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Chapter 1 

Introduction 
 

Nowadays high performance CMOS technologies have been investigated with the 

channel length down to nanometer regime. However, the several unwanted effects 

seriously degrade the characteristics of nanoscale CMOS device such as gate oxide 

tunneling, mobility degradation, short-channel effect, and drain induced barrier 

lowering (DIBL) enhanced leakage. Therefore, some advanced MOSFET structures 

such as double-gate MOSFETs have been proposed in the past years for these specific 

devices exhibit the promising ability to alleviate the hurdles described above. The 

double-gate MOSFETs offer the possibility of channel length scaling down to 10 nm 

along with the advantages such as high transconductance and near-ideal subthreshold 

swing. Particularly, the upper and bottom gates can provide good electrostatic 

integrity which minimizes drain-induced barrier lowering and threshold voltage 

variations.  The physical origin of these nano-scale MOSFETs has been thoroughly 

examined and there have been a number of mathematical models developed to date. In 

this thesis, we focus on ultrathin double-gate MOSFETs to establish a new physically 

based analytic model. The validity of the model is corroborated by sophisticated 

device simulations such as 1-D Schrödinger – Poisson solving, 2-D ballistic I-V 

simulations, and 2-D Monte Carlo particle and Green’s Function simulations with the 

scattering in the channel. The developed model can furnish physical insights into 

double-gate MOSFETs, the potential candidate for the next-generation nanoFETs. 

2-D Green’s function simulation [1],[2] and 2-D Monte Carlo particle simulation 

[3],[4] both have recently been conducted on the ultrathin film double-gate MOSFETs. 

The involved electrical characteristics included ballistic I-V as well as scattering 
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counterparts. In a 1-D-like treatment [5], a compact model was developed for the 

width of the kBT layer, a critical zone according to channel backscattering theory [2].  

However, there have been unsolved issues on the modeling of the ultrathin film 

double-gate MOSFETs: (a) Can a 1-D treatment reflect the above-threshold 2-D 

behaviors adequately if the DIBL is obtained in advance from the subthreshold I-V 

shift as in bulk case [6]-[8]? (b) Is the relationship, between the ratio of the backward 

to forward flux at the top of the source-channel barrier and the thermal injection 

velocity, strong or weak? (c) What is the error if the compact kBT layer width model 

does not include the modulation by gate voltage? (d) Can the channel backscattering 

theory work well in the presence of drain scattering [3],[4]?   

In this thesis we present a physically based analytic model established at the peak 

of the source-channel barrier in a 1.5-nm thick silicon film double-gate MOSFETs 

with channel lengths down to 10 nm. Through the aid of such transparent model, the 

above issues of concern can be substantially clarified.  

  This thesis is organized as follows. In Chapter 2, we will describe 1-D and 2-D 

Quantum Mechanical simulations. The simulation results are given in Chapter 3. In 

Chapter 4, a physically based analytic model is established along with comparisons 

with sophisticated device simulations. Finally, a conclusion of the work is drawn in 

Chapter 5.  
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Chapter 2 

1-D & 2-D Quantum Mechanical Simulations 

 

2.1 1-D Quantum Mechanical Simulation 

 As the MOSFET dimension scales down, the quantum effect is more and more 

important. To study the concerned phenomena due to the quantum effect, the 

self-consistent Schrödinger - Poisson simulation is needed. In this chapter, we 

introduce a one-dimensional (1-D) and two-dimensional (2-D) quantum mechanical 

simulation developed by the group at Purdue university [9]. 

 

 

2.2 The Self-consistent Method of Solving Schrödinger – 

Poisson Equation 

Schred [9], a program of 1-D quantum mechanical simulation, can calculate the 

envelope wave functions and corresponding bound-state energies in MOS, SOS 

(Semiconductor - Oxide - Semiconductor), and SOI structure. 

For a quantum mechanical description of MOS structures, we have to solve  

simultaneously Schrödinger and Poisson’s equations, which can only be done 

numerically. When an electron is confined inside the conduction band potential well 

Ec(x), the effective mass Schrödinger Equation is written as, 
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which ( )xiΨ  is wave function and Ei is allowable energies. The available energies 

above the conduction band are called subbands. As long as we know the allowable 

eigen-energies and the spatial distribution of an electron through eigen-state ( ( ) 2xiΨ ), 

we can calculate the electron density per unit area in that state according to 
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Electrons should be not only determined by the conduction band edges, but also by 

the electron-electron interaction, so the potential energy has to be calculated through 

Poisson’s equation 
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Eq. (2.1) and (2.3) are coupled non-linearly and have to be solved self-consistently. 

The flow chart in Fig. 2-1 shows the solving procedure involving n(x) and EC(x) to  

satisfy both Schrödinger equation and Poisson’s equation. 

 

 

2.3 Silicon Band Structure 

  In silicon the conduction band edges are six valleys along the equivalent ＜100＞ 

directions in the Brillouin zone shown in Fig. 2-2, and each valley has an elliptically 

equi-energy surface. The effective mass is inversely proportional to the curvature of 

the constant energy ellipsoids. In our simulation, the thickness of the silicon body is 
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only a few nanometers (1.5 nm), so the charge inside the channel can be modeled as 

2-D electron gas in a quantum well [13]. Then, there are two different ladders of 

energy levels from two different effective masses. The first ladder has higher 

longitudinal effective mass ml and has two-fold valley degeneracy with 

0916.0 mml =  (where m0 is the free electron mass). The second ladder has transverse 

effective mass mt and has four-fold valley degeneracy with 019.0 mmt = . Thus the 

Schrödinger equation should be solved twice, one for the longitudinal effective mass 

and the other for the transverse effective mass. 

 

 

2.4 2-D Quantum Mechanical Simulation 

  NanoMOS [9], a program of 2-D quantum mechanical simulation, is a 

self-consistent (Poisson with a transport model) 2-D simulator for the ultrathin body 

(less than 5 nm), fully depleted, double-gate n-MOSFETs. NanoMOS accounts for 

quantum effects in the confinement direction (threshold voltage shift) exactly by 

solving Schrödinger equation, and uses five different models to treat transport along 

the channel. The five transport models are classical ballistic, quantum ballistic, 

drift-diffusion, energy transport and quantum dissipative. With given “x” 

(transmission direction) point, the quantum effects in the confinement direction (y 

direction) are treated exactly by solving a 1-D Schrödinger equation, then yielding a 

set of subband profiles (ESUB(x)) shown in Fig. 2-3. Besides, NanoMOS also utilizes 

the 1-D program Schred to solve 1-D Schrödinger equation. 
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2.5 The Transport Models of NanoMOS 

 

2.5-1 Classical Ballistic Transport Model (clbte) 

  With given “x” (transmission direction) point, the quantum effects in the 

confinement direction (y direction) are treated exactly by solving a 1-D Schrödinger 

equation, then yielding a set of subband profiles (ESUB(x)). Carrier transport in each 

subband only accounts for the thermionic emission, and quantum tunneling through 

the source-channel barrier is assumed to be zero. 

 

2.5-2 Quantum Ballistic Transport Model (qbte) 

  With given “x” point, the quantum effects in the confinement direction are treated 

exactly by solving a 1-D Schrödinger equation, then yielding a set of subband profiles 

(ESUB(x)), as in the case of model clbte. Carrier transport in each subband uses the 

non-equilibrium Green’s function method, and is treated by solving a 1-D Schrödinger 

equation in the transmission direction. Therefore, it accounts for quantum tunneling 

through the source-channel barrier, which is different from Classical Ballistic 

Transport Model. 

 

2.5-3 Drift Diffusion (dd) 

  This model is a quantum corrected drift diffusion model, where quantum effects in 

the confinement direction are accounted for exactly. With given “x” point, the 

quantum effects in the confinement direction are treated exactly by solving a 1-D 

Schrödinger equation, as in the case of model clbet, to yield a set of subband profiles 

(ESUB(x)). Carrier transport in each subband is then treated by solving a 1-D 

drift-diffusion equation in the transmission direction. 
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2.5-4 Energy transport model (et) 

The 1-D energy transport model implemented in nanoMOS is identical to that of 

Medici simulator except that the degree of freedom of thermal random motion of the 

2-D electron gas in the energy balance equation becomes 2 instead of 3. NanoMOS 

uses the same parameter names in the input deck as those of Medici. 

 

2.5-5 Quantum Dissipative Transport model (qdte) 

  With given “x” point, the quantum effects in the confinement direction are treated 

exactly by solving a 1-D Schrödinger equation, as in the case of model clbet, to yield 

a set of subband profiles (ESUB(x)). Dissipative transport in MOSFETs is treated 

through the Green’s function formalism using a simple Büttiker-probe model. 

Scattering centers are treated as reservoirs similar to the source and drain except that 

they only change the energy of the carriers and not the total number of carriers in the 

system. Each scattering center is modeled through a perturbation strength 

characterized by a position dependent self-energy. 

 

 

2.6 Conclusions 

The program Schred shows several physically based techniques to describe the 

nano-scale double-gate MOSFETs. The quantum confinement effect is difficult to 

analyze using closed-form formula due to complex mathematical and nonlinearity. 

This explains why we use numerical analysis program such as Schred. In this work, 

we apply the 1-D quantum mechanical simulator to provide 1-D datails. Then we 

establish a physically based analytic model while accounting the 2-D effects. The 

validity of the model will be justified by sophisticated device simulations. 
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Chapter 3 

Simulation Specifications and Results 

 

3.1 Device Parameters and Bias Conditions 

Fig. 3-1 depicts schematically cross section of the device under study: a 1.5-nm 

thick silicon film double-gate MOSFETs with channel lengths down to 10 nm. The 

oxide thickness is 1.5 nm. The gate length L is equal to the channel length. The top 

and bottom gate oxide thickness are tox=1.5 nm, and the Si body thickness tSi is also 

1.5 nm. The n+ source and drain are degenerately doped at a level of 1020/cm3, and the 

whole channel region is undoped. The low-field mobility is assumed to be 120 cm2/ 

V-sec, and the work function of the top and bottom gate is 4.25 eV. All the simulations 

are conducted at room temperature (T=300 K). To obtain the steady-state behavior of 

the device, the same voltage is applied to both the top gate and bottom gate, and 

resulting in the same work function with the symmetric property. The top and bottom 

gate voltage are swept from 0.4 V to 0.55 V, while the drain voltage is swept from 0.1 

V to 0.5 V. Table 3-1 shows the details. 

 

 

3.2 Simulation Results 

  With the specified conditions, we can obtain the results by running 2-D simulation 

program. The IDS-VDS curve of ballistic double-gate MOSFET with L=20nm is shown 

in Fig.3-2. The drain voltage is swept from 0 V to 0.5 V while the gate voltage 

changes from 0.4 V to 0.55 V with a 0.05 V step. Fig. 3-3 and Fig. 3-4 show the 

IDS-VDS curve of ballistic double-gate MOSFETs with the same specifications for 
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L=15 nm and L=10 nm, respectively. In Fig. 3-3 and Fig. 3-4, we can observe that in 

the conventional saturation region the drain current increases with increasing drain 

voltage. This phenomenon can be attributed to drain induced barrier lowering as 

described in Chapter 4. Fig. 3-5 shows the first subband energy profile along the 

channel for different VGS. As VGS increases, the subband energy barrier will drop 

down while the top of the barrier approaches close to the source side. In a response, 

the electron density increases with increasing gate voltage applied. Similarly, the 

subband energy profile for different VDS is shown in Fig. 3-6. 2-D electron densities 

along the channel for different VGS and VDS are shown in Fig. 3-7 and Fig. 3-8. From 

Fig. 3-5 to Fig. 3-8, we can see that the described trend of the simulated device is 

consistent each other and thus we can confirm the validity of the simulator. Fig. 3-9 

and Fig. 3-10 show the subband energy profiles along the channel and 2-D electron 

densities of the subbands along the channel. In Fig. 3-9, we can observe the subband 

energy of two-fold is lower than four-fold, indicating that the 2-D electron density of 

two-fold is higher than four-fold. In other words, electrons preferably occupy the 

lower energy subband. In Fig. 3-11, we can observe the conduction band edge 

potential. Obviously, conduction band edge is almost constant for each given x point, 

and this phenomenon is evident in Fig.3-12, where the cross section of the same 

conduction band edge is located at the top gate (Y=0 nm) and the bottom gate (Y=1.5 

nm). Indeed, the symmetrical property supports the self consistency of the simulation. 

The relative difference between Y=0.75 nm and Y=0 nm is less than 1%, thus 

guaranteeing that we can approximate the conduction band edge by assuming that the 

conduction band edge is almost independent of Y-axis. Besides, a maximum electron 

density appears in the middle of the channel as shown from electron density profile in 

Fig. 3-13.  

 



 10

Chapter 4 

Physically Based Analytic Model 
 

4.1 Model Establishment 

Fig. 3-1 describes the double-gate MOSFET structure discussed in Section 3.1. 

With the concepts above, we establish a new model for the double gate system. First 

of all, a self-consistent Schrödinger-Poisson simulation [9] was performed on a 1-D 

upper metal-gate oxide-silicon film-gate oxide-bottom metal system, yielding channel 

subband levels and Fermi level as shown in Fig. 4-1 versus gate voltage. This figure 

clearly reveals that the lowest subbands associated with the two-fold valleys are the 

primary factors, rendering the establishment, while taking into account the MOS 

electrostatic at the top of the source-channel barrier [10], of a physically based 

analytic model possible. Fig. 4-2 sketches the conduction-band profile from source to 

drain along with electron energy versus wave vector plot at the peak of the barrier 

showing the ratio of backward to forward flux, rBF. The forward flux from the source 

side brings a carrier density ns(+) and the backward flux is ns(-). Then the ratio rBF  

can be defined as 
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At the top of the source-channel junction barrier, the total carrier density Sn  is 
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and according to MOS electrostatics [10], we have 
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For one-subband approximation, Sn = i
Sn , where 
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Here i
sn  is the carrier density with subband i, i

vn  is the valley degeneracy, i
dm  is 

the density-of-states effective mass for subband i. According to the 1-D simulation 

results in Fig. 4-3, nearly all of the electrons occupy the first subband, so we can 

reasonally calculate the charge density on the first subband (i.e. i=1). The effective 

gate capacitance Ceff and quasi-equilibrium threshold voltage Vtho, which can be 

assessed via the Schrödinger-Poisson solver under DIBL = 0 and in turn produce the 

value of the Fermi level minus the lowest subband level. With the same subband and 

Fermi-level, the effective thermal injection velocity at the top of source-junction 

barrier is  
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where i
Cm  is the conductivity effective mass for subband i, iE  is the energy level 

of subband i, FE  is the Fermi-level, 2/1ℑ  is the Fermi-Dirac integral of order 

one-half. For two-fold valley, t
i
d

i
C mmm == , and for four-fold valley, 

tl

tli
C mm

mm
m

+
=

2
 and tl

i
d mmm = , where the longitudinal mass 0916.0 mml =  and 

the transverse mass 019.0 mmt = . When the device scales down, the mean-free-path 

can be compared with the length of the critical length. Under this situation, 

quasi-ballistic transport occurs. If the ratio of backward to forward flux rBF is equal to 

the channel backscattering coefficient rC, then the drain current and the 

mean-free-path for backscattering λ  can be expressed as 
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where µ  is the quasi-equilibrium mobility, and l  is the kBT layer width. The 

calculated inversion-layer charge density and thermal injection velocity are 

respectively given in Fig. 4-4 and 4-5 versus gate voltage with rBF as a parameter. It 

can be seen that the ratio of backward to forward flux can significantly affect the 

thermal injection velocity while producing little change in total inversion-layer charge 

as expected from the MOS electrostatics [10]. The calculated results are confirmed by 
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self-consistent Schrödinger-Poisson simulation, as depicted in Fig. 4-4 and 4-5. 

 

4.2 DIBL Extraction 

  From the total inversion-layer charge and thermal injection velocity by 

self-consistent Schrödinger-Poisson simulation [9], the linear relationship can be 

obtained in Fig. 4-6 ： 
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where a and b are numerical constants. (4.10) establishes the relationship between the 

thermal injection velocity and drain current. Through substituting (4.9) into (4.10), 

followed by differentiation with respect to VDS, we can obtain an analytic model 

expressing I-V slope as function of DIBL. The detailed analysis process is shown 

below 
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From the Green’s function simulation results in Fig. 3-2 to 3-4, we can obtain 

different I-V slopes for different channel lengths, which create different DIBL values 

through (4.13). 

 

 

4.3 Effect of DIBL on Ballistic I-V 

  2-D Green’s function simulation [9] was applied to furnish ballistic I-V 

characteristics for three channel lengths as shown in Fig. 4-7 to 4-9. With DIBL as the 

only adjusting parameter, the proposed model was found to be able to handle the 2-D 

behaviors as clearly seen in these figures. Moreover, by comparing the extracted DIBL 

with that from the shift of the subthreshold I-V curves as created by the 2-D Green’s 

function simulation, we found that they are comparable each other as shown in Fig. 

4-10. 

 

 

4.4 On the Validity of the Channel Backscattering Theory 

To examine the validity of the channel backscattering theory, we replaced the rBF in 

the model with the channel backscattering coefficient rC [2] and compared the 

calculated results with those from 2-D Monte Carlo particle simulation [4]. First of all, 

the kBT layer widths were cited from the simulated potential profiles for different 
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scattering areas (see Fig. 6 of [4]) as shown in Fig. 4-11. Then the drain current was 

calculated and strikingly, the calculation values are quite consistent with those from 

Monte Carlo simulation as revealed in Fig. 4-12. Further corroborating evidence in 

terms of the change in the peak of the barrier as the scattering area changes is given in 

Fig. 4-13. Therefore, the channel backscattering theory remains valid. However, as the 

mobility or scattering time is increased by a factor of 5, implying that the channel 

length is effectively reduced from 25 nm down to 5 nm, the calculated drain currents 

appear to lie above the Monte Carlo ones as shown in Fig. 4-14, suggesting the 

increasing importance of the drain scattering [3],[4]. The existing channel 

backscattering formula might be improved (see [8] for the bilk case) to meet this 

issue. 

 

 

4.5 Improved Compact Expression for the kBT Layer Width 

We have established a new compact expression for the bulk case [11]: (a) the kBT 

layer width l  is a weak function of gate voltage in the linear region; (ii) in the 

saturation region l  follows the amount of injected carriers (through gate voltage 

minus effective threshold voltage) while the drain voltage tends to shift the l  versus 

gate voltage curve; and (iii) l  ∝ (kBT/q)0.5. This model can readily apply to a 

specific double-gate device [12] with the results in Fig. 4-15 and 4-16. Evidently, 

excellent agreements are achieved as long as the modulation by gate voltage is taken 

into account. 
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Chapter 5 

Conclusion 

 
A physically based analytic model of the ultrathin film double-gate MOSFETs has 

been established. The validity of the model has been confirmed using sophisticated 

device simulations such as 1-D Schrödinger – Poisson solving, 2-D ballistic I-V 

simulations, and existing 2-D Monte Carlo particle and Green’s Function simulations 

with the scattering in the channel. The issues of concern have been clarified the effect 

of backward to forward flux ratio on the thermal injection velocity at the top of the 

barrier, the comparison of DIBL extracted from the model with that from subthreshold 

I-V shift, the validity of the channel backscattering theory once the backward to 

forward flux ratio is replaced by the channel backscattering coefficient, and the 

potential applications of an improved expression for the width of the kBT layer (a 

critical zone, part of the barrier). 
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