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摘 要       

由於工業技術水準的提升以及人類生活的需求，便於攜帶的無線通訊系

統被傾向於整合在高效能的電子元件上。射頻積體電路元件之特性亦被完

整的研究與分析。特別是晶片螺旋式電感，其將扮演著射頻積體電路分析

上最重要的角色。為了提升射頻積體電路之效率與實用性，此篇論文將提

供一套新穎且簡單的物理方法以精準地分析、估計射頻晶片螺旋式電感之

感值與共振頻率。有別於以往計算螺旋式電感感值的方法與侷限度，當改

變電感的材料參數時，根據 Kramers-Kronig relations、電磁場論以及固態物

理所推導而成之物理公式，本論文所提供之電感模型將可以協助尋求最佳

的電感感值與共振頻率。更進一步地，本論文亦為提供計算螺旋式電感之

共振頻率方法的先驅者。共振頻率的決定將可以協助電路分析人員以及微

波工程師去選擇最為適當的電感頻寬。因此，本論文將提供了一套便利且

精準的方法以輕易地解決設計層面的問題，並可以簡化且履行晶片射頻螺

旋式電感在高頻積體電路的設計與應用。 
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ABSTRACT 

 
On-Chip spiral inductors have been developed and widely used for RFIC designs. 

Their relative characteristics including inductance, quality factor, self-resonant 

frequency, and loss mechanism…etc., have already been investigated in details. 

Especially, the prediction of inductance and self-resonant frequency of a spiral 

inductor will easily help circuit designers and microwave engineers to manufacture the 

RFICs. There are several methods to calculate inductance and self-resonant frequency 

of a spiral inductor, such as calculating circuit parameter, S-parameter, simulations 

utilizing computers, closed-form models, and measurement from experiments. The 

applied methods, however, are based only on the circuit designs parameters. 

Meanwhile, there are non-physical expressions. The physical meaningless factors in 

the circuit could not explain how to search out the optimum design based on a physical 

sense. All of these methods could not determine the self-resonant frequency and 

evaluate the inductance while altering the material of inductors. The computer 
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simulations could assist the engineers in circuit analysis, but it should spend great deal 

of hours to obtain the approximate results. Although this approach could precisely 

determine the self-resonant frequency, it is time-consuming in calculation and 

non-physically straightforward which could not help circuit designer to easily reach 

for an optimal design. Therefore, in order to surmount those predicaments this thesis 

will provide a physical method for predicting the inductance and self-resonant 

frequency of a spiral inductor. 
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序        言 

 理論物理學家 Steven Weinberg 曾說：「我們都是化約主義者(reductionist)」，意指我

們在普通物體內部的基本粒子中，都期待著能找到最深奧的解釋原理。雖然許多粒子物

理學家都同意這個觀點，但是這套說法不盡然可以被世人完全接受。因為了解最底層的

原理、最小最小尺度範圍的原理，與了解大自然其實是兩回事。雖然多少都可以簡化到

基本粒子的範圍，但是人類在粒子迴旋加速器外頭的物理範疇的了解還僅是滄海之一

粟。混沌的渦流、複雜系統內的大型結構、還有生命體本身，都是可以「從最簡單原理

累積、疊加出來千變萬化、絢爛奪目的現象。」只是對於這些現象的解釋都還藏在方程

式裡面，而我們還沒找到方法將其分離出來。 

 物理學家的模型就像地圖一樣，永遠不夠完備、不夠新穎，除非這張地圖可以成長

到像它所代表的地區那麼大和那麼複雜。愛因斯坦把物理當做一個人會怎樣推想、組合

手錶內部機件的一套觀念，比方說：那滴滴答答有節奏的聲響、指針按部就班的前進，

他都可以想到一個好模型來解釋，只是誰也不敢說這個模型一定正確。愛因斯坦說：「他

可以相信知識有個理想的極限存在，而人的心智正一步一步向這個極限邁進。因此我們

便把這個極限稱為客觀的真理。」如此看來，愛因斯坦的時代似乎單純多了。在費曼(R. 

P. Feynman) 那個被稱作物理黃金歲月的時代裡知識永遠地增長，但是客觀的真理卻一

步步退到迷霧中去了。量子力學帶來一個永遠解決不了的問題，卻也促使了物理學家在

精神以及哲學層面有了進一步的思索與探討。畢竟，科學管不管用，就得看它能不能正

確地預測事情。 

 當我在描繪、拼湊這張尚不完整亦不知去向的“地圖＂時，我的指導教授鄭裕庭老

師給了我長足且意境深遠的建議。雖然據稱由正統的物理學系畢業，但是我的思考模式

卻如自我個性一般跳躍、不願規矩。若說我的思考邏輯如 D 調卡農般浮誇奔走、不知身

在何處，那麼鄭裕庭老師的想法便如蕭邦的小狗圓舞曲般雖規矩地小踏步前進，卻也令

人神遊嚮往、不住地向前尋芳。因此，許多精靈古怪卻又不迷失其本性的想法與成就便

在我們兩人的著墨間誕生。細想跟隨著鄭老師的兩年半中，亦師亦友的他給了我莫大的

自由而且支持我的自由，讓我由衷地深受感動。雖說「食君之祿、擔君之憂」，但我更

因老師在經濟與學問上的付出與關懷而有泉湧以報之感。 
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若提心靈上的支柱，那莫過於我那一直想嫁人的女朋友了。六年多前一場在火車站

前的邂逅，如鹿角般多歧卻著實地改變了兩個人的命運。這兩千多個日子以來若無她的

陪伴，我無法獨自一人承受家中的遽變以及自身病痛的煎熬。家中經濟原本就不寬裕，

在我求學的日子裡卻不斷傳來家中遭竊、家人車禍意外、癌症的消息。常常夜裡夢間想

放棄學業回鄉工作，但幸而女友一旁的支持，以及中央大學物理系易台生老師的經濟協

助，總算讓我拿到畢業證書並繳了一張不錯的成績單。雖僅是薄薄一張，卻駝載了多人

的支持與愛護。對於這份厚重的情誼，我始終覺得非常虧欠與珍惜。 

對於實驗室裡的各位，這段日子偏勞您們了。志瑋的“夜夜笙歌＂與光仁的“事後

煙＂在我這乏味的人生裡增添幾筆狂亂的色彩。也非常感謝小 B 提供了一張溫暖乾淨的

床，並且在我經濟匱乏的時候陪我吃俗俗的貢丸拉麵，讓我覺得就像是家人一樣。全豆

(Chando)另類的人生哲學以及出神入化的操盤技術，大家都有目共睹。思穎體貼以及溫

柔的協助，令人肩頭上彷彿少去了許多沉澱澱的負擔。阿達日夜的 MSN 小叮嚀，讓我

對於未來做好了萬全的準備。凱哥天天送我吃的橘子讓我覺得實驗室裡更添一份溫馨與

人情。阿姐的時時協助與關懷，彷彿就是戰場上為傷兵祈福的天使。學姊的良心建議與

時時的規勸，有助於我思考自己的將來。黃小文的魔獸也應該可以出攻略了吧！當然亦

要感謝系辦裡的大家。沒有您們對於我們的付出，無法造就今時今日的進步。 

誠如貝塞(H. A. Bethe)所說：「物理學家都是小飛俠彼得潘。」我天馬行空的念頭若

沒有大家的支持，亦只是曇花一現的過眼雲煙。若如沒有溫蒂的朝夕相伴，彼得潘也只

是個會飛卻長不大的孩子王。最後，感謝大家給我歸零的勇氣，以面對下一次的種種挑

戰。 
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Chapter 1 Introduction 

1.1 Overview 

Integral passives are becoming increasingly important in realizing next generation 

electronics industry needs through gradual replacement of discrete. The need for integral 

passives emerges from the increasing consumer demand for product miniaturization thus 

requiring components must be reliable and controlled easily. The microelectronic industry has 

to respond the consumer demands in automotive. The last two decades have seen the 

development of personal computers, telecommunication, electronic equipment, devices and 

consumer sectors for product miniaturization with increasing functionality. In order to achieve 

the goal of miniaturization, the behaviors of miniaturized passive components must be realize 

clearly before fabrication. In addition, according to the National Electronics Manufacturing 

Initiative (NEMI), the integral passive is defined as the functional elements either embedded 

in or incorporated on the surface of an interconnecting substrate. Since the number of passive 

components may exceed both the number and the area of IC chips on a circuit board or a 

package, it is necessary to substantially estimate and predict the single performance and 

interaction between each other. Thus, the passive components potentially can offer the 

benefits of smaller size, more functionality, and better performance. As a result, it is necessary 

to develop a method to well predict the behavior of the passive components. 

The microelectronic industry has to respond the consumer demands in automotive. The 

last two decades have seen the development of personal computers, telecommunication, 

electronic equipment, devices and consumer sectors for product with increasing functionality. 

Especially, the spiral inductors, one of the important passive components, have been properly 

developed and widely utilized for radio frequency integrated circuit (RFIC) designs. Their 

related characteristics, including inductance, quality factor, self-resonant frequency, and loss 

mechanism etc., have already been investigated in detail. A variety of methodologies to 

calculate the inductance of a spiral inductor, such as Greenhouse-based formulations [1]–[3], 
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empirical expressions [4], analysis and simulation of inductors and transformers in integrated 

circuits (ASITIC) [5], and several textbooks in physics and engineering, have been presented 

for the design applications.  

Nevertheless, in order to facilitate the implementation of integrated inductors, a compact 

scalable physical model that can accurately predict the behaviors of the inductors with 

different technologies’ parameters is still an important research topic for the RFIC design and 

optimization [4], [6]–[9]. Conventional inductor models [6]–[8] could calculate inductance 

precisely. The applied method, however, is based on the Greenhouse algorithm [1]. Though 

the algorithm is very accurate, it still employs numerous summation steps that depend on the 

number of interacting segments and overall combinations of parallel segments. Complicated 

geometrical analysis can not be avoided. Meanwhile, there are nonphysical expressions, 

obtained using a large number of fitting factors. Since the factors are created to overcome the 

imperfect of the fitting function, it is essential to create an accurate mathematical expression 

associated with the physical sense for the inductance calculation. 

In this thesis, a closed-form integral model is presented for the rectangular, octagonal, 

and circular freely suspended micromachined spiral inductor. Based on the Kramers-Kronig 

relations, field theory, and solid state physics [10]–[12], the model can actually describe 

behaviors of the free electrons in metal to characterize a spiral inductor which RFIC designers 

could easily have the optimal design utilizing this analytical method. Meanwhile, this model 

can exactly predict the inductance and self-resonant frequency of the spiral inductor without 

complicated geometrical analysis. Simulation and measurement results have validated the 

accuracy of the model. Furthermore, unlike conventional formulations only based on circuit 

parameters, this model could safely predict the inductance and the self-resonant frequency 

when altering the material of a spiral inductor. 
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1.2 Thesis Organization 

 First, the Kramers-Kronig relations using for metal will be well defined in chapter 2. The 

causality principle is the main point over through the chapter. The symmetry of the 

susceptibility function will posed in the end. In chapter 3, the paramagnetic and diamagnetic 

factors will be evaluated according to the Pauli spin principle and Larmor theorem. The 

Kramers-Kronig relations will be modified in this chapter to describe the behavior of 

anomalous dispersion and resonant absorption while the self-resonant occurs in a metal. 

Considering the quantum effect and high free electron density in metals, the kinetic energy of 

free electrons will be posed. The wave number is a factor of the kinetic energy, so that we 

may modify this factor to identify the relation between the inductor length and electron 

wavelength when the inductor start resonating. The scattering field and energy stored in the 

corners of the inductor will be developed by means of the conception of Compton scattering 

effect. Therefore, combining the kinetic energy and the scattering energy, the self-resonant 

frequency of the rectangular, octagonal, and circular spiral inductor can be well predicted so 

as to match the conservation law.  

 Extracting the susceptibility function, magnetic factor, and self-resonant frequency in 

chapter 3 and employing the conception of the velocity distribution from Sommerfeld, the 

evaluation of inductance of rectangular and octagonal spiral inductor will be developed in 

chapter 4. Compared to the conventional methods, the model will show itself as powerful tool 

in prediction of the inductance. The ground pad issue will be independently discussed in 

chapter 5. Spherical Green’s function and Dirichlet condition will be adopted to describe the 

behavior of fields between the spiral inductor and ground pad. The result poses the fact that 

the inductor can be seen as a freely system while the ground pad far from 60 μm [18] at least.  

 The final chapter addresses the model validation and discussion. The model is examined 

by comparing with the contemporary calculations, including the results derived from the 

Greenhouse-based model and Ansoft-HFSS simulator, respectively. Meanwhile, the accuracy 

of HFSS analysis will be experimentally validated. It will be shown that a good parameter 
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match between the measurement and HFSS simulation in a Smith chart. After all, the model 

calculation will show a good predictions of inductance compared to the simulation.  
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Chapter 2 The Kramers–Kronig Relations for Metals 

2.1 Introduction 

 The Kramers-Kronig relations compose of one of the most elegant and general theorems 

in physics, because they depend on their validity only on the principle of causality: the 

response can not before the stimulation. Based simply on this principle, the Kramers-Kronig 

relations can describe the interdependence of the real and imaginary parts of the 

susceptibility . Thus, the Kramers-Kronig relations can explain in the most fundamental 

and general terms, completely independent of the underlying physical mechanisms, the 

intimate connection between refraction and absorption. In fact, given one, the other follows 

immediately. Before deriving the Kramers-Kronig relations established in the complex 

frequency (ω) domain plane, the constitutive relations in dispersive media have to be 

characterized first.  

( )ωχ 

The origin of dispersion is to be found in the different time scales that characterize real 

media and make different phenomena at different frequencies. The response of the medium to 

the applied fields is not instantaneous because of the electrons and nuclei have finite mass. 

The polarization and magnetization of the medium at time  therefore depend on the entire 

histories

t

( )tE ′
r

  and ( )tH ′
r

  of the fields at the point in question, and this must be represented 

by the constitutive relations. In order to simplify the mathematical structure, the medium is 

assumed to be isotropic, linear, but dispersive. In this case, of course, the polarization and the 

magnetization are in the direction of the electric field and the magnetic field, respectively. 

Thus, the constitutive relations may be the form: 

( ) ( )∫
∞

−′= ')'(0 dtttGtEtP e

rr
ε

∞−

∞−

) )

          (1) 

( ) ( )∫
∞

−′= ')'(0 dtttGtHtM m

rr
ε          (2) 

where  and  are called the response functions for the polarization and the 

magnetization, respectively. Physically, the response function describes the behavior of the 

( 'ttGe − ( 'ttGm −
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system as a function of the time  following a unit impulse at time . The principle of 

causality address that the polarization at time  can not depend on the electric field at later 

times . Therefore,  

t '  t

t

tt >'  

( ) 0for                      0 <= τG τ          (3) 

for either the dielectric or the magnetic response function and tt ′−=τ  here. 

 It is convenient for many problems to change from the time domain to the frequency 

domain. By taking the Fourier transform of the constitutive relations (1) and (2) using the 

Faltung theorem, the forms become: 

( ) ( ) ( )ωωχεω EP e

~~
0

rr
=            (4) 

and  

  ( ) ( ) ( )ωωχω HM m

~~ rr
=            (5) 

The function ( )ωχe  and ( )ωχm  are called the dielectric and magnetic susceptibilities. In 

terms of the response function ( )τG  , the susceptibility has the form 

( ) ( )∫
∞

= ωττωχ ieG
∞−

            (6) 

It is note that since the response function ( )τG   is real, the susceptibility defined by equation 

(6) has the symmetry property 

( ) ( )** ωχωχ =−             (7) 

This equation indicates the fact that symmetry of electromagnetic energy while energy 

absorption or transformation occurring in a metal. 
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2.2 The Kramers-Kronig Relations for Metals 

 The domain in the complex frequency plane in which the susceptibility function is 

analytic is established just by the principle of causality (3), completely independent of the 

physical mechanism causing the dispersion. Assuming, for the moment, that the response 

function ( )τG   is absolutely integrable and has at most a finite number of finite 

discontinuities, so the Riemann-Lebesgue lemma assure that 

  ( ) 0⎯⎯ →⎯ ∞→ωωχ             (8) 

In fact, conductors violate this assumption, and it will be dealt later. For now considering the 

integral ( )∫ − ωωχ ωτ de i   , the Fourier transform of causality, around a contour enclosing the 

upper half of the complex frequency plane, as shown in Figure 1. From Cauchy’s residue 

theorem we know that 

  ( ) ( )[ ]∫ ∑ ×= −−
n

ii neide ωχπωωχ τωωτ  of residue 2 
n

      (9) 

where ωn is the nth pole of the function ( )ωχ   inside the contour. Provided that ( )ωχ   has 

only a finite number of poles, we can make the radius R lager enough to enclose all the poles 

in the upper half plane. The contour integral consists of two parts, these being the integral 

along the real axis and the integral around the semicircle, so that 

( ) ( ) ( )∫∫∫ −

∞→

∞

∞−

−−

∞→

+= i

R

ii dedede ωωχωωχωωχ ωτωτωτ    limlim
R R

   (10) 

 

Fig. 1  Contour enclosing the upper half plane [10] 
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The first term of the right hand side is just the response function ( )τG  , which vanishes for 

 to satisfy the requirements of causality. The magnitude of the second integrand is 0<τ

  ( ) ( ) τωτ ωχωχ yi ee   <−            (11) 

where iyx +=ω . Equation (11) vanishes exponentially above the real axis for , so the 

second term vanishes also. Combining the results discussed above the contour integral may be 

0  <τ

( ) ( )[ ] 0for       0 of residue 2 <=×=∫ ∑ −− τωχπωωχ τωωτ
n

ii neide
n

  (12) 

Therefore, there can be no poles of ( )ωχ   in the upper half plane, while the response function 

satisfies the principle of causality. 

 Considering the function with simple pole ( ) ( )0 /  ωωωχ − , where ω0 is a point on the 

real axis, as shown in Figure 2. If we integrate ( ) ( )0 /  ωωωχ −  around the upper plane using 

the contour shown in Figure 2, the result vanishes by Cauchy’s theorem. But the contour is 

composed of several segments, and the form can be 

( ) ( ) ( ) ( ) 0
0 0 0 0 

lim
0

0 =
−

+
−

+
−

+
− ∫∫∫∫

∞→

∞

+

−

∞− RR
dddd ω

ωω
ωχω

ωω
ωχω

ωω
ωχω

ωω
ωχ

εεω

εω
  (13) 

The last term vanishes in the limit ∞→R , since ( )ωχ  vanishes due to the Riemann- 

Lebesgue lemma. In the limit 0 →ε , the first two terms become the principal part of the 

integral form  to . The third term, the integral along the semicircle around the pole at 

ω

∞− ∞ 

0, can be evaluated from half the residue at the pole, so 

 

 

Fig. 2  Contour for deriving the Kramers-Kronig relations [10] 
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( ) ( 0 
0 0

 lim ωχπω
ωω

)ωχ
εε

id −=
−∫

→

         (14) 

where the negative sign appears because the clockwise halfway around the pole is taking. 

Thus, the result can be obtained 

( ) ( )
∫
∞

∞− −
= ω

ωω
ωχ

π
ωχ d

i 0 
0  

1
P           (15) 

where P stands for principal part. The importance of this remarkable equation follows from 

the appearance of i on the right hand side, for if separating the real and imaginary parts of 

equation (15), the relations can be getting as 

( ) ( )
∫
∞

∞ −
=

-

Im
P ω

ωω
ωχ

π
ωχ d

0 
0 

1Re          (16) 

( ) ( )
∫
∞

∞ −
−=

-
P ω

ωω
ωχ

π
ωχ d

0 
0 

Re1Im          (17) 

It is note that if the susceptibility has a real part then it necessarily has an imaginary part, and 

vice versa. Since dissipation is associated with the imaginary part of the susceptibility and 

dispersion with real part, we can not have one without the other. 

 These relations can be put in a more convenient form in the following way. If we 

multiply the integrand of equation (16) by ( ) ( )0 0 / ωωωω ++ , then we get 

( ) ( ) ( )
∫∫
∞

∞

∞

∞ −
+

−
=

--

Im
P

Im
P ω

ωω
ωχω

π
ω

ωω
ωχω

π
ωχ dd 2 

0 
2 

0 
2 
0 

2 0 
1 1Re     (18) 

From the equation (7) we see that ( )ωχIm  is an odd function of ω, so the second term 

vanishes. Since the integrand in first term is even, we may write it as an integral over positive 

frequency only,  

( ) ( )
∫
∞

−
=

0 2 
0 

2 0 
 2Re ω

ωω
ωχω

π
ωχ dIm

P          (19) 

In the same way, we find that 

( ) ( )
∫
∞

−
−=

0 2 
0 

2 
0 

0 
e 2Im ω
ωω
ωχω

π
ωχ dR

P         (20) 
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Note carefully that it is important to remember the symmetry of susceptibility functions. It is 

also the characteristics of conductors that the magnetic susceptibility ( )ωχm  has a simple 

pole and a δ-function on the real axis at the origin. By employing the residues at the origin 

and the identities 

( ) ⎥
⎦

⎤
⎢
⎣

⎡

+
+

−
=⎥

⎦

⎤
⎢
⎣

⎡
− →→ 2 

0 
2 2 

0 
2 

0 

0
0 

0
lim1lim

ωω
ω

ωω
ω

ωω ωω i
ii       (21) 

to evaluate the behavior of low frequency due to the singularity, the Kramers-Kronig relations 

can be modified as 

( ) ( ) ( )
∫
∞

−
+=

0 2
0

20 00 
Im2Re ω

ωω
ωχω

π
ωδπσωχ dP        (22) 

( ) ( )
∫
∞

−
−=

0 2
0

2
0 

0 

0
0 

Re2Im ω
ωω
ωχω

πω
σωχ dP         (23) 

where σ0 is the dc conductivity of metal. Therefore, the Kramers-Kronig relations for metals 

are presented. 

10 



Chapter 3 Determination of Self-resonant Frequency 

3.1 Characteristics of Anomalous Dispersion and Resonant Absorption 

The concurrence relationship of the real and image parts of the Kramers-Kronig relations 

are modified the form to explain certain characteristics in this section. For instance, preceded 

with the Lorentz–Drude Model (1900) in a conducting medium, a phenomenon called 

anomalous dispersion occurring near a narrow absorption feature, i.e., resonant absorption in 

a metal vapor, can be well represented in terms of the utilization of equation (22) and (23) to 

describe the relation between resonant absorption and anomalous dispersion as shown in 

Figure 3. The dispersion and absorption are coupled and associated with the real and 

imaginary parts of the susceptibility, respectively. If a medium has an imaginary component 

of the susceptibility at the self-resonant frequency, it must have a real component over a broad 

range of frequencies around the self-resonant frequency. While the resonance occurs, the 

energy of incident EM wave is fully absorbed by the free electrons inside the medium and the 

absorption is peaked strongly at the resonant frequency. Similar physical behavior of the 

resonance is also applicable for the case of a spiral inductor. The self-resonance occurrence of 

the spiral inductor would result in complete energy transformation from stored magnetic 

energy into electrical energy, and vice versa. The occurrence of the energy exchange is similar 

to the anomalous dispersion in which the incident EM wave is totally absorbed by the 

conducting medium and transformed into the kinetic energy and scattering potential of the 

free electrons. Therefore, we can construct a physic-based inductor model using the 

Kramers–Kronig relations. First, we assume that the inductor is perfect for EM wave signal 

propagation without having any energy loss. Thus, the imaginary part, (23), could be 

rationalized as a very narrow absorption of the EM wave at self-resonant frequency, ωr, due 

to the energy transformation and it can be modified as 

( ) ( )
r

r

ω
ωωαδπ

ω
σωχ −

+=
2

Im 0          (24) 
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Fig. 3 Real and imaginary parts of the susceptibility function in the neighborhood of two resonances. The 

region of anomalous dispersion is also the frequency interval where absorption occurs [11] 

which accompanied with the real part as the following: 

( ) ( ) 2 2 
 

20 lnRe
ωω

α
ω
ωωδπ

π
σωχ

−
+⎥⎦

⎤
⎢⎣
⎡ −≈

r

       (25) 

where the magnetic factor α can be evaluated by employing the model of Pauli spin 

paramagnetism at absolute temperature and Larmor theorem [12, 13]. In order to improve the 

confusion in mathematics and approach the simplification in physics, a new definition of 

susceptibility function must be presented to replace the conventional magnetic susceptibility 

function: 

( ) χμχμ 00 1 →+ m             (26) 

For discussion in high frequency region, the new susceptibility function can be reduced as: 

( ) 2 2 
 

Re
ωω

αωχ
−

≈
r

           (27) 
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Thus, we can easily employ the equation (27) with new physical mission without complicated 

mathematical structure. The magnetic factor α can have more physical meanings.  

Considering the free electron density ( ) with magnetic moments parallel to the 

presented magnetic energy (

en

Bμ ), the form is 

( ) ( ) (∫ ∫−

+ +≅+= r r

B re BDdDdBDn
ω

μ

ω
ωμεεεμε

h h

h
2
1

2
1

2
1

0
)     (28) 

where h is the Planck’s constant. Here ( BD με +
2
1 ) is the density of orbital of one spin 

orientation with energy Bμε + . The free electron density with magnetic moments antiparallel 

to the presented magnetic field is 

( ) ( ) (∫ ∫ −≅−=− r r

B re BDdDdBDn
ω

μ

ω
ωμεεεμε

h h

h
2
1

2
1

2
1

0
)     (29) 

Figure 4 shows the Pauli paramagnetism at absolute zero. The schemes present the total 

energy of electrons with different spin direction relates to the density of orbital. Combining 

the equation (28) and (29), the paramagnetic factor, αP, is given by 

( ) ( )
hh

h
2

3
2
3 2

2222
2

re

r

e
rrree

r
P

nnDnn
B

ωμ
ω

ωμωωμμωα ===+= −+    (30) 

It is noted that the magnetic moment, μ, shall be carefully defined in this case. The energy 

levels of the system in a presented magnetic field are 

BgmBU BJ μμ =⋅−=
rr            (31) 

where  is the azimuthal quantum number and has the values , ,……, , 

factor

Jm J 1 −J -J 

g is the spectroscopic factor, and Bμ  is the Bohr magneton. For a single spin with no 

orbital moment we have
2
1 ±=Jm and 2 =g , whence BU Bμ±= . Thus, the paramagnetic 

factor may be modified and has the form as 

h2
3 2

rBe
P

n ωμα =             (32) 
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(a)            (b) 

Fig. 4 Pauli paramagnetism at absolute zero. The orbitals in the shaded regions in (a) are occupied. The 

numbers of electrons in the "up" and "down" band will adjust to make the energies equal at the Fermi

level. The chemical potential (Fermi level) of the moment up electrons is equal to that of the moment 

down electrons. In (b) we show the excess of moment up electrons in magnetic field [12] 

Analogous with the Larmor theorem, the diamagnetic factor of the system can be 

approximately calculated and the form is 

  ( )
[ ]

∑
−

=

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==
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0

2
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2
2
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e

rere
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B
n

B
n ωωμωα    (33) 

where the symbol [n-1] and me represent the Gaussian symbol where n is the number of turns 

and mass in material, respectively. The parameters, lmax and s, represent the maximum edge 

and line spacing of the inductor, respectively. Thus, by combining equation (32) and (33) the 

magnetic factor is 

( )
[ ]

∑
−

=

−−=+=
1

0

2
max

 
2

 
2

2
22

3 n

me

rerBe
DP msl

m
nen ωωμααα

h
     (34) 

For a spiral inductor with the geometry as shown in Figure 5, the material-depended magnetic 

factor may be modified via different material parameters and individual magnetic moments of 

the material.  
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Fig. 5  Schematic diagram of the two-port spiral polygon inductor realizations: (a) rectangular, (b) octagonal, 

(c) circular. lmax, s, and ϖ are the maximum edge, line spacing, and line width of the polygon inductor, 

respectively 
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3.2 Kinetic Energy of Free Electrons in Metal 

 Looking for wavelike solution in which the vector potential A vanishes and the scalar 

potential Φ has the form of a plane wave. Thus, the transverse electric and magnetic fields 

vanish and only the longitudinal electric field remains. In this case the existence of a 

characteristic frequency, plasma frequency, for electrostatic oscillations should be discussed. 

The feature of the plasma frequency, however, is independence of wave number k and then 

the phase velocity can be any value. For the same reason, the group velocity will vanish. 

Therefore, aside from the effects of thermal motions, classical plasma waves do not 

propagate.  

It is noted that the energy in the electric field is just equal to the electron kinetic energy 

when averaged over a cycle of the oscillation, in which the electrons and the field form a 

closed, conservative system. Since the field is at its maximum when the electrons are stopped 

at the limits of their motion and vanishes when the electrons are at their maximum velocity, 

the energy of the system simply oscillates back and forth between field energy and kinetic 

energy. In metals, the electron density is high and quantum effects are important. Quantized 

electrostatic oscillations of the conduction electrons in a metal have the energy ωh=E . Other 

quantum effects are also noticeable. Due to the exclusion principle, the electrons that move 

into a region that is already filled by other electrons must occupy higher energy levels lying 

above the Fermi level. This is equivalent, in a sense, to increasing the restoring energy on the 

electrons, and it has the effect of increasing the frequency. The kinetic energy of free electrons 

is described approximately by the dispersion relation [10] 

kn
m

E e
e

L
3/12

2

)3(
5
3 πh

=           (35) 

where k is the wave number of free electrons. In metals, where the conduction band is only 

partially filled, the Fermi level lies somewhere in the middle of the conduction band, far from 

a band edge and the effective mass is very nearly that of a free electron. Figure 6 shows the 

band structure of the electron energy in a periodic lattice. The broken lines indicate the 
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dispersion relation of free electrons. 

 

 
Fig. 6  Band structure of the electron energy in a periodic lattice [10] 

The wave number is a critical parameter which is closely related to the self-resonant 

frequency of polygonal spiral inductors. In this model, the concept of standing wave is 

implemented to characterize the free electron behavior while the inductor starts 

self-resonating. The free electrons similar to the notion of standing waves move back and 

forth through the terminals of the spiral inductor. Thus, the wave number, k, of the electron 

could be identified as mπ/lmax where m represents an integral number. Once the free electrons 

behave like standing waves, they can effectively absorb the energy of the EM wave 

propagating along the inductor. Meanwhile, since the operational frequency falls in a range of 

1 to 20GHz for most of RFICs in which the EM wavelength is about centimeters long, the 

lowest mode would be the dominant one. In other words, the integral number m is equal to 

unity and k～π/lmax. Thus, the self resonant frequency of a spiral inductor would be equal to 

the frequency of the resonating electron and could be calculated as the following: 

total
e

e
L l

n
m

E ππ 3/12
2

)3(
5
3 h

=           (36) 

For the most part, the hypothesis simply embodies the culmination of the analytic model. 
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3.3 Scattering Field and Energy Stored in a corner of a spiral inductor 

Another assumption is made to facilitate a mental visualization of the electron behaviors 

inside the polygonal spiral inductor while EM wave propagates along with the entity. 

Homologizing the hydromechanics that expounds the ideals about the inner corner flow, it can 

be hypothesized that small free vortexes would locally form in the apex of corner while 

electrons travel inside the polygonal spiral inductor. Since the vortex is a closed path and its 

diameter is much smaller than the inductor width, it is convenient to assume that the vortex is 

infinitesimal in this model. The electrons moving in a form of free vortex can be treated as a 

cluster of static electrons to build up a quasi-static electric field in the apex of the corner. Thus, 

according to Jackson’s field theory [11] and the notion of hydromechanics, there will be 

electric fields built up in the neighborhood of corners while an external electric field is 

applied on a conducting material. To a polygonal spiral inductor with several corners in the 

boundary, the quasi-static electric field built up in each corner has the form as the following 

which is calculated by the variation principle [14] 

( ) ( )[ ]
( )[ ]( ) rh

qrE ˆ
12csc 8
4sin8

4
1 22

0 βπββϖ
βππ

πε +−
+

=
r

       (37) 

where q is elementary charge, ϖ and h are the width and height of polygon spiral inductor 

respectively, β is the corner angle, and the field is centered at the outer apex of each corner. 

By considering the field scattering, free electrons move near the corner would be scattered 

and alter their trajectories due to the built-up electrical field in the corner. The energy free 

electrons suffer in the corners due to the field scattering can be calculated as [15, 16]: 
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where N, V, and σeff are the number of corners, the volume of polygon spiral inductor, and the 

effective cross section of the inductor, respectively. Here, the effective cross sections are equal 

to 0.101, 0.281, [17] and 0.375 times the cross section of rectangular, octagonal, and circular 

inductors, respectively. In above formula, the term  

∫
∞

∞−
++ .....21 3

3
2

r
drV            (39) 

means the trajectory function with the perturbation terms. The first term means the ideal 

trajectory function, and the second terms means perturbation from the near field such as the 

ground pad, etc. Since we assume the perturbations from the field is far from the infinity, the 

integral arguments are as the presentation. The recent investigations reveal that the substrate 

coupling effects could be neglected as long as the air gap is larger than 60μm [18]. For a 

micromachined inductor in the RFIC design, the reference ground point would be far away 

from itself. Thus, infinity assumption is reasonable and practical in the model. Nevertheless, if 

a reference ground plane is designed to close to the inductor, the SRF would be changed and 

can be calculated in (39) by changing the integral range [rm, ∞) to replace (-∞, ∞), where the 

factor rm presents a reference point for an inductor circuit. This factor indicates the loss or 

shift term for applying energy. We will discuss the factor rm in later chapter in details. 
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3.4 Energy Conservation and determination of Self-resonant Frequency 

Since the built-up electric field near the corners could modify the forward direction of 

the free electrons and make them move straightly down to the end of the inductor to form the 

standing waves, the realistic Self-resonant frequency, ωr, of a polygonal spiral inductor in this 

model should be derived as the following: 

( ) hCLr ENE ⋅+=ω             (40) 

Equation (40) indicates that the inductor starts resonating to form a standing wave as long as 

its energy is equal to the electronic kinetic energy plus the total energy stored in the corner. 
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Chapter 4  Determination of Inductance 

4.1 Conventional Methods 

In electrostatics we found that the forces on conductors and the energy in the electric 

field can be described in terms of the charges on the conductors and a set of constants called 

the capacitance. We are also familiar with the idea that the energy in the magnetic field 

surrounding a single conductor can be described in terms of the current and a parameter we 

call the inductance. In this section we address the conventional method which generalizes the 

notion of inductor with its own current. Then we can computer the total energy in the 

magnetic field. 

 It is found that the magnetic field possesses an energy density in a medium 

*

2
1 HBu

rr
⋅=              (41) 

In terms of the vector potential, the total energy field is 
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Taking integrate once by part, we obtain 
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Since the first term must vanish because of the magnetic field vanishes at infinite, we are left 

with 
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Clearly, the mutual and self-inductance can be given by the formula 
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where the quantity  is called the mutual inductance for , and called the nmmn LL = nm ≠ 
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self-inductance for .  nm =

It is noted that for a closed current-carrying circuit with arbitrary shape such as a spiral 

inductor the Ampère’s law will be annullable from the asymmetry of the shape. There are 

three independent ways can be employed to overcome the drawback at present. One is using 

the Biot and Savart law to execute the integrand along the circuit path of the spiral inductor. 

The integral of current and coordinate function, however, is too complicated to be completed. 

Other way is to decompose the circuit path into several segments and estimate each one and 

then sum over all of them. This way may be better than the Biot and Savart law, but the 

accuracy will be lost seriously. The final way is based on the Greenhouse algorithm. Though 

the algorithm is very accurate, it still employs numerous summation steps that depend on the 

number of interacting segments and overall combinations of parallel segments. Complicated 

geometrical analysis can not be avoided. Meanwhile, there are nonphysical expressions, 

obtained using a large number of fitting factors. Since the factors are created to overcome the 

imperfect of the fitting function, it is essential to create an accurate mathematical expression 

associated with the physical sense for the inductance calculation. In order to break though this 

predicament, this model poses a simple method to accurately estimate the inductance and 

self-resonant frequency of an inductor without complicated geometrical analysis and 

integrand. In addition, the inductance is a function of material parameter, so designer can 

modify the inductor circuit intuitively and rely on their physical sense to predict the 

performance of the inductor. A flow chart shown in Figure 7 presents the step to optimize the 

inductor model. 
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Fig. 7  A flow chart presents the step to optimize the inductor model 
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4.2 To Determine the Inductance in Solid-State Physics View 

In Drude’s time, and for many years thereafter, it seems reasonable to assume that the 

free electronic velocity distribution was given in equilibrium at temperature T by the Maxwell 

-Boltzmann distribution. However, by the advent of the quantum theory and the recognition 

that for electrons the Pauli Exclusion Principle requires the replacement of the Maxwell- 

Boltzmann distribution with the Fermi-Dirac distribution. In this model, it is necessary to 

develop the distribution of the free electrons inside the metals by the modern physical 

statistics. Thus, the transport behavior of the free electrons should be discussed.  

The classical theory of transport processes is based on the Boltzmann transport equation. 

By working in the six-dimensional space of Cartesian coordinates rr and velocity vr , the 

classical distribution function ( vrf )rr,  is defined by the relation: 

( ) vdrdvrf rrrr  , = number of particles in vdrd rr        (46) 

The boltzmann equation is derived by the following argument. We consider the effect of a 

time displacement on the distribution function. The Liouville theorem of classical 

mechanics provides a physical model that following a volume element along a flow-line the 

distribution is conserved: 

dt 

( ) ( )vrtfvdvrdrdttf rrrrr ,,,, =+++          (47) 

in the absence of collisions. With collisions 
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Thus, the Boltzmann transport equation can be calculated as 
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 In many problems the collision term may be treated by the introduction of a relaxation 

time ( vr )rr, τ , defined by the equation 
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where  is the energy distribution function in thermal equilibrium. Thus, this result provides 

a way to address the distribution of free electron density with magnetic energy in the complex 

frequency plane, defined as 

0 f
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By the normalization condition and integral the magnetic energy function, we obtain the total 

magnetic energy: 
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Shortly after the discovery that the Pauli Exclusion Principle was needed to account for 

the bound electronic states of atoms, Sommerfeld applied the same principle to the free 

electron gas of metals, and thereby resolved the most flagrant thermal anomalies of the early 

Drude model. In most applications Sommerfeld’s model is nothing more than Drude’s 

classical electron gas with the single modification that the electronic velocity distribution is 

taken to be the quantum Fermi-Dirac distribution rather than the classical 

Maxwell-Boltzmann distribution. Figure 8 shows the Maxwell-Boltzmann and Fermi-Dirac 

distributions for typical metallic densities at room temperature, in which both curves are for 

the density given by . The scale is the same for both distributions, and has been 

normalized so that the Fermi-Dirac distribution approaches 1 at low energies. It is noted that 

the Maxwell-Boltzmann distribution will close to infinity while the electron gas is in the 

ground state and violate the underlying physical phenomenon for electrons. Thus, it is 

necessary and reasonable to employ the Fermi-Dirac distribution rather than the Maxwell- 

Boltzmann distribution in this model. 

001.0 TT =

After all, by extracting the susceptibility function, magnetic factor, and self-resonant 

frequency in chapter 3 and employing the conception of the velocity distribution from 

Sommerfeld’s theorem in which Fermi-Dirac distribution was adopted, the inductance of a 

rectangular micromachined spiral inductor can be derived with the associated magnetic 

energy of EM field in the inductor: 
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Fig. 8 Maxwell-Boltzmann and Fermi-Dirac distributions for typical metallic densities at room

temperature, in which both curves are for the density given by 001.0 TT =  [13] 
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where A, kB and T are the cross section area (B ϖh= ), the Boltzmann’s costant, and absolute 

temperature, respectively.  

 Similarly, the inductance of octagonal and circular spiral inductor can also be estimated 

respectively as 
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In the equation (53), (54) and (55), the free electron density and conductivity indicated that 

the inductance shall depend on the characteristics of material and the dimension of the 

inductors seriously. The susceptibility function also addresses that the difference of the 

magnetic properties. 

 It is noted that the conductivity is actually frequency-dependent (or is called AC 

conductivity) and is given by 

( )
ωτ

σωσ
i−

=
1

0             (56) 

where τ is the relaxation time of a free electron. Fortunately, the order of the relaxation time 

of a free electron for typical metals is about 10-24 second, so that the denominator can be seen 

as unity even though the self-resonant frequency of the inductors is approached. Thus, DC 

conductivity employed in equation (53), (54) and (55) is reasonable and practical.  
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Chapter 5 Ground Pad Issue 

5.1 Spherical Green’s function expansion and electric energy 

 In order to pose the issue of interaction from ground pad to the interesting system, to 

develop a proper Green’s function is actually necessary, in which the Dirichlet condition is 

employed to describe the special situation at boundary surface. Electric energy is adopted to 

estimate the influence of direction from the ground pad to the spiral inductor edge side. In this 

section, a special solution of electric energy will be developed. The general solution to the 

Poisson equation with specified values of the potential on the boundary surface by using 

Dirichlet condition is: 
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where the expansion of the Green’s function for a spherical shell bounded 

by ar = and is: br = 
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As a preliminary, the region we are interested in is between the radius of ar = and br = . We 

now turn the attention to the solution of problems with charge distributed in the volume, so 

that the volume integral in equation (57) is involved. It is necessary to consider problems in 

which the potential vanishes on the boundary surfaces in many applications. By linear 

superposition of a solution of the Laplace equation, the general situation can be obtained. The 

first consideration is that of a hollow grounded sphere of radius with a concentric ring with 

charge of radius and total charge . The ring of charge is located in the x-y plane, as shown 

in Figure 9. The charge density of the ring can be written with the help of delta functions in 

angle and radius as 

b 

a Q 
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Fig. 9  The ring of charge is located in the x-y plane [11] 
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In the volume integral over the Green’s function only terms in equation (56) with 0 =m will 

survive because of azimuthal symmetry. Then the potential expansion becomes 
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where and . In order to simplify the problem, we can first reduce 

the equation (58) as: 
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Since the interesting space is between the ranges of radius to  on the x-y plane, we may 

obtain the radial electric field by taking the differentiation of the potential respect to and 

take

a b 

>r 

2
 πθ = . Thus, we get the radial electric energy as: 
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Therefore, we can evaluate the specific electric energy related to the boundary and system 

(here the word “system” can be posed as a spiral inductor later) in which is adopted to 

simplify the problem and the form is: 
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5.2 Modification of trajectory function 

Both conceptually and physically, the interaction from the ground pad to the interesting 

system such as a spiral inductor will rely on the electric energy decreasing associated with the 

direction between them. In most engineering applications the ground pad of an on-chip circuit 

may closely surround with the system, and then the influences form the ground pad can not be 

ignored. In this case we can slightly discuss the ground pad issue now by altering the 

conditions, such as = distance from the origin to the ground pad edge, = distance from 

the origin to the innermost edge of the spiral inductor, and = distance from the origin to the 

outermost edge of the spiral inductor in the equation (65) and (66). Thus, by comparing the 

equation (38) and (65) with the terms of

b <r

>r 

0 =m and 1 =m , we can obtain the relation: 

3
2
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2
3
2

2
3
2

3

212 V
b

rrV
r

V
r
dr

m

><==∫          (67) 

However, in some real cases the relation (67) can not provide correct results because of 

the difference of the mathematical structure of the Green’s Function. The relation constructed 

by the spherical Green’s function generally can not completely describe the behaviors of 

electric fields within the device structure with arbitrary shape of inductors and ground pad but 

that of circular ones. Thus, it is necessary that to construct a general coordinate Green’s 

function with the Dirichlet condition to describe the field behaviors in any shape of the device 

structures. Unfortunately, it is very difficult to develop the seriously mathematical and 

physical structures of the general coordinate Green’s function. In the drawback like this 

situation, an approximate method to estimate the filed behaviors will help us to understand 

somewhere the operations of the fields within the structure. 

Taking 5μm thick micromachined copper rectangular spiral inductors with restricting 

their geometric factors as lmax = 300μm, S = 5μm, and ϖ = 15μm as examples, Figure 10 will 

show the relations between equation (67) and relative error percentage of self-resonant 

frequency calculated by equation (36), (38) and (40). The details will not be discussed here 

because of the mathematical tools still can not undertake the requirements of the physical 
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problems. 

 

 
Fig. 10 Relations between distance from inductor edge to ground pad and relative error of self-resonant 

frequency 

 

As presented in the presented study [18], the result of model calculation poses the fact that the 

inductor can be seen as a freely system while the ground pad far from 60 μm at least. Thus, 

the spherical Green’s function can tell us the approximate results without any confusion. In 

the future, the general coordinate Green’s function should be developed to resolve the more 

complicated physical and mathematical problems.  
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Chapter 6 Model Validation and Discussion 

6.1 Model Validation 

So far, we have developed the Kramers-Kronig relations for metal in order to character 

the behaviors of free electrons while the anomalous absorption occurring. The kinetic energy 

and scattering potential of the free electrons inside the spiral inductors were calculated to 

achieve the prediction of the self-resonant frequency of the inductors. The hypothesis of the 

magnetic energy density was posed to estimate the inductance of the rectangular, octagonal 

and circular spiral inductors. Finally, the ground pad issue was slightly discussed. Therefore, 

all of the significant overcomes will be addressed in this chapter.  

Considering the fabricated structure of a 5μm thick and 3.5 turns micromachined copper 

spiral inductor with restricting its geometric factors as lmax = 300μm, S = 5μm, and ϖ = 15μm, 

as shown in Figure 11. It is noted that the rectangular spiral inductor is freely-suspend on the 

air gap. The substrate effect will be avoided in order to simplify the inductor model. Thus, the 

further work and simulations will follow this simplification in this chapter. By adding the 

suitable boundary condition, wave port excitation, and the ground pad consisted of perfect 

conductor, the 3-D structures of rectangular, octagonal, and circular spiral inductors with 

substrate removal were built and simulated, and as shown in Figure 12, 13, and 14, 

respectively.  

In the Ansoft-HFSS simulator, the radiation boundary condition presents the surface that 

the electromagnetic wave can pass through from the region of the existence of the device to 

the outer region but in the opposite direction. The default boundary, however, means that the 

electromagnetic wave may be reflected from the external region and enter the inner region. 

The excitation of the simulation is defined by adding semi-infinite long wave guides, wave 

ports and impedance lines, which are pointed from the ground pad to one side of the wave 

port, on the two terminals of the spiral inductors. The employing wave guides are consisted of 

perfect conductors in which the skin effect may not be considered, thus the propagated 
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electric and magnetic fields are perpendicular to the surface of the strip. In addition, the whole 

device is included into box, as shown associated with Fig 12, 13, and 14 in the right-down 

corners, in which the radiation boundary condition is adopted and is filling by air.  

In general, it is difficult but important to construct the step of the port-source and 

boundary condition for the micromachined inductors. Experimentally, the distance between 

the boundary condition and the center of inductor was set up as twelve times of the dimension 

of inductor. In addition, the ground-signal-ground pads, as shown in Figure 12, were attached 

to the terminals of inductor as measured pads. The scale of two square wave ports is about 

eight times of the width of signal pads [19]. The results of modeling extracted from 

Ansoft-HSFF simulator will be de-embedded on the S-parameters.  

 

 

Fig. 11 Scheme of a freely suspend micromachined rectangular spiral inductor with restricting its geometric 

factors as lmax = 300μm, S = 5μm, and ϖ = 15μm. 

 

34 



 

 
Fig. 12 Scheme of rectangular spiral inductor with substrate removal 

 

 

 

Fig. 13 Scheme of octagonal spiral inductor with substrate removal. 
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Fig. 14 Scheme of circular spiral inductor with substrate removal. 

 

 

The self-resonant frequencies of rectangular, octagonal, circular inductors could be 

predicted well by means of utilizing the equation (34), (36), (38), and (40), and the values are 

shown in Table 1. Then, we could determine the required inductances at particular frequency 

by the equation (53) for rectangular spiral inductor and the values are shown as in Table 2. In 

table 1 and 2, we will see that our model is examined by comparing with the contemporary 

calculations including the results derived from Greenhouse based model [2] and Ansoft-HFSS 

simulator, respectively. A good S-parameter match between the measurement and HFSS 

simulation in a Smith chart which is shown in Figure 15 presents the fact that the accuracy of 

the HFSS analysis is experimentally validated in the Table 1 and 2. It is noted that 

Greenhouse based model does not provide the frequency dependence of the inductance. The 

symbol, X, used in Table 2 means it does not be available. The material utilized here is copper 

with the properties of , , and .  328 m1045.8 −×=en kg1011.9 31−×=em ( ) 17
0 mΩ106.5 −×=σ
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TABLE 1 

SELF-RESONANT FREQUENCY WITH DIFFERENT TYPE OF INDUCTORS 

Comparisons (n=3.5) 
Self-resonant frequency 

based on our model (GHz)

Self-resonant frequency 

based on HFSS (GHz) 

Rectangular inductor 23.9 22.9 

Octagonal inductor 24.9 23.6 

Circular inductor 25.8 24.6 

 

 

 

TABLE 2 

COMPARISON RESULTS OF RECTANGULAR SPIRAL INDUCTORS 

Number of Turns 

Comparisons (n) 
1.5 2.5 3.5 4.5 5.5 

ωr for HFSS (GHz) 39.5 27.1 22.9 20.6 19.4

ωr for K. K. model (GHz) 38.6 28.6 23.9 21.4 19.9

ωr for Greenhouse (GHz) based model X X X X X 

L for HFSS @ 3GHz (nH) 1.58 2.94 4.27 5.31 6.01

L for K. K. model @ 3GHz (nH) 1.18 2.65 4.13 5.32 5.95

L for Greenhouse based model @ 3GHz (nH) 1.60 3.02 4.28 5.18 5.60

L for HFSS @ 5GHz (nH) 1.58 2.99 4.38 5.49 6.21

L for K. K. model @ 5GHz (nH) 1.19 2.71 4.25 5.51 6.20

L for HFSS @ 9GHz (nH) 1.63 3.22 4.92 6.31 7.23

L for K. K. model @ 9GHz (nH) 1.24 2.91 4.74 6.33 7.30
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Fig. 15 Smith chart in which a good s-parameter match between measurement and simulation is present. 

 

 

The inductance expression based on this model is closely fitted with the simulation and 

experimental data for the structure of the spiral inductor with substrate removal. The above 

table also indicated that not alike our model the greenhouse model does not provide the 

self-resonant frequency itself and can not determine the inductances associated with the 

frequency change. The comparison of inductance spectrum is shown as Figure 16. 
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Fig. 16 Comparison of inductance spectrum of rectangular spiral inductors and results of simulation 

 

 Utilizing similar boundary conditions, the comparison of octagonal and circular spiral 

inductors between inductance extracted from the simulator and equation (54) and (55) are 

shown in Figure 17 and 18, respectively.  

 

Fig. 17 Comparison of inductance spectrum of octagonal spiral inductors and results of simulation 
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Fig. 18 Comparison of inductance spectrum of circular spiral inductors and results of simulation 

 

Note that again this inductor model could predict the self-resonant frequency and 

inductance of a on-chip freely spiral inductor and the designer could easily satisfy their 

requirements by means of modifying the geometry and material parameters of their inductor 

circuit. The analytical method based on Kramers-Kronig relations, EM field theory and solid 

state physics could provide us mathematically convenience for the inductor design in physical 

senses. 
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6.2 Discussion and Future Work 

 A premise must be emphasized again that the physical model are constructed with 

substrate removal for the simplification. Since the substrate coupling effect is not included in 

this model at this moment, the micromachined type inductor is the best test vehicle to 

examine this model. In comparison with the other calculations as listed in Table 2, this 

closed-form integral model can provide a very closely prediction with less than 2% relative 

deviation. Besides, it also reveals the relations between the inductor characteristics and the 

geometry factors and material properties of inductor. The physical parameters will allow us to 

optimize the inductor design. At present, the integral can only well simulate the behaviors of 

micromachined inductor and has its potential applications for the design of high performance 

RFICs due to the high quality characteristic of the inductor [20, 21]. However, we think that 

the integral can be further modified for general on-chip inductors by considering the 

affections of magnetic factor and self-resonant frequency resulted by substrate coupling 

effect. 

 In addition, based on the Boltzmann transport equation and the principle of least action, 

the universe formulations of prediction of self-resonant frequency and inductance might be 

searched out to match the nature principle of physics. Thus, the energy lose into the substrate 

can be only treated as a frequency-depended operator associated with geometrical and 

material parameters in the modeling prediction. By deeply exploring the underlying physical 

meaning of the Pauli spin paramagnetism at “room” temperature and the carefully calculating 

the energy perturbation near the Fermi surface, the physical model can have more widely 

utilization and compatibility of materials. Furthermore, this closed-form physical model can 

also potentially be utilized to modify the characteristics of spiral inductors which are 

constructed by nanocomposite materials. The self-resonant frequency and inductance can be 

exactly determined by means of the superposition of susceptibility functions of inductor itself 

and the nano-fillers and the geometrical parameters.  

 In the future, other characteristics of the on-chip inductor, such as qualify factor, energy 

41 



loss mechanics, parasitic capacitors, parasitic resistors must be developed and discussed in 

details. We hope that a Smith chart constructed by this model with strongly physical senses 

will be presented to achieve the goals of optimized designs. 
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