 1.6 � 10�4 in the above controller with the signum
function
sgn½v � ¼
1 if v > 0;
0 if v ¼ 0;
�1 if v < 0

8><
>: ð30Þ
the chaotic motion with one positive Lyapunov exponent can be controlled to chaotic motion with two positive Lyapunov
exponents as shown by the simulation result in Fig. 3.
5. Conclusions

Two chaotic Quantum-CNN systems are synchronized in two cases: unidirectional linear coupling by optimum control,
mutual linear coupling by optimum control. The number of controllers for optimum control is less than that for synchroni-
zation only by linear couplings. This results in lower cost. In chaos synchronization cases, by a theorem of convergent series,
we prove that all infinite power series elements of A + M(x(t),y(t)) � B(ks + ka) are convergent and have bounded sums. This
synchronization of chaos systems can be used to increase the security of communication. Next, the optimum control is used
for chaotization, i.e., to enhance original chaotic state to more complex chaotic state. Numerical simulations are used to ver-
ify the effectiveness of the proposed scheme.
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