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Abstract

A physically based analytic madel is established at the top of the source-channel
barrier in ultrathin film double-gate MOSFETs. -The validity of the model is
corroborated using 1-D SchrodingersPaisson-simulation, 2-D ballistic I-V simulation
down to 10-nm channel length, and existing-2-D Monte Carlo particle and Green’s
function simulations with the scattering included in the channel. Also presented
specifically are the effect of backward to forward flux ratio on the thermal injection
velocity at the top of the barrier, the comparison of DIBL extracted from the model
with that from subthreshold 1-V shift, the verification of the channel backscattering
theory once the backward to forward flux ratio is replaced by the channel
backscattering coefficient, and the potential applications of an improved expression

for the width of the kgT layer (a critical zone, part of the barrier).
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