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In this paper, given a set of sequence databases across multiple domains, we aim at mining
multi-domain sequential patterns, where a multi-domain sequential pattern is a sequence
of events whose occurrence time is within a pre-defined time window. We first propose
algorithm Naive in which multiple sequence databases are joined as one sequence data-
base for utilizing traditional sequential pattern mining algorithms (e.g., PrefixSpan). Due
to the nature of join operations, algorithm Naive is costly and is developed for comparison
purposes. Thus, we propose two algorithms without any join operations for mining multi-
domain sequential patterns. Explicitly, algorithm IndividualMine derives sequential pat-
terns in each domain and then iteratively combines sequential patterns among sequence
databases of multiple domains to derive candidate multi-domain sequential patterns.
However, not all sequential patterns mined in the sequence database of each domain are
able to form multi-domain sequential patterns. To avoid the mining cost incurred in algo-
rithm IndividualMine, algorithm PropagatedMine is developed. Algorithm PropagatedMine
first performs one sequential pattern mining from one sequence database. In light of
sequential patterns mined, algorithm PropagatedMine propagates sequential patterns
mined to other sequence databases. Furthermore, sequential patterns mined are repre-
sented as a lattice structure for further reducing the number of sequential patterns to be
propagated. In addition, we develop some mechanisms to allow some empty sets in
multi-domain sequential patterns. Performance of the proposed algorithms is compara-
tively analyzed and sensitivity analysis is conducted. Experimental results show that by
exploring propagation and lattice structures, algorithm PropagatedMine outperforms algo-
rithm IndividualMine in terms of efficiency (i.e., the execution time).

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Sequential pattern mining has attracted a considerable amount of research effort recently [3,4,9,23,24]. Given a sequence
database that contains a set of sequences and a user-specified threshold (the minimum support), the main task of sequential
pattern mining is to discover frequent subsequences that appear in a sufficient number of sequences. Since sequential pat-
tern mining is able to discover temporal relationship (i.e., order of events), a significant amount of research works has elab-
orated on developing novel approaches to discover sequential patterns for a variety of applications [7,10,19,22,25,26].

Note that prior works only mine sequential patterns in one sequence database. This sequence database consists of se-
quences of events in one domain. For example, given a sequence database of purchasing in a supermarket, frequent purchas-
ing behavior is discovered. In many real world applications, we may have events in multiple domains. Consider payment lists
of credit cards, where a user uses a credit card for a variety of services, such as payments in restaurants, food, books and
movies. These payments are referred to as events in different domains. For each domain, we could extract these events
. All rights reserved.
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and build the corresponding sequence database. Then, one could utilize sequential pattern mining to discover frequent se-
quences. For example, in the movie domain, one sequential pattern is that users watch a series of movies related to Harry
Potter. On the other hand, in the book domain, one sequential pattern is that users buy a series of novels related to Harry
Potter. From these two sequential patterns of two domains, one could derive a composite sequential pattern across two do-
mains (referred to as a multi-domain sequential pattern) if events in these two sequential patterns closely occur together (i.e.,
events occur within the same time window). For the above example, Fig. 1 shows that these two sequences are sequential
patterns in the movie domain and the book domain, respectively. Moreover, the corresponding time of events in these two
sequences are within the same time window. In this paper, we claim that discovering sequential patterns from multiple do-
mains will provide a unique way to reveal complex relationships across multiple domains. In Fig. 1, one could infer that users
are likely to buy novels of Harry Potter, which is motivated by movies. Furthermore, this multi-domain sequential pattern
also implies that users who go to watch movies are likely to be triggered by books bought. To reveal more information from
sequence databases across multiple domains, multi-domain sequential patterns are very useful. Depending on requirements
of applications, one could decide which domains should be involved in mining multi-domain sequential patterns. In our
above example, if a user wants to know the cross-relationship between book and movie domains, sequence databases of
these two domains are given. Consequently, such a multi-domain sequential pattern captures the cross-relationship among
multiple domains, which in turn can yield significant information and reveal more knowledge.

Given a set of sequence databases across multiple domains, we aim at mining multi-domain sequential patterns, where a
multi-domain sequential pattern is a sequence of events whose occurrence time is within a pre-defined time window. With a
set of sequence databases, these sequence databases could be joined into one sequence database according to time informa-
tion of sequences. Then, by exploring traditional sequential pattern mining algorithms, we could obtain multi-domain
sequential patterns as well. This method is referred to as algorithm Naive in our paper and the details of this algorithm
are presented later. However, there are three drawbacks in this algorithm: (1) integrating sequence databases of multiple
domains into a single sequence database incurs a considerable cost due to the nature of joining operations, (2) the length
of each sequence becomes longer and the number of items becomes huge after joining operations, and (3) sequential pat-
terns mined should be further verified whether these sequential patterns satisfy multi-domain sequential patterns or not.
Hence, the above algorithm unavoidably exhibits poor efficiency and scalability performance, which calls for the design
of efficient mining algorithms for multi-domain sequential patterns.

To avoid the above poor performance issues, in this paper, we first propose algorithm IndividualMine in which sequential
patterns in each sequence database should be mined first and then the sequential patterns in each domain are integrated as
candidate multi-domain sequential patterns. Clearly, algorithm IndividualMine is able to avoid join operations among se-
quence databases. In Fig. 1, it can be seen that in the movie domain (respectively, book domain), we could have one sequen-
tial pattern, a series of movies (respectively, books) related to Harry Potter. By checking the corresponding time of events in
these two sequential patterns, we could combine these two sequential patterns into one multi-domain sequential pattern
since each event in these two sequential patterns has close occurrence time. It is possible that sequential patterns from each
sequence database cannot be formed as multi-domain sequential patterns since events’ occurrence time is not close. Though
avoiding join operations, algorithm IndividualMine is likely to suffer from mining cost since sequential patterns in each se-
quence database should be discovered. Consequently, we propose algorithm PropagatedMine to further reduce the mining
cost in each sequence database. Algorithm PropagatedMine first performs one sequential pattern mining from one sequence
database. In light of sequential patterns mined, algorithm PropagatedMine propagates time information (referred to as the
time-instance set) of sequential patterns mined to other sequence databases. By utilizing time-instance sets, we are able to
extract a subset of sequences from sequence databases, where the subset of sequences has the same time information. As
such, only a limited number of sequences that are likely to form multi-domain sequential patterns are extracted. Further-
more, sequential patterns mined are represented as a lattice structure for further reducing the number of time-instance sets
to other sequence databases. In addition, we develop some mechanisms to allow some empty sets in multi-domain sequen-
tial patterns. Performance of the proposed algorithms is comparatively analyzed and sensitivity analysis is conducted. It is
shown by our simulation results that both algorithms IndividualMine and PropagatedMine perform better than algorithm
Naive. By exploring propagation and lattice structures, algorithm PropagatedMine outperforms algorithms IndividualMine
and Naive in terms of efficiency (i.e., the execution time).
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Fig. 1. An example of multi-domain sequential pattern.
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The remainder of the paper is organized as follows. In Section 2, we present existing research works of mining sequential
patterns. In Section 3, some notations and the problem definition are given. Our proposed algorithms are described in Section
4. Performance study and experimental results are shown in Section 5. Section 6 concludes with this paper.

2. Related works

A significant amount of research efforts has been devoted to sequential pattern mining [6,11,16,28–31]. The problem of
sequential pattern mining is first formulated in [3] and the authors in [3] proposed mining algorithms based on the Apriori
algorithm. Algorithm GSP [27] was developed for mining sequential patterns using a breadth first search and button-up
method, whereas algorithm SPADE [33] employed a depth first search and button-up method with an ID-list. The authors
in [13,23,24] exploited the projection concept to reduce the amount of data for sequential pattern mining. To prevent can-
didate generation, DISC-all [8] used a novel sequence comparison strategy. A progressive concept has been explored in min-
ing sequential patterns to capture the dynamic nature of data addition and deletion [15]. The above research works are
focused on improving the performance of traditional sequential pattern mining.

Some variations and applications on sequential patterns are proposed recently. We mention in passing that the authors in
[25] developed to mine multi-dimensional sequential patterns, in which sequential patterns indicate not only frequent se-
quences but also some attributes in the category dimensions. In [25], the sequence database consists of category attributes
and sequence attributes, and Table 1 shows an example of a multi-dimensional sequence database. Clearly, the problem of
mining multi-domain sequential patterns is very different from the problem in [25] in terms of the input and output of prob-
lem definitions. In this paper, the input is the set of sequence databases and the output is the set of multi-domain sequential
patterns that consist sequences of co-occurred events across sequence databases. The authors in [32] explore the concept of
mining sequential patterns from multi-dimensional sequences. However, the output of their proposed method is a set of
high-dimensional sequential patterns, which consist of sequential patterns from multiple sequence datasets. However, in
their proposed algorithm, time information is not associated with each event, and thus each event from multiple dimensions
of a high-dimensional sequential pattern is not co-occurred. As such, a high-dimensional sequential pattern is intrinsically
different from our proposed multi-domain sequential pattern. Furthermore, the problem in [5] is to discover events that are
occurred together. In contrast, our problem is that given a set of sequence databases, we intend to discover sequences con-
sisting of co-occurred events. Moreover, the authors in [12] proposed the problem of distributed sequential pattern mining,
where each set of co-occurred events is complete and sequences are separated into different databases. Similarly, the prob-
lem in [17] is indeed a distributed sequential pattern mining problem and the authors in [17] exploited the concepts of
approximate patterns and local clustering to avoid noise and a large number of local patterns. As pointed early, given a pay-
ment list of credit cards, we could divide payments into several domains according to payment services. Thus, our problem of
mining multi-domain sequential patterns is not the same as distributed mining of sequential patterns.

To the best of our knowledge, previous studies have not adequately explored multi-domain sequential patterns, let alone
proposing efficient algorithms for mining such sequential patterns. The contributions of this paper are twofold: (1) exploit-
ing novel and useful sequential patterns (i.e., multi-domain sequential patterns), and (2) devising algorithms IndividualMine
Table 1
An example of multi-dimensional sequence database in [25].

Cid Cust-grp City Age-grp Sequence

10 Business Boston Middle hðbdÞðcÞðbÞðaÞi
20 Professional Chicago Young hðbf ÞðceÞðfgÞi
30 Business Chicago Middle hðahÞðaÞðbÞðf Þi
40 Education New York Retired hðbeÞðceÞi

Table 2
An example of sequence databases in two domains.

ID Time sequences Sequences

Domain database D1

s1 hðT1ÞðT2ÞðT3ÞðT4Þi hðaÞðb; cÞðb; c;dÞðeÞi
s2 hðT5ÞðT6ÞðT7Þi hða; bÞðb; cÞðc; eÞi
s3 hðT10ÞðT12ÞðT13Þi hða; eÞðhÞðg; jÞi
s4 hðT21ÞðT22ÞðT23ÞðT24Þi hða; b; f ÞðdÞðb; cÞðe; f Þi

Domain Database D2

l1 hðT21ÞðT22ÞðT23ÞðT24Þi hð1;2;5Þð7Þð2;3Þð4;5;6Þi
l2 hðT10ÞðT12ÞðT13Þi hð1;6Þð5Þð9;10Þi
l3 hðT5ÞðT6ÞðT7Þi hð1;3Þð2;4Þð8Þi
l4 hðT1ÞðT2ÞðT3ÞðT4Þi hð1;2Þð2;3Þð6Þð4;5Þi
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and PropagatedMine to efficiently mine multi-domain sequential patterns. Our preliminary works were presented in [20,21].
In this paper, more detailed complexity and theoretical analysis are conducted. Also, we develop some mechanisms in each
proposed algorithm to allow multi-domain sequential patterns with some empty sets in some domains. In particular, by
exploring lattice structures, algorithm PropagatedMine is able to further reduce the number of candidate multi-domain
sequential patterns. Furthermore, an extensive performance study is conducted and sensitivity analysis is investigated on
several parameters for each algorithm.

3. Preliminaries

Assume that each domain has its own set of items and a sequence database. The problem of mining multi-domain
sequential patterns is that given a set of sequence databases, we aim at discovering sequential patterns that consist of
co-occurred events across multiple domains. Table 2 shows two domains with its own sequence database, where in each
sequence of sequence databases, the corresponding time sequence indicates the occurrence time of events. For example,
in sequence s1 in D1, it can be seen that event a occurs at T1 and both b and c occur at T2. By joining these two sequence
databases via their time sequences, we could have one multi-domain sequence database (referred to as MDB). As such, Table
3 is an example of multi-domain sequence database.

To facilitate the presentation of multi-domain sequences, one sequence si in domain Di is expressed by hXi1;Xi2; . . . ;Xili,
where Xij is the jth element of sequence si, and l is the number of elements of si. Therefore, a multi-domain sequence across k

domains (abbreviated as k-domain sequence) is represented as M ¼ ½s1; s2; . . . ; sk�T and is further denoted as

M ¼

X11 X12 . . . X1l

X21 X22 . . . X2l

..

. ..
. . .

. ..
.

Xk1 Xk2 . . . Xkl

2
6664

3
7775, where each column is a set of itemsets that occur within the same time window, denoted as

Ti. A time sequence TSðMÞ is represented as TSðMÞ ¼ hT1; T2; . . . ; Tli to indicate the occurrence time of M. Actually, the time
window, a time interval, is determined in accordance with application requirements.

With the above representation of multi-domain sequences, we further define the length and the number of elements for
multi-domain sequential patterns. Since a multi-domain sequence consists of multiple sequences from various domains, the
length of a multi-domain sequence across k domains can be defined as follows:

Definition 1 (Length and number of elements). Let M ¼ ½s1; s2; . . . ; sk�T be a k-domain sequence. The length of M, denoted as
jMj, is the length of the longest sequence in multi-domain sequence M. Furthermore, the number of elements in a multi-
domain sequence, expressed by eðMÞ, is the number of itemsets in the multi-domain sequence.

For example, given a 2-domain sequence M ¼ ðaÞ ðb; cÞ ðbÞ
ð1Þ ð2Þ ð1;2;3Þ

� �
, the length of M is 5 due to that the longest sequence

hð1Þð2Þð1;2;3Þi in M, and the number of elements is 3 (i.e., eðMÞ ¼ 3Þ.
Once we have the definition of the length and the number of elements for a multi-domain sequences, the containing rela-

tion among multi-domain sequences is thus defined as follows:

Definition 2 (Containing relation). Suppose that we have two multi-domain sequences M ¼

X11 X12 . . . X1b
X21 X22 . . . X2b

..

. ..
. . .

. ..
.

Xa1 Xa2 . . . Xab

2
6664

3
7775 and

Y11 Y12 . . . Y1b0
2 3
N ¼
Y21 Y22 . . . Y2b0

..

. ..
. . .

. ..
.

Ya1 Ya2 . . . Yab0

6664
7775, where eðMÞ 6 eðNÞ. M is contained by N, denoted as M v N, if and only if there exists an integer

list LðM;NÞ, denoted as hl1; l2; . . . ; lbi, such that 1 6 l1 < l2 < � � � < lb 6 b0 and Xij # Yilj , where 1 6 i 6 a and 1 6 j 6 b.
Table 3
An example of a multi-domain sequence database.

ID Time sequences Multi-domain sequences

S1 hðT1ÞðT2ÞðT3ÞðT4Þi ðaÞ ðb; cÞ ðb; c;dÞ ðeÞ
ð1;2Þ ð2;3Þ ð6Þ ð4;5Þ

� �

S2 hðT5ÞðT6ÞðT7Þi
ða; bÞ ðb; cÞ ðc; eÞ
ð1;3Þ ð2;4Þ ð8Þ

� �

S3 hðT10ÞðT12ÞðT13Þi
ða; eÞ ðhÞ ðg; jÞ
ð1;6Þ ð5Þ ð9;10Þ

� �

S4 hðT21ÞðT22ÞðT23ÞðT24Þi
ða; b; f Þ ðdÞ ðb; cÞ ðe; f Þ
ð1;2;5Þ ð7Þ ð2;3Þ ð4;5;6Þ

� �
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For example, assume that M ¼ ðaÞ ðb; cÞ
ð2Þ ð6Þ

� �
and N ¼ ðaÞ ðb; cÞ ðb; c; dÞ ðeÞ

ð1;2Þ ð2;3Þ ð6Þ ð4;5Þ

� �
. It can be verified that M is con-

tained by N since there exist integer list LðM;NÞ ¼ h1;3i such that 1 6 1 < 3 6 4, and ðaÞ# ðaÞ, ð2Þ# ð1;2Þ, ðb; cÞ# ðb; c; dÞ
and ð6Þ# ð6Þ.

Based on the above definitions, a multi-domain sequence database is a set of multi-domain sequences. Consider an exam-
ple of a multi-domain sequence database in Table 3, where the number of 2-domain sequences is 4. Given a multi-domain
sequence database MDB, the support value of a multi-domain sequence M is the number of multi-domain sequences in MDB
that contain the multi-domain sequence M.

Multi-domain sequential pattern mining: Given a set of sequence databases across multiple domains, one could join these
sequence databases as one multi-domain sequence database. Then, the task of mining multi-domain sequential patterns is to
derive multi-domain sequences with their supports larger than a user-specified minimum support threshold d in MDB. For
example, for the multi-domain sequence database MDB in Table 3 and a minimum support d ¼ 3, multi-domain sequential

patterns are ðaÞ
ð1Þ

� �
;
ðbÞ
ð2Þ

� �
;
ðbÞ
ð3Þ

� �
;
ðcÞ
ð2Þ

� �
;
ðb; cÞ
ð2Þ

� �
;
ðaÞ ðbÞ
ð1Þ ð2Þ

� �
;
ðaÞ ðcÞ
ð1Þ ð2Þ

� �
, and ðaÞ ðb; cÞ

ð1Þ ð2Þ

� �
.

Notice that joining these multiple sequence databases is costly due to the nature of join operations. It can be verified that

multi-domain sequential patterns contain sequential patterns in each domain. For example, ðaÞ ðb; cÞð1Þ ð2Þ

� �
is a multi-domain

sequential pattern, where ðaÞðb; cÞ (respectively, (1) (2)) is a sequential pattern in domain D1 (respectively, D2) and events in
ðaÞðb; cÞ and (1) (2) has the same time sequences. Thus, in this paper, we propose algorithms to discover multi-domain
sequential patterns without joining.

4. Algorithms of mining multi-domain sequential patterns

In this section, we first describe one Naive method in which multiple sequence databases are joined as one sequence data-
base, and multi-domain sequential patterns are derived by using traditional sequential pattern mining algorithms (e.g., Pre-
fixSpan [23,24]). As pointed out early, to avoid the overheads of joining multiple sequence databases, we then propose
algorithm IndividualMine in which sequential patterns in each sequence database should be mined and further merged
for possible multi-domain sequential patterns. Furthermore, to further reduce the cost of mining sequential patterns in each
sequence database, algorithm PropagatedMine is proposed. By propagation of sequential patterns to other sequence dat-
abases, the number of sequences in other sequence databases is reduced. In addition, the above three algorithms could be
extended to discover multi-domain sequential patterns with some empty sets in some domains.

4.1. Naive algorithm with one multi-domain sequence database

As mentioned early, to mine multi-domain sequential patterns, one Naive method is joining sequence databases into one
multi-domain sequence database. Then, this multi-domain sequence database is transformed such that the Naive algorithm
could utilize existing sequential pattern mining algorithms. Consequently, in the Naive algorithm, there are two steps: the
joining step and the mining step. In the joining step, multiple sequence databases are first joined together by the time se-
quences and then the multiple sequence databases are thus transformed into a sequence database. In the mining step, one
could utilize existing sequential pattern mining algorithms to derive sequential patterns. In light of sequential patterns
mined, we have to separate the items from different domains and derive multi-domain sequential patterns. The detailed
steps are described as follows:

Step 1: joining step: In the beginning, sequence databases are joined by their time sequences to form one multi-domain
sequence database. For example, Table 3 is derived by performing the join process among two sequence databases in Table
2. It can be verified that s1 in D1 sequence database and l4 in D2 sequence database are joined as one sequence S1 in Table 3.
With the multi-domain sequence database derived, one should transform this multi-domain sequence database into one se-
quence database. Explicitly, in Table 3, for each sequence, time sequences are deleted and multi-domain sequences could be
viewed as one sequence. Table 4 is an example of a sequence database transformed from Table 3. It can be seen that in se-
quence S1 in Table 4, co-occurred events from multiple domains are viewed as one event. For example, (a, 1, 2) comes from
ðaÞ
ð1;2Þ

� �
in sequence S1 of Table 3.
Table 4
An example of a transformed sequence database.

ID Sequences

S1 hða;1;2Þðb; c;2;3Þðb; c; d;6Þðe;4;5Þi
S2 hða; b;1;3Þðb; c;2;4Þðc; e;8Þi
S3 hða; e;1;6Þðh;5Þðg; j;9;10Þi
S4 hða; b; f ;1;2;5Þðd;7Þðb; c;2;3Þðe; f ;4;5;6Þi



DD1 D2
Dn

S ti l P tt S ti l P tt S ti l P ttSequential Pattern
Mining

Sequential Pattern
Mining

Sequential Pattern
Mining

Mining Phase
Sequential
Patterns

Sequential
Patterns

Sequential
Patterns

Mining Phase

Compare time-instance sets
to check support values Checking Phaseppto check support values

Results

g

Fig. 2. An overview of algorithm IndividualMine.

Table 5
An example of a transformed sequence database.

Pattern ID Sequential patterns multi-domain sequential patterns

P1 hð1Þðb;2ÞðeÞi ðbÞ ðeÞ
ð1Þ ð2Þ

� �

P2 hða;1Þð5Þi ðaÞ
ð1Þ ð5Þ

� �

P3 hða;1Þðc;2Þi ðaÞ ðcÞ
ð1Þ ð2Þ

� �

P4 hðb;3Þi ðbÞ
ð3Þ

� �

P5 hðb; c;2Þi ðb; cÞ
ð2Þ

� �

P6 hðb; c;2ÞðeÞi ðb; cÞ ðeÞ
ð2Þ

� �
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Step 2: mining step: According to the sequence database derived in Step 1, by exploiting traditional sequential pattern min-
ing algorithms, we could derive sequential patterns. The second column of Table 5 shows some examples of sequential pat-
terns mined from the sequence database in Table 4 with the minimum support as 3. However, even if a sequence database is
obtained, traditional sequential pattern mining algorithms are not directly able to mine multi-domain sequential patterns.
This is due to that several sequential patterns mined do not contain events from all domains. Thus, each sequential pattern
should be represented as multi-domain sequential patterns. Then, we could first verify whether multi-domain sequential
patterns consists of events from all domains or not. For example, the third column of Table 5 shows multi-domain sequential
patterns from the second column of Table 5. Since we have all events of all domains, it is very straightforward to represent
sequential patterns as multi-domain sequential patterns. It can be seen in Table 5, P1; P2 and P6 have some empty sets and
these patterns are referred to as multi-domain sequential patterns with empty sets (abbreviated as relaxed multi-domain
sequential patterns). On the other hands, P3; P4 and P5 are called strong multi-domain sequential patterns since all co-occurred
events are from all domains required.

Algorithm Naive needs to perform join operations among multiple sequence databases. Due to join operations, the per-
formance of algorithm Naive is not efficient. Furthermore, in order to utilize traditional sequential pattern mining algo-
rithms, one sequence database is derived by transforming from one multi-domain sequence database joined from
sequence databases. Clearly, with events from all domains, the sequence database contains long sequences, which is not effi-
cient in mining sequential patterns. With the above two drawbacks of algorithm Naive, we develop two efficient algorithms
for mining multi-domain sequential patterns without joining sequence databases.

4.2. Algorithm IndividualMine: mining patterns in each domain

In this section, we develop algorithm IndividualMine. Fig. 2 shows the overview of algorithm IndividualMine, where algo-
rithm IndividualMine consists of two phases: the mining phase and the checking phase. In the mining phase, sequential pat-
terns in each sequence database are first mined by utilizing sequential pattern mining algorithms (e.g., PrefixSpan [23,24]).
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In the checking phase, sequential patterns from all domains are combined to generate candidate multi-domain sequential
patterns. If a candidate multi-domain sequential pattern has its support value larger than the minimum support threshold,
this candidate multi-domain sequential pattern is a multi-domain sequential pattern. The support counts of candidate multi-
domain sequential patterns will be described later.

Without loss of generality, given k sequence databases, we intend to derive multi-domain sequential patterns across k
domains. Furthermore, we denote the set of k sequence databases as fD1;D2; . . . ;Dkg, and SPi as the set of i-domain sequen-
tial patterns across a set of i sequence databases (i.e., fD1;D2; . . . ;Dig). To derive k-domain sequential patterns, we should
start with one sequential patterns from one domain and progressively composite sequential patterns from other domains
until the number of domains is k. Hence, sequential patterns mined in D1 is first in the set of SP1. Then, for each pattern
in SP1, candidate 2-domain sequential patterns (across two domains fD1 and D2g) are generated by combining sequential
patterns in domain D2. For example, given a minimum support as 3, in our above example in Table 2, hðaÞðbÞi is a sequential
pattern and is put in the set of SP1. Also, hð1Þ; ð2Þi is one sequential pattern in D2. Consequently, we could have a candidate 2-

domain sequential pattern ðaÞ ðbÞ
ð1Þ ð2Þ

� �
.

After generating candidate multi-domain sequential patterns, their support values should be determined. As can be seen
in Table 2, each sequence is associated with its own time sequence. Thus, one could use time sequences to derive support
values. Explicitly, the time-instance set of sequence M is defined as follows:

Definition 3 (Time-instance set). Let MDB be a k-domain sequence database1 and M be a k-domain sequence. The time-
instance set of M is defined as TISðMÞ ¼ fhTSðNÞ : LðM;NÞijN 2 MDB and M v Ng.

Based on the above definition, for a candidate multi-domain sequential pattern, we could determine its support value by
evaluating the intersections in time-instance sets of each sequential pattern. For example, to determine the support of
ðaÞ ðbÞ
ð1Þ ð2Þ

� �
, we should check both time-instance set of hðaÞðbÞi and hð1Þð2Þi in Table 2. It can be seen that in Table 2, the

time-instance set of hðaÞðbÞi is fhðT1ÞðT2ÞðT3ÞðT4Þ : 1;2i; hðT1ÞðT2ÞðT3ÞðT4Þ : 1;3i; hðT5ÞðT6ÞðT7Þ : 1;2i; hðT21ÞðT22ÞðT23Þ
ðT24Þ : 1;3ig. Moreover, we could have TISðhð1Þð2Þi) as fhðT1ÞðT2ÞðT3ÞðT4Þ : 1;2i; hðT5ÞðT6ÞðT7Þ : 1;2i; hðT21ÞðT22ÞðT23Þ

ðT24Þ : 1;3ig. Thus, the support of a candidate 2-domain sequential pattern ðaÞ ðbÞ
ð1Þ ð2Þ

� �
is represented as

TIS ðaÞ ðbÞ
ð1Þ ð2Þ

� �� �
¼ fhðT1ÞðT2ÞðT3ÞðT4Þ : 1;2h; hðT5ÞðT6ÞðT7Þ : 1;2i; hðT21ÞðT22ÞðT23ÞðT24Þ : 1;3ig. Therefore, Support

ðaÞ ðbÞ
ð1Þ ð2Þ

� �� �
¼ TIS ðaÞ ðbÞ

ð1Þ ð2Þ

� �� �����
���� ¼ 3. Given a minimum support threshold of 3, ðaÞ ðbÞð1Þ ð2Þ

� �
is a 2-domain sequential pat-

tern, since its support value is not less than the minimum support. Consequently, through the time-instance sets, support
values for candidate multi-domain sequence patterns are derived.

Once we have 2-domain sequential patterns, these 2-domain sequential patterns are in the set of SP2. Then, for each pat-
tern in SP2, candidate 3-domain sequential patterns and their corresponding supports will be generated by the above same
procedure. Given sequential patterns in k domains, k-domain sequential patterns are derived by iteratively expanding one
domain in each round until the number of rounds is k.
Algorithm: IndividualMine
Input: Sequence databases across n domains D1;D2; . . . ;Dn, and minimum support d.
Output: Multi-domain sequential patterns across n domains.
Begin

Let Ck be the set of candidate patterns across k domains, where k ¼ 1;2; . . . ;n.
Apply sequential pattern mining on each domain Di; i ¼ 1;2; . . . ;n.
Let SP1 be the set of sequential patterns mined in D1.
For each domain Diþ1, i ¼ 1;2; . . . ;n� 1

For each P 2 SPi

For each sequential pattern Q of Diþ1

If eðQÞ ¼ eðPÞ Then append P
Q

� �
to Ciþ1.

For each candidate c 2 Ciþ1

If SupportðcÞP d Then append c to SPiþ1.
Output ¼ SPn.

End
1 To facilitate our presentation, one could image that MDB are virtually joined by multiple sequence databases.
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Without joining, algorithm IndividualMine could still discover multi-domain sequential patterns. It can be seen that in
algorithm IndividualMine, each domain should individually perform sequential pattern mining algorithms, which incurs a
considerable amount of mining cost. Furthermore, those sequential patterns mined from each domain are not necessarily
able to become multi-domain sequential patterns. Thus, to further reduce the cost of mining sequential patterns in each do-
main and the number of candidate multi-domain sequential patterns, we develop algorithm PropagatedMine in which those
sequences that are likely to form multi-domain sequential patterns are extracted from their sequence databases.

4.3. Algorithm PropagatedMine: propagating sequential patterns among domains

Algorithm PropagatedMine is designed to reduce the mining cost in each sequence database. Explicitly, algorithm Prop-
agatedMine first performs sequential pattern mining in one domain (referred to as the starting domain) and then propagates
time-instance sets of the mined sequential patterns to other domains. By propagating time-instance sets, only those se-
quences that have the same time sequences with the time-instance sets are extracted, thereby reducing the mining space
in each sequence database. Algorithm PropagatedMine iteratively propagates time-instance sets of multi-domain sequential
patterns to the next domain until all domains have been mined. Fig. 3 shows an overview of algorithm PropagatedMine,
where there are two phases in algorithm PropagatedMine: the mining phase and the deriving phase.

In the mining phase, PropagatedMine utilizes existing sequential pattern mining algorithms to discover sequential pat-
terns in a starting domain (i.e., D1) and then propagates these patterns to other domains. Note that the mined sequential
patterns in the starting domain provide a guideline to extract multi-domain sequential patterns from other domains, and
hence for mining multi-domain sequential patterns in sequence databases across multiple domains, the length and the num-
ber of elements of multi-domain sequences are constrained by sequential patterns mined in the starting domain. Conse-
quently, sequential patterns mined in the starting domain could be represented as a lattice structure to facilitate the
generation of candidate multi-domain sequential patterns across other domains.

For example, assume that the starting domain is set to D1 in Table 2 and that sequential patterns are then found using
existing sequential pattern mining algorithms with the same minimum support 3. The mined sequential patterns are repre-
sented as a lattice structure in Fig. 4, where each node represents a sequential pattern, the linkages of nodes (or intradomain
links) represent containing relation, and nodes are ordered by the number of elements. In Fig. 4, those nodes having the same
number of elements are further arranged level by level according to their sequence lengths and nodes with one element are
placed level by level in increasing order of sequence length. For example, hðb; cÞi in Fig. 4 is below the nodes whose sequence
<(a)> <(c)><(b)>

<(b,c)>

number of 
elements=1

<(a)(b)> <(a)(c)> <(b)(b)> <(b)(c)>

<(a)(b,c)> <(b)(b,c)>

number of 
elements=2

Fig. 4. An example of lattice structures for sequential patterns in a starting domain (i.e., D1 in Table 2).



Table 6
An example of propagated table D2jjhðaÞðcÞi .

Time sequences Sequences

hðT1ÞðT2ÞðT3ÞðT4Þi (1,2)(2,3)
hðT1ÞðT2ÞðT3ÞðT4Þi (1,2)(6)
hðT5ÞðT6ÞðT7Þi (1,3)(2,4)
hðT5ÞðT6ÞðT7Þi (1,3)(8)
hðT21ÞðT22ÞðT23ÞðT24Þi (1,2,5)(2,3)
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length is 1 (e.g., hðbÞi). As mentioned above, the lattice structure is used as a guideline for propagating time-instance sets of
sequential patterns to other domains. In the deriving phase, algorithm PropagatedMine extracts those sequences with occur-
rence times equal to those of the time-instance sets propagated. Thus, for each propagated time-instance set, we can build
the corresponding propagated table as defined in Definition 4.

Definition 4 (Propagated table). Let M be a k-domain sequential pattern. The propagated table of M in sequence database
Dkþ1 is denoted as Dkþ1jjM ¼ fhSi½l1�; Si½l2�; . . . ; Si½lb�ijhTSðSiÞ : l1; l2; . . . ; lbi 2 TISðMÞ, where Si 2 Dkþ1g which is consisted of

sequences that co-occurred with M. Furthermore, Dkþ1jjM is also a sequence database, and M
S

� �
is a ðkþ 1Þ-domain

sequential pattern if and only if S is a sequential pattern of Dkþ1jjM and eðSÞ ¼ eðMÞ with the same minimum support
threshold.

For example, in domain D1 of Table 2, we have TISðhðaÞðcÞiÞ ¼ fhðT1ÞðT2ÞðT3ÞðT4Þ : 1;2i; hðT1ÞðT2ÞðT3ÞðT4Þ : 1;3i;
hðT5ÞðT6ÞðT7Þ : 1;2i; hðT5ÞðT6ÞðT7Þ : 1;3i; hðT21ÞðT22ÞðT23ÞðT24Þ : 1;3ig, and propagating TISðhðaÞðcÞiÞ to domain D2 yields propa-
gated table D2jjhðaÞðcÞi. Table 6 is the propagated table D2jjhðaÞðcÞi, where each sequence is very likely to form multi-domain
sequential patterns with hðaÞðcÞimined from domain D1. From propagated tables, one could mine sequential patterns having
the same number of elements as the propagated sequential pattern and these sequential patterns could be formed as multi-
domain sequential patterns. Consider the above example, where the minimum support is set to 3. We can easily find that

hð1Þð2Þi is the sequential pattern of D2jjhðaÞðcÞi and thus ðaÞ ðcÞ
ð1Þ ð2Þ

� �
is a 2-domain sequential pattern by compositing

hðaÞðcÞi and hð1Þð2Þi.
Note that even though PropagatedMine successfully prevents mining sequential patterns in each domain, however, the

cost of some redundant mining of propagated tables can be further reduced. For example, some patterns mined in propa-
gated tables D2jjhðaÞi and D2jjhðcÞi are the same as patterns mined in propagated table D2jjhðaÞðcÞi. This is due to that the time-
instance set of hðaÞðcÞi is contained in both time-instance sets of hðaÞi and hðcÞi. Consequently, sequences in propagated table
D2jjhðaÞðcÞi also include some sequences in propagated table D2jjhðaÞi and D2jjhðcÞi. Therefore, only sequential patterns with their
length being one should be propagated to other domains. In other words, only time-instance sets of the top-level nodes (re-
ferred to as atomic patterns) in lattice structures are propagated. After obtained, propagated tables are viewed as transaction
databases. Consequently, given a propagated table, by utilizing frequent itemset algorithms in [1,2,34,14], we could generate
the corresponding multi-domain sequential patterns. We now analyze some important properties of the propagated table.
With these properties of propagated tables, the lattice structure in the starting domain is used to determine multi-domain
sequential patterns whose length is larger than one. The details of generating multi-domain sequential patterns are de-
scribed later.

Property of the propagated table of atomic patterns: Suppose that P is a k-domain sequential pattern (i.e., P 2 SPk) with

jPj ¼ 1. P
b

� �
is a multi-domain sequential pattern across ðkþ 1Þ-domain sequence databases (i.e., D1;D2; . . ., and Dkþ1) with

a minimum support of d if and only if b is a frequent itemset in propagated table Dkþ1jjP with the same minimum support d.
Property of antimonotone with multiple domains: If M is a k-domain sequential pattern (i.e., across D1;D2; . . ., and Dk), k-

domain sequences contained by M are also k-domain sequential patterns.
Based on the antimonotone property, algorithm PropagatedMine generates candidate multi-domain sequential patterns

in a level-by-level manner. However, in the propagated domain, sequential patterns are also generated level by level accord-
ing to the number of sequence elements. The detailed steps for deriving multi-domain sequential patterns are described
below.

Step 1: Derive atomic patterns across ðkþ 1Þ domains
Let SPk be the set of multi-domain sequential patterns across k domains. When deriving atomic patterns across ðkþ 1Þ

domains, the corresponding frequent itemsets can be derived from the propagated tables of each atomic pattern in SPk.
Through the property of propagated table of atomic patterns, those frequent items mined from propagated tables are merged
with atomic patterns in SPk to derive atomic patterns across ðkþ 1Þ domains. Consider the sequence databases across two
domains in Table 2 as an example, where sequential patterns of domain D1 are represented as a lattice structure. We could
derive atomic patterns in domain D2 and thus generate their corresponding multi-domain sequential patterns by propagat-
ing the time-instance sets of atomic patterns in domain D1 (i.e., the top-level nodes) to domain D2. Specifically, in Fig. 5, for



<(2)><(3)><(2)><(a)> <(c)><(b)> <(e)>

number of 
l t 1

<(1)>

<(b,c)>

elements=1

<(2)>

Domain D1 Domain D2

Fig. 6. An example of generating sequential patterns with one element in domain D2.

<(2)><(3)><(2)><(a)> <(c)><(b)> <(e)>

number of 
l t 1

<(1)>

<(b,c)>

elements=1

Domain D1 Domain D2

Fig. 5. An example of generating atomic patterns in domain D2.
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each atomic pattern in D1, there are interdomain links representing that these two patterns are able to form multi-domain

sequential patterns. Consequently, we have ðaÞ
ð1Þ

� �
;
ðbÞ
ð2Þ

� �
;
ðbÞ
ð3Þ

� �
, and ðcÞ

ð2Þ

� �
in the above example, and they are obviously

also atomic patterns.

Step 2: Derive ðkþ 1Þ-domain sequential patterns with one element
This step involves deriving ðkþ 1Þ-domain sequential patterns with one element. Assume that k-domain sequential pat-

tern P across k-domain sequence databases (i.e., D1;D2; . . ., and Dk) and that there is only one element in P (i.e., eðPÞ ¼ 1). The
intradomain links in the lattice structure for domain k can be followed to find two multi-domain sequential patterns (e.g., X
and Y, which are the components of P). The corresponding multi-domain sequential patterns in domain kþ 1 are found by
traversing interdomain links of X and Y. According to the antimonotone property, if there exists any corresponding sequen-
tial patterns of X or Y in domain kþ 1, they must have been discovered due to X v P and Y v P. Hence, the corresponding
sequential patterns of P in domain kþ 1 are generated from the union of all the multi-domain sequential patterns found
in domain kþ 1. For example, let P ¼ hðb; cÞi be a sequential pattern with eðPÞ ¼ 1 in D1 of Table 2. The components of P
(i.e., hðbÞi and hðcÞiÞ can be found from the intradomain links. Following interdomain links of hðbÞi and hðcÞi in Fig. 6, yields

the multi-domain sequential patterns in domain D2 (i.e., ðbÞð2Þ

� �
and ðbÞ

ð3Þ

� �
for hðbÞi, and ðcÞ

ð2Þ

� �
for hðcÞi). Consequently, two

candidates are generated by union operation: ðbÞ
ð2Þ

� �
[ ðcÞ
ð2Þ

� �
¼ ðb; cÞ

ð2Þ

� �
and ðbÞ

ð3Þ

� �
[ ðcÞ
ð2Þ

� �
¼ ðb; cÞ
ð2;3Þ

� �
.

Once the candidate multi-domain sequential patterns are obtained, support values of these patterns are examined by

checking their time-instance sets (i.e., Support ðaÞ
ðbÞ

� �� �
¼ TIS ðaÞ

ðbÞ

� �� �����
���� ¼ jTISðhðaÞiÞ \ TISðhðbÞiÞjÞ. Given a minimum support

of 3, since the support values of ðb; cÞ
ð2Þ

� �
and ðb; cÞ

ð2;3Þ

� �
are 3 and 2, respectively, only ðb; cÞ

ð2Þ

� �
is frequent. Thus, the lattice

structure in domain D2 contains node hð2Þi, and interdomain links are built between lattice structures in domains D1 and D2.
Step 3: Derive ðkþ 1Þ-domain sequential patterns with more than one element

After generating atomic patterns and the ðkþ 1Þ-domain sequential patterns with one element in step1 and step 2 respec-
tively, algorithm PropagatedMine can further generate remaining ðkþ 1Þ-domain sequential patterns in a level-by-level
manner by referring to the lattice structure in the last domain propagated (i.e., domain Dk). In this step, PropagatedMine
starts deriving from those patterns with two elements due to the antimonotone property. The frequent patterns in the upper
levels are found from the intradomain links in the lattice structure of Dk, and the corresponding upper level patterns in the
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lattice structure of domain Dkþ1 are identified from their interdomain links. Now, the interdomain links of upper level pat-
terns must been established due to the antimonotone property. Before deriving ðkþ 1Þ-domain sequential patterns, it should
be determined whether or not to merge the sequential patterns identified in the lattice structure based on their time order.
This leads to Definition 5.
Algorithm: PropagatedMine
Input: Sequence databases across n domains D1;D2; . . . ;Dn, and minimum support d.
Output: Multi-domain sequential patterns across n domains.
Begin

Apply sequential pattern mining on D1.
Let SP1 be the set of sequential patterns mined in D1.
For each domain Di, i ¼ 2;3; . . . ;n

For each P 2 SPi�1

//Step 1
If jPj ¼ 1 Then Begin

Construct propagation table DijjP .
Find frequent items in DijjP with minimum support d.
Let FI be the set of frequent items in DijjP .
For each Q 2 FI

Append P
Q

� �
to SPi.

Let TIS
P
Q

� �� �
¼ TISðPÞ \ TISðQÞ.

End
//Step 2
If eðPÞ ¼ 1 Then Begin

Let X and Y be two patterns pointed to by intradomain links of P.
For each pattern a pointed to by interdomain links of X

For each pattern b pointed to by interdomain links of Y

If Support a
b

� �� �
P d Then Begin

Construct interdomain links from P to a
b

� �
.

Construct intradomain links from a
b

� �
to a and b.

Append a
b

� �
to SPi.

End
//Step 3
If eðPÞ > 1 Then Begin

Let X and Y be two patterns pointed to by intradomain links of P.
For each pattern a pointed to by interdomain links of X

For each pattern b pointed to by interdomain links of Y
If Supportð½ðaÞðbÞ�ÞP d Then Begin

Construct interdomain links from P to ½ðaÞðbÞ�.
Construct intradomain links from ½ðaÞðbÞ� to a and b.
Append ½ðaÞðbÞ� to SPi.

End
Output ¼ SPn.

End
Definition 5 (Concatenate operation of TIS). Let M and N be two multi-domain sequences, where TISðMÞ ¼ fhTS1 : l11;

l12; . . . ; l1eðMÞi; hTS2 : l21; l22; . . . ; l2eðMÞi; . . . ; hTSm : lm1; lm2; . . . ; lmeðMÞig; TISðNÞ ¼ fhTT1 : k11; k12; . . . ; k1eðNÞi; hTT2 : k21; k22; . . . ;

k2eðNÞi; . . . ; hTTn : kn1; kn2; . . . ; kneðNÞig, and TSi is the time sequence for i ¼ 1;2; . . . ;m while TTj is also time sequence for
j ¼ 1;2; . . . ;n. The concatenation of TISðMÞ and TISðNÞ is denoted as TISðMÞ\<TISðNÞ ¼ fhTSi : li1; li2; . . . ; lieðMÞ; kj1; kj2; . . . ;

kjeðNÞig, such that TSi ¼ TTj and lieðMÞ < kj1. In other words, TISðMÞ\<TISðNÞ is the time-instance set of the multi-domain
sequence ½M;N�; TISð½M;N�Þ.
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For example, given M ¼ ðaÞ
ð1Þ

� �
;N ¼ ðb; cÞ

ð2Þ

� �
, and the sequence database across two domains in Table 2, where

TISðMÞ ¼ fhðT1ÞðT2ÞðT3ÞðT4Þ : 1i; hðT5ÞðT6ÞðT7Þ : 1i; hðT10ÞðT12ÞðT13Þ : 1i; hðT21ÞðT22ÞðT23ÞðT24Þ : 1ig, and TISðNÞ ¼ fhðT1ÞðT2ÞðT3Þ

ðT4Þ : 2i; hðT5ÞðT6ÞðT7Þ : 2i; hðT21ÞðT22ÞðT23ÞðT24Þ : 3ig. It can be verified that TISð ðaÞ ðb; cÞð1Þ ð2Þ

� �
Þ ¼ TISðMÞ\<TISðNÞ ¼ fhðT1Þ

ðT2ÞðT3ÞðT4Þ : 1;2i; hðT5ÞðT6ÞðT7Þ : 1;2i; hðT21ÞðT22ÞðT23ÞðT24Þ : 1;3ig.
Assume that pattern P 2 SPk and eðPÞ > 1. Similar to Step 2, we can obtain the components of P;X and Y, by traversing

intradomain links among lattice structures across k domains, and the multi-domain sequential patterns pointed to by their
interdomain links can be determined. In light of Definition 5, a concatenate operation is considered rather than generating
their union as in Step 2. For example, assume pattern P ¼ hðaÞðb; cÞi in Fig. 7. The intradomain and interdomain links yield
ðaÞ
ð1Þ

� �
and ðb; cÞ

ð2Þ

� �
. Therefore, candidate multi-domain sequential pattern ðaÞ ðb; cÞ

ð1Þ ð2Þ

� �
is generated, as its support value,

Support ðaÞ ðb; cÞ
ð1Þ ð2Þ

� �� �
¼ TIS

ðaÞ
ð1Þ

� �� �
\<TIS ðb; cÞ

ð2Þ

� �� �����
���� ¼ 3.

The above steps allow multi-domain sequential patterns across ðkþ 1Þ-domain sequence databases to be derived from k-
domain sequential patterns. Algorithm PropagatedMine iteratively repeats the above three steps until all sequence databases
are propagated.

Theorem 1. Algorithm PropagatedMine is able to mine all multi-domain sequential patterns via lattice structures.

Proof. Mining frequent itemsets in propagated tables reveals multi-domain atomic patterns across other sequence dat-
abases. To prove the correctness of Steps 2 and 3, first let P be a k-domain sequential pattern and P0 be a ðkþ 1Þ-domain

sequential pattern derived from P, where eðP0Þ ¼ eðPÞ ¼ 1 and jP0jP jPj > 1. In other words, P0 ¼ P
Z

� �
, where Z is a frequent

itemset in the propagated table Dkþ1jjhðPÞi. Assume that X and Y are parts of P, and X [ Y ¼ P. Hence, in the lattice structure, we

have intradomain links from P to X and Y. In addition, there are interdomain links from X and Y to Z0, where Z0 is the power set
of Z and Z0 – ;. Due to the antimonotone property, all multi-domain sequences contained by P0 must also be frequent. In

other words, both X
Z0

� �
and Y

Z0

� �
are frequent. Therefore, the lattice structures can be used to derive all pairs of P and P0 while

eðP0Þ ¼ eðPÞ ¼ 1. Similarly, when eðP0Þ ¼ eðPÞ > 1, X and Y are parts of P and TISðXÞ\<TISðYÞ ¼ TISðPÞ. Moreover, assume that Z
is a frequent itemset in propagated table Dkþ1jjhðPÞi. Clearly, interdomain links exist from X and Y to Z0 in domain Dkþ1, where

Z0 is the power set of Z and Z0 – ;. The antimonotone property means that all multi-domain sequences contained by P0 must
also be frequent. This results in both ½ðX; Z0Þ� and ½ðY; Z0Þ� being frequent. This proof indicates that algorithm PropagatedMine
is able to mine all multi-domain sequential patterns. h
4.4. Mining relaxed multi-domain sequential patterns

The above three algorithms are utilized in mining strong multi-domain sequential patterns, where all co-occurred events
are from all domains required. Strong multi-domain sequential patterns are very restricted since users may have their minds
on analyzing the behavior across domains interested by users. In this paper, we further develop some mechanisms for min-
<(2)><(3)><(2)><(a)> <(c)><(b)> <(e)>

number of 
l t 1

<(1)>

<(b,c)>

elements=1

<(2)>

<(a)(b,c)> <(1)(2)>

number of 
elements=2

Domain D1 Domain D2
number of 
elements=3

Fig. 7. An example of generating sequential patterns with more than one element in domain D2.
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ing relaxed multi-domain sequential patterns in which in some time slots, some empty sets are allowed. Note that both the
Naive algorithm and algorithm IndividualMine could be extended for mining relaxed multi-domain sequential patterns.
However, due to the feature of propagation, algorithm PropagatedMine is not able to discover relaxed patterns. In the fol-
lowing, we will discuss how to mine relaxed multi-domain sequential patterns.

Naive algorithm
As pointed out early, given a set of sequence databases, algorithm Naive will join these sequence databases into one mul-

ti-domain sequence database. With the proper transformed of multi-domain sequence databases, one could generate a se-
quence database whose events are from all domains. Thus, existing sequential pattern mining algorithms could be utilized to
discover sequential patterns. Note that sequential patterns mined are then represented as the form of multi-domain sequen-
tial patterns. Hence, those multi-domain sequential patterns that have some empty sets are directly viewed as relaxed
patterns.

Algorithm IndividualMine
Algorithm IndividualMine performs sequential pattern mining algorithms in each sequence database. After generating all

sequential patterns in all domains, in the checking phase, algorithm IndividualMine will check and composite candidate
multi-domain sequential patterns with the same number of elements. In order to mine relaxed patterns, all possible com-
positions of multi-domain sequential patterns from sequential patterns of each domain should be enumerated. For example,
assume that one i-domain sequential pattern P ¼ hP1; P2; . . . ; Pli, is selected SPi and Q ¼ hq1; q2; . . . ; qri is a sequential pattern
of domain Diþ1. Candidate ðiþ 1Þ-domain sequential patterns generated from P and Q are

P1 P2 . . . Pl

q1 q2 . . . qr

� �
; . . . ;

P1 P2 . . . Pl

q1 q2 . . . qr

� �
and so on. Note that the number of candidate

patterns is denoted as f ðr; lÞ which is formulated as follows:
Table 7
Parame

Parame

M
D
C
T
I

f ðr; lÞ ¼
1; if r ¼ 0

f ðl; r � 1Þ þ 2
Pr�1

i¼0
f ði; l� 1Þ; otherwise:

8<
: ð1Þ
Obviously, it could be very large when r and l increase. As expected, we could have a large number of candidate multi-do-
main sequential patterns, degrading the performance of algorithm IndividualMine.

Algorithm PropagatedMine
By exploring propagation and lattice structures, algorithm PropagatedMine is able to reduce the mining cost. However,

algorithm PropagatedMine cannot mine relaxed patterns since propagation needs to obtain time-instance sets of sequential
patterns. Empty sets mean that events don’t occur and thus there are no any available time information for the empty sets.
Thus, it is impossible to derive time-instance sets of empty sets. Consequently, for mining relaxed patterns, algorithm Naive
and algorithm IndividualMine should be used.

5. Performance evaluation

To evaluate the performance of our proposed algorithms, we implement a simulation model and conduct extensive exper-
iments. In Section 5.1, the simulation model and synthetic datasets are described. Section 5.2 is devoted to experimental
results.

5.1. Simulation model

We modify a well-known data generator in [3] to generate datasets that include multiple domains and the data generator
is broadly used in many studies to evaluate mining algorithms proposed [18]. The detailed generation process could be re-
ferred to [18]. Some parameters are summarized in Table 7. Explicitly, M denotes the number of domains, D is the number of
sequences, C is the average number of elements in a sequence, T is the average number of events in an element and I is the
total number of distinct events. The modeling of these parameters are almost the same in [3]. For example, dataset
M5D10kC10T5I100 represents that there are 5 domains, each of which contains 10k of sequences, where the average number
of elements in a sequence is 10, the average number of items in an element is 5, and the total number of distinct items is 100.
ters used for the data generator.

ter Description

Number of domains
Number of sequences
Average number of elements within a sequence
Average number of items within an element
Total number of different items
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For the traditional sequential pattern mining, we use algorithm PrefixSpan which is obtained from the IlliMine project
(http://illimine.cs.uiuc.edu/). Algorithm PrefixSpan is used in algorithm Naive and the mining phases of both algorithms
IndividualMine and PropagatedMine. Our programs are executed in the platform with the hardware as an Intel 2.4-GHz
XEON CPU and 3.5 GB of RAM, and the software as FreeBSD 5.0 and GCC 3.2. We use three performance metrics: the execu-
tion time, memory consumption and the number of mined patterns to compare the proposed algorithms.

5.2. Experimental results

Several experiments were conducted to evaluate the performance and memory consumption of the three algorithms. Sen-
sitivity analysis on some important parameters, such as the minimum support, the number of sequences, and the number of
domains, is conducted.

5.2.1. Impact of the minimum support threshold
We first investigated the performances of three algorithms with the minimum support varied. For the dataset

M2D2kC3T4I200, Fig. 8 shows the execution time and the memory consumption of three algorithms. It can be seen in
Fig. 8 that the execution time of algorithm IndividualMine and PropagatedMine is reduced as the minimum support in-
creases. This is due to that with a larger minimum support, the number of sequential patterns in sequence databases is smal-
ler. Furthermore, algorithm PropagatedMine significantly outperforms the other two algorithms in terms of execution time,
which demonstrates the advantage of exploring propagation and lattice structures in mining multi-domain sequential pat-
terns. On the other hand, when the minimum support was smaller than 1.5%, algorithm IndividualMine was worse than algo-
rithm Naive. The reason is that with a smaller minimum support, a larger number of sequential patterns are mined in each
domain. Thus, algorithm IndividualMine needs more time to composite candidate multi-domain sequential patterns and
determine their supports. In Naive algorithm, joining operations among sequence databases are costly, which dominates
the execution time. As for the memory consumption, algorithm Naive use less memory than algorithms IndividualMine
and PropagatedMine. This is due to that both algorithms IndividualMine and PropagatedMine use more memory spaces
for storing sequential patterns mined. Algorithm PropagatedMine also needs to store lattice structures, which incurs more
memory space than algorithm IndividualMine. On the other hand, algorithm IndividualMine does not need any more mem-
ory space for storing sequential patterns. Though algorithm PropagatedMine needs more memory spaces, algorithm Propa-
gatedMine is able to quickly derive multi-domain sequential patterns, which strikes a compromise between memory space
and the execution time.

5.2.2. Impact of the number of domains
We next examine the impact of domains on the performance of three proposed algorithms. The experiments were con-

ducted on D1kC2T3I100 (referred to as a smaller dataset) and D1kC3T4I200 (referred to as a larger dataset). With the min-
imum support as 0.3%, the execution time with its unit as seconds for these proposed algorithms is shown in Table 8 and
Table 9. From both tables, it can be seen that all three algorithms have a larger execution time when the number of domains
increases. In particular, the execution of algorithm Naive drastically increases the execution time. Both algorithms Individ-
ualMine and PropagatedMine have smaller execution time than algorithm Naive. Furthermore, algorithm PropagatedMine
outperforms other algorithms in terms of the execution time, showing the advantage of utilizing propagation to reduce
the mining cost. In addition, given a larger dataset with more number of events and larger sequence lengths, the execution
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Fig. 8. Execution time of the three algorithms with various minimum support thresholds.
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Table 8
Execution time of algorithms Naive, IndividualMine, and PropagatedMine with the number of domains varied on D1kC2T3I100.

Number of domains 2 3 4 5

Naive 5.3 206.7 2513.9 21769.7
IndividualMine 126.3 163.9 180.2 181.1
PropagatedMine 0.4 0.6 0.7 0.7

Table 9
Execution time of algorithms Naive, IndividualMine, and PropagatedMine with the number of domains varied on D1kC2T4I200.

Number of domains 2 3 4 5

Naive 57.1 3065.3 53164.9 379118.5
IndividualMine 1052.1 1192.9 1213.9 1214.4
PropagatedMine 2.1 2.4 2.5 2.5
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time of algorithm Naive is worse. On the other hands, algorithm PropagatedMine incurs a smaller execution time than algo-
rithms Naive and IndividualMine, showing the good scalability of algorithm PropagatedMine.

5.2.3. Impact of the number of sequences
Experiments with the number of sequences varied are examined, where the number of sequences is from 1000 to 6000

and other parameters are M2C3T3I200. With a given minimum support was 1%, Fig. 9 shows the execution time of all algo-
rithms. As can be seen in Fig. 9, the execution of all three algorithms increases as the number of sequences increases. Notice
that the execution time of algorithm Naive is significantly increasing when the number of sequences is lager than 2000. Thus,
to compare algorithms IndividualMine and PropagatedMine, we only put the execution time of algorithms IndividualMine
and PropagatedMine. By exploring lattice structures, PropagatedMine should mine only atomic patterns, from which other
patterns are derived accordingly. As a result, the execution time of PropagatedMine slightly increases with the number of
sequences. Note that the execution time of algorithm PropagatedMine is very smaller compared with algorithms Individu-
alMine and Naive. However, both algorithms IndividualMine and PropagatedMine need more memory space for storing
sequential patterns mined. Thus, it can be seen in Fig. 9 that both algorithms IndividualMine and PropagatedMine have a
larger memory consumption than algorithm Naive. This also agrees that algorithm Naive is bounded by execution time,
and algorithms IndividualMine and PropagatedMine are bounded by memory spaces.

5.2.4. Impact of the average number of elements within a sequence
In this section, we investigate the performance of Naive, IndividualMine, and PropagatedMine with the average number of

elements within a sequence varied. Without loss of generality, the minimum support threshold is set to 1% and the other
parameters in the dataset are M2D1kT3I200. Fig. 10 shows experimental results of Naive, IndividualMine, and Propagated-
Mine. Clearly, the execution time of mining multi-domain sequential patterns increases with the average number of ele-
ments within a sequence. Note that algorithm IndividualMine even performs worse than algorithm Naive when the
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Fig. 9. Performance of Naive, IndividualMine, and PropagatedMine with the number of sequences varied.
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Fig. 10. Performance of Naive, IndividualMine, and PropagatedMine with the average number of elements within a sequence varied.
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average number of elements in a sequence is larger than 4.7. The reason is that IndividualMine mines a large number of
sequential patterns in each domain and spends more costs to composite candidate multi-domain sequential patterns. The
above observation is also proved in Fig. 11, where algorithm IndividualMine generates a larger number of sequential patterns
propagated than algorithm PropagatedMine. Note that, the number of patterns propagated in algorithm IndividualMine is
the number of patterns discovered in the starting domain. Fig. 10b also indicates that though algorithm PropagatedMine
has a smaller execution time, algorithm PropagatedMine needs more memory spaces to store lattice structure.

5.2.5. Impact of the average number of items within an itemset
The average number of items within an itemset generally impacts on the performance of sequential pattern mining. Thus,

we investigate the effect of varying the average number of items within an itemset. The minimum support was set to 1% and
we used the dataset M2D1kC3I200. The execution time and memory consumption with the average number of items in an
itemset varied are shown in Fig. 12. As can be seen that in Fig. 12, PropagatedMine performs the best in terms of the exe-
cution time. When the average number of items in an itemset is smaller, the execution time of IndividualMine is smaller than
that of Naive. However, if there is a large number of items within an itemset, IndividualMine performs worse than Native
since algorithm IndividualMine has a larger number of patterns mined, which incurs a considerable cost in the checking
phase. Fig. 13 demonstrates that PropagatedMine is better than IndividualMine because sequential patterns mined in the
starting domain are much smaller than that of algorithm IndividualMine. In algorithm PropagatedMine, only atomic patterns
are mined and thus the number of patterns mined in the starting domain is equal to the number of atomic patterns. Con-
sequently, by exploring lattice structures, algorithm PropagatedMine outperforms the other algorithms in terms of the exe-
cution time.
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5.2.6. Impact of the number of items
We next investigate the impact of the total number of items, where a minimum support is set to 1% and other parameters

are set as M2D1kC3T4. Fig. 14 shows the execution times and memory consumption of Naive, IndividualMine, and Propa-
gatedMine. It can be seen in Fig. 14 that both IndividualMine and PropagatedMine have a smaller execution time than Naive
as the number of items increases. When the number of items is larger, the probability of being frequent for each item is smal-
ler with the same setting in D1kC3T4. Fig. 15 depicts the number of patterns with the number of items varied. As can be seen
in Fig. 15, PropagatedMine has a smaller number of patterns derived, which demonstrates the advantage of using lattice
structures for discovering multi-domain sequential patterns.

5.2.7. Impact of the propagation order for PropagatedMine
Since algorithm PropagatedMine explores propagation on mining multi-domain sequential patterns, we now get insight

into the impact of propagation orders on performance of algorithm PropagatedMine. As pointed out early, algorithm Prop-
agatedMine first selects a starting domain and then performs sequential pattern mining. Based on the mining results, a lat-
tice structure is built. Clearly, one should judiciously determine the starting domain in algorithm PropagatedMine.
Intuitively, selecting a domain with a smaller number of sequential patterns is good to reduce the size of lattice structures,
thereby improving the performance of algorithm PropagatedMine. In this experiment, we conduct experiments on different
propagation orders. Fig. 16 shows the execution time of algorithm PropagatedMine with various propagation orders, where
the value in the x-axle is the propagation order used. For example, 12435 indicates that the algorithm PropagatedMine starts
with D1, and then propagates to D2;D4;D3 and D5. As can be seen in Fig. 16, selecting domain D1 as a starting domain is better



Table 10
Number of sequential patterns mined in each domain.

Domains D1 D2 D3 D4 D5

Number of sequential patterns 24982 25507 28204 27654 28560
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since algorithm PropagatedMine has a smaller execution time and memory consumption. This implies that sequential pat-
terns in D1 has the minimal number of sequential patterns. Table 10 depicts the number of sequential patterns in each do-
main and the number of sequential patterns in D1 is the smallest among other domains. Furthermore, in Fig. 16, propagation
order 12435 incurs the smallest execution time of algorithm PropagatedMine. This observation gives a guideline in which a
good propagation order is determined as an ascending order of the number of sequential patterns in sequence databases.
Note that there are many ways (e.g., sampling) to approximate the number of sequential patterns in each domain. Thus,
according to the guideline above, one could determine a good propagation order for algorithm PropagatedMine.

6. Conclusions

This paper addresses a novel mining task: the multi-domain sequential pattern mining problem. Multi-domain sequential
patterns are of practical interest and use since they clearly reflect the relations of domains hidden in user’s behavior. We
designed algorithm Naive as a baseline algorithm and two efficient algorithms, IndividualMine and PropagatedMine, to solve
this problem. Specifically, in algorithm IndividualMine, each domain individually performs sequential pattern mining and
then candidate multi-domain sequential patterns are generated by combining all mined sequential patterns in each domain.
Finally, by checking the time-instance sets of candidate multi-domain sequential patterns, the multi-domain sequential pat-
terns are discovered without scanning databases. In order to reduce the mining cost of discovering sequential patterns in
each domain, algorithm PropagatedMine first mines sequential patterns in a starting domain. Propagated tables are then
constructed to discover the candidate multi-domain sequential patterns. Note that by using propagated tables, only sequen-
tial patterns that are likely to form multi-domain sequential patterns are extracted. Algorithm PropagatedMine further ex-
plores lattice structures to reduce the number of patterns propagated. A comprehensive experimental study is conducted
and experimental results show that both algorithms IndividualMine and PropagatedMine are able to quickly mine multi-do-
main sequential patterns compared with algorithm Naive. By exploring propagation and lattice structures, algorithm Prop-
agatedMine outperforms other algorithms in terms of execution times.
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