國立交通大學

電子工程學系電子研究所 碩士論文

光子晶體鏡面雷射之研究 The Study of Photonic Crystal Mirror Laser

- 研究生:王勝雄 指導教授:李建平博士
- 中華民國九十四年六月

光子晶體鏡面雷射之研究

The Study of Photonic Crystal Mirror Laser

國立交通大學

電子工程學系 電子研究所

研究生 : 王勝雄

Student: Sheng-Hsiung Wang

指導教授:李建平 博士 Advisor: Dr. Chien-Ping Lee

碩士論文 A Thesis Submitted to Department of Electronics Engineering College of Electrical Engineering and Computer Science National Chiao Tung University in Partial Fulfillment of the Requirements for the degree of Master of Science in **Electronics Engineering** June 2003 Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

光子晶體鏡面雷射之研究

學生:王勝雄

指導教授:李建平 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

我們成功地利用電子束微影系統與電感耦合電漿乾式蝕刻的技術在砷化鎵 基板上製作出二維光子晶體,並且將二維光子晶體鏡面與邊射型雷射整合在一 起,這樣的雷射結構具有較低的起援電流和較高的 η s之特性。

本論文利用 R-Soft 軟體來對二維光子晶體做模擬,找出適當的二維光子晶 體排列,能對於波長 980 nm 雷射提供高的反射率,以使光子晶體能取代一般的 雷射的劈裂鏡面,製作反射率高達 71%的雷射鏡面,另外,更進一步將鏡面改為 空橋式鏡面(Air bridge mirror),以避免光從有限深光子晶體下方散逸,來研 究是否能提供更高的反射率。

文中主要將從光子晶體雷射的 L-I 曲線、輸出頻譜來討論光子晶體鏡面對雷射的影響。

The Study of Photonic Crystal Mirror Laser

Student : Sheng-Hsiung Wang

Advisor : Dr. Chien-Ping Lee

Department of Electronics Engineering and Institute of Electronics National Chiao Tung University

Abstract

We have successfully fabricated 2-D photonic crystal on GaAs wafer with e-beam lithography and inductive coupled plasma etching (ICP). With this technique, 2-D photonic crystal mirror were integrated with edge emitting lasers, which demonstrated lower threshold current and higher slope efficiency than double cleaved mirror laser.

In the thesis, we use R-Soft program to find the appropriate photonic crystal structure which can replace laser cleaved mirror and provide high reflectivity as high as 71% for 980 nm laser. Furthermore, we replace mirror with air bridge mirror in order to prevent light from escaping below photonic crystal. Then we observe whether it can provide higher reflectivity.

We discussed experimental results of photonic crystal mirror laser through L-I curve, output spectrum, and compared these properties with double cleaved mirror laser.

ii

誌 謝

這2年,過的並不輕鬆,好幾次都差點想放棄,幸好還是熬了過來,在這其 中,學會了不少事,交了不少好友,也很慶幸自己能完成這篇碩士論文。這段奮 鬥的日子,絕對是這一生中無法忘懷的回憶。

2年走來,首先得感謝李建平老師,老師敏銳的物理直覺、謙和的態度,常 使我能少走許多冤枉路。老師處理事情的果決,一直是我所學習的榜樣,事在人 為,許多事情都得積極才會有正面的結果。另外,老師為我們所爭取到的資源, 是許多實驗室所無法想像的,讓我們能有個不乏匱虞的環境,能盡全力地做研 究,雖然在過程中有許多失敗和痛苦,但我已比太多人幸運,能在老師的指導下, 渡過這些日子,於此致上最大的謝忱!

由衷感謝邱舒偉學長,能容忍我的索求無度,非常熱心地提供試片給我,沒 有你,我不可能完成我的論文;感謝黃世傑學長在光子晶體理論上的協助;感謝 技安學長在電子束微影系統的教導,另外,也是你的風趣,讓研究生活更多采多 姿;感謝李秉奇與林志昌學長在許多實驗技巧、物理知識上的幫忙;感謝工研院 林國瑞學長在雷射原理上的指導,葉文勇博士、顏壐軒學長在實驗儀器上的支 援,謝謝你們!

阿福、小叮噹、凌老師、啟暉:你們是我的好戰友,我們一起經歷過這2 年酸甜苦辣混雜的生活,一起在實驗室討論上課內容,一起在籃球場上拼命,有 你們,這段日子才會是過得更精采。

宗樺:你是一位很認真聰明的學弟,人又好,肯犧牲自己幫忙大家,如果沒 有你幫忙我做實驗,我大概都得每天看日出吧!我相信你一定會在研究這條路上 很順利的。聖偉、大鈞、居倫、廟公:你們都是很不錯的學弟,祝福你們研究都 能順利。

小如:很感謝上天讓妳在我的生命中出現,讓我能在低潮時能咬牙著苦撐, 在我忙到無法照顧妳時,妳總是默默在我旁邊守著我,給我力量繼續往前,謝謝 妳,我的未來寶貝老婆。

最後,感謝我最親愛的父母親,沒有你們就沒有今天的我,你們在我成長過 程中,總是讓我能自由發展,不給拘束,我可以自由自在地學我所喜歡的東西, 過我想過的生活,造就了一個樂觀的我,我愛你們,也以你們為榮!

謹以此論文獻給所有關心我的師長朋友。

iii

目錄

第一章 簡介1	L
第二章 原理	}
2-1 光子晶體的概念3	
2-2 光子晶體的理論分析4	
2-3 二維光子晶體6	
2-4 二維光子晶體之相關應用8	
2-5 半導體雷射基本概念11	
第三章 製程與量測	3
3-1 光子晶體製程23	3
3-2 光子晶體雷射製程	5
3-2-1 量子井雷射磊晶結構	5
3-2-2 雷射製程	5
3-3 雷射特性量测系统2	8
第四章 結果與討論	38
4-1 雙劈裂鏡面雷射之特性3	8
4-2 光子晶體鏡面設計3	9
4-3 光子晶體鏡面雷射特性3	9
4-3-1 第一組條件之光子晶體鏡面雷射4	.0
4-3-2 第二組條件之光子晶體鏡面雷射4	.3
4-3-3 空橋式光子晶體鏡面雷射4	6

第五章	結論	62
參考文獻	ž	63

圖目錄

- 圖 1-1 (a)電子色散關係 (b)光子色散關係
- 圖 2-1 Yablonovitch 及 Gmitter 發現的第一個光子能帶結構^[1]
- 圖 2-2 Yablonovitch 等人改用非球形的"原子"來打破對稱性,獲得真正的 絕對光能隙
- 圖 2-3 一維、二維、三維光子晶體
- 圖 2-4 (a)二維 square 光子晶體與其倒晶格 (b)二維Hexagonal 光子晶體與其倒晶格^[4]
- 圖 2-5 二維光子晶體平板的各項參數^[4]
- 圖 2-6 TE 波示意圖
- 圖 2-7 TM 波示意圖
- 圖 2-8 在空氣中做squarey週期性排的無限長桿子之光子晶體能帶圖^[5]
- 圖 2-9 在介電常數 *ε* =12 的材料中,挖出hexagonal排列的無限深空氣孔洞之光 子晶體能帶圖^[5]

A SHILLER,

- 圖 2-10 在空氣中做square週期性排列的有限長桿子之光子晶體能帶圖^[5]
- 圖 2-11 在介電常數 ε =12 的材料中,挖出hexagonal排列的有限深空氣孔洞之 光子晶體能帶圖^[5]
- 圖 2-12 Defect mode laser俯視圖^[6]
- 圖 2-13 Defect mode laser側視圖^[6]
- 圖 2-14 光子晶體波導俯視圖[8]
- 圖 2-15 光子晶體光纖側視圖^[9]
- 圖 2-16 (a)傳統光纖導波原理(全反射)^[9]

(b)光子晶體光纖導波原理(布拉格繞射)^[9]

圖 2-17 半導體雷射基本操作原理

圖 2-18 FP(Fabry-Perot)共振腔示意圖

- 圖 3-1 PMMA 俯視圖
- 圖 3-2 PMMA 側視圖
- 圖 3-3 SiN 俯視圖
- 圖 3-4 SiN 側視圖
- 圖 3-5 GaAs 俯視圖
- 圖 3-6 GaAs 側視圖
- 圖 3-7 B.O.E 對不同 A1 含量之 A1GaAs 之蝕刻速率[9]
- 圖 3-8 空橋式鏡面側視圖
- 圖 3-9 元件示意圖
- 圖 3-10 實際元件俯視圖
- 圖 3-11 量子井磊晶結構圖
- 圖 3-12 光子晶體傳統鏡面雷射製程流程
- 圖 3-13 空橋式鏡面光子晶體雷射製程流程
- 圖 3-14 L-I 曲線量測系統圖
- 圖 3-15 雷射輸出光譜量測系統
- 圖 4-1 劈裂鏡面雷射 L-I 圖
- 圖 4-2 共振腔長度 600 um 劈裂鏡面雷射頻譜圖
- 圖 4-3 劈裂鏡面雷射(1/ηd)對L的作圖
- 圖 4-4 入射平面波(波長為 0.98 um)入射填充因子 30%之 2 維無窮長光子晶體 的時變穿透強度圖(此圖為完全反射)
- 圖 4-5 入射平面波(波長為 0.98 um)入射填充因子 30%之 2 維無窮長光子晶體 的時變穿透強度圖(此圖為大部分穿透,穿透率約為 0.8)
- 圖 4-6 填充因子為 30%之光子晶體的晶格常數對反射率之作圖
- 圖 4-7 填充因子為 30%之光子晶體的晶格常數對反射率之作圖
- 圖 4-8 填充因子為 30%、晶格常數分別為 0.18 um、0.21 um、0.25 um 之光子

晶體結構圖

- 圖 4-9 S、M、L 光子晶體鏡面雷射和劈裂鏡面雷射之 L-I 圖
- 圖 4-10 S、M、L光子晶體鏡面雷射的 η s對晶格常數的作圖
- 圖 4-11 L 光子晶體鏡面雷射的頻譜圖
- 圖 4-12 填充因子為 30%之光子晶體的晶格常數對反射率之作圖

(a)入射光為 0.98 um

(b)入射光為 0.99 um

- 圖 4-13 晶格常數為 0.25 um、填充率分別為 30%、38%、45% um 之光子晶體結構 圖
- 圖 4-14 晶格常數為 0.25 um、填充率分別為 30%、38%、45%之光子晶體鏡面雷射

和劈裂鏡面雷射之 L-I 圖 圖 4-15 光子晶體鏡面雷射的 η s對填充率的作圖 圖 4-16 α s 對 s 之分佈圖 圖 4-17 晶格常數為 0.25 um、填充率 30%之傳統式鏡面和空橋式鏡面的 L-I 曲線 圖 4-18 空橋式鏡面崩壞圖

第一章 簡介

(Introduction)

在現代科技發展中,光電科技乃為新興領域,其應用涵蓋各重要範疇,如光纖 通訊、光顯示、光資訊儲存、高效率照明及生物醫學方面的應用。隨著光電科技在 基礎研究上不斷的突破,它已經在我們的日常生活中造成重大的影響,這樣的影響 力並將持續而且擴大。

在許多處理光訊號的元件結構中,由於電磁波相位週期性的本質,使得週期性 結構成為關鍵要素。光子晶體(Photonic crystal)係在二維或三維空間中,讓材料折射 率或介電常數產生週期性變化的結構,這種結構類似原子在固態晶體中排列,因此 如圖1-1所示,類似電子於固態晶體中的能帶結構,光子晶體則會產生光子的能帶結 構。

在光子晶體中,電磁波的傳播特性,包括振幅、相位、偏極化方向和波長,都 可以經由改變光子晶體的結構而加以大幅度的調變。特別是如果在週期性的排列中 故意安排一些瑕疵,將會在光子晶體的能隙範圍內產生一些狹窄的光子穿透頻道, 進而衍生出很多具應用價值的元件。

光子晶體可以提供許多新型光電元件的製作,尤其是可以大幅縮小元件的體積,並從事高密度的集成,所以光子晶體研究最終的目標即是要將各種不同用途的 光電元件整合在一起以達成積體光路(Integrated optical circuits)的夢想。

本研究成功地利用二維光子與傳統邊射型雷射整合在一起,並藉由光子晶體產 生光能隙的能力,來取代一般雷射劈裂鏡面,達到更高的反射率,降低起振電流, 亦提供雷射未來整合在積體光路上的可能性。

1

圖 1-1 (a)電子色散關係 (b)光子色散關係

第二章 原理

(Principle)

2-1 光子晶體的概念

在二十世紀初就已經知道,由於晶體(如半導體)中晶格的週期性位能 (Periodic potential)排列,部份波段會因破壞性干涉而形成能隙(Energy gap),使得 電子的色散關係(Dispersion relation)呈帶狀分佈,此即眾所周知的電子能帶結構 (Electronic band structure)。

E. Yablonovitch^[1] 和 S. John^[2]在 1987 年首先提出,如果在電磁波的波長尺 度下製作週期性排列的介質,使介電常數呈周期性或某些規則排列,則電磁波在 介質的行為將有如電子在晶體中般,亦會形成光能帶結構,這樣一來,無需改變 物質的內在化學性質,就可以得到我們想要的光特性,例如可以製造出光子的能 隙(Photonic bandgap),使某些波長的光子無法在此介質中傳播,形成一種光子的 絕緣體。這種新的人工晶體被叫做光子晶體(Photonic crystal)。

Yablonovitch及Gmitter曾經利用三氧化二鋁(Al₂O₃)塊材,按照面心立方 (Face-centered cubic, fcc)的排列方式鑽了將近八千個球狀空洞,製作出周期性的 介電質排列,形成一個人造的巨觀晶體。 三氧化二鋁和空氣的介電常數分別為 12.5和1.0,面心立方體的晶格常數是1.27公分。根據實驗量得的透射頻譜,求 得其絕對能隙位於15GHz的微波範圍,頻寬約有1GHz,其對應的三維能帶結構 如圖 2-1 所示,其中左斜與右斜線分別代表兩種不同的偏極化模。

但理論學家稍後指出,上述系統因對稱性之故,在W和U兩個方向上仍有相對少數的能態存在,並非真正沒有能態,因此只具有虛能隙。Yablonovitch等人隨後調整製作方式^[3],在塊材上沿三個夾 120 度角的軸鑽洞,如此得到的fcc晶格

含有非球形的"原子"如圖 2-2 所示,終於打破了對稱的束縛,在微波波段獲得真正的絕對能隙,證實該系統為一個光子絕緣體(Photonic insulator)。

光子晶體可分為一維·二維·三維的光子晶體,乃依其介電質(或折射率)的 空間週期排列性質所分,如圖 2-3 所示,若材料折射率變化週期性為單一軸向上 的稱為一維光子晶體。折射率變化週期性為雙軸(平面)上的,稱為二維光子晶 體。折射率變化週期性為三軸(立體)的,稱為三維光子晶體。

2-2 光子晶體的理論分析

光波在光子晶體內的特性,須符合馬克斯威爾方程式,在沒有自由電荷與自 由電流的情況下,馬克斯威爾方程式可以寫成

其中,E與H分別代表電場與磁場,r為位置向量,t為時間,而 ε_0 與 μ_0 分別為自由空間之介電係數(Permittivity)與導磁係數(Permeability), $\varepsilon(\vec{r})$ 為相對介電常數(Relative dielectric constant),則是空間的函數,由光子晶體的介電質周期性排列所決定。

以上的四條方程式並非互相獨立的,兩個旋量方程式分別隱含了兩個散度方 程式。因此通常只要求解兩個旋度方程式,而兩個散度方程式就會自動滿足。其 次,我們可以選擇磁場或電場作為獨立變數,消去另一個變數,得到二階的單一 向量方程式,求解出此獨立變數後,再反帶回求解另一變數,避免同時處理磁場 跟電場。基於數學運算上的考量,在研究光波在光子晶體的傳遞現象時,我們通 常選擇磁場作為獨立變數。

假設
$$\vec{E}(\vec{r},t) = \vec{E}(\vec{r})e^{-iwt}$$

$$\vec{H}(\vec{r},t) = \vec{H}(\vec{r})e^{-iwt}$$

把上式到代入馬克斯威爾方程式,並消去時間因子e^{-iwt},得到頻域的馬克斯威爾 方程式:

$$\nabla \times \vec{E}(\vec{r}) = iw\mu_0 H(\vec{r})$$
$$\nabla \times \vec{H}(\vec{r}) = -iw\varepsilon_0 \varepsilon(\vec{r})\vec{E}(\vec{r})$$
$$\nabla \bullet \left[\varepsilon(\vec{r})\vec{E}(\vec{r})\right] = 0$$
$$\nabla \bullet \vec{H}(\vec{r}) = 0$$

其次,再消去電場複數向量 $\vec{E}(\vec{r})$,可以得到磁場複數向量 $\vec{H}(\vec{r})$ 满足

$$\nabla \times \left(\frac{1}{\varepsilon(\vec{r})} \nabla \times \vec{H}(\vec{r})\right) = \frac{\omega^2}{c^2} \vec{H}(\vec{r}) \dots (2-1)$$

其中 $c = (\mu_0 \varepsilon_0)^{-1/2}$ 為真空中的光速。藉由適當的邊界條件,求出磁場複數向量 $\vec{H}(\vec{r})$,接著我們可藉由下式求出電場複數向量 $\vec{E}(\vec{r})$:

$$\vec{E}(\vec{r}) = \left(\frac{i}{\omega\varepsilon(\vec{r})\varepsilon_0(\vec{r})}\right) \nabla \times \vec{H}(\vec{r})$$

由以上所知,求解重點就是 2-1 式,而此式其實就是一個求解特徵值的問題,定 義一運算子(Operator) Θ 如下:

$$\boldsymbol{\varTheta} = \boldsymbol{\nabla} \times \left(\frac{1}{\boldsymbol{\varepsilon}(r)} \boldsymbol{\nabla} \times\right)$$

$$\Theta H(\vec{r}) = \frac{\omega^2}{c^2} \vec{H}(\vec{r})$$

其中比例常數 $\frac{\omega^2}{c^2}$ 就是特徵向量 $\vec{H}(\vec{r})$ 所對應的特徵值。可以證明線性運算子 Θ 是 self-adjoint 運算子,因此特徵值必為實數。所有非零特徵向量所對應特徵值之集合即構成能階或能帶,或是稱為色散關係式。

目前計算光子能帶結構的數值方法有三種:平面波展開法(Plane-wave expansion method)、傳遞矩陣法(Transfer-matrix method)、時域有限差分法 (Finite-difference time-doamin method 簡稱 FTDT 法),在此不加以討論。

2-3 二維光子晶體

對於二維光子晶體平板來說,其重要參數不外乎(如圖 2-5 所示):a (相鄰兩個空氣洞中心的距離)、r (空氣孔洞的半徑)、d (二維光晶體在 Z 方向的厚度)、 介電材料的折射率 n 以及 f (填充因子; Fill factor),而填充因子定義為空氣孔洞 和背景材料在空間的體積比例,對於 hexagonal 晶格結構而言,填滿因子可以表 示成:

$$f = \frac{2\pi}{\sqrt{3}} \left(\frac{r}{a}\right)^2$$

在討論各種二維光子晶體之前,先引入 TE 波與 TM 波的概念,所謂 TE 波即入射光波的電場方向平行於欲入射的光子晶體平面,如圖 2-6 所示。而 TM 波

即入射光波的磁場方向平行於欲入射的光子晶體平面,如圖 2-7 所示。

首先考慮完美的二維光子晶體^[4],意即結構在Z軸方向無限延伸的光子晶 體。圖 2-8 為在空氣中做square週期性排列的無限長桿子之光子晶體能帶圖,縱 軸為正規頻率c/a,橫軸為不同方向之波向量。桿子的介電常數 *E*=12, r/a=0.5。 由圖淺灰色地帶可以發現,在這樣的結構之下存在一個TM波的光子能隙,意即 在此能隙範圍內,任何方向的TM波都無法穿過此光子晶體,反之在淺灰色地帶 外的區域即是可以存在於光子晶體的模態。

圖 2-9 為在介電常數ε=12 的材料中,挖出 hexagonal 排列的無線深空氣孔洞 之光子晶體能帶圖,此結構的 r/a=0.45。由圖淺灰色地帶可以發現,在這樣的結 構之下存在一個 TE 波的光子能隙,意即在此能隙範圍內,任何方向的 TE 波都 無法穿過此光子晶體,反之在淺灰色地帶外的區域即是可以存在於光子晶體的模 態。

一般而言柱狀排列的結構較易形成 TM 波的光子能隙,而空氣孔洞則較易形成 TE 波的光子能隙。接下來我們考慮非完美的二維光子晶體,意即在 Z 軸方向 非無限延伸的結構,此即上文所提到的光子晶體平板。圖 2-10 與圖 2-11 與圖 2-8、 圖 2-9 之差異僅在於 Z 軸方向一個為無限一個為有限,但能帶圖卻有很大的不 同。在光子晶體平板的結構之下,因為結構對稱性的關係,沒有完美的 TM 或 TE 光子能隙,只能說是類似 TE 或 TM。因此我們將原本的 TM 能隙稱之為 odd 能隙,TE 能隙稱之為 even 能隙。另外值得注意的是光子晶體平板能帶圖有一區 域稱之為 light cone,這是之前所沒有的,在 light cone 裡面的模態是連續的而且 是向四面八方輻射出去的,因此在 light cone 內的模態我們稱之為 radiation mode;反之在 light cone 外的模態是不連續的,這些模態可以被侷限在光子晶體 內部,我們稱之為 guided mode。由於本實驗是整合雷射和光子晶體,然而雷射 一般為 TE 波,故我們選用的是 hexagonal 排列的二維光子晶體平板,希望能利 其 TE 波的能隙來達成一良好鏡面的效果。

2-4 二維光子晶體之相關應用

2-D photonic band-gap defect mode laser ^{[5], [6]}:

將上述二維光晶體的特性應用在半導體雷射上,如圖 2-12 與圖 2-13 所示我 們在量子井雷射磊晶片上製作二維光子晶體,並在中心故意留一個不挖洞的缺陷 且在元件下方製作一個空氣腔,這樣一來從主動層被激發出來的光在垂直方向是 被上下空氣所形成的全反射給限制住,在平面方向則是被光子晶體給限制住,光 子將被侷限在缺陷中,形成一高能量密度的共振場。

Photonic crystal waveguide ^[7]:

除了製造一點缺陷外,也可以製造線缺陷,使光波僅能在此線缺陷上傳播, 達到光學導波的效果,這可能是光子晶體目前最重要應用了。因為在光電子元件 中,我們大都需要藉光學波導將光束縛在一狹小區域,使之不散開以便進行調 變,但一般傳統的光學波導是製造一具較高折射率的區域,利用其與較低折射率 介質間形成的全反射,而將光侷限在高折射率介質中,因此光的能量傳遞、色散 效應、可彎曲程度等皆受到限制。

相對於此全反射式波導,若在光子晶體中製造一通道,則光波將被強迫在此 通道中前進(如圖 2-14 所示)。有別於傳統之光學波導需受限於在高折射率的介質 中傳播,這種波導可以讓光波在折射率低如空氣的環境下傳播,也可以讓光波做 大角度轉彎而僅有非常少的能量損失。此種新的導波行為有很多很重要的應用, 尤其在以光子晶體取代光纖作為光通訊通路上與積體光學器件上,更是具有非常 大的商業價值。

Photonic crystal fiber ^[8]:

Dr. R. F. Cregan 等在 Science 上提出一種以光子晶體光纖取代傳統光纖的方法,他們所提出的作法為將一堆外徑為 1mm 的玻璃柱綁在一起,在中間留下一些空白作為空氣通道,將此捆玻璃柱放入一光纖拉引機中加熱拉長,而形成玻璃-空氣週期性結構的光子晶體結構與中間的空氣通道(如圖 2-15 所示)。

傳統的光纖如圖 2-16(a)所示是由高折射率(Core)、低折射率(Cladding)介質 間的全反射來導波,在這樣的波導中,光的傳遞功率與資訊數量受到介質對能量 的忍受力與色散效應所限制。而在光子晶體光纖中,具有二維週期性排列的介質 結構會形成光子能隙,在此能隙的光波波長無法在其中進行傳播,如在此材料中 有一空氣通道,雖然空氣具有最低的折射率,但光在此空氣通道中傳播遇到光子 能隙時無法穿越而被反射回來,其原理如同電子之於原子晶格的布拉格反射 (Bragg reflection)(圖 2-16(b)),因此光子的傳播被受限於此空氣通道中,因為 是以空氣為傳播介質,其光的傳遞功率大幅提高、沒有傳遞損失且無色散效應的 問題,是最為理想的光波導。

積體光學:

積體光學在二、三十年前就受到大家的重視,它的基本構想是希望引進積體 電路的技術與經驗將一般光學元件整合在一基材上,利用光子取代電子作為訊號 的傳遞。因為光子比電子具有更快的速度與更大的頻寬,因此對目前機已達到極 限的積體電路而言,積體光學會有更好的表現。但近十幾年對積體光學元件的發 展,並不如想像般的順利,目前以積體光學技術所製造的商品,大多為一些比較 簡單的電光、聲光調變器、光分離器、分工/解分工器等,距離全光式、多元件 的積體光學器件仍有一段遙遠距離。究其原因,很大一部份出現在光學波導的限 制上,傳統積體光學波導的製程是以利用擴散、鍍膜、蝕刻等技術在基材上製造 一較高折射率波導,利用其與基材間的全反射進行導光。因為此波導區與基材的 折射率差一般很小(n=0.1~0.001),這種波導對光的束縛能力相對很微弱,因此即 此在僅有 5°的彎曲下,一般光場也會有超過一半的輻射損失。光波難以彎曲,意 味著光學元件積體化的困難。為了解決這個問題有各式各樣的波導模型與模擬被 提出,但在實驗上,以傳統方法為主體的光學波導仍難以達成 10°以上的彎曲, 要進行 90°的彎曲更為不可能的事情。但近年來對光子晶體的研究與發展,出現 了一個新的解決辦法,如前節對光子能隙波導的特性所述,在光能隙材料中,光 場若以各不同的入射角度進入皆無法傳遞出去,因此可以以一瑕疵通道作為波 導,光場僅能在此通道波導中前進,因此可進行大角度的彎曲,這種波導在積體 化光學元件中是非常重要的,可以大量減少體積,達成輕、薄、短、小的要求。

2-5 半導體雷射基本概念

半導體雷射基本原理

傳統 P-I-N 邊射形半導體雷射,電子經由電極注入,流至主動層(active layer) 奧電洞結合,產生自發性發光(Spontaneous emission),此光子再藉由兩端自然斷 裂面所形成的共振腔來回反射震盪傳播。在其傳播的過程中,光子又會激發電子 電洞對結合產生新的光子,新生成的光子會與入射光子有共同的頻率,共同的方 向,也就是所謂的同調性 (Coherent),如此循環使得在共振腔內的光子愈來愈 多,這樣的機制稱為受激發光 (Stimulated emission),也是半導體雷射運作的基 本原理 (圖 2-17)。

臨界條件與縱向光模

圖 2-18 表示雷射縱向切面與 FP(Fabry-Perot)共振腔的示意圖,當光在共振 腔內行徑時,其強度如下:

$$I = I_0 \exp[(\gamma - \alpha_i)Z]$$

其中,I₀為光在Z=0 處的強度,γ為增益係數(gain coefficient),α_i為吸收係數 (Absorption coefficient)。當光由Z=0 處走到Z=L處,再經r₂鏡面反射時,其光強度 為

$$I = r_2 * I_0 \exp[(\gamma - \alpha_i)L]$$

同理,當光由r2鏡面反射再向r1鏡面前進,且由r1鏡面反射後所得強度應如下:

$$I = r_1 r_2 * I_0 \exp[(\gamma - \alpha_i) * 2L]$$

當此時強度回到原來的強度Io時,才會達到共振條件,即:

$$I_0 = r_1 r_2 * I_0 \exp[(\gamma - \alpha_i) * 2L]$$

Or
$$r_1 r_2 \exp[(\gamma - \alpha_i) * 2L] = 1$$

也就是:

$$\gamma_{th} = \alpha_t + \frac{1}{2L} \ln \left(\frac{1}{r_1 r_2} \right)$$

其中, γ_{th} 為臨界增益,另外我們還需考慮光場分布在主動區的比例,即為 Γ (侷限因素; Confinement factor),其定義如下:

$$\Gamma = \frac{ 在主動層內主動層內
主動層內動層內外光強和 = \frac{\int_{-d/2}^{d/2} E^2(z) * dz}{\int_{-\infty}^{\infty} E^2(z) * dz}$$
去修改為:

故臨界增益關係式修改為:

$$\Gamma \gamma_{th} = \alpha_i + \frac{1}{2L} \ln \left(\frac{1}{r_1 r_2} \right)$$

除此之外,當雷射達到共振時,其共振腔長度亦要滿足光半波長的整數倍之條 件,即:

$$L = q * \left(\frac{\lambda}{2n_r}\right)$$

or
$$\lambda = \left(\frac{2n_r L}{q}\right)$$

其中,q為正整數,λ為雷射光在真空中的波長,n_r為共振腔的相對折射率 (Refractive index),若換成頻率則為:

$$v = qx(c/2n_rL)$$

其中q為整數,因為n_r會隨著v改變,所以可以從上式導出雷射縱向光模的頻率差為:

$$\Delta v = \frac{c}{2[\mu + v(\frac{\partial \mu}{\partial v})]L}$$

以現在 980nm的半導體雷射來看,共振腔長度 1mm時,縱向光模的波長差 (Δλ~λ²/2μL)約為1Å~2Å左右。

起始電流密度 (Threshold Current Density)

雷射形成的首要條件,是要外加電壓使準費米能階(Quasi-Fermi level)分開到 大於可被激發的光子能量[($E_{FC}-E_{FV}$) > hv],如此使受激輻射率大於吸收率而產生 增益(Gain)。當達到雷射的共振條件時,雷射發光的機制由自發性發光轉變為受 激發光,這時候注入雷射的電流稱為起始電流(Threshold current) I_{th},而起始電流 密度則定義為 $I = \frac{I_{th}}{2}$

$$J_{th} = \frac{I_{th}}{WL}$$

其中 W 為雷射條紋的寬度, L 則是雷射共振腔的長度。

差額量子效率(Differential Quantum Efficiency)

當少數載子注入主動層後,會與多數載子經輻射性復合(Radiative recombination)產生光子,或經非輻射性復合(Non radiative recombination)造成損失,載子在主動層內產生光子的比例,稱做是內在量子效率,η_l(Internal quantum efficiency),又所產生的光子經持續放大達到共振條件形成雷射,此一外加的差額能量所產生的光子,一部份抵銷內部損耗(ΔP_{abs}),一部份在鏡面中穿透形成雷射光輸出(ΔP_{ext}),所以我們可以將雷射輸出的功率表示為

$$P_{out} = \frac{1}{2} \bullet h \, v \bullet \frac{\Delta P_{ext}}{\Delta P_{ext} + \Delta P_{int}} \bullet \eta_i \bullet \frac{(I - I_{th} - \Delta I_L)}{q}$$

其中h是普郎克常數, ΔI_L為漏電流, 是隨I上升的增加項, 另因半導體雷射兩面 均能輻射光, 故乘以(1/2)。接下來我們定義差額量子效率, 或稱做是外在量子效 率(External quantum efficiency):

$$\eta_D = \frac{單位時間射出之總光子差額}{單位時間注入之總電子差額}$$

$$= \eta_i \bullet \frac{\Delta P_{ext}}{\Delta P_{ext} + \Delta P_{int}} = \eta_i \bullet \frac{\frac{1}{L} \ln R}{\alpha_i + \frac{1}{L} \ln R}$$

將Pout對I做微分,並帶入上面的結果,可以得到

$$\eta_{\rm D} = \frac{2q}{hv} \frac{dP_{out}}{dI} = \frac{1.24}{\lambda} \frac{dL}{dI}$$

其中 $\frac{dL}{dI}$ 稱為 slope efficiency,但較少用在學術上,一般用在產品上。

從上式可以得到,在我們量得的L-I曲線,大於起始電流後的曲線斜率,只 和差額量子效率,相差了一個常數項,因此我們可以直接藉由測量L-I特性曲線, 來觀察雷射的這項特性。並從ηD對 1/L的作圖可求出αi。

圖 2-1 Yablonovitch 及 Gmitter 發現的第一個光子 能帶結構。斜線部分為光子能隙,右斜與左斜代表 不同的偏極化模。^[1]

圖 2-2 Yablonovitch等人改用非球形的"原子"來打破對稱性,獲得真正的絕對光能隙。^[3]

圖 2-3 一維、二維、三維光子晶體

圖 2-4(a) 二維Square光子晶體與其倒晶格^[4]

圖 2-4(b) 二維Hexagonal光子晶體與其倒晶格^[4]

圖 2-5 二維光子晶體平板的各項參數^[4]

圖 2-6 TE 波示意圖

圖 2-7 TM 波示意圖

圖 2-8 在空氣中做square週期性排列的 無限長桿子之光子晶體能帶圖^[5]

圖 2-9 在介電常數 ε =12 的材料中,挖出 hexagonal 排列的無限深空氣孔洞之光子晶 體能帶圖^[5]

圖 2-10 在空氣中做square週期性排列的 有限長桿子之光子晶體能帶圖^[5]

圖 2-11 在介電常數 ε =12 的材料中,挖出 hexagonal 排列的有限深空氣孔洞之光子晶 體能帶圖^[5]

Active Region (4 QWs) InP Substrate (n=3.2)

圖 2-12 Defect mode laser俯視圖^[6]

圖 2-13 Defect mode laser 側視圖^[7]

圖 2-14 光子晶體波導俯視圖^[8]

圖 2-15 光子晶體光纖側視圖^[9]

 $n_1 > n_2$

圖 2-16(a) 傳統光纖導波原理 (全反射)^[9]

圖 2-16(b) 光子晶體光纖導波原理 (布拉格繞射)^[9]

圖 2-17 半導體雷射基本操作原理

圖 2-18 FP(Fabry-Perot)共振腔示意圖

第三章 製程與量測

(Process & Measurement)

3-1 光子晶體製程

本實驗中,我們製造二種不同的二維光子晶體平板結構來當雷射鏡面,以下 分別介紹二者製程(本論文以後分別稱此二者為傳統鏡面和空橋式鏡面): (A) 傳統鏡面

我們利用電子束微影系統(E-beam lithography)與電感耦合電漿乾式蝕刻 (Inductive coupled plasma etching; ICP)在 GaAs 晶片上製作二維光子晶體。

因為電子束微影專用的光阻"PMMA"分子結構不夠緻密,無法在做乾式蝕刻 時有效的擋住 ICP 電漿的轟擊,所以先用電漿增強型化學氣相沉積(Plasma enhanced CVD; PECVD)在晶片上沉積一層 SiN,厚度約 3200 Å 來當作蝕刻阻擋 層,之後再以轉速為 6100 轉旋鍍上光阻(我們使用的光阻為 PMMA-A5),來使光 阻厚度降至 2300Å,以利直徑小於 150nm 圓洞之製作。

旋鍍上光阻後,將光阻以 180°C 硬烤 90 秒,便將設計好的圖樣經由電子束 微影系統直接寫在光阻上面,由於電子束微影的解析度極高,所以我們可以輕鬆 地製作出許多精密的圖樣,之後經由顯影液 MIBK / IPA (1:3)顯影和定影液 IPA 定影之後,便可將圖樣順利的轉移到光阻上,結果如圖 3-1、圖 3-2 所示。

將圖樣轉移到光阻之後,接下來就是利用乾式蝕刻將圖樣轉移到晶片上。 ICP(Inductively coupled plasma)蝕刻或RIE(reactive ion etching)是被廣泛使用 的蝕刻技術,它結合了物理性離子轟擊與電漿氣體化學反應,所以兼具了 物理性蝕刻的非等向性以及化學性蝕刻的高選擇比兩項優點。第一步,使 用CHF₃/O₂混合氣體利用RIE模式轟擊,將光阻的圖樣轉移到SiN,並用丙 酮去除光阻,只留下SiN,結果如圖 3-3、圖 3-4 所示;第二步,使用SiCl4氣體 配合Ar離子轟擊,將SiN的圖樣轉移到GaAs,最後以BOE (Buffered oxide etch) 溶液將殘餘的SiN去除,留下GaAs,結果如圖 3-5、圖 3-6 所示。到此,我 們成功的在GaAs上做出二維光子晶體。

(B) 空橋式鏡面

在長晶結構中,我們在主動區下方覆蓋層中加了一層Al_{0.9}GaAs,由於 Al含量高低會影響B.O.E蝕刻液對其蝕刻速率的選擇比,見圖 3-7^[10],而空 橋式鏡面即是利用此選擇比而產生。其製程前半部全部相同於傳統鏡面製 程,但最後利用B.O.E (buffered oxide etchant) 蝕刻液經由己製作好的光子 晶體孔洞中往下蝕刻Al_{0.9}GaAs,以形成空橋式鏡面。如圖 3-8 所示

3-2 光子晶體雷射製程

圖 3-9 & 3-10 分別為元件示意圖與實際元件俯視圖,我們在量子井雷射磊晶 片上分別整合傳統脊狀波導雷射與二種二維光子晶體。

3-2-1 量子井雷射磊晶結構

磊晶片的成長是使用有機金屬氣相磊晶法(Metal Organic Chemical Vapor Deposition; MOCVD), 磊晶結構如圖 3-11 所示,為量子井雷射,包含了兩個 AlGaAs覆蓋層(Cladding layer)以及一個夾在GaAs隔離層(Spacer layer)中的 InGaAs量子井。我們在下覆蓋層中加入了一層Al_{0.9}GaAs,以利空橋式鏡面的製作。

3-2-2 雷射製程

(A) 傳統鏡面

為了使邊射型雷射能與二維光子晶體做有效的整合,我們設計了一套製程。 本製程只使用一道光罩,此道光罩目的在於定義雷射的P型金屬區域。利用黃光 微影製程定義出P型金屬區域後,接著使用電子槍蒸鍍系統鍍上P型金屬(Ti 300Å-Pt300Å-Au1500Å),鍍完金屬後將晶片泡入丙酮中,掀起P型金屬區域 外的光阻。至此,我們做出了雷射的P型金屬接觸條紋以及接下來電子束微影所 需的對準標記。

為了限制電流發散,接下來利用濕式蝕刻來製作脊狀波導,選用的溶液為 H2SO4:H2O2:H2O = 1:8:40,蝕刻速率約為每秒200Å,由於光子晶體製 程的考量,蝕刻到距離主動區 200nm 左右,並以薄膜測厚儀確認厚 度是否符合要求。 至此,開始光子晶體的製作。先用PECVD在晶片上沉積一層高溫(300°C) SiN來當作蝕刻阻擋層,接著旋鍍上e-beam專用光阻PMMA。再來便將設計好的 光子晶體圖樣經由電子束微影系統直接寫在光阻上面,藉由對準標記的輔助,我 們可以精確的將圖樣寫在特定區域。完成顯影、定影之後,光子晶體的圖樣變成 功的轉移到光阻上。

利用電感耦合電漿乾式蝕刻分兩次轉移,將光阻的圖樣轉移到雷射 晶片上。第一步,使用CHF₃/O₂氣體進行蝕刻,將光阻的圖樣轉移到SiN, 並用丙酮去除光阻留下SiN;第二步,使用SiCl₄氣體配合Ar離子轟擊,將SiN 的圖樣轉移到雷射晶片,最後取出晶片用BOE去除殘餘的SiN。到此,我 們成功的在雷射晶片上做出二維光子晶體。

為了讓雷射在劈裂時較為容易,我們將晶片背面磨薄,採用的方法是 濕式蝕刻,溶液為NH4OH:H2O2=1:3,蝕刻速率約為每分鐘6um,磨至 晶片厚約120~150um左右,接著再次利用電子槍蒸鍍系統在晶片背面鍍上N 型金屬 (Ni300Å-Ge300Å-Au1500Å)。

為了使金屬與半導體間形成較好的歐姆接面,將晶片放入快速退火(Rapid thermal annealing; RTA)系統中做退火,實驗條件為420°C,30秒,通H₂/N₂混和 氣體。至此,元件結構已經完成,利用晶片劈裂機將雷射晶片根據我們希望的長 度切割成雷射條,便可以開始做各種雷射特性的量測了。

製程流程簡圖如圖 3-12 所示。

26
(B) 空橋式鏡面

空橋式鏡面的製程大部分相同於傳統式鏡面,藉由增加一個步驟和特別的長 晶結構,將能使上述的傳統鏡面在上下二面都接觸空氣,形成空橋式鏡面,如下 圖:

由於本實驗室的電漿耦合電感蝕刻機對於GaAs的蝕刻極限深度約為 0.7~0.8 微 米,且由於BOE(Buffered Oxide Etch)溶液能蝕刻Al含量高的AlGaAs,而對Al低 含量的AlGaAs幾乎不會蝕刻(見圖 3-7^[10]),故我們在長晶結構上,在主動區下 方 0.2 微米處長一層Al含量 0.9 厚度 200 nm的Al_{0.9}GaAs的覆蓋層(Cladding layer),如圖 3-11,其中在主動區和高Al含量層之間夾著一層 0.2 微米Al_{0.3}GaAs, 可避免生太多的缺陷在介面上。

當我們完成在製作傳統鏡面前半部到蝕刻完 GaAs 後,光子晶體區域部分應 如下面簡圖:

接著我們對整片晶片上光阻並顯影,只露出光子晶體區域,而P型金屬部分被光 阻保護著,避免在下一步的B.O.E蝕刻中,P型金屬會被蝕刻,然後我們把晶片放 入B.O.E中蝕刻,B.O.E可順著光子晶體的孔洞進入,並蝕刻Al_{0.9}GaAs,形成空 橋式鏡面如下簡圖:

最後依然將晶背磨薄,且鍍上N型金屬,並做快速熱退火完成所有步驟。 製程流程簡圖如圖 3-13 所示。

3-3 雷射特性量测系統

圖 3-14 為 L-I 特性曲線量測系統,此系統適用於未包裝的邊射型雷射二極 體,我們將雷射二極體置於樣品座上,驅動電流藉電流源經探針注入二極體,二 極體所發的光被光偵測器吸收後,轉換成光電流並傳到訊號平均器(Boxcar averager)做平均,最後光電訊號經 GPIB 介面傳到電腦中做資料處理及儲存。而 圖 3-15 為頻譜量測系統。

圖 3-1 PMMA 俯視圖

圖 3-2 PMMA 側視圖

圖 3-5 GaAs 俯視圖

圖 3-7 B.O.E對不同Al含量之AlGaAs之蝕刻速率^[10]

圖 3-8 空橋式鏡面側視圖

圖 3-9 元件示意圖

圖 3-10 實際元件俯視圖

contact layer p-dopedGaAs	>	120nm
cladding layer p-doped Al _{0.3} Ga _{0.7} As		1150nm
spacer layer GaAs		200nm
QW layer In _{0.2} Ga _{0.8} As	>	10nm
spacer layer GaAs	>	200nm
cladding layer n-doped Al _{0.3} Ga _{0.7} As	>	200nm
Al _{0.9} GaAs BOE etching layer	>	200nm
cladding layer n-doped Al _{0.3} Ga _{0.7} As		750nm
substrate GaAs		

圖 3-11 量子井雷射磊晶結構圖

圖 3-12 光子晶體傳統鏡面雷射製程流程

(a) P/R(AZ6112) coating

(e) Mesa etching

(b) P-type metal region definition

(f) PECVD Si₃N₄ deposition

(c) P-type metal deposition (g) Top view of device after process

(d) P-type metal lift-off

(h) P/R(PMMA) coating

(j) Thinning of the substrate N-type metal

(h) E-beam lithography

(k) Rapid thermal anneal(RTA)

(i) RIE mode — CHF₃/ O₂ for Si₃N₄ Remove PMMA(ACE) ICP mode — SiCl₄ / Ar for GaAs B.O.E Remove Si₃N₄

圖 3-13 空橋式鏡面光子晶體雷射製程流程

(a) After RIE mode — CHF₃/O₂ for Si₃N₄
 Remove PMMA(ACE)
 ICP mode — SiCl₄ / Ar for GaAs
 B.O.E Remove Si₃N₄
 (the process before this is the same as Fig 3-12)

(b) P/R(AZ6112) coating photonic crystal region define

(j) B.O.E etching Remove P/R
Thinning of the substrate
N-type metal
RTA

圖 3-15 雷射輸出光譜量測系統圖

第四章 結果與討論 (Result and Discussion)

本研究成功地將二維光子晶體整合在邊射型雷射上,我們首先製作了雙劈裂 面雷射和光子晶體傳統鏡面雷射,來觀察光子晶體鏡面對雷射的影響,接著我們 試著調變填充因子,來觀察填充因子和鏡面反射率的關係,最後製作空橋式鏡面 和傳統鏡面來比較。以下我們將一一探討這些元件的特性,並試著提出合理的解 釋。

4-1 雙劈裂鏡面雷射之特性

在此,我們使用量子井雷射結構,其波長為 0.983 um,詳細結構請參考第三章。

在討論光子晶體雷射前我們先了解一下劈裂鏡面雷射的輸出特性, 雷射的條 紋(Strip)寬度為 15 um, 而長度分布從 600 um 到 1200 um。

圖 4-1 為此雷射在室溫下的 L-I 曲線圖,起振電流隨著共振腔長度增加而增加,以下為其整理表:

cavity length	$\eta_{\rm s}({\rm mW/mA})$ (one side)	Threshold current density (A/cm ²)
600 um	0.31	577
800 um	0.289	563
1000 um	0.265	540
1200 um	0.243	503

圖 4-2 為共振腔長度 600 um 的雷射頻譜圖,波長約為 0.983 um,縱向光模 波長差為 2.2 Å

圖 4-3 為(1/η)對共振腔長度L的作圖,進而淬取出 *Q*_i和 η_i,分別為 7.7cm⁻¹和 0.696。

4-2 光子晶體鏡面設計

我們利用 R-Soft 軟體來設計我們的光子晶體,由於 3 維模擬過於繁瑣, 所以我們採取的是 2 維無窮長的光子晶體結構來模擬。如圖 4-4 所示,我們先 畫出長度為無窮長,周期性六角排列的空氣孔洞(六角排列的結構,傾向產生 TE 波的能障,而雷射產生的光主要為 TE 模式,故採六角排列的設計),設其 折射率為 1,背景材料的折射率設為 3.4,完成結構後,在結構上方加一個光 強度的偵測器(time monitor),以偵測穿透光的強度,最後加上我們的光源,0.98 um 強度為 1 的 TE 平面波從結構下方入射。當光打入光子結構時,若全被反 射就會如圖 4-4 所示,偵測器所偵測到的強度就會為 0,但若光會穿透光子晶 體,我們就能在偵測器上偵測到其強度,如圖 4-5 所示,我們偵測到強度為 0.8 的光強度。我們定義我們偵測的光強度為穿透率(transmission),而反射率 (reflectivity)我們定義為:

reflectivity = 1 - transmission

接著,我們將光子晶體的填充率固定在一個值,然後晶格常數每隔0.01 um 就 測量一次穿透率,再利用上次求得反射率,所以我們可以得到在某個填充率 下,反射率和晶格常數的關係圖,如圖 4-6 所示(此圖為填充率 30%的反射率 對晶格常數之作圖)。有了這樣的關係圖,我們便能估計出高反射率的光子晶 體鏡面會落在那個晶格常數區間內,然後在這區域間製作光子晶體鏡面。

4-3 光子晶體鏡面雷射特性

以下,我們分別設計3組實驗,來觀察光子晶體鏡面的特性:

- A. 填充率固定為 30%, 晶格常數分別為 0.18 um、0.21 um、0.25 um
 之光子晶體結構。見圖 4-7 所示, 在圖中我們分別令 0.18 um 為
 S、0.21 um 為 M、0.25 um 為 L。
- B. 晶格常數固定為 0.25 um(此值為 A 實驗中所得到最佳的值),填充 率分別為 30%、38%、45% 之光子晶體結構,目的是要研究填充 率和反射率之間的關係。
- C. 將 A、B 實驗中得到最好的條件拿來製作空橋式鏡面,以期能進 一步提高反射率

4-3-1 第一組條件之光子晶體鏡面雷射

在此組條件中, 雷射共振腔長度為 600 um, 寬度為 15 um, 而光子晶體的 填充率為 30%, 而我們選定的的晶格常數分別有 0.18 um、0.21 um、0.25 um 三種(分別令為 S、M、L), 其反射率對晶格常數之圖見圖 4-7。由圖中可發現 S 點是選在反射率並非為 1處, 而 M、L 則是選在全反射之處, 主要是想藉由實驗 來驗證反射率曲線的可靠度。

填充率為 30%, S、M、L 三點晶格常數(a)分別所對應的空氣孔洞直徑(2r) 如下表所示,結構圖見圖 4-8:

a (um)	0.18	0.21	0.25
2r (um)	0.1	0.12	0.144

其實驗所得的L-I特性和 η_s 見圖 4-9 &圖 4-10, 下表整理其特性:

	$\eta_{\rm s}~({\rm mw/mA})$	Jth (A/cm ²)
Cleaved mirror	0.31	577
L	0.415	410
М	0.29	622

在此圖中,我們放入共振腔一樣是 600 um、寬度為 15 um 的雙劈裂鏡面雷射來 當基準值,可發現只有 L 條件的光子晶體鏡面雷射能提升雷射特性,相較於雙劈 裂鏡面雷射,擁有較低的起振電流和較高的 η_s。

由於S本來就選在模擬中的非全反射的區域,故其雷射特性最差,這和模擬 的結果相符,然而選在全反射區域的M、L二點,卻並非都能提供高於劈裂面的 反射率,只有L能改善雷射特性,這可能是因為,我們的模擬乃屬2維,假設光 子晶體為無窮長延伸,故並非完全準確,須依靠實驗來尋求最佳條件,在此,對 於填充率為30%的光子晶體結構,我們找到的最佳條件為L(a=0.25)。以下,我 們將解釋為何,擁有較高的反射率,就能降低起振電流和提升77₈。

我們賴以解釋的方法就是就是利用下面的方程式:

$$\gamma_{th} = \alpha_i + \alpha_m$$

$$\eta_s = (\eta_i) \times \left(\frac{(1/2L)\ln(1/R_1)}{\alpha_i + \alpha_m}\right) \times \left(\frac{1.24}{\lambda}\right)$$

$$\alpha_m = \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_1}\right) + \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_2}\right)$$

在上式中,R₁定義為 0.32,即劈裂鏡面的反射率,而R₂為 0.32 或光子晶體鏡面 之等效反射率,由於我們在量測時,不管是劈裂鏡面雷射或光子晶體鏡面雷射, 主要是都只量測由R₁劈裂鏡面出來的光,故在上式的 η s的分子中為 $\left(\frac{1}{2L}\right)\ln\left(\frac{1}{R_1}\right)$ 。當我們將R₂鏡面由劈裂鏡面換成光子晶體鏡面時,若光子晶體鏡 面能提供高於劈裂鏡面的反射率,即R₂ (PC, mirror) > R₂ (cleaved mirror),那麼 α m就能 下降,也就是 γ_{th}就能下降,所以起振電流就能下降,另一方面,在 η_s的式中, 由於 α_m的下降,式子中的分母就能變小,導致 η_s能上升。

接下來我們將預估光子晶體鏡面的反射率,我們利用的即為下式:

$$\eta_{s} = (\eta_{i}) \times \left(\frac{(1/2L)\ln(1/R_{1})}{\alpha_{i} + \alpha_{m}}\right) \times \left(\frac{1.24}{\lambda}\right)$$
$$\alpha_{m} = \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_{1}}\right) + \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_{2}}\right)$$

我們實驗中可量得 η_s、 η_i、 α_i、 λ(在此我們假設 η_i和 α_i相同於雙劈裂鏡 面雷射所淬取出來的值),根據這些數據,我們可帶入上面 η_s的式子中,來反 推光子晶體鏡面的等效反射率,由於光子晶體鏡面,並非一個單純的反射面,它 可能會額外對光造成一些散射和吸收,我們將這些全部納入它的反射率中,故稱 其為等效反射率。由此法所計算出來L、M、S的等效反射率R₂如下表所示:

a (um)	0.25 (L)	0.21 (M)	0.18 (S)
R ₂	0.71	0.25	0.03

由此可知,我們製作出反射率高達71%的雷射鏡面。

接下來,我們觀察L的頻譜是否會和雙劈裂鏡面不同,產生一些變化。圖 4-11 為L的頻譜圖。由此圖可發現,頻譜並沒有發生太大的變化,而且縱向光 模也維持在2.2 Å,這告訴我們光子晶體鏡面只是單純地提高反射率,並沒有對 縱向光模有進行選模的動作。這亦不難解釋,我們在模擬時是打入波長0.98 um 的光,現在我們改用0.99 um 的光入射,並偵測其反射率對晶格常數的變化,見 圖 4-12 (b)。可發現,0.98 um 和0.99 um 所測得的高反射率區域如下表所示:

	0.98 um	0.99 um
高反射率區域	$a = 0.19 \sim 0.26 \text{ um}$	a = 0.19 ~ 0.27 um

由上表可知,我們所設計的L條件的光子晶體結構,不管對於0.98 um 還是0.99 um的入射光,均位於高反射率的區域內,而我們雷射頻譜所對應的波包波長範 圍約為6 nm,所以對整個波包而言,光子晶體鏡面應全為高反射率,故光子晶 體鏡面並不會有選擇縱模的功能,故頻譜特性應和雙劈裂鏡面雷射相似。

本節結論:我們找出了填充率為 30%時,最佳晶格常數值來提供高達 71% 的反射率,使雷射能降低起振電流並且增加 η s。

4-3-2 第二組條件之光子晶體鏡面雷射

在此組條件中, 雷射共振腔長度一樣為 600 um, 寬度為 15 um, 而光子晶體 的晶格常數固定在 0.25 um(也就是第一組實驗中最佳的值), 改變的參數是填充 率, 分別有 30%、38%、45% 三種, 本實驗是想觀察鏡面反射率和填充率之間 的關係。

晶格常數為 0.25 um,填充率為 30 %、38 %、45 %時,分別對應的空氣孔洞 直徑(2r)如下表所示,結構圖見圖 4-13:

f (%)	30	38	45
2r (um)	0.144	0.165	0.176

其實驗所得雷射L-I特性見圖 4-14、 η_s對填充率的作圖見圖 4-15,下表為整 理:

43

	$\eta_{\rm s}({\rm mW/mA})$	Jth (A/cm ²)
Cleaved mirror	0.31	577
30 %	0.415	410
38 %	0.344	562
45 %	0.27	813

下表為填充率對反射率整理:

	30 %	38 %	45 %
R ₂	0.71	0.43	0.194
	E A III	ESA	

由以上2個整理表可發現,當填充率上升時,光子晶體鏡面的反射會下降, 我們預測這可能是因為當晶格常數固定、填充率又上升時,造成空氣孔洞面積上 升,也就是介電常數不連續的區域變大,如此一來將會對光造成較大的散射,導 致等效反射率的下降,使雷射特性變差。

以下,我們換用另一個方式來證明此現象,之前,我們說我們求得的R2是等 效反射率,也就是其中含有光被光子晶體散射的效應,而現在,我們直接假設鏡 面反射是模擬值的 0.9 倍(因為非無窮長結構,反射率故不可能完全如模擬所預測 那樣地大),也就是如果是全反射,我們就設反射率是 0.9,依此法將前 2 組實驗 的光子晶體鏡面反射率整理如下:

	L(即 30%)	М	S	38 %	45 %
R ₂	0.9	0.9	0.54	0.9	0.9

然後我們引進新參數 s,定義為單位面積內,所含的光子晶體圓周長總和,如此 定義是因為我們假設散射會和此參數相關,下表是上表中各個條件所對應的 s 值:

$$s = \frac{\pi \times r}{\left(\sqrt{3}/4\right)a^2}$$

	L(即 30%)	М	S	38 %	45 %
S	8.3579	9.9351	11.1963	9.5768	10.2153

接下來,我們要把之前假設含在等效反射率之散射造成的損失抽離出來,故再令 一個新參數 Q_s,來代表光被光子晶體散射所造成的損失,此時我們將 Q_m修改 為下式:

$$\alpha_m = \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_1}\right) + \left(\frac{1}{2L}\right) \ln\left(\frac{1}{R_2}\right) + \alpha_s$$

接下來,把我們求得的 η_i、 α_i、已知的R1、假設的R2,代入 η_s的公式裡來 求s,其所得數據如圖 4-16 (圖中曲線為乘冪曲線的fit曲線),下表為整理(照s大 小排列):

	L	38 %	М	45 %	S
s	8.3579	9.5768	9.9351	10.2153	11.1963
α_{s}	2.0149	6.1611	10.6733	12.2413	13.6867

由此結果可發現,的確介電常數不連續處愈多(s愈大),散射的程度會越大(α_s 愈大)。若以此方法來看,我們在選取最佳條件時,不單只要考慮模擬所得的反射率,還須再加上散射的部分,才能取得較佳的值。

本節結論:我們發現當填充率上升時,晶格常數 0.25 um 的光子晶體鏡面反 射率會下降,使雷射特性變差。另外,s愈大,散射程度愈大,雷射特性愈差。

4-3-3 空橋式光子晶體鏡面雷射

由於實驗所用的蝕刻機台,在這種 0.1 5um 大小孔洞的蝕刻,極限深度約為 0.7~0.8 um,為了避免光會從光子晶體下方散逸掉,如下圖所示:

由於前二組實驗所得的最佳值是填充率 30%、晶格常數 0.25 um 的光子晶體結構,故在此我們用這個條件來製作空橋式鏡面。實驗所得的 L-I 特性見圖 4-17 (分別是填充率 30%、晶格常數 0.25 um 之傳統式鏡面和空橋式鏡面的 L-I 曲線), 下表是整理:

	η s	Jth (A/cm ²)
Convention mirror	0.415	410
Air bridge mirror	0.378	443

由實驗所得結果,空橋式鏡面並沒有提升反射率,反而讓等效反射率下降,使雷 射特性變差,我們猜測這是由於B.O.E在蝕刻Al_{0.9}GaAs時會造成一些應力,應 力讓雷射和光子晶體鏡面產生一些缺陷,造成載子在這些缺陷被吸收,使這些載 子無法供應在發光上,使雷射特性變差。由圖 4-18 可發現,B.O.E蝕刻Al_{0.9}GaAs 後,會使一部分的空橋式光子晶體結構崩壞,雖然我們用來量測的元件是沒有崩 壞的光子晶體鏡面雷射,但其產生的應力可能已對元件產生了影響,使元件特性 變差。

本節結論:我們發現空橋式鏡面並無法進一步提升反射率,反而使雷射特性 變差。

ALLER.

圖 4-1 劈裂鏡面雷射 L-I 圖(起振電流由小至 大分別對應長度為 600.800.1000.1200 um 之共振腔)

圖 4-2 共振腔長度 600 um 劈裂鏡面雷射頻 譜圖

(a) I = Ith

(d) I = 1.86 Ith

圖 4-3 劈裂鏡面雷射 $(1/\eta d)$ 對 L 之作圖

因子30%之2維無窮長光子晶體的時變

圖 4-5 入射平面波(波長為 0.98 um)入射填充 因子 30%之2維無窮長光子晶體的時變 穿透強度圖 (此圖為大部分穿透,穿透 率約為 0.8)

圖 4-6 填充因子為 30%之光子晶體的晶格 常數對反射率之作圖

圖 4-7 填充因子為 30%之光子晶體的晶格 常數對反射率之作圖 (S、M、L 分 別為 0.18 um、0.21 um、0.25 um 之 晶格常數)

圖 4-8 填充因子為 30%、晶格常數分別為 0.18 um、0.21 um、0.25 um 之光子晶體結構 圖

(b) a = 0.21 um

圖 4-10 S、M、L光子晶體鏡面雷射的 η_s 對晶

格常數的作圖(背景為模擬所得的反射) 率曲線

圖 4-11 L 光子晶體鏡面雷射的頻譜圖

10000

(a) I = Ith

圖 4-12 填充因子為 30%之光子晶體的晶格常 數對反射率之作圖 (a)入射光為 0.98 um (b)入射光為 0.99 um

圖 4-13 晶格常數為 0.25 um、填充率分別為 30%、 38%、45% um 之光子晶體結構圖

(b) 38 %

(c) 45 %

圖 4-14 晶格常數為 0.25 um、填充率分別為 30%、
 38%、45%之光子晶體鏡面雷射和劈裂鏡面
 雷射之 L-I 圖(共振腔長度為 600 um)

圖 4-15 光子晶體鏡面雷射的 η_s對填充率的作

圖 4-16 αs 對 s 之分佈圖

晶格常數為 0.25 um、填充率 30% 圖 4-17 之傳統式鏡面和空橋式鏡面的 L-I 曲線

圖 4-18 空橋式鏡面崩壞圖

第五章 結論

(Conclusion)

本研究成功地在GaAs基材上製作出二維光子晶體,並且將二維光子晶體鏡 面與邊射型雷射整合在一起,這樣的元件具有較低的起振電流和較高的 η_s的特 性,最佳的光子晶體鏡面反射率高達 71%。

在幾個我們設計的實驗中發現,在填充率為30%時,晶格常數0.25 um 為最 佳條件,而鏡面反射率隨填充率的上升而下降,另外我們發現散射造成的損失會 隨 s(單位面積內光子晶體的圓周長總和)變大而上升,使鏡面效果變差。最後, 空橋式鏡面並無法進一步提升反射率,以改善雷射特性。

將來在積體光學上, 雷射勢必無法再使用劈裂鏡面來當雷射的反射面, 故光 子晶體鏡面必是一個不錯的選擇, 而且可以進一步的降低起振電流、提升 η_s, 使雷射整合在積體光學上的可能性大增。
參考文獻 (Reference)

- E. Yablonovitch, Phys. Rev. Lett., vol.58, 2059 (1987). [1]
- S. John, Phys. Rev. Lett., vol.58, 2468 (1987). [2]
- E. Yablonovitch, T. J. Gmitter, and K. M. Ho, [3] Phys. Rev. Lett., vol.67, 2295 (1991).
- [4] John. D. Joannopoulos, Robert D. Meade, Joshua N. Winn, "Photonic crystals : molding the flow of light"
- S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, [5] Phys. Rev. B, vol.60, 5751 (1999)
- O. Painter, J. Vuckovic, A. Scherer, J. Opt. Soc. Am. B, vol.16, 275 (1998) [6]
- [7] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J.D. O'Brien, P.D. Dapkus, I. Kim, Science, vol.284, 1819 (1999) 1111
- Marko Loncar, Theodor Doll, Jelena Vuckovic, Axel Scherer, [8] J. of Lightwave Tech., vol.18, 1402 (2000)
- [9] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, Science, vol.285, 1537 (1999)
- [10] Jong-Hee Kim, Dae Ho Lim, and Gye Mo Yang, Journal of Vacuum Science & Technology B, vol. 16, 558(1998)
- Toru Takagi, Japanese Journal of Applied Physics, vol. 17, 1813 (1978) [11]
- [12] T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, N. Bouadma, J. Vac. Sci. Technol. B, vol. 19, 2775 (2001)
- [13] T. D. Happ, A. Markard, M. Kamp, J.-L. Gentner, A. Forchel, Electronics Lett. vol. 37, 428 (2001)

- [14] T. D. Happ, M. Kamp, A. Forchel, Optical and Quantum Electronics, vol. 34, 91 (2002)
- [15] J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, D. Leuenberger, R. Houdr'e,S. Anand, J. Berggren, Nanotechnology, vol.13, 341 (2002)
- [16] T. D. Happ, M. Kamp, F. Klopf, J. P. Reithmaier, A. Forchel, Semicond. Sci. Technol., vol. 16 227 (2001)
- [17] J. Moosburger, Th. Happ, M. Kamp, A. Forchel, J. Vac. Sci. Technol. B, vol.18, 3501(2000)
- [18] J. Moosburger, M. Kamp, F. Klopf, M. Fischerl, A. Forchel, Microelectronic Engineering, vol. 57-58, 1017(2001)
- [19] T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, A. Forchel, IEE, Proc.-Optoelectron., vol. 148, 183 (2001)
- [20] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher,J. D. Joannopoulos, O. Nalamasu, Appl. Phys. Lett., vol. 74, 7 (1999)
- [21] J. O'Brien, O. Painter, R. Lee, C. C. Cheng, A. Yariv, A. Scherer, Electronics Lett. vol. 32, 2243 (1996)
- [22] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien,P. D. Dapkus, IEEE Photonics Tech. Lett., vol.12, 1126 (2000)
- [23] Thomas F. Krauss, Richard M. De La Rue,Progress in Quantum Electronics, vol. 23 51 (1999)
- [24] Shawn-Yu Lin, Edmund Chow, Vince Hietala, Pierre R. Villeneuve,J. D. Joannopoulos, Science, vol. 282, 274 (1998)
- [25] 鄭雅芝, "淺談光子晶體", 物理雙月刊(二十一卷四期)(1999)

簡歷 (Vita)

姓名:王勝雄(Wang, Sheng-Hsiung)

性别:男

出生年月日:民國 70 年7月3日

籍貫:台灣高雄

學歷:

國立清華大學材料科學工程學系學士(88.9-92.6)

1890

國立交通大學電子研究所碩士班(92.9-94.6)

碩士論文題目:

光子晶體鏡面雷射之研究

The Study of Photonic Crystal Mirror Lasers