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Abstract—Localization is a critical issue in wireless sensor networks. In most localization systems, beacons are being placed as

references to determine the positions of objects or events appearing in the sensing field. The underlying assumption is that beacons

are always reliable. In this work, we define a new Beacon Movement Detection (BMD) problem. Assuming that there are unnoticed

changes of locations of some beacons in the system, this problem concerns how to automatically monitor such situations and identify

such unreliable beacons based on the mutual observations among beacons only. Existence of such unreliable beacons may affect the

localization accuracy. After identifying such beacons, we can remove them from the localization engine. Four BMD schemes are

proposed to solve the BMD problem. Then, we evaluate how these solutions can improve the accuracy of localization systems in case

there are unnoticed movements of some beacons. Simulation results show that our solutions can capture most of the unnoticed

beacon movement events and thus can significantly alleviate the degradation of such events.

Index Terms—Context awareness, localization, location-based service, pervasive computing, positioning, wireless sensor network.

Ç

1 INTRODUCTION

RECENTLY, we have seen significant progress in the areas
of wireless ad hoc and sensor networks. Ad hoc

networking technologies enable quick and flexible deploy-
ment of a wireless communication platform. A wireless
sensor network typically adopts the ad hoc communication
architecture and is capable of exploiting context information
collected from sensors. Many applications of wireless
sensor networks have been proposed [2], [5], [6].

Sensor networks are promising because they support
context-aware and location-aware services. The success of
this area may greatly benefit human life. One essential
research issue in sensor networks is localization, whose
purpose is to determine the position of an object or event. In
most localization systems, they assume that there are sets of
beacon sensors (or simply beacons), which may or may not be
aware of their locations and can periodically transmit/
receive short broadcast packets. By evaluating the distances,
angles of arrival, or signal strengths of these broadcast
packets, we can estimate the locations of objects by
triangulation [24] or pattern matching [3]. Under such an

architecture, we observe that most existing works have an
underlying assumption that beacons are always reliable.
Based on this observation, this paper points out a new
Beacon Movement Detection (BMD) problem that may occur
in most beacon-based localization systems. No matter if
beacons know or do not know their own locations, we
define a beacon movement event as one where a beacon is
migrated to a location different from where it is supposed to
be (or where it was at the training stage). However, our
localization system is unaware of this event. With unnoticed
beacon movement events, the topology of the sensor
network may be different from what it is supposed to be,
and thus a localization algorithm may lose its accuracy or
even incorrectly estimate an object’s location. In this work,
we assume that beacons are static under normal circum-
stances, but occasional beacon movement events are not
unusual. This is true especially in a wireless sensor
network. For example, a beacon node may be moved by
unexpected forces, such as those from animals being
monitored, or by manual errors, because beacon nodes are
normally quite tiny.

The BMD problem involves two issues. First, we need to
determine those beacons that are unexpectedly relocated.
Second, the result has to be forwarded to the positioning
engine to reduce the impact of movement on localization
accuracy. To solve the first issue, we will allow beacons to
monitor each other to identify those moved beacons
automatically. This is nontrivial work because we do not
have a trust model among beacons. In this paper, we show
that without any assumption, it is impossible for a general
BMD problem to correctly identify those moved beacons
because an ambiguity situation will always exist. However,
if we assume that the number of moved beacons is relatively
small, we can relieve the BMD problem using some
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heuristic algorithms. Based on this assumption, we propose
four schemes. The first location-based (LB) scheme tries to
calculate each beacon’s current location and compares the
result with its predefined location to decide if it has been
moved. In the second neighbor-based (NB) scheme, beacons
will keep track of their nearby beacons and report their
observations to the BMD engine to determine if some
beacons have been moved. In the third signal strength binary
(SSB) scheme, the change of signal strengths of beacons will
be exploited. In the last signal strength real (SSR) scheme, the
BMD engine will collect the sum of reported signal strength
changes of each beacon to make decisions. Note that only
the first scheme assumes that the original locations of
beacons are known in advance. The other three schemes do
not assume any a priori knowledge on the original locations
of beacons.

The noise-prone signal strengths are another challenge to
the BMD problem. In real environments, signal strengths
may be influenced by many factors, such as hardware
difference, remaining battery, multipath propagation, and
dynamic signal fading. When combining these factors, it is
even harder to correctly determine a beacon movement
event. To relieve this influence, we import the concept of
tolerable regions in the proposed schemes. To evaluate the
proposed BMD schemes, we adopt a close-to-reality radio
irregularity model (RIM) [28] to simulate the decay of signal
strengths. This model has been shown to be able to reflect
the propagation of radio signals, especially in indoor
environments. In our simulation study, we have tuned the
parameters of RIM to evaluate the performance of LB, NB,
SSB, and SSR under different conditions. The results show
that the SSB and SSR schemes perform well under most
situations. The NB scheme is easy to implement but has
limited movement detection capability. Compared to SSB,
SSR, and NB, the LB scheme has higher computation
complexity and is quite sensitive to the density of beacons.
When there are many beacons, LB can have excellent
detection results. However, its performance degrades
quickly when there are not enough beacons to provide a
good localization service.

The remainder of this paper is organized as follows:
Section 2 gives a formal definition of the BMD problem.
Related works and motivations are given in Section 3.
Section 4 presents our solutions to the BMD problem. Then,
in Section 5, we evaluate the proposed schemes and
examine their capability to improve the localization
accuracy in events of beacon movement. Finally, Section 6
draws our conclusions.

2 PROBLEM DEFINITION

Before we formally define the BMD problem, we illustrate
an example to demonstrate how movement of some
beacons may affect the accuracy of localization results. Let
us consider Fig. 1a, where we use three beacons to
determine a target’s position via typical triangulation
approaches. If beacon b3 is moved to the location marked
in gray without being noticed, the system may incorrectly
estimate the target’s location, as shown in Fig. 1b. Note that
the circle centered at b3 has a radius equal to the distance
from the real location of b3 to the target. Also note that the
results proposed in this paper are applicable not only to the
unnoticed movement of beacons, but also to the unexpected
behaviors of some beacons (for example, a beacon may be
unexpectedly covered by an obstacle, thus lowering the
observed signal strengths).

We are given a sensing field, in which a set of beacons
B ¼ fb1; b2; . . . ; bng is deployed for localization purposes.
Depending on different schemes, we may or may not
assume that the locations of these beacons are known in
advance. Periodically, each beacon will broadcast a HELLO

packet. To determine its own location, an object will collect
HELLO packets from its neighboring beacons and send a
signal strength vector S ¼ ½s1; s2; . . . ; sn� to an external
positioning engine, where si is the signal strength of the
HELLO packet from bi. If it cannot hear from bi, we let
si ¼ smin, where smin denotes the minimum signal strength
and any signal strength lower than this value is not
detectable by a receiver. The positioning engine can then
estimate the object’s location based on S (for example, in the
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Fig. 1. An example of the BMD problem.



case of RADAR [3], S is compared against a location
database obtained in the training phase based on a pattern-
matching method).

Suppose that a set of unreliable beacons BM � B is
moved or blocked by obstacles without being noticed. The
BMD problem is to compute a detected set BD that is as
similar to BM as possible. The result BD may be used to
calibrate the positioning engine to reduce the localization
error (for example, in the case of RADAR, the entry si in S
may be ignored if bi is detected to be unreliable).

To solve the BMD problem, we will enforce beacons to

monitor each other from time to time. Let us denote the local

observation vector of bi at time t by Ot
i ¼ ½oti;1; oti;2; . . . ; oti;n�,

where oti;j is bi’s observation on bj at time t. The content of

an observation will depend on the corresponding BMD

scheme (refer to Section 4). We use the observation vector at

time t ¼ 0 to represent the original observation where all

beacons stay at their original locations. The observation matrix

at time t is denoted by Ot ¼ ½Ot
1; O

t
2; . . . ; Ot

n�
T . Note that

ideally the observation matrixOt should be symmetric (in the

sense that Ot½i; j� ¼ Ot½j; i�). However, in practice, due to the

asymmetry of radio propagation, it is possible that Ot is

asymmetric (our BMD schemes are able to handle asym-

metricOt). GivenOt, the BMD engine is capable of calculating

a setBD. The result is then sent to the calibration algorithm in

the positioning engine. Fig. 2 illustrates our system model.
Considering the following reasons, we define the tolerable

region Ri of each beacon bi as the geographic area within
which a slight movement of bi is acceptable. First, radio
signal tends to fluctuate from time to time. Second, slight
movement of a beacon should not change the signal
strength much unless an obstacle is encountered (if so, this
should be discovered by our BMD engine). Third, ignoring
the data of a slightly moved beacon in the location database
will decrease the localization accuracy due to fewer beacons
helping the localization procedure. So the slight movement
of beacons is constrained by the tolerable regions. As a
result, the unreliable set BM only contains those beacons

which are moved out of their tolerable regions. The sizes of
tolerable regions are application dependent, which is
beyond the scope of this work. For simplicity, tolerable
regions are assumed to be circles centered at beacons of the
same radius.

3 RELATED WORKS AND MOTIVATIONS

There are two main approaches for localization: multi-
lateration and pattern matching. Multilateration is a process
of finding the location of an object based on measuring the
distances or angles of three or more signal sources at known
coordinates. A special case of multilateration is triangula-
tion. For example, the Bat sentient system [1] is composed of
a set of sensors for 3D localization. Sensors are installed at
known positions, such as ceilings, to measure the signal
traveling time from a user badge to them. Then, a
triangulation algorithm calculates the location of the badge.
Localization by the signal’s angle of arrival is addressed in
[17], [20], [21]. In Cricket [21], ultrasonic sensors are used to
estimate the location and orientation of a mobile device. In
[24], a distributed positioning system called Ad Hoc
Localization System (AHLoS) is proposed, where some
beacons are aware of their own locations while others are
not. The former are used to determine the positions of the
latter. A similar work based on a probability model is
proposed in [22].

All the above systems require special hardware to
support localization. Recently, indoor localization, using
pattern-matching techniques [3], [4], [14], [23], [25], is
gaining popularity because the localization task can be
achieved by off-the-shelf communication hardware, such as
WiFi-enabled mobile devices. Such localization systems are
more cost-effective. Pattern-matching localization does not
rely on any range estimation between mobile devices and
infrastructure networks. For example, a system can be
based on WiFi access points at unknown locations to serve
as beacons [3]. Then a training phase is exploited to learn
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the possible signal strengths of these beacons at locations of
our interest. The training results will be stored in a location
database. Then, in the positioning phase, an object to be
localized will compare the strengths of received signals
against the location database to estimate its location.
Extensive research has been dedicated toward this direction
[7], [9], [12], [13], [14], [19], [25].

While the above works assume that beacons are static,
some works have considered mobile beacons [16], [18], [22],
[26]. It is typically assumed that a mobile beacon cannot
only move around but also locate itself through a special
device or mechanism. With periodic broadcast, these mobile
beacons can also help conduct localization. The trajectory of
the locations where broadcast messages are sent can be
regarded as a sequence of static sensors.

All the above works assume that beacons are reliable. In
reality, some beacons may be moved to locations where
they are not supposed to be without being noticed. Some
beacon signals may be blocked by new obstacles deployed
after the training phase, making their signal strengths
untrustworthy. Some beacons may even conduct malicious
attacks if they are compromised. To address the reliability
issue, Olson et al. [18] mention the concept of beacon
movement. The authors propose using a powerful mobile
device to relocate those moved beacons. How to detect
malicious beacons in a localization system is addressed in
[15], [27]. A malicious beacon is one which is tampered or
compromised by an adversary and which can provide
false distance or angle measurements. A malicious attack
can be conducted individually or cooperatively. In this
work, we do not consider intelligent malicious beacons.
Instead, we assume that beacons are tiny and lightweight.
The major sources of unreliability come from unnoticed
movement of some of these tiny beacons or unnoticed
deployment of obstacles after the training phase, which
may lower some beacons’ signal quality. However, signal
quality from beacons can always be correctly measured,
unless they are being interfered by noise. Based on these
assumptions, we discuss our BMD problem.

4 BEACON MOVEMENT DETECTION ALGORITHMS

To solve the BMD problem, we propose four detection
schemes, namely LB, NB, SSB, and SSR schemes. These
schemes differ in their local processing rules of beacons and
the corresponding decision algorithms at the BMD engine.
In the LB scheme, each beacon reports its observed signal
strengths, which are used by the BMD engine to compute
each beacon’s current location. The result is used to
compare against its original location. In the NB scheme,
each beacon locally decides if some neighboring beacons
have moved into or out of their communication coverage
range and reports its binary observations to the BMD
engine. The SSB scheme is similar to the NB scheme, but the
definition of movement is according to a threshold of signal
strength change. In the SSR scheme, a beacon does not try to
determine whether a neighboring beacon has been moved
or not. Instead, each beacon reports the amount of signal
strength change of each neighbor; the sum of all reported
values is used by the BMD engine to make a global decision.

4.1 Location-Based Scheme

The LB scheme assumes that the initial locations of

beacons are known by the BMD engine in advance and

utilizes localization techniques to monitor the locations of

beacons. Techniques such as trilateration or pattern

matching can be used in the BMD engine. Each beacon is

in charge of reporting the observed signal strength values

of its neighbors to the BMD engine. Hence, the observation

oti;j is defined as oti;j ¼ sti;j, where sti;j is the observed signal

strength by bi on bj. The engine then estimates the position

of each beacon through any localization technique. Let the

estimated location of bj at the current time t be ‘tj. Then the

tolerable region Rj will be used to decide whether bj has

been moved. If ‘tj is out of the tolerable region Rj, then bj is

determined to be unreliable.
An example using the trilateration technique is shown in

Fig. 3. Beacon b4 is moved out of its tolerable region R4.
Since beacons b1, b2, and b3 are unmoved, they can help to
determine b4’s new location. One point worth mentioning is
that because of b4’s movement, the estimated locations of b1,
b2, and b3 may also be changed by a certain degree. So the
outcome depends on the observations of the beacons in BM .
Intuitively, the LB scheme is sensitive to the performance of
the adopted localization system. If the density of beacons is
too low or signal strengths are too unstable, the results of
movement detection cannot perform well.

Since this scheme uses beacons (including unreliable
ones) to localize each other, moved beacons will also
contribute some errors to the mutual localization process
and thus influence our decisions. Here we propose to use a
simple greedy approach as follows. After the BMD engine
receives the observations from all beacons, it estimates
their possible locations under current mutual observations.
Then the beacon bi with the longest moved distance will be
selected. If bi’s current location is out of its tolerable
region, it will be included in BD and any observations
contributed from bi will be removed from Ot. This greedy
process will be repeated until the most suspicious one is
found and is regarded as an unmoved one. Our experience
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Fig. 3. An example of movement detection in the LB scheme where b4 is

the only beacon being moved. A trilateration technique is used in this

example.



shows that this greedy strategy can identify most of the
unreliable beacons.

4.2 Neighbor-Based Scheme

In the previous LB scheme, we report the observations
according to the received signal strengths directly. It is
sensitive to any slight movement. Hence, the NB scheme is
designed to hide the information of signal strengths and just
report binary observations to the BMD engine. In this
scheme, each beacon bi monitors the change of neighbor-
hood relations with other beacons in its coverage area. The
neighborhood relation of bi at time t is defined as

nti;j ¼
1; if bi can hear bj;
0; otherwise:

�

Let n0
i;j be the original neighborhood relation when the

system was first configured. Then the observation oti;j of bi on

bj at time t is oti;j ¼ nti;j � n0
i;j, where � is the “exclusive-or”

operator. An example with four beacons is shown in Fig. 4a,

where the coverage of each beacon is a circle of radius one.

Initially, each beacon is in the coverage of two neighboring

beacons. Suppose that at time t, beacons b3 and b4 are moved

as shown in Fig. 4b. If the tolerable regions are defined in

such a way that each beacon can only move no more than

one grid length, then the observation matrix Ot is as shown

in Fig. 4c. Note that due to the asymmetric property of radio

propagation, oti;j ¼ 1 does not imply otj;i ¼ 1. Hence, the

matrix Ot could be asymmetric.
Unfortunately, given an observation matrix Ot, it is

possible to come up with other beacon movement scenarios
that result in the same Ot. For example, the movement
scenario in Fig. 4d also has the same observation matrix as
shown in Fig. 4c. In fact, we can prove a stronger result that
such ambiguity always exists.

Definition 1. An observation matrix Ot obtained in the NB

scheme is ambiguous if there exist two different movement

scenarios BM and B0M such that 1) both BM and B0M result in

the same Ot and 2) BM \ CðOtÞ 6¼ B0M \ CðOtÞ, where CðOtÞ
is the candidate set such that CðOtÞ ¼ fbjjOt½i; j� ¼ 1 or

Ot½j; i� ¼ 1; 1 � i � n; 1 � j � ng and CðOtÞ 6¼ ;.
Condition 2 is to ensure that there is a nontrivial difference
between BM and B0M . Each beacon in CðOtÞ is detected to be
moved by at least one other beacon.

Theorem 1. Given any movement scenario BM and its

corresponding observation matrix Ot obtained in the NB

scheme, we can always find another movement scenario B0M
such that Ot is ambiguous.

Proof. Given any BM and its corresponding Ot, we can
easily compute BM \ CðOtÞ. To construct another B0M , we
first pick any beacon bk 2 BM \ CðOtÞ and move all
beacons in BM � fbkg to their new locations, as specified
in the movement scenario BM . Let the corresponding
observation matrix of yet-to-be-constructed movement
scenario B0M be Ôt. We shall show that Ot ¼ Ôt. For the
time being, for any beacons bi and bj 2 B such that bi 6¼ bk
and bj 6¼ bk, we can derive that Ôt½i; j� ¼ Ot½i; j�.

Next, suppose that in the movement scenario BM ,
beacon bk is moved from location ‘1 to ‘2. Let the moving
vector v

*¼ ‘2 � ‘1. Then, we move all beacons except bk
(i.e., B� fbkg) by the vector �v* . Such movements will
not change the entries Ot½i; j� and Ôt½i; j� for all i 6¼ k and
j 6¼ k. Also, these movements will not change the relative
locations of bi and bk for all bi 2 B� fbkg, i.e., Ôt½k; i� ¼
Ot½k; i� and Ôt½i; k� ¼ Ot½i; k� for all i. Clearly, the new
movement scenario will lead to Ôt ¼ Ot. Furthermore,
bk 2 BM \ CðOtÞ and bk 62 B0M , which implies that
bk 62 B0M \ CðÔtÞ, so this theorem is proved. tu

An example of the proof of Theorem 1 is shown in Fig. 4d.
Let BM be the movement scenario in Fig. 4b. To construct
B0M , b3 is kept unchanged and b4 is moved as scheduled.
Then b1, b2, and b4 are moved in the direction ð0; 1Þ (the
reverse of b3’s moving vector ð0;�1Þ). This shows that the
matrix Ot in Fig. 4c is ambiguous.

Clearly, the above ambiguity property prohibits us from
finding the exact BM given any Ot. In the NB scheme, our
derivation will rely on the assumption that unreliable
beacons are only a small proportion among all beacons. This
assumption is reasonable because, in practice, beacons are
usually moved by accident. Hence, we will try to construct
a set BD that is as small as possible. First, we transform
matrix Ot to a directed observation graph GO ¼ ðV ;EÞ, where
V ¼ CðOtÞ and E ¼ fhbi; bjijOt½i; j� ¼ 1; bi 2 V ; bj 2 V g. Re-
call that Ot could be asymmetric, so we define GO as a
directed graph. Second, observe that if hbi; bji exists, then
not only bi but also bj is suspicious. We may consider bi to
be suspicious because the existence of hbi; bji may result
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Fig. 4. An example of BMD problem in the NB scheme: (a) the original relation, (b) a movement scenario, (c) observation matrix Ot, (d) another

movement scenario, and (e) the observation graph GO.



from the movement of bi and the change of link property
between bi and bj. For example, in Fig. 5, the link between bi
and bj is changed from an asymmetric link to a symmetric
one (we are assuming a larger coverage for bi) due to the
movement of bi. Therefore, the problem can be regarded as
a vertex cover problem [8], whose goal is to find the smallest
set V 0 � V such that, for each hbi; bji 2 E, bi 2 V 0 or bj 2 V 0
or both. For example, Fig. 4e represents the observation
graph of the Ot in Fig. 4c.

The minimum vertex cover problem is known to be NP-
complete. Hence, after constructing graph GO, the NB
scheme adopts a heuristic approach as follows. If a
beacon bi’s in-degree in GO is higher, it is more suspicious
to be moved. So the engine sorts the vertices in GO

according to their in-degrees of the uncovered edges in a
descending order, and then selects the first one. This node is
included in BD if any edge incident to it has not been
covered. After selecting the most suspicious one, we will
sort the vertices again. This process is repeated until a
vertex cover is found (all edges in GO are covered).

4.3 Signal Strength Binary Scheme

In the previous NB scheme, we only consider the
neighborhood relations between beacons. The LB scheme
is more accurate because it considers the change of locations
of beacons. In the SSB scheme, we assume that beacons can
measure the signal strengths of HELLO packets from their
neighbors. However, beacons do not report these measure-
ments to the BMD engine directly. Instead, each beacon bi
evaluates the amount of signal strength change of each
neighboring beacon bj locally and only reports a binary
value to the BMD engine. Let the observed signal strength
by bi on bj at time t be sti;j (when t ¼ 0, it means the initial
observed signal strength). The observation oti;j of bi on bj is

oti;j ¼
1; if sti;j � �þi;j or sti;j � ��i;j;
0; otherwise;

�

where �þi;j and ��i;j are the predefined thresholds of signal
strength variations. Note that if beacon bi does not hear any
signals from bj, we let sti;j ¼ smin, where smin denotes the
minimum signal strength.

The thresholds �þi;j and ��i;j of each pair of beacons bi and

bj can be determined by the tolerable region Rj of bj. Within

the tolerable region Rj, we pick several sampling points.

For example, in Fig. 6, four sampling points p1, p2, p3, and

p4 are collected on the east, west, south, and north sides of

the boundary of Rj. For each neighboring beacon bi, we

measure the average signal strength at each of these

sampling points, assuming that bj is moved to this

sampling point. Note that if beacon bi does not hear any

signals from bj at a sampling point, we let its average signal

strength be smin. Among all sampling points, the average

signal strength at the point with the largest value is selected

as the value of �maxi;j and the one with the smallest value

is selected as the value of �mini;j . Then, considering the effect

of noise, we further add a tolerable threshold �SSB and

set �þi;j ¼ �maxi;j þ�SSB and ��i;j ¼ �mini;j ��SSB.
The major difference between the NB scheme and the

SSB scheme is the calculation of local observation. However,
the ambiguity property still holds.

Definition 2. An observation matrix Ot obtained in the SSB
scheme is ambiguous if there exist two different movement
scenarios BM and B0M such that 1) both BM and B0M result in
the same Ot and 2) BM \ CðOtÞ 6¼ B0M \ CðOtÞ, where CðOtÞ
is the candidate set such that CðOtÞ ¼ fbjjOt½i; j� ¼ 1 or
Ot½j; i� ¼ 1; 1 � i � n; 1 � j � ng and CðOtÞ 6¼ ;.

Theorem 2. Given any movement scenario BM and its
corresponding observation matrix Ot obtained in the SSB
scheme, we can always find another movement scenario B0M
such that Ot is ambiguous.

Proof. The proof is similar to that of Theorem 1. Given BM ,

we can construct another movement scenario B0M in a

similar way. Still, we can prove that 1) for any beacons bi
and bj 2 B such that i 6¼ k and j 6¼ k; Ôt½i; j� ¼ Ot½i; j�,
and 2) for all i 6¼ k, we can derive that Ôt½k; i� ¼ Ot½k; i�
and Ôt½i; k� ¼ Ot½i; k�. To prove 1), we move all beacons

in BM � fbkg to their new locations as specified in the

original movement scenario. To prove 2), we move all

beacons except bk by an opposite moving vector of the

original moving vector of bk. After these movements, the

relative positions of beacons are the same as that in the

movement scenario BM . Hence, sti;j equals the new

observed signal strength sti;j
0

in B0M . Besides, the thresh-

old �þi;j and ��i;j for each pairs bi and bj only depend on

bj’s tolerable region and the initial deployment, so these

observation matrices will be identical. tu
Based on changes of signal strengths, the BMD engine for

the SSB scheme can work similarly to that for the NB
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Fig. 5. An example of the appearance of edge hbi; bji in GO caused by

the movement of bi. Note that we assume that the communication range

of bi is larger than that of bj.
Fig. 6. Determining thresholds �þi;j and ��i;j by the tolerable region Rj of bj

in the SSB scheme.



scheme, except that the observations are computed by each
beacon by a different criteria. So we omit the details.
However, with more accurate information, this scheme is
expected to perform better than the NB scheme. We will
verify this through simulations in Section 5.

4.4 Signal Strength Real Scheme

Similarly to the previous SSB scheme, the SSR scheme
assumes that beacons can measure the signal strengths from
their neighboring beacons. However, in this scheme, the real
signal strength variations, instead of binary values, ob-
served by a beacon are reported to the BMD engine.
Specifically, the observation oti;j is

oti;j ¼
��sti;j � s0

i;j

��:
Similarly to the previous schemes, the ambiguity property
still remains.

Definition 3. An observation matrix Ot obtained in the SSR
scheme is ambiguous if there exist two different movement
scenarios BM and B0M such that both BM and B0M result in the
same Ot.

Theorem 3. Given any movement scenario BM and its
corresponding observation matrix Ot obtained in the SSR
scheme, we can always find another movement scenario B0M
such that Ot is ambiguous.

Proof. The proof is similar to that of Theorem 2. The same
approach is applied to construct another movement
scenario B0M . We can observe that B0M is a shifted
movement scenario of BM . This means that the relative
distance of any beacon bi to its neighbor bj inBM is the same
as the relative distance of the corresponding beacon b0i and
b0j in B0M . Hence, Ot½i; j� ¼ Ôt½i; j� for all i and j. tu

To avoid the effect of slight signal fluctuation and
tolerable movement, we apply the following two rules to
filter out those small values in the observation matrix: In the
first rule, we remove the observations affected by small
noises. We define a new n	 n matrix X such that

X½i; j� ¼ 0; Ot½i; j� < �SSR;
Ot½i; j�; otherwise;

�

where �SSR is a tunable threshold value. Hence, we drop
the observations that are insignificant. In the second rule,
we intend to avoid selecting those beacons whose move-
ments are within their tolerable regions. We filter out all
observations on bj if the summations of signal strength
changes observed by other beacons are below a threshold �i.
So, we define another n	 n matrix X0 such that

X0½i; j� ¼ 0;
Pn

k¼1 O½k; j� < �j;
X½i; j�; otherwise;

�

where �j is related to the tolerable region Rj of bj. To
determine a suitable �j, we adopt a similar sampling
strategy as shown in the SSB scheme. The threshold �j of
beacon bj is calculated by an approximation as follows.
Within the tolerable region Rj, we pick several sampling
points. For example, four sampling points are selected on
the east, west, south, and north sides of the boundary of

Rj in Fig. 6. For each sampling point, we measure the
sum of signal strength changes observed by other beacons
assuming that bj is moved to that sampling point. The
sum of the signal strength changes at the point with the
smallest value which is selected as the value of �j.

Next, we convert the problem to the minimum weight vertex

cover problem [10]. We define a directed weighted observation

graph GO ¼ ðV ;EÞ, where V ¼ fbjj
Pn

i¼1X
0½i; j� 6¼ 0g and

E ¼ fhbi; bjijX0½i; j� 6¼ 0; bi 2 V ; bj 2 V g. Similar to the NB

and SSB schemes, we suspect that bi or bj has been moved if

hbi; bji exists. The suspicion degree of beacon bi is defined as

wsðbiÞ ¼
Pn

j¼1 X
0½j; i�. The maximum suspicion degree is

written as w
s ¼ maxi¼1::nfwsðbiÞg. A weight function w :

V 7!Rþ is then defined for each bi 2 V such that wðbiÞ ¼
w
s � wsðbiÞ. According to the definition of the minimum

weight vertex cover problem, we try to find a vertex cover

V 0 � V such that if hbi; bji 2 E, then bi 2 V 0 or bj 2 V 0 or both,

and the sum
P

bi2V 0 wðbiÞ is minimized. Note that the

minimum weight vertex cover problem is still NP-complete.
From the above formulation, we have converted our

BMD problem to the minimum weight vertex cover
problem. Then, the SSR scheme adopts a heuristic strategy
to find a vertex cover with the minimum weight in GO. For
each beacon bi, we define a cost metric ci ¼ wðbiÞ=UEðbiÞ,
where UEðbiÞ is the number of uncovered edges of bi. Then,
the beacon with the minimum cost metric is included in our
solution. Then we compute the cost metrics of those
beacons that are affected due to the selection of the above
beacon and pick the next beacon with the minimum cost
metric. This is repeated until all edges are covered.

5 SIMULATION RESULTS

In this section, we present our simulation results to evaluate
the proposed schemes. Ideally, we would expect that
BM ¼ BD. However, for many practical reasons, this may
not be achieved. For ease of discussion, we define two
events. A hit event occurs for a beacon bi if bi 2 BM and the
BMD engine also determines that bi 2 BD. A false event
occurs for bi if bi 62 BM but bi 2 BD. We also use the results
to calibrate the positioning engine and measure the
localization error when there are unnoticed beacon move-
ment events (i.e., we compare the positioning accuracy
when our schemes are applied against the fact that no
action is taken with the existence of beacon movement
events). Experiments are conducted under different condi-
tions, such as the ratio of moved beacons, the maximum
movement distance, the degree of radio irregularity, the
degree of varied sending power, and the noise level of the
environment. Also, we adopt a close-to-reality radio model
called RIM [28] to conduct our simulations.

5.1 Simulation Model

The sensing field is a 300 m	 300 m area. There are
20 beacons randomly deployed on this field with the
restriction that the distance between any two beacons is at
least 5 m. This restriction is to avoid some beacons being
placed too crowded, thus reducing the detection capability
of the network. When a scenario violating the restriction is
generated, we will discard it and regenerate another one.
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Moved beacons are chosen randomly and a parameter
moved ratio (MR) is used to control the number of moved
beacons. The moving distance is uniformly distributed
between MD� 50 and MD, where MD is a parameter
called moved degree. The tolerable region of the movement of
each beacon is a circle centered at the beacon with a radius
of 20 m. Note that constrained by the tolerable regions, only
part of the moved beacons will be considered moved.

Based on RIM [28], the received signal strengths at a
distance of d is modeled by

PrðdÞ ¼ PVSP
t � PLDOIðdÞ þNð0; �fÞ; ð1Þ

where PVSP
t is the transmit power, which may vary among

different hardware, PLDOIðdÞ is the path loss, which has a
nonisotropic and continuous property, and Nð0; �fÞ is a
zero-mean normal random variable with a standard
deviation �f to stand for dynamically shadowing noise.

RIM introduces the variance of sending power (VSP) to
model the impacts of hardware difference and remaining
battery of a device on transmit power

PVSP
t ¼ Pt 	 1þNð0; VSPÞð Þ; ð2Þ

wherePt denotes the initial transmit power andNð0; VSPÞ is a
zero-mean normal random variable with a standard devia-
tion VSP. The parameter VSP controls the degree of variance
of sending power among different beacons. Each beacon
randomly selects its PVSP

t when the simulation starts.
In real-world experiments, the irregularity of signal

fading is a common phenomenon. However, most path loss
models do not take this nonisotropic property of signal
coverage into consideration. To capture this effect, RIM
imports a degree of irregularity (DOI) to control the amount of
path loss in different directions, i.e.,

PLDOIðdÞ ¼ PLðdÞ 	Ki; ð3Þ

where PLðdÞ is the optimal obstacle-free path loss
formulation

PLðdÞ ¼ PLðd0Þ þ 10�log
d

d0
; ð4Þ

where d0 is the reference distance (here we set d0 ¼ 1). The
coefficient Ki is to model the level of irregularity at degree i
(i ¼ 0::359) such that

Ki ¼
1; if i ¼ 0;

Ki�1 �Wð0; �d; �Þ 	 DOI; if i ¼ 1::359;

�
ð5Þ

where jK0 �K359j � DOI and Wð0; �d; �Þ is a zero-mean
Weibull random variable. The parameter DOI controls the
allowable difference of two successive degrees. When
Ki ¼ 1, it implies an ideal path loss model. When Ki

deviates more from 1, it means a greater deviation from the
ideal path loss formulation. Note that (5) is a discrete model
with 360 discrete values. To extend to a continuous model,
one may adopt an interpolation mechanism.

All results are from the average of 20 experiments. To
reduce the influence of noise, signal strength is calculated
from the average of 50 HELLO packets. The default simula-
tion parameters are set to Pt ¼ 15 dBm, d0 ¼ 1 m, PLðd0Þ ¼
41:5 dBm, � ¼ 3:3, �f ¼ 2, VSP ¼ 0:2, DOI ¼ 0:005, �d ¼ 0:1,
and � ¼ 1.

5.2 Parameters of the SSB and SSR Schemes

Before conducting thorough simulation studies, we first
tune the parameters of the SSB and SSR schemes. In these
schemes, we have two thresholds �SSB and �SSR to
eliminate the effect of signal fluctuation and irregularity,
respectively. Generally speaking, larger thresholds incur
higher hit probabilities and lower false probabilities. Fig. 7
illustrates the hit and false probabilities of SSB and SSR
under different values of thresholds. Hence, based on these
results, we let �SSB ¼ 3 and �SSR ¼ 6.

5.3 Probabilities of Hit and False Events

In this simulation study, we evaluate the hit and false

probabilities of the proposed schemes under different

environmental conditions. Here, we define the hit prob-

ability as the frequency of occurrence of hit events, e.g.,
jBD\BM j
jBM j , and the false probability as the frequency of

occurrence of false events, e.g., jBD�BM j
jB�BM j . First, in Fig. 8a, we

vary the noise level by adjusting the standard deviation �f of

RIM from 0 and 4. As expected, the NB scheme performs the

worst because it is too insensitive to beacon movement

events. Hence, only a few beacon movement events are

correctly detected and many unmoved beacons are falsely

alarmed. Under our simulation parameters, the LB scheme

can detect all beacon movement events under different noise

levels, but it has higher false probability than SSB and SSR.
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In Fig. 8b, we study the influence of the radio

irregularity on each scheme. We can observe that the false

probabilities of SSB, SSR, and LB increase as the radio

propagation is more irregular. For SSB and SSR, their false

probabilities are high due to their static thresholds �SSB

and �SSR, which prohibit them from dynamically adjust-

ing themselves to fit to the environment. For LB, it initially

outperforms NB when the degree of irregularity is low, but

is outperformed by NB as the degree of irregularity

becomes higher than 0.006.
Fig. 8c illustrates the influence of beacons’ variable

sending power. Larger values of VSP mean that beacons’

sending power is of higher degree of differences, which in

turn imply that we may see more asymmetric links between

beacons. Since our modeling has considered asymmetric

links, all schemes except the NB scheme can handle such

situations well. For the NB scheme, we see a significant

increase in its false probability.

5.4 Movement Degrees and Movement Ratios

In Fig. 9a, we vary the values of MR between 0.1 and 0.5 to

make the comparison. In terms of the hit probability, the LB

scheme performs the best, followed by SSB, SSR, and then

NB. However, the LB scheme also induces the highest false

probability. As a result, SSB and SSR are considered the

best, which provide a hit probability over 0.85 and a false

probability under 0.17 even when the MR is 0.4. The NB

scheme always has the worst hit and false probabilities due
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to its oversimplified detection model. The high false
probability of the LB scheme can be explained by its high
sensitivity to signal change. Since beacons will all report
their observations, the movement of a beacon can easily
propagate errors to its neighboring beacons. Thus, a lot of
reliable beacons will be reported as unreliable. The same
phenomenon can also be seen for the SSR scheme when the
MR gets higher. However, its false probability is much less
than that of the LB scheme.

In Fig. 9b, we vary the MD. Generally, because a larger
MD means that each movement is more dramatic, this is
beneficial for our detection work. Therefore, we see
increases of hit probabilities and decreases of false prob-
abilities as MD increases in all schemes except the NB and
LB schemes. Again, this demonstrates that the NB scheme is
oversimplified and the LB scheme is too sensitive.

Furthermore, we are interested in the evaluation of MD
and MR under the ideal log-distance path loss model. Recall
that when V SP ¼ 0 and DOI ¼ 0, RIM actually reduces to
the log-distance model. The results are shown in Fig. 10.
Comparing Figs. 9 and 10, we can observe that they have
similar trends. Beside, both the hit and false probabilities
are improved under the log-distance model, because its
radio propagation is more predictable.

5.5 Effect of Beacons’ Density

Intuitively, more beacons are beneficial to the BMD
problem. More beacons imply that each beacon has a

chance to be monitored by more neighboring beacons, so
the hit and false probabilities may be improved. We can
verify this claim in Fig. 11. As the number of beacons
increases, the hit probabilities of all schemes are improved.
As for the false probability, only minor improvement can be
seen for the SSB and SSR schemes. However, we see
noticeable improvement for LB. When the number of
beacons is more than 25, the false probability of LB will
be comparable with SSB and SSR. The reason is that the
positioning accuracy also improves as the number of
beacons increases. This proves that the performance of LB
is highly dependent on the positioning accuracy. Hence, we
can conclude that in a denser scenario with many beacons,
the LB scheme is an ideal choice because it gives a
comparable hit probability and a lower false probability.
However, in a sparser environment, the SSB and SSR
schemes are better choices because of not only their
performance but also their lower complexity.

5.6 Impact of BMD on Localization Accuracy

After determining the moved set BD, the positioning engine
should be recalibrated to improve its positioning capability.
We adopt the pattern-matching localization algorithm [3] in
our simulation, where the location database contains
the signal vector ��i ¼ ½�i;1; �i;2; . . . ; �i;n� of each training
location ‘i in the sensing field, where �i;j is the average
signal strength of beacon bj observed at location ‘i; i ¼ 1::m.
For the calibration purpose, we will ignore the element �i;j
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corresponding to each bj 2 BD during the localization
procedure. Clearly, this will reduce the number of beacons
to be referenced (including hit and false ones). However, if
contributions from those moved beacons are not deleted,
the errors may be high. In the following, we will evaluate
how our schemes can improve localization errors if there
exist beacon movement events.

In our experiment, we collect 961 training locations at
locations ð10	 i; 10	 jÞ, for i ¼ 0::30 and j ¼ 0::30. Then,
in the positioning phase, we simulate a moving object in
the field following the random waypoint model. It will
switch between a moving state and a pausing state. In the
moving state, it will randomly select a destination in the
sensing field and move to it at a constant speed of 1 m/sec.

After reaching the destination, it will switch to the pausing
state and stay there for 3 seconds. The tracked object also
measures the signal strengths of all beacons every 1 second.
The total simulation time is 1,000 seconds. We compare our
results against the Optimal case, where the hit probability is
always 1 and the false probability is always 0, and the
no_BMD case, where the hit probability is always 0 and the
false probability is always 0 (i.e., no special action is taken).

Figs. 12a and 12b illustrate the average positioning
errors under different MR and MD, respectively. The
results in Fig. 12a demonstrate that SSB and SSR incur
positioning errors closest to the Optimal case. One
interesting simulation result is that NB’s errors are quite
unacceptable, sometimes even worse than the no_BMD
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case. This is because of its low hit probability and high
false probability. LB is slightly worse than SSR when
MR � 0:3. However, referring to Fig. 9a, we see that LB
also has high false probabilities as MR increases. Hence,
when MR ¼ 0:5, LB’s positioning errors are higher than
those of the other schemes.

The comparisons of the positioning errors under differ-
ent values of MD are shown in Fig. 12b. The trends are
similar. Under all simulated MR, SSB and SSR perform very
close to the Optimal case. NB incurs the worst performance.

To model the error recovery capability using the Optimal
case as the baseline, we propose the following Error
Improvement Ratio metric:

EIRðBMD SchemeÞ

¼ errorno BMD � errorBMD Scheme

errorno BMD � errorOptimal
	 100%:

The ideal value of EIR is 100 percent. However, this is
hard to achieve because our current results cannot achieve
100 percent hit and 0 percent false probabilities. For
example, under the default settings, the EIR values are
47.77, -58.85, 72.99, and 70.66 percent for LB, NB, SSB, and
SSR, respectively.

6 CONCLUSIONS

In this paper, we have identified a new BMD problem in
wireless sensor networks for localization applications. This
problem describes a situation where some beacon sensors
which participate in the localization procedure are moved
unexpectedly, called beacon movement events. The nega-
tive impact is a reduced localization accuracy if we
disregard such events. We propose to allow beacons to
monitor each other to identify such events. Four schemes are
presented for the BMD problem. Moreover, we have proven
some ambiguity theorems which may prohibit the BMD
problem from being solved correctly under some situations.
Some heuristics are proposed by mapping the BMD
problem to the vertex-cover problem. Hit and false
probabilities of these heuristics are obtained through
simulations under a realistic radio irregularity model [28].
It is shown that the best heuristics, SSB and SSR, have an
error improvement ratio of more than 70 percent in most
cases. As to future work, it deserves to further investigate

the BMD problem if there is some trust model among
beacons. Based on the observations contributed from the
trust model, the BMD problem should be solved more
effectively. Besides, in this paper, we omit the observations
from the moved beacons to avoid more serious positioning
errors in the localization process. It could be more beneficial
to the localization system if we can relocate those moved
beacons. Finally, a variant of the beacon movement
detection problem, when there are some mobile beacons
which may move away from their original moving
trajectories, also deserves further investigation.
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