Channel length	20 nm,15 nm,10 nm
Oxide thickness (t _{ox})	1.5 nm
Silicon film (t _{Si})	1.5 nm
Source/Drain length	10 nm
Source/Drain doped	10^{20} /cm ³
Channel doped	undoped
Work function for gate	4.25 eV
Low-field mobility	120 cm ² / V-sec
V _{GS}	0.4~0.55 V with 0.05 V step
V _{DS}	0.1~0.5 V with 0.1 V step
Temperature	300 K
1896	

Table 3-1 Simulation Specifications

Fig. 2-3 Schematic diagram of solving 2-D Schrödinger-Poisson equation in channel.

Fig. 3-2 Simulated I_{DS} versus V_{DS} with L=20nm.

Fig. 3-4 Simulated I_{DS} versus V_{DS} with L=10nm.

Fig. 3-5 The first subband energy profile along the channel at different V_{GS} for L=20nm.

Fig. 3-6 The first subband energy profile along the channel at different V_{DS} for L=20nm.

Fig. 3-7 The 2-D energy density along the channel at different V_{GS} for L=20nm.

Fig. 3-8 The 2-D energy density along the channel at different $V_{\rm DS}$ for L=20nm.

Fig. 3-11 3-D view of conduction band edge potential profile for L=20nm.