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摘要 

 

本篇論文提出一個新穎的想法來產生微分負阻的機制，並且可用

來實現兆赫波震盪器。這個震盪器利用砷化鎵/鋁化鎵異質結構本身

的特性—電子可以從 點遷移到 X 點而不用有聲子的參與。和傳統的

Gunn 震盪器比較，此震盪器的震盪頻率不受限於電子—聲子的散射

機率。因此，微分負阻的機制主要是由 Γ–X耦合的機制來控制，此

時反交叉能隙是決定 Γ–X耦合強度的一個重要參數。 

Γ

    在本篇研究中所採用的結構是數個量子井和能障長在(001)方

向，在此結構中水平方向的對稱性仍然和塊材的對稱性相同。為了考

慮 Γ–X耦合，必須考慮多能階的特性，此時一般常用的有效質量方

程式並不適用，我們採用膺勢法來計算複數能帶圖。 

    模擬結果顯現出主要是由結構中單位面積的界面數目來決定反

交叉能隙的大小，而且即使在很簡單的兩個能障的異質結構中，也可

以有很大的反交叉能隙。 
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Abstract 
 
 
  This thesis proposes a novel idea to realize the terahertz oscillator, 
which is based on the mechanism of negative differential resistance. This 
oscillator utilizes the inherent properties of GaAs/AlAs 

heterostructures— the possibility of phononless transfer of electrons from 

Γ–valley to X –valley. Compared to the conventional Gunn oscillator, the 
frequency of the oscillator could not be limited by electron-phonon 
scattering rate. Therefore, the effect of negative differential resistance is 
dominated by the mechanism of Γ–X mixing, where the anticrossing gap 
is an important parameter to determine the strength of Γ–X mixing effect. 
  The structure of the system in this study consists of several barriers and 
wells grown on the (001) plane, in which the translational symmetry in 
the parallel direction is preserved as the bulk. The empirical 
pseudopotential complex-band structure method is used in order to 
consider multi-state properties for Γ–X mixing, which cannot be treated 
by the usual effective-mass theory.  
  The simulation results show that the interface number per unit length 
dominates the effect of anticrossing gap. Even in a simple GaAs/AlAs 
double-barrier heterostructure, the anticrossing gap still can be large.  
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1. Introduction 
 
     Recently, Terahertz laser has attracted much attention in many 
aspects. The spectrum indicates that the terahertz regime overlaps with a 
significant part of the molecular lines. Hence, these radiations can be 
used to detect and to interact with most molecules. Due to these features, 
the relevant physics and technologies are important to medical diagnosis, 
agriculture, water resource, environmental protection, etc. However, a 
convenient and inexpensive terahertz radiation source has not been 
available. 
     The Gunn effect, namely the negative differential resistance, was 
first discovered by Gunn in 1963[1]. The mechanism responsible for the 
negative differential resistance of general oscillators, such as Gunn diodes, 
is a field-induced transfer of conduction-band electrons from 
high-mobility valley to low mobility valley [2]. The period of oscillation 
is the carrier transit time across the sample and the frequency of 
oscillation is equal to the reciprocal of the period of oscillation. Therefore, 
the frequency of oscillation would increase with decreasing the channel 
length. However, since the transfer of electrons between different valleys 
needs a large amount of electron-phonon interaction, when the channel 
length is not long enough, this process would be restricted by the 
electron-phonon interaction.  
     Here we will present a mechanism where there is no need for 
electron-phonon interaction. Let us consider a heterostructure comprising 
GaAs and AlAs layers grown on the (001) plane. In such a heterostructure, 
because GaAs is a direct-bandgap material and AlAs is an 
indirect-bandgap material, the GaAs layers constitute potential wells for 
Γ-valley electrons and barriers for X-valley electrons, while the AlAs 
layers constitute potential wells for X-valley electrons and barriers for 
Γ-valley electrons (Fig 1). At the appropriate length of GaAs and AlAs 
layers, the Γ subband is higher than the X subband, and the Γ subband 
would meet X subband [3]. If Γ subband mixes with X subband, the two 
subbands constitute two Γ-X mixed subbands. Under the effect of the 
electric field, the Γ-valley electrons with low effective mass transfer to X 
valley with high effective mass (Fig 2). We can see that the scope of the 
band in Fig 2 decreases after Γ-X mixing, and this phenomenon is the 
negative differential resistance. This mechanism is not restricted by the 
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electron-phonon interaction. Therefore, the oscillation frequency is 
dominated by the channel length. 
 

 
Fig 1 The band profile of the double-barrier heterostructure 
 
 

E

( , )x yk k=k&

 
Fig 2 The electron energy levels of the double-barrier heterostructure 
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2. Theory 
 
 
 
Bulk evanescent states play an important role in determining the 

electronic properties of heterostructures. Several methods such as  

model, tight-binding model, and empirical pseudopotential can be used to 
obtain bulk complex band structures. The total wave function is expanded 
in terms of bulk propagating and evanescent states on both sides of a 
matching plane. However, in the present system, since AlAs is an 

indirect-bandgap material, only considering the Γ symmetry point is not 

sufficient. It follows that the electronic properties of GaAs/AlAs 

heterostructures cannot be treated by usual approach, namely the  

model. The restriction of this approach is that it requires wave vectors 
lying close to particular band extreme. In order to retain the multi-state 
property, empirical pseudopotential is used. Compared to the 
envelope-function approach, this method is valid for wave vectors 
throughout the first Brillouin zone. 

k pi

k pi

GaAs and AlAs are lattice-matched materials so that strain is not taken 
into account. The system is treated in the flat-band approximation. It is 
divided into several sections of alternative GaAs and AlAs. Each section 
is treated as quasi-bulk-like. The electronic wave function obtained from 
this method contains both the evanescent states and the Bloch states 
originating from various conduction-band minima.  
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2.1 Calculation of complex band structures [4],[5],[6] 
 

We start with the one-electron Schrödinger equation for a bulk-crystal 

of material    j

( ) ( ) ( )2
0

j j j jV U Eϕ ϕ−∇ + + =⎡ ⎤⎣ ⎦r r r         (2.1)

  

The constant  is to account for the band offset parameters between 

the respective material layers. 

0
jU

At given E  and , the Bloch function can be expanded in terms of 

plane waves [4],[5], i.e.  

k&

 

( ) ( ) ( ),
j jj i j i je u e C eϕ ⋅ ⋅= = ∑k r k r G r

G
r r k G i ⋅        (2.2) 

 
where G are reciprocal-lattice vectors.  
The Schrödinger equation written in the plane-wave basis is 

 

( ) ( ), ,j jH C′ ′ =∑ G G
G

k k G 0           (2.3) 

 
where  
 

( ) ( ) ( )2

, ,
j jH E Vδ′ ′

⎡ ⎤ ′≡ + − + −⎣ ⎦G G G Gk k G G G       (2.4) 

 

with ( )V ′−G G  being the pseudopotential form factors [7]. 

The H  matrix is a quadratic polynomial in  for fixed  andzk jk & E . 

Equation (2.4) can present in the form of  
 

( ) ( ) ( ) 2(0) (1) 1j j j
z zH H H k k= + +k k k& & ⋅        (2.5) 
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where  
 

( ) ( ) ( )2(0) 2
,

(1)
,

2

2

j j j

j
z

H E

H G

δ

δ

′

′

V ′= + + ⋅ − + −

=

G G

G G

k k G k G G G

k

& & &

&

        (2.6) 

 

Equation (2.4) can be transformed into an eigenvalue equation for , i.e.  zk

 

( ) ( )(0) (1) (1) (1)

0 1
j j z

C C
k

H H C C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢− − ⎣ ⎦ ⎣ ⎦⎣ ⎦k k& &
⎥

C

       (2.7) 

 

where . After diagonalizing the left first matrix of equation 

(2.7), we obtain the eigenvalues and corresponding eigenvectors. If  
plane waves are used, there are  solutions (which will be labeled 
with index ). However, only the in-zone solutions should be retained, the 
number of which equals 2

(1)
zC k≡

N
2N

s
M , where M  is the number of projected 

reciprocal lattice vectors . The general wave function in each layer  

can be written as a linear combination of all Bloch-type solutions with 

different  

G& j

,j s
zk

 

( ) ( )
2

, ,
M

j j s j

s

sψ α ϕ=∑r r                       (2.8) 

 

where ( ),j sϕ r  is given by equation (2.2). 
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2.2 Boundary conditions [6] 
 
  This section will present the method to decide ,j sα  in equation (2.8). 
The method is based on the theory of scattering matrix method, which 
can avoid numerical problems. Equation (2.2) can be transformed into the 
following form 
 

( ) ( )
( )

,, ,

,
, ,

, ,          

j s
z

z

z z

z z

i ikj s j s

i iG zj s i
k k

i iiG z iG z
k k

G G

e e u

u A e e A e

e A e e A e

ϕ ⋅

⋅⋅

⋅ ⋅

=

⎡ ⎤= = ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

∑ ∑

∑∑ ∑ ∑

k r

G rG r
G G

G G

G r G r
G G

G G

r r

r

& &

& &

& & & &

& &

      (2.9) 

 

From equation (2.8), the wave function in each layer  is now j

 

( ) ,

,

,

,

,

, ,

,
,

( ) ( ),
,

( )( )( ) , ,
, ,

         

         

j s
z z

j s
z

z

j s
z z

j s
z

z

j s
z z j

j s j s
z z

z

i iik iG zj j s
k

s G

i i k G zj s
k

s G

i k G z zi j s j s
k k

G

e e e A e

e A e

e a A e b A

ψ α

α

⋅ ⋅

+ ⋅ +

+ −+ ⋅
′

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤ ′= +
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

k r G r
G

G

k G r
G

G

k G r
G G

G

r & & & &

&

& & &

&

& & &

&

,
1( )( )j s

z z j

z

i k G z z

s G

e +′ + −⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑

 
                  (2.10) 
 

where and are the coefficients of the “forward” and the 

“backward” state, respectively, with the forward states defined as those 
which propagate or exponentially decay in the positive-z direction and the 
backward states similarly defined as those which propagate or 

exponentially decay in the negative-z direction. and are the left 

and right boundaries of each layer . 

,j sa ,j sb

jz 1jz +

j
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The boundary condition follow from demanding wave function and its 

first derivative to be continuous at the interface (located at ). From 

equation (2.10), we can see that this condition can only be achieved when 

the coefficients of each are equal, i.e., 

1jz +

G&

 

,
1

, ,

1,
1 2

1, 1,

,
1

,

( )( ), ,
, ,

( )( )1, 1,
, ,

( )( ), , ,
,

[ e ] [ ]

[ ] [ e ]

[ ( )e ] [

j s
z z j j

j s j s
z z

z z

j s
z z j j

j s j s
z z

z z

j s
z z j j

j s
z

i k G z zj s j s
k k

s G G

i k G z zj s j s
k k

s G G

i k G z zj s j s j s
z zk

a A b A

a A b A

a A k G b A

+

+
+ +

+ +

+

+ −

′

′ + −+ +

′

+ −

′

⎡ ⎤′+⎢ ⎥⎣ ⎦
⎡ ⎤′= +⎢ ⎥⎣ ⎦

′+ +

∑ ∑ ∑

∑ ∑ ∑

G G

G G

G ,

1,
1 2

1, 1,

,
,

( )( )1, 1, 1, 1,
, ,

( )]

[ ( )] [ ( )e

j s
z

z z

j s
z z j j

j s j s
z z

z z

j s
z zk

s G G

i k G z zj s j s j s j s
z z z zk k

s G G

k G

a A k G b A k G
+

+ +

+ +

′ + −+ + + +

′

⎡ ⎤′ +⎢ ⎥⎣ ⎦
⎡ ⎤′ ′= + + +⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

G

G G
]

n

⎤
⎥
⎦

a

n

⎤
⎥
⎦

a

 
(2.11) 
 

Equation (2.11) can be transformed into the matrix form, i.e., 
 

( ) ( 1)

( ) ( 1)( 1)
n n

n T n
+

+

⎡ ⎤ ⎡
= +⎢ ⎥ ⎢

⎣ ⎦ ⎣

a
b b

              (2.12) 

 

where  is the transfer matrix. After separating the forward and 

backward states at the two sides of equation (2.12), we obtain equation 
(2.13), the scattering matrix [8]. 

( 1)T n +

 
( ) ( 1)

( 1) ( )( 1)
n n

n S n
+

+

⎡ ⎤ ⎡
= +⎢ ⎥ ⎢

⎣ ⎦ ⎣

a
b b

             (2.13) 

 
The above equation can extend to the following form  
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( ) ( )

( ) ( )( , )
n m

m S n m
⎡ ⎤ ⎡

=⎢ ⎥ ⎢
⎣ ⎦ ⎣

a
b b n

⎤
⎥
⎦

a

N

                                    (2.14) 

 
where 
 

11 12

21 22

( , ) ( , )
( , )

( , ) ( , )
S n m S n m

S n m
S n m S n m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   

 
( ) (1) ( )

11 12
( ) ( ) ( )

21 22

(1, ) (1, )

( , ) ( , )

m m

m m

S m S m

S m N S m N

= +

= +

a a b

b a b
         (2.15) 

 

The matrices  depend on energy ( , )ijS n m E  and in-plane wave vector 

. In order to calculate the energy state of the system, we set the vector 

coefficients  and  for the incoming waves to be zero.  

k&

(1)a ( )Nb

Therefore, the eigenvalue equation can be written as [9] 
 

( )
21 12[ ( , ) (1, )] mI S m N S m− b 0=           (2.16) 

 
In such a GaAs/AlAs system, electron could escape from the system via 

 transfer; consequently the energy state should be complex so that 
it could represent its behavior varying with time, i.e. 
Γ − Χ

 

2 222

2

( , ) ( ) ( ),   

( , ) ( )

( , ) ,   
2

i r

i i

E E Ei t t i t

r i

E Et t

t

i

t e e e E E i E

t dV e dV e

t dV e
E

τ

ψ φ φ

ψ φ

ψ τ

− − −

− −

−

= = = −

= ∝

∝ =

∫ ∫

∫

r r r

r r

r

= = =

= =

=

⋅

             (2.17)  

 
In solving this nonlinear two-dimensional equation (2.16), the usual 2-D 
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Newton method is used. Only the solution with positive iE  has physical 

meaning. However, in some cases we cannot find the solutions. The 
problems might be from that we cannot find the appropriate initial guess 
close to the solutions. Still another method can be used. Solving equation 

(2.16) is equivalent to diagonalize  with eigenvalue 1. 

The eigenvalue of  can be written as 

21 12( , ) (1, )S m N S m

21 12( , ) (1, )S m N S m iR e θ⋅ . R  is 

approximately linear in iE , since the amplitude represents the loss.θ  is 

approximately linear in rE , since rE  has the information of frequency, 

frequency is the reciprocal of wavelength, and wavelength has the 
information of phase. However, in some cases, we cannot find 
meaningful E . The problem is the same as 2-D Newton method. We 
have to find a powerful numerical method so that the analysis can be 
more complete. 
If in the case that we emphasize on the anticrossing gaps of the 

GaAs/AlAs heterostructures, we can only calculate , and  is not 

taken into account. The profiles of the two approaches are much the 
same. 

rE iE
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2.3 Transmission coefficient 
  

Transmission coefficient is calculated from the definition of the current 
flux that 

 

transmit

incidnet

JT
J

=                 (2.12) 

 

where ( ) ( )*j,s j,sRexJ iϕ ϕ⎡ ⎤= − ∇⎢ ⎥⎣ ⎦
. Only the state with real ,j s

zk can have 

nonzero current flux. The plot of E  versus T  can help us plot E  

versus . At , the peak of the plot k& (0,0)=k& E  versus  is the 

resonance energy and can be classified into different types of quasi-bound 
states. The energy of quasi-bound states is in fact equal to the energy 

level of the system at that . From curvature of the band we can classify 

the band into  or  quasi-bound state. Since the transverse effective 
mass of  valley is several times larger than the transverse effective 
mass of Γ  valley, the curvature of 

T

k&

Γ Χ
Χ

Γ  quasi-bound states would be 
larger than  quasi-bound states.  Χ
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3. Simulation Results  
 
This chapter is divided to two sections. In the first section, the complex 

band structures of GaAs and AlAs are presented. The second section is 
the  mixing effect on the subband structure, where anticrossing 
gap is an important parameter. The logarithmic plots of transmission 

coefficients as a function of electron energy with 

Γ −Χ

(0,0)=k are presented 

as well. The anticrossing gap is defined as the minimum energy 
separation between the mixed Γ −Χ  states. Since we want intense 

 interaction so that the electrons of Γ −Χ Γ -valley can easily transfer to 
-valley under the applying of electric field in the parallel direction, we 

want to obtain a structure with a large anticrossing gap. In this chapter, 
GaAs is defined as the well material and AlAs is defined as the barrier 
material in the name of the 

Χ

Γ -valley electrons.  
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3.1 Complex band structures 
The empirical pseudopotential method is used to calculate the bulk 

complex band structure. The pseudopotential form factors can be adjusted 
as well to fit the particular band parameters. Note that a little change in 
the form factors would lead to large change in the band structure. Fig.1 
and Fig.2 are the complex band structure of GaAs and AlAs respectively. 
The energy of conduction Γ -valley in GaAs is shifted to zero. The 
lowest conduction band in AlAs lies at the Χ -valley. 

 

 
                           
Fig 3 Complex band structure of GaAs along [001] direction 
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Fig 4 Complex band structure of AlAs along [001] direction 
 
From Fig1. and Fig2., we can see that GaAs is a direct band gap material, 
and AlAs is an indirect band gap material. The X-valley of AlAs is at 
0.1492 eV and the -valley of GaAs is at 1.1048 eV. Therefore, AlAs is 
the barrier for the -valley electrons, and GaAs is the barrier for the 
X-valley electrons. Thus, with specific length of each material, the 

-valley electrons and X-valley electrons will confined at different 
material. The above phenomenon is the origin of 

Γ
Γ

Γ
Γ -X mixing effect.  
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3.2 - mixing effect on the subband structure Γ Χ
 

Since only at the interface can electrons transfer from -valley to 
X-valley, the interfaces play an important role in the 

Γ
Γ -X mixing effect. 

Therefore, we will discuss the effect of interface in two ways. The first 
one is that the total length of the heterostructure is fixed, and the length of 
one pair of a barrier and a well is changed. The second one is that the 
length of one pair of a barrier and a well is fixed, and the total length of 
the heterostructure is changed.  
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Case 1. Total length of the heterostructure is fixed. 
 
1. Total Length L=130 Å 

(1) Single barrier 

 
Fig 5a The band profile of L=130 Å, single barrier 

 
Fig 5b The subband structure of L=130 Å, single barrier  
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In this structure, since there is no GaAs well to constitute  well, there 
is no  quasi-bound states to provide 

Γ
Γ Γ -X mixing effect. Therefore, 

the subband structure monotonic increases with xk .  

 
(2) 2 barriers, 1 well 

 
Fig 6a The band profile of L=130 Å, 2 barriers, 1 well 

 
Fig 6b The logarithmic plot of transmission coefficient of L=130 Å,  

2 barriers, 1 well. The incident state is the state with 0=k  
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Fig 6c The real part of subband structure of L=130 Å, 2 barriers, 1 well 
 
 

 

Fig 6d The imaginary part of subband structure of L=130 Å, 2 barriers, 1 
well 
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From Fig 4b, we can see four peaks, which correspond to four energy 
states, the quasi-bound states. The lowest energy state is the  state, 
which is confined at GaAs well and corresponds to the lowest subband in 
Fig 4c and has smaller curvature. The other three energy states 
correspond to X states, which correspond to the other three subbands in 
Fig4c and have the larger curvature. In Fig 4c, the lowest Γ  state 

increases monotonically with 

Γ

xk , and when it meets with the second X 

state, the -X mixing effect occurs, meaning that at this energy, the 2 
wave functions have both the 

Γ
Γ  and X part. After that, the original Γ  

state becomes the X state, and the original X state becomes the  state. 
We can see that the second anticrossing gap is larger than the first 
anticrossing gap. This is because when the energy is higher, the wave 
function is less localized; thus the overlap of the 

Γ

Γ  and X wave 
functions is larger. 
 
(3) 3 barriers, 2 wells 

 
Fig 7a The band profile of L=130 Å, 3 barriers, 2 wells 
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Fig 7b The logarithmic plot of transmission coefficient of L=130 Å,  

3 barriers, 2 wells. The incident state is the state with 0=k  

 

 
Fig 7c The real part of subband structure of L=130 Å, 3 barriers, 2 well 
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Fig 7d The imaginary part of subband structure of L=130 Å, 3 barriers, 2 
wells 
 
From Fig 5c, we can see that the lowest subband is the X subband. The 
second subband is the  subband, and when it meets with the higher X 
subband, -X mixing effect occurs. 

Γ
Γ

 
(4) Unsymmetrical structure, 2 barriers, 1 well 

 
Fig 8a The band profile of L=130 Å, unsymmetrical structure, 2 barriers, 
1 well 
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Fig 8b The logarithmic plot of transmission coefficient of L=130 Å, 
unsymmetrical structure, 2 barriers, 1 well. The incident state is the state 

with  0=k

 

 
Fig 8c The real part of subband structure of L=130 Å, 2 barriers, 1 well 
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Fig 8d The imaginary part of subband structure of L=130 Å, 2 barriers, 1 
well 
 
Compared with the result in (2), although the number of interfaces is the 
same, the anticrossing gap in (4) is smaller due to two reasons. The first 
one is that at the energy which Γ − Χ  mixing occurs is lower in (4); thus 
the and X wave functions are more localized. Therefore, the overlap of 
the wave functions is weaker. The second one is that when Γ − Χ  

mixing effect occurs, the X wave function almost localizes at one AlAs 
barrier, since the two barriers are unsymmetrical. This is like the case 
with only one AlAs barrier. 

Γ
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2. Total Length L=215 Å 

(1) 3 barriers, 2 wells 

 
Fig 9a The band profile of L=215 Å, 3 barriers, 2 wells 
 

 
Fig 9b The logarithmic plot of transmission coefficient of L=215 Å,  

3 barriers, 2 wells. The incident state is the state with 0=k  
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Fig 9c The subband structure of L=215 Å, 3 barriers, 2 wells 
 
 
 
(2) 4 barriers, 3 wells 

 
Fig 10a The band profile of L=215 Å, 4 barriers, 3 wells 
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Fig 10b The logarithmic plots of transmission coefficient of L=215 Å,  

4 barriers, 3 wells. The incident state is the state with 0=k  

 

 
Fig 10c The subband structure of L=215 Å, 4 barriers, 3 wells 
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Case 2. Total length of one pair of a barrier and a well 

is fixed. 
 
1. BL=30Å, WL=35Å 
(1) 2 barriers, 1 well 

 
Fig 11a The band profile of BL=30 Å, WL=35 Å. (2 barriers, 1 well) 
 

 
Fig 11b The subband structure of BL=30 Å, WL=35 Å. (2 barriers, 1 
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well) 
(2) 4 barriers, 3 wells 

 
Fig 12a The band profile of BL=30 Å, WL=35 Å. (4 barriers, 3 well) 
 
 

 
Fig 12b The subband structure of BL=30 Å, WL=35 Å. (4 barriers, 3 
wells) 
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2. BL=45Å, WL=45Å 
(1) 2 barriers, 1 well 

 
Fig 13a The band profile of BL=45 Å, WL=45 Å. (2 barriers, 1 well) 
 
 

 
Fig 13b The subband structure of BL=45 Å, WL=45 Å. (2 barriers, 1 
well) 
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(1) 3 barriers, 2 wells 

 
Fig 14a The band profile of BL=45 Å, WL=45 Å. (3 barriers, 2 wells) 
 

 
Fig 14b The subband structure of BL=45 Å, WL=45 Å. (3 barriers, 2 
wells) 
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Case 1: Total length of the structure is fixed. 

Total Length L=130 Å 

1st Anticrossing Gap 2nd Anticrossing Gap Structure 
(meV) (meV) 

1 barrier 0 0 
2 barriers, 1 well 9 6 4.0 7.1
3 barriers, 2 wells  18.28  
Unsymmetrical,  
2 barriers, 1 well 

2.47  

Table 1 Anticorssing gap. Total length of the structure is fixed. L=130 Å 

otal Length L=215 Å 

1st Anticrossing Gap 2nd Anticrossing Gap 

 

T

Structure 
(meV) (meV) 

3 barriers, 2 wells 4.76 7.72 
4 barriers, 3 wells 11.86  
Table 2 Anticorssing gap length of the structure is fixed. L=215 Å 

ase 2: The Length of one pair of a barrier and a well 

is fixed. 
L=35 Å 

ticrossing Gap (meV)

. Total 
 

C

BL=30 Å, W
Structure An
2 barriers, 1 wells 12.56 
4 barriers, 3 wells 11.86 
Table 3  Anticorssing gap. Length of one pair of a barrier and a well is 

 
L=35 Å, WL=35 Å 

ticrossing Gap (meV)

fixed. BL=30 Å, WL=35 Å 

B
Structure An
2 barriers, 1 wells 4.09 
3 barriers, 2 wells 3.79 
Table 4  Anticorssing gap. Length of one pair of a barrier and a well is 
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fixed. BL=35 Å, WL=35 Å 
 
 First of all, let’s consider case 1. From Table 1, we can see that when  

the total length of the structure is fixed, the anticrossing gap increases 
with the number of the interfaces per unit length. This is because the 
interface dominates the Γ -Χ  mixing effect. Therefore, when the total 
length of the structures  xed, the increase of the number of the 
interface would lead to stronger 

is fi
Γ - Χ  mixing effect. In the same 

structure, the second anticrossing gap is larger than the first anticrossing 
gap, since the larger the energy state is; the less localized the wave 
function is. Compare the result in the second row and the fourth row of 
the Table 1, and the anticrossing gap of the unsymmetrical structure is 
smaller than that of the symmetric one, although the two structures have 
the same number of interfaces. This is because when 

 

Γ -Χ  mixing effect 
occurs, the energy states of the two divided GaAs wells are different. 
Therefore, this is like the case that only one AlAs well can contribute to 
the Γ -Χ  mixing effect. The result of the Table 2 can be explained by 
the above discussion. 
  Second, let’s consider case 2. The length of the one pair of a barrier 
and a well fixed means that the number of interfaces per unit length is 
fixed. The change of the anticrossing gap is much smaller than that of the 
case 1. This is due to two reasons. First, the energy states of the first row 
and the second row in the Table 3 and Table 4 are almost the same. 
Therefore, the overlap of the Γ and Χwave functions is almost equal. 
Second, the number of the inter ces p  unit length is the same, which is 
the same as the discussion in case 1. 
  Finally, we can conclude that the 

fa er

dominant factor of the anticrossing 
gap is the number of the interfaces per unit length, not the number of the 
interfaces. Consequently, with the purpose of large anticrossing gap, the 
increase of the number of the interfaces per unit length and a symmetric 
structure is necessary. 
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4. Conclusion 

his thesis proposed a novel idea to realize the terahertz laser which is 
ba

system
rossing gap. The first 

re

 

 
T
sed on the mechanism of negative differential resistance. The proposed 

structure utilizes the Γ -Χ  mixing effect to produce negative differential 
resistance. Therefore th  oscillation frequency is dominated by the 
channel length and will not be restricted by the electron-electron 
scattering rate. The structure is simple and easy to fabricate in the present 
technology. The phononless intervalley scattering at the interface cannot 
be taken into account by the usual effective-mass theory. Therefore, 
empirical pseudopotential is used to calculate the complex band structure, 
which is the appropriate candidate to obtain multi-state properties for 
Γ -Χ  mixing effect. Besides, scattering matrix method can treat a large 

 as well without any numerical problems.  
The proper structure is with the large antic

, e

quirement is a symmetric structure. Moreover, the dominate factor is 
the number of the interfaces per unit length, not the total number of the 
interfaces.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 32



[1] J. B. Gunn, “Microwave Oscillation of Current in III-V 
Semiconductors,” Solid State Commun., 1, 88 (1963) 

[2] S. M. Sze, “Physics of Semiconductor Devices”, 2nd ed., p637. 
[3] D. Z. –Y. Ting, Yia-Chung Chang, “Γ-X mixing in 

GaAs/AlxGa1-xAs/AlAs superlattices”, Phys. Rev. B 36, 4359 (1987) 
[4] Marvin L. Cohen, T. K. Bergstresse, “Band Structures and 

Pseudopotential Form Factors for Fourteen Semiconductors of the 
Diamond and Zinc-blende Structures”, Phys. Rev. 141, 789 (1966) 

[5] Yia-Chung Chang, J. N. Schulman, “Complex band structures of 
crystalline solids: An eigenvalue method”, Phys. Rev. B 25, 3975 
(1982) 

[6] J P Cuypers, W van Haeringen, “Matching of electronic 
wavefunctions and envelope functions at GaAs/AlAs interfaces”, J. 
Phys.: Condens. Matter 4, 2587 (1992) 

[7] Jian-Bai Xia, “Γ-X mixing effect in GaAs/AlAs superlattices and 
heterojunctions” , Phys. Rev. B 41, 3117 (1990) 

[8] David Yuk Kei, J. C. Inkson, “Matrix method for tunneling in 
heterostructures: Resonant tunneling in multilayer systems”, Phys. 
Rev. B 38, 9945 (1988) 

[9] A. Zakharova, S. T. Yen, K. A.Chao, “Hybridization of electron, light- 
hole and heavy-hole states in InAs/GaSb quantum wells”, Phys. Rev. 
B 64,233532 (2001) 

 

 33




