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A Closed-Form Integral Model of Spiral Inductor

Using the Kramers—Kronig Relations

Student : Chien-Chan Chen Advisors : Dr. Yu-Ting Cheng

Department of Electronics Engineering
& Institute of Electronics
National Chiao Tung University

ABSTRACT

On-Chip spiral inductors have been developed and widely used for RFIC designs.
Their relative characteristics including “inductance, quality factor, self-resonant
frequency, and loss mechanism.:.etc.,-have already been investigated in details.
Especially, the prediction of inductance "and self-resonant frequency of a spiral
inductor will easily help circuit designers and microwave engineers to manufacture the
RFICs. There are several methods to calculate inductance and self-resonant frequency
of a spiral inductor, such as calculating circuit parameter, S-parameter, simulations
utilizing computers, closed-form models, and measurement from experiments. The
applied methods, however, are based only on the circuit designs parameters.
Meanwhile, there are non-physical expressions. The physical meaningless factors in
the circuit could not explain how to search out the optimum design based on a physical
sense. All of these methods could not determine the self-resonant frequency and

evaluate the inductance while altering the material of inductors. The computer



simulations could assist the engineers in circuit analysis, but it should spend great deal
of hours to obtain the approximate results. Although this approach could precisely
determine the self-resonant frequency, it is time-consuming in calculation and
non-physically straightforward which could not help circuit designer to easily reach
for an optimal design. Therefore, in order to surmount those predicaments this thesis
will provide a physical method for predicting the inductance and self-resonant

frequency of a spiral inductor.
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Chapter 1  Introduction

1.1 Overview

Integral passives are becoming increasingly important in realizing next generation
electronics industry needs through gradual replacement of discrete. The need for integral
passives emerges from the increasing consumer demand for product miniaturization thus
requiring components must be reliable and controlled easily. The microelectronic industry has
to respond the consumer demands in automotive. The last two decades have seen the
development of personal computers, telecommunication, electronic equipment, devices and
consumer sectors for product miniaturization with increasing functionality. In order to achieve
the goal of miniaturization, the behaviors of miniaturized passive components must be realize
clearly before fabrication. In addition, according te the National Electronics Manufacturing
Initiative (NEMI), the integral passive is defined as the functional elements either embedded
in or incorporated on the surface of an interconnecting substrate. Since the number of passive
components may exceed both the mumber and the ‘area of IC chips on a circuit board or a
package, it is necessary to substantially estimate and predict the single performance and
interaction between each other. Thus, the passive components potentially can offer the
benefits of smaller size, more functionality, and better performance. As a result, it is necessary
to develop a method to well predict the behavior of the passive components.

The microelectronic industry has to respond the consumer demands in automotive. The
last two decades have seen the development of personal computers, telecommunication,
electronic equipment, devices and consumer sectors for product with increasing functionality.
Especially, the spiral inductors, one of the important passive components, have been properly
developed and widely utilized for radio frequency integrated circuit (RFIC) designs. Their
related characteristics, including inductance, quality factor, self-resonant frequency, and loss
mechanism etc., have already been investigated in detail. A variety of methodologies to

calculate the inductance of a spiral inductor, such as Greenhouse-based formulations [1]-[3],
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empirical expressions [4], analysis and simulation of inductors and transformers in integrated
circuits (ASITIC) [5], and several textbooks in physics and engineering, have been presented
for the design applications.

Nevertheless, in order to facilitate the implementation of integrated inductors, a compact
scalable physical model that can accurately predict the behaviors of the inductors with
different technologies’ parameters is still an important research topic for the RFIC design and
optimization [4], [6]-[9]. Conventional inductor models [6]-[8] could calculate inductance
precisely. The applied method, however, is based on the Greenhouse algorithm [1]. Though
the algorithm is very accurate, it still employs numerous summation steps that depend on the
number of interacting segments and overall combinations of parallel segments. Complicated
geometrical analysis can not be avoided. Meanwhile, there are nonphysical expressions,
obtained using a large number of fitting factors. Since the factors are created to overcome the
imperfect of the fitting function, it«s essential to €reate an accurate mathematical expression
associated with the physical sense for the inductance calculation.

In this thesis, a closed-form integral‘model is presented for the rectangular, octagonal,
and circular freely suspended micromachined spiral inductor. Based on the Kramers-Kronig
relations, field theory, and solid state physics [10]-[12], the model can actually describe
behaviors of the free electrons in metal to characterize a spiral inductor which RFIC designers
could easily have the optimal design utilizing this analytical method. Meanwhile, this model
can exactly predict the inductance and self-resonant frequency of the spiral inductor without
complicated geometrical analysis. Simulation and measurement results have validated the
accuracy of the model. Furthermore, unlike conventional formulations only based on circuit
parameters, this model could safely predict the inductance and the self-resonant frequency

when altering the material of a spiral inductor.



1.2 Thesis Organization

First, the Kramers-Kronig relations using for metal will be well defined in chapter 2. The
causality principle is the main point over through the chapter. The symmetry of the
susceptibility function will posed in the end. In chapter 3, the paramagnetic and diamagnetic
factors will be evaluated according to the Pauli spin principle and Larmor theorem. The
Kramers-Kronig relations will be modified in this chapter to describe the behavior of
anomalous dispersion and resonant absorption while the self-resonant occurs in a metal.
Considering the quantum effect and high free electron density in metals, the kinetic energy of
free electrons will be posed. The wave number is a factor of the kinetic energy, so that we
may modify this factor to identify the relation between the inductor length and electron
wavelength when the inductor start resonating. The scattering field and energy stored in the
corners of the inductor will be developed by means of the conception of Compton scattering
effect. Therefore, combining the kinetic energy and the scattering energy, the self-resonant
frequency of the rectangular, octagonal,-and eireular spiral inductor can be well predicted so
as to match the conservation law.

Extracting the susceptibility function, magnetic factor, and self-resonant frequency in
chapter 3 and employing the conception of the velocity distribution from Sommerfeld, the
evaluation of inductance of rectangular and octagonal spiral inductor will be developed in
chapter 4. Compared to the conventional methods, the model will show itself as powerful tool
in prediction of the inductance. The ground pad issue will be independently discussed in
chapter 5. Spherical Green’s function and Dirichlet condition will be adopted to describe the
behavior of fields between the spiral inductor and ground pad. The result poses the fact that
the inductor can be seen as a freely system while the ground pad far from 60 um [18] at least.

The final chapter addresses the model validation and discussion. The model is examined
by comparing with the contemporary calculations, including the results derived from the
Greenhouse-based model and Ansoft-HFSS simulator, respectively. Meanwhile, the accuracy

of HFSS analysis will be experimentally validated. It will be shown that a good parameter
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match between the measurement and HFSS simulation in a Smith chart. After all, the model

calculation will show a good predictions of inductance compared to the simulation.




Chapter 2 The Kramers—Kronig Relations for Metals

2.1 Introduction

The Kramers-Kronig relations compose of one of the most elegant and general theorems
in physics, because they depend on their validity only on the principle of causality: the
response can not before the stimulation. Based simply on this principle, the Kramers-Kronig
relations can describe the interdependence of the real and imaginary parts of the
susceptibility X(a)) Thus, the Kramers-Kronig relations can explain in the most fundamental
and general terms, completely independent of the underlying physical mechanisms, the
intimate connection between refraction and absorption. In fact, given one, the other follows
immediately. Before deriving the Kramers-Kronig relations established in the complex
frequency (w) domain plane, the constitutive relations in dispersive media have to be
characterized first.

The origin of dispersion is {0 be found in-the different time scales that characterize real
media and make different phenomena.at-different frequencies. The response of the medium to
the applied fields is not instantaneous: because of the electrons and nuclei have finite mass.
The polarization and magnetization of the medium at time ¢ therefore depend on the entire
histories E(') and H(t') of the fields at the point in question, and this must be represented
by the constitutive relations. In order to simplify the mathematical structure, the medium is
assumed to be isotropic, linear, but dispersive. In this case, of course, the polarization and the
magnetization are in the direction of the electric field and the magnetic field, respectively.

Thus, the constitutive relations may be the form:

P(t)=¢,[ E()G.(t-t)ar (1)

—00

M(t)=¢,[ HE)G, t—t)dr )

where G,(t—#) and G, (t—1') are called the response functions for the polarization and the
magnetization, respectively. Physically, the response function describes the behavior of the
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system as a function of the time ¢ following a unit impulse at time ¢'. The principle of
causality address that the polarization at time ¢ can not depend on the electric field at later
times ¢'>t. Therefore,

G(r)=0 for <0 3)
for either the dielectric or the magnetic response function and 7 =¢—¢" here.

It is convenient for many problems to change from the time domain to the frequency
domain. By taking the Fourier transform of the constitutive relations (1) and (2) using the
Faltung theorem, the forms become:

P(0)=z,2,(0)E() @
and

~ ~

M(w)= z,,(0)H (o) (5)

The function y,(w) and y, (@) are called the dielectric and magnetic susceptibilities. In

terms of the response function G(z.); the susceptibility has the form

2()=] Gz)e (6)

It is note that since the response function G(z') is real, the susceptibility defined by equation
(6) has the symmetry property

2-0)=7'(0) (7)
This equation indicates the fact that symmetry of electromagnetic energy while energy

absorption or transformation occurring in a metal.



2.2 The Kramers-Kronig Relations for Metals

The domain in the complex frequency plane in which the susceptibility function is
analytic is established just by the principle of causality (3), completely independent of the
physical mechanism causing the dispersion. Assuming, for the moment, that the response
function G(r) is absolutely integrable and has at most a finite number of finite
discontinuities, so the Riemann-Lebesgue lemma assure that

2(0) 50 ®)

In fact, conductors violate this assumption, and it will be dealt later. For now considering the
integral § ;((a)) e“"dw, the Fourier transform of causality, around a contour enclosing the

upper half of the complex frequency plane, as shown in Figure 1. From Cauchy’s residue

theorem we know that
i; rw)e ™ do=27i) [e’[“’"’ xesidue of y(, )] 9)

where @, is the nth pole of the function ‘#(@) inside the contour. Provided that y(@) has
only a finite number of poles, we canymake the radius'R lager enough to enclose all the poles
in the upper half plane. The contour-integral consists of two parts, these being the integral

along the real axis and the integral around the semicircle, so that

limfg(a))e’i”rda) = Ji z(@)e ™ da+ hmj;((a)) e dw (10)

R—ox R—o p

Im(w)

O O
Fig. 1 Contour enclosing the upper half plane [10]
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The first term of the right hand side is just the response function G(z), which vanishes for
7<0 to satisfy the requirements of causality. The magnitude of the second integrand is
<|;((a>) e’ (11)

where ® = x+1iy. Equation (11) vanishes exponentially above the real axis for 7<0, so the

—iot

2(@)e

second term vanishes also. Combining the results discussed above the contour integral may be

§;{(a)) e dwo=2miy [e‘i”’”’ x residue of y(w, )]: 0 for <0 (12)

Therefore, there can be no poles of ;((a)) in the upper half plane, while the response function
satisfies the principle of causality.

Considering the function with simple pole ;((a))/(a)—a)o), where wy is a point on the
real axis, as shown in Figure 2. If we integrate ;{(a))/ (a)— a)o) around the upper plane using
the contour shown in Figure 2, the result vanishes by Cauchy’s theorem. But the contour is

composed of several segments, and:«the form can be

R O P 105 Y 1T IS
o 0-w, w0+£a)—a)0 Sa)—a)o R—» Rw_a)o

The last term vanishes in the limit.R — oo, since y(w) vanishes due to the Riemann-
Lebesgue lemma. In the limit € - 0, the first two terms become the principal part of the
integral form —oco to oo. The third term, the integral along the semicircle around the pole at

o, can be evaluated from half the residue at the pole, so

A
Im(w)
R
T
i »
Wy Re(w)
o 0
Fig. 2 Contour for deriving the Kramers-Kronig relations [10]
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o)
lglglgw—a)odw_ riy(w,) (14)

where the negative sign appears because the clockwise halfway around the pole is taking.

Thus, the result can be obtained

2(o,)= ijww (w) do (15)

where P stands for principal part. The importance of this remarkable equation follows from
the appearance of i on the right hand side, for if separating the real and imaginary parts of

equation (15), the relations can be getting as

Re y(@,) ——ijznzi?)da) (16)
0
Im;((a)o)=—%P i%ﬁf})da) (17)
0

It is note that if the susceptibility-has a real part then it necessarily has an imaginary part, and
vice versa. Since dissipation is ‘associated with-the ‘imaginary part of the susceptibility and
dispersion with real part, we can not'have one without the other.

These relations can be put in a more convenient form in the following way. If we

multiply the integrand of equation (16) by (w+, )/(w+ @), then we get

Re;((a)o):%Pr “’Im—l(“’)dm%ij odnz@) (13)

_ 2 2 2
0 -, * w0’ -o]

From the equation (7) we see that Im ;((a)) is an odd function of w, so the second term

vanishes. Since the integrand in first term is even, we may write it as an integral over positive

frequency only,

2

2 ol
Re;((a)o)=;P A %{(Ow)da) (19)
0

In the same way, we find that

Im;((a)o): ——Pf%dw (20)



Note carefully that it is important to remember the symmetry of susceptibility functions. It is
also the characteristics of conductors that the magnetic susceptibility y,, (a)) has a simple
pole and a d-function on the real axis at the origin. By employing the residues at the origin

and the identities

fim| —— | =tim| — 204 @ Q1)
o) -, | N o’-o; (o) +o
to evaluate the behavior of low frequency due to the singularity, the Kramers-Kronig relations

can be modified as

Re y(w,)= ﬁaoé(w0)+£Pjowa)I£n—;((i))dw (22)
p/a OREON
Imz(mo):&—gPerw (23)

0 2 _
®w, T @ —w,

where gy is the dc conductivity of metal. Therefore, the Kramers-Kronig relations for metals

are presented.
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Chapter 3 Determination of Self-resonant Frequency

3.1 Characteristics of Anomalous Dispersion and Resonant Absorption

The concurrence relationship of the real and image parts of the Kramers-Kronig relations
are modified the form to explain certain characteristics in this section. For instance, preceded
with the Lorentz—Drude Model (1900) in a conducting medium, a phenomenon called
anomalous dispersion occurring near a narrow absorption feature, i.e., resonant absorption in
a metal vapor, can be well represented in terms of the utilization of equation (22) and (23) to
describe the relation between resonant absorption and anomalous dispersion as shown in
Figure 3. The dispersion and absorption are coupled and associated with the real and
imaginary parts of the susceptibility, respectively. If a medium has an imaginary component
of the susceptibility at the self-resonant frequency, it must have a real component over a broad
range of frequencies around th¢ self-resonant frequency. While the resonance occurs, the
energy of incident EM wave is fully absorbed by the free electrons inside the medium and the
absorption is peaked strongly at the resonant frequency. Similar physical behavior of the
resonance is also applicable for the case of a spiral inductor. The self-resonance occurrence of
the spiral inductor would result in complete energy transformation from stored magnetic
energy into electrical energy, and vice versa. The occurrence of the energy exchange is similar
to the anomalous dispersion in which the incident EM wave is totally absorbed by the
conducting medium and transformed into the kinetic energy and scattering potential of the
free electrons. Therefore, we can construct a physic-based inductor model using the
Kramers—Kronig relations. First, we assume that the inductor is perfect for EM wave signal
propagation without having any energy loss. Thus, the imaginary part, (23), could be
rationalized as a very narrow absorption of the EM wave at self-resonant frequency, w,, due

to the energy transformation and it can be modified as

Im y(w)= % + %%—‘0) (24)

r

11



Re ¥

Im 2

DA )

Fig.3 Real and imaginary parts of the susceptibility function in the neighborhood of two resonances. The

0

region of anomalous dispersion is also the frequency interval where absorption occurs [11]

which accompanied with the real part as the following:

Re;((a))zﬂ[ﬂz§(a))—lnw}+ 20{ . (25)
T @ O -

where the magnetic factor o can be evaluated by employing the model of Pauli spin
paramagnetism at absolute temperature and Larmor theorem [12, 13]. In order to improve the
confusion in mathematics and approach the simplification in physics, a new definition of
susceptibility function must be presented to replace the conventional magnetic susceptibility
function:

o1+ 2,) =m0 (26)

For discussion in high frequency region, the new susceptibility function can be reduced as:

(2

Re y(0)~——— (27)

12



Thus, we can easily employ the equation (27) with new physical mission without complicated
mathematical structure. The magnetic factor o can have more physical meanings.

Considering the free electron density (#,) with magnetic moments parallel to the

presented magnetic energy ( uB ), the form is

=—j’"” (e + uB)d j:’” D(e)de+~ ,uBD(ha)) (28)

. 1 . : . .
where 7 is the Planck’s constant. Here 5D(8+ uB) is the density of orbital of one spin

orientation with energy ¢+ uB . The free electron density with magnetic moments antiparallel

to the presented magnetic field is
o=t [ D(e - uB)de = 1 [ D(e)de L BD(ha,) (29)
¢ 20w 2% 2 '

Figure 4 shows the Pauli paramagnetism at absolute zero. The schemes present the total
energy of electrons with different spin direction relates to the density of orbital. Combining

the equation (28) and (29), the paramagnetic factor, ap; is given by

2 2
) L

(30)

It is noted that the magnetic moment, x4, shall be carefully defined in this case. The energy
levels of the system in a presented magnetic field are

U=~fi-B=m,gu,B (31)
where m, is the azimuthal quantum number and has the values J, J-1,...... , -J,

factor gis the spectroscopic factor, and x4, is the Bohr magneton. For a single spin with no

. 1 .
orbital moment we have m, :iEand g=2, whence U =ty,B. Thus, the paramagnetic
factor may be modified and has the form as

3n 1w
@ =T 2
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Total energy, kinetic +
magnetic, of electrons

o berm level - Parallel
T— g ; ermi leve afield
~ Parallel | Opposite G
tofield | to field
_ _—~2uB
> Density of Density of

\ . orbitals orbitals

(a) (b)

Fig. 4 Pauli paramagnetism at absolute zero. The orbitals in the shaded regions in (a) are occupied. The
numbers of electrons in the "up" and "down" band will adjust to make the energies equal at the Fermi
level. The chemical potential (Fermi level) of the moment up electrons is equal to that of the moment
down electrons. In (b) we show the excess of moment up electrons in magnetic field [12]

Analogous with the Larmor theorem, the diamagnetic factor of the system can be

approximately calculated and the form is

3nuw, 3nw ( B/, e’n,w gi] )
a,=—"—"=—"|— =—"L>» -2 33
D B B ( 6me <7" >j zme m=0( max mS) ( )

where the symbol [n-1] and m, represent the Gaussian symbol where 7 is the number of turns
and mass in material, respectively. The parameters, /,,, and s, represent the maximum edge
and line spacing of the inductor, respectively. Thus, by combining equation (32) and (33) the
magnetic factor is

3n,u,0, B e’nm, "‘1](1 —2ms)2 (34)
2h 2m .

e m=0

a=oa,+a,=

For a spiral inductor with the geometry as shown in Figure 5, the material-depended magnetic
factor may be modified via different material parameters and individual magnetic moments of

the material.
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(c)

Fig. 5 Schematic diagram of the two-port spiral polygon inductor realizations: (a) rectangular, (b) octagonal,

(c) circular. /,,,, s, and @ are the maximum edge, line spacing, and line width of the polygon inductor,

respectively
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3.2 Kinetic Energy of Free Electrons in Metal

Looking for wavelike solution in which the vector potential A vanishes and the scalar
potential ® has the form of a plane wave. Thus, the transverse electric and magnetic fields
vanish and only the longitudinal electric field remains. In this case the existence of a
characteristic frequency, plasma frequency, for electrostatic oscillations should be discussed.
The feature of the plasma frequency, however, is independence of wave number k and then
the phase velocity can be any value. For the same reason, the group velocity will vanish.
Therefore, aside from the effects of thermal motions, classical plasma waves do not
propagate.

It is noted that the energy in the electric field is just equal to the electron kinetic energy
when averaged over a cycle of the oscillation, in which the electrons and the field form a
closed, conservative system. Since the field is at'its.maximum when the electrons are stopped
at the limits of their motion and:-vanishes when the ‘€lectrons are at their maximum velocity,
the energy of the system simply oscillatés back and forth between field energy and kinetic
energy. In metals, the electron density. 1s high and.quantum effects are important. Quantized
electrostatic oscillations of the conduction electrons in a metal have the energy E =7#® . Other
quantum effects are also noticeable. Due to the exclusion principle, the electrons that move
into a region that is already filled by other electrons must occupy higher energy levels lying
above the Fermi level. This is equivalent, in a sense, to increasing the restoring energy on the
electrons, and it has the effect of increasing the frequency. The kinetic energy of free electrons
is described approximately by the dispersion relation [10]

E, :\/EK(&zzne)mk (35)
Sm,
where £ is the wave number of free electrons. In metals, where the conduction band is only
partially filled, the Fermi level lies somewhere in the middle of the conduction band, far from
a band edge and the effective mass is very nearly that of a free electron. Figure 6 shows the

band structure of the electron energy in a periodic lattice. The broken lines indicate the
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dispersion relation of free electrons.

£(K) } Brillouin .
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w

Fig. 6 Band structure of the electron energy in a periodic lattice [10]

The wave number is a critical- parameter which is closely related to the self-resonant
frequency of polygonal spiral inductors. In" this: model, the concept of standing wave is
implemented to characterize “the .free “electron, ‘behavior while the inductor starts
self-resonating. The free electrons’similar to the notion of standing waves move back and
forth through the terminals of the spiral inductor. Thus, the wave number, £, of the electron
could be identified as mz//,,,, where m represents an integral number. Once the free electrons
behave like standing waves, they can effectively absorb the energy of the EM wave
propagating along the inductor. Meanwhile, since the operational frequency falls in a range of
1 to 20GHz for most of RFICs in which the EM wavelength is about centimeters long, the
lowest mode would be the dominant one. In other words, the integral number m is equal to
unity and k~ 7 /I,,.«. Thus, the self resonant frequency of a spiral inductor would be equal to
the frequency of the resonating electron and could be calculated as the following:

E, =\Eﬁ(3n2ne)”3i (36)
5 me mel

For the most part, the hypothesis simply embodies the culmination of the analytic model.
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3.3 Scattering Field and Energy Stored in a corner of a spiral inductor

Another assumption is made to facilitate a mental visualization of the electron behaviors
inside the polygonal spiral inductor while EM wave propagates along with the entity.
Homologizing the hydromechanics that expounds the ideals about the inner corner flow, it can
be hypothesized that small free vortexes would locally form in the apex of corner while
electrons travel inside the polygonal spiral inductor. Since the vortex is a closed path and its
diameter is much smaller than the inductor width, it is convenient to assume that the vortex is
infinitesimal in this model. The electrons moving in a form of free vortex can be treated as a
cluster of static electrons to build up a quasi-static electric field in the apex of the corner. Thus,
according to Jackson’s field theory [11] and the notion of hydromechanics, there will be
electric fields built up in the neighborhood of corners while an external electric field is
applied on a conducting material. To a polygonal spiral inductor with several corners in the
boundary, the quasi-static electric field built up in each corner has the form as the following
which is calculated by the variation principle [14]

£ = 1 q[ﬂ+85in(ﬂ'2/4ﬁ)]2 ;
EC) 4z, 8B hlese(8/2)-1[z+ B) 37

where ¢ is elementary charge, @ and % are the width and height of polygon spiral inductor
respectively, f is the corner angle, and the field is centered at the outer apex of each corner.
By considering the field scattering, free electrons move near the corner would be scattered
and alter their trajectories due to the built-up electrical field in the corner. The energy free

electrons suffer in the corners due to the field scattering can be calculated as [15, 16]:

_ T hlese(/2)- I]E‘q

2
2
o dr T—-p
E 1+2V3 | —+..... csel ——
‘ N V2/3\/‘7eﬁ' l:( LC r j ( 2 ﬂ

7r+8sin”—2 38)
qz [ 4ﬂj 2(77_;3) (
_ 4NV2/3@ S+ ) ese’| ==, forp<m
q’ (7Z'+4\/§)2 V4

——, for = (circular inductor
4NV*3 /geﬁ 4z 27 pe=m )
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where N, V, and o, are the number of corners, the volume of polygon spiral inductor, and the
effective cross section of the inductor, respectively. Here, the effective cross sections are equal
to 0.101, 0.281, [17] and 0.375 times the cross section of rectangular, octagonal, and circular

inductors, respectively. In above formula, the term
2 o0
1+2V3 j S (39)

means the trajectory function with the perturbation terms. The first term means the ideal
trajectory function, and the second terms means perturbation from the near field such as the
ground pad, etc. Since we assume the perturbations from the field is far from the infinity, the
integral arguments are as the presentation. The recent investigations reveal that the substrate
coupling effects could be neglected as long as the air gap is larger than 60um [18]. For a
micromachined inductor in the RFIC design, the reference ground point would be far away
from itself. Thus, infinity assumption is reasonable’and practical in the model. Nevertheless, if
a reference ground plane is designed to close'to the inductor, the SRF would be changed and
can be calculated in (39) by changing the“integral range [7,,, ®©) to replace (-, «©), where the
factor r,, presents a reference point for an inductor circuit. This factor indicates the loss or

shift term for applying energy. We will discuss the factor 7, in later chapter in details.
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3.4 Energy Conservation and determination of Self-resonant Frequency

Since the built-up electric field near the corners could modify the forward direction of
the free electrons and make them move straightly down to the end of the inductor to form the
standing waves, the realistic Self-resonant frequency, w,, of a polygonal spiral inductor in this
model should be derived as the following:

w,=(E, +N-E.)/h (40)
Equation (40) indicates that the inductor starts resonating to form a standing wave as long as

its energy is equal to the electronic kinetic energy plus the total energy stored in the corner.
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Chapter 4 Determination of Inductance

4.1 Conventional Methods

In electrostatics we found that the forces on conductors and the energy in the electric
field can be described in terms of the charges on the conductors and a set of constants called
the capacitance. We are also familiar with the idea that the energy in the magnetic field
surrounding a single conductor can be described in terms of the current and a parameter we
call the inductance. In this section we address the conventional method which generalizes the
notion of inductor with its own current. Then we can computer the total energy in the
magnetic field.

It is found that the magnetic field possesses an energy density in a medium

- =

H” (41)

N|I—\

In terms of the vector potential, the total energy field'is

1 = 15 OA,
VxA)H d’f== ol H, —Ld°F 42
2.[( X ) 2i’§fukj arl ( )
Taking integrate once by part, we obtain
fi == OH, 3.
Zgu{jH Ad?r, w—j 15 kdf*} (43)
Ijk =1 |

Since the first term must vanish because of the magnetic field vanishes at infinite, we are left
with

13 OH, 3

W=— £iij. or Ad (44)

2i,j,k=1 |

Clearly, the mutual and self-inductance can be given by the formula

where the quantity L, =L, is called the mutual inductance for m=n, and called the

nm
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self-inductance for m=n.

It is noted that for a closed current-carrying circuit with arbitrary shape such as a spiral
inductor the Ampere’s law will be annullable from the asymmetry of the shape. There are
three independent ways can be employed to overcome the drawback at present. One is using
the Biot and Savart law to execute the integrand along the circuit path of the spiral inductor.
The integral of current and coordinate function, however, is too complicated to be completed.
Other way is to decompose the circuit path into several segments and estimate each one and
then sum over all of them. This way may be better than the Biot and Savart law, but the
accuracy will be lost seriously. The final way is based on the Greenhouse algorithm. Though
the algorithm is very accurate, it still employs numerous summation steps that depend on the
number of interacting segments and overall combinations of parallel segments. Complicated
geometrical analysis can not be avoided. Meanwhile, there are nonphysical expressions,
obtained using a large number of fitting factors. Since the factors are created to overcome the
imperfect of the fitting functionit is'essential.to create an accurate mathematical expression
associated with the physical sense for the‘inductance calculation. In order to break though this
predicament, this model poses a simple method t0 accurately estimate the inductance and
self-resonant frequency of an inductor without complicated geometrical analysis and
integrand. In addition, the inductance is a function of material parameter, so designer can
modify the inductor circuit intuitively and rely on their physical sense to predict the
performance of the inductor. A flow chart shown in Figure 7 presents the step to optimize the

inductor model.
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Fig. 7
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A flow chart presents the step to optimize the inductor model
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4.2 To Determine the Inductance in Solid-State Physics View

In Drude’s time, and for many years thereafter, it seems reasonable to assume that the
free electronic velocity distribution was given in equilibrium at temperature T by the Maxwell
-Boltzmann distribution. However, by the advent of the quantum theory and the recognition
that for electrons the Pauli Exclusion Principle requires the replacement of the Maxwell-
Boltzmann distribution with the Fermi-Dirac distribution. In this model, it is necessary to
develop the distribution of the free electrons inside the metals by the modern physical
statistics. Thus, the transport behavior of the free electrons should be discussed.

The classical theory of transport processes is based on the Boltzmann transport equation.
By working in the six-dimensional space of Cartesian coordinates r and velocity vV, the
classical distribution function f(F,v) is defined by the relation:

f (F,V)drdv = number of particles in drdv (46)
The boltzmann equation is derived by the following-argument. We consider the effect of a
time displacement dt on the distribution function.’ The Liouville theorem of classical
mechanics provides a physical model that following a volume element along a flow-line the
distribution is conserved:

f(t+dt,F+dr,v+dv)=f(t,F,V) (47)

in the absence of collisions. With collisions

(e dt P+ dFv +0V)— f(LF,7)= dt@—zj (48)
collisions

Thus, the Boltzmann transport equation can be calculated as

i+\7-fo+d—V~va =(ij (49)
at dt at collisions

In many problems the collision term may be treated by the introduction of a relaxation

time z(r,v), defined by the equation

of _ (=1
(chollisions - 4 50)
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where f, is the energy distribution function in thermal equilibrium. Thus, this result provides
a way to address the distribution of free electron density with magnetic energy in the complex

frequency plane, defined as

f ()= DN {exp(h(w — )j t 1}_1 (51)

2 kgT

By the normalization condition and integral the magnetic energy function, we obtain the total

magnetic energy:

F(a))=

1
=\ fo(@w)d°F
nJ. o(@)dF

_ Nl N@ h00, {exp[h(a)—a)r )Hl (52)
27z n kg T

Shortly after the discovery that the Pauli Exclusion Principle was needed to account for
the bound electronic states of atoms, Sommerfeld applied the same principle to the free
electron gas of metals, and thereby resolved the most flagrant thermal anomalies of the early
Drude model. In most applications Sommerfeld’s model is nothing more than Drude’s
classical electron gas with the single modification.that the electronic velocity distribution is
taken to be the quantum? Fermi-Dirac- distribution rather than the classical
Maxwell-Boltzmann distribution. Figure 8 shows the Maxwell-Boltzmann and Fermi-Dirac
distributions for typical metallic densities at room temperature, in which both curves are for
the density given by T =0.01T,. The scale is the same for both distributions, and has been
normalized so that the Fermi-Dirac distribution approaches 1 at low energies. It is noted that
the Maxwell-Boltzmann distribution will close to infinity while the electron gas is in the
ground state and violate the underlying physical phenomenon for electrons. Thus, it is
necessary and reasonable to employ the Fermi-Dirac distribution rather than the Maxwell-
Boltzmann distribution in this model.

After all, by extracting the susceptibility function, magnetic factor, and self-resonant
frequency in chapter 3 and employing the conception of the velocity distribution from
Sommerfeld’s theorem in which Fermi-Dirac distribution was adopted, the inductance of a
rectangular micromachined spiral inductor can be derived with the associated magnetic

energy of EM field in the inductor:
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Fig. 8 Maxwell-Boltzmann and Fermi-Dirac distributions for typical metallic densities at room

temperature, in which both curves are for the density given by T =0.01T, [13]
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Lrec = | 2
1
~ HoX F(a)) _ neltotalal ho, exp h(a)_wr) 1 (53)
h ha V. Ho 270 An kgT
(707
Itotal

where A, ks and T are the cross section area (= h@ ), the Boltzmann’s costant, and absolute
temperature, respectively.
Similarly, the inductance of octagonal and circular spiral inductor can also be estimated

respectively as

-1

3neltotalsjf ho |: (h(a)—a) )J :|
oot M ~| exp ~+1 (54)

7% BrelAn kgT
and

3 -1

|_Cir R U, MLZZM exp(MJ +1 (55)
oy An KgT

In the equation (53), (54) and (55), the free electron-density and conductivity indicated that
the inductance shall depend on the characteristics of material and the dimension of the
inductors seriously. The susceptibility function also addresses that the difference of the
magnetic properties.

It is noted that the conductivity is actually frequency-dependent (or is called AC

conductivity) and is given by

o)-%;

where 7 is the relaxation time of a free electron. Fortunately, the order of the relaxation time
of a free electron for typical metals is about 10* second, so that the denominator can be seen

as unity even though the self-resonant frequency of the inductors is approached. Thus, DC

conductivity employed in equation (53), (54) and (55) is reasonable and practical.
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Chapter 5 Ground Pad Issue

5.1 Spherical Green’s function expansion and electric energy

In order to pose the issue of interaction from ground pad to the interesting system, to
develop a proper Green’s function is actually necessary, in which the Dirichlet condition is
employed to describe the special situation at boundary surface. Electric energy is adopted to
estimate the influence of direction from the ground pad to the spiral inductor edge side. In this
section, a special solution of electric energy will be developed. The general solution to the
Poisson equation with specified values of the potential on the boundary surface by using

Dirichlet condition is:

VA 1 il AR 3.\t 1 i aG '
CI)(x)_4ﬁgo va(x)G(x,x)d Bip Sq)(x)an’ da (57)

where the expansion of the _Green’s  function for a spherical shell bounded

by r=aand r=bis:

6 x) xS 3 YmlO Bl [d_aj‘;‘ )( 1o j (58)

1=0 m:_|(2|+1 1_(51)2'“ r r p2!!
b

As a preliminary, the region we are interested in is between the radius of r =aand r=b. We

now turn the attention to the solution of problems with charge distributed in the volume, so
that the volume integral in equation (57) is involved. It is necessary to consider problems in
which the potential vanishes on the boundary surfaces in many applications. By linear
superposition of a solution of the Laplace equation, the general situation can be obtained. The
first consideration is that of a hollow grounded sphere of radius b with a concentric ring with
charge of radius a and total charge Q. The ring of charge is located in the x-y plane, as shown
in Figure 9. The charge density of the ring can be written with the help of delta functions in

angle and radius as
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Fig. 9 The ring of charge is located in the x-y plane [11]

p(X)= 2;2 5(r'—a)s(cos6) (59)

In the volume integral over the Green’s-function only terms in equation (56) with m=0will

survive because of azimuthal symmietry. Then the potential expansion becomes

O(R)=—— [ p(X)G(X,%)dx

4rs,
L P ) A

B 4 = 4n+l < 2n+1 p 2 - b4n+1
oo 2”n{1—(2j }

r >
where r_ =min(r,a) and r, =max(r,a). In order to simplify the problem, we can first reduce

<

the equation (58) as:

© 2n
0031 b~ (o) o)
n=0 >
where
n 4n+1
; Q (_1) (2n —1)” (rjn _ ?znﬂ j (62)

- 472'8 4n+1
0 2“n{1—(aj }
b
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Since the interesting space is between the ranges of radius ato b on the x-y plane, we may

obtain the radial electric field by taking the differentiation of the potential respect to r_ and

take 6 = % . Thus, we get the radial electric energy as:

L0 = [2n-1 (2n+2)r™
Er|9:% :_I’_ZW( >ZCD) :ZéTn[ r2n+2 +( b4n21 Pzn(o)
> > 0=" n= N
(63)
| 2n—1 (2n+2 r>2“‘1
:nZ(;Tn|: rj”*z +( b4n%1 }
where
o a‘4n+1
, Q ((=1)'(2n-1)n 2 I —W
Tn ) 4 n 4n+1 (64)
7 2'n! 1_(8'}
b

Therefore, we can evaluate the specific electric energy related to the boundary and system
(here the word “system” can be posed as a spiral inductor later) in which a — 0 is adopted to

simplify the problem and the form is:

B=Sg
: (65)
S NN mean| 20—1 (2n+2)r2"" | 2m—-1  (2n+2)r>™"
55 o g Aol relet Ton ne2)e]
where
X 2
g -9 ((—1) (2x—1)!!J i .
4re, 2%x!
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5.2 Modification of trajectory function

Both conceptually and physically, the interaction from the ground pad to the interesting
system such as a spiral inductor will rely on the electric energy decreasing associated with the
direction between them. In most engineering applications the ground pad of an on-chip circuit
may closely surround with the system, and then the influences form the ground pad can not be
ignored. In this case we can slightly discuss the ground pad issue now by altering the
conditions, such as b= distance from the origin to the ground pad edge, r.= distance from
the origin to the innermost edge of the spiral inductor, and r_ = distance from the origin to the
outermost edge of the spiral inductor in the equation (65) and (66). Thus, by comparing the

equation (38) and (65) with the terms of m=0and m =1, we can obtain the relation:

2 2 2 2
z z 2 =
2o v I (67

However, in some real cases the relation (67).can not provide correct results because of
the difference of the mathematical structure of the Green’s Function. The relation constructed
by the spherical Green’s function®generally can not completely describe the behaviors of
electric fields within the device structure with arbitrary shape of inductors and ground pad but
that of circular ones. Thus, it is necessary that to construct a general coordinate Green’s
function with the Dirichlet condition to describe the field behaviors in any shape of the device
structures. Unfortunately, it is very difficult to develop the seriously mathematical and
physical structures of the general coordinate Green’s function. In the drawback like this
situation, an approximate method to estimate the filed behaviors will help us to understand
somewhere the operations of the fields within the structure.

Taking Sum thick micromachined copper rectangular spiral inductors with restricting
their geometric factors as I,y = 300um, S = Sum, and @ = 15um as examples, Figure 10 will
show the relations between equation (67) and relative error percentage of self-resonant
frequency calculated by equation (36), (38) and (40). The details will not be discussed here

because of the mathematical tools still can not undertake the requirements of the physical
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Fig. 10 Relations between distance. from inductor edge to ground pad and relative error of self-resonant

frequency

As presented in the presented study [18], the result of model calculation poses the fact that the
inductor can be seen as a freely system while the ground pad far from 60 um at least. Thus,
the spherical Green’s function can tell us the approximate results without any confusion. In

the future, the general coordinate Green’s function should be developed to resolve the more
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complicated physical and mathematical problems.
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Chapter 6 Model Validation and Discussion

6.1 Model Validation

So far, we have developed the Kramers-Kronig relations for metal in order to character
the behaviors of free electrons while the anomalous absorption occurring. The kinetic energy
and scattering potential of the free electrons inside the spiral inductors were calculated to
achieve the prediction of the self-resonant frequency of the inductors. The hypothesis of the
magnetic energy density was posed to estimate the inductance of the rectangular, octagonal
and circular spiral inductors. Finally, the ground pad issue was slightly discussed. Therefore,
all of the significant overcomes will be addressed in this chapter.

Considering the fabricated structure of a Sum thick and 3.5 turns micromachined copper
spiral inductor with restricting its géometric factors-as /max = 300um, S = Sum, and @@= 15um,
as shown in Figure 11. It is noted that the rectangular-spiral inductor is freely-suspend on the
air gap. The substrate effect will’be avoided in order;to simplify the inductor model. Thus, the
further work and simulations will*follow this simplification in this chapter. By adding the
suitable boundary condition, wave port excitation, and the ground pad consisted of perfect
conductor, the 3-D structures of rectangular, octagonal, and circular spiral inductors with
substrate removal were built and simulated, and as shown in Figure 12, 13, and 14,
respectively.

In the Ansoft-HFSS simulator, the radiation boundary condition presents the surface that
the electromagnetic wave can pass through from the region of the existence of the device to
the outer region but in the opposite direction. The default boundary, however, means that the
electromagnetic wave may be reflected from the external region and enter the inner region.
The excitation of the simulation is defined by adding semi-infinite long wave guides, wave
ports and impedance lines, which are pointed from the ground pad to one side of the wave
port, on the two terminals of the spiral inductors. The employing wave guides are consisted of

perfect conductors in which the skin effect may not be considered, thus the propagated
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electric and magnetic fields are perpendicular to the surface of the strip. In addition, the whole
device is included into box, as shown associated with Fig 12, 13, and 14 in the right-down
corners, in which the radiation boundary condition is adopted and is filling by air.

In general, it is difficult but important to construct the step of the port-source and
boundary condition for the micromachined inductors. Experimentally, the distance between
the boundary condition and the center of inductor was set up as twelve times of the dimension
of inductor. In addition, the ground-signal-ground pads, as shown in Figure 12, were attached
to the terminals of inductor as measured pads. The scale of two square wave ports is about
eight times of the width of signal pads [19]. The results of modeling extracted from

Ansoft-HSFF simulator will be de-embedded on the S-parameters.

NCTUME WD21.1mm 15 _0kY¥ 150 300um

Fig. 11 Scheme of a freely suspend micromachined rectangular spiral inductor with restricting its geometric

factors as /.x=300um, S = Sum, and @= 15um.
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Fig. 12 Scheme ofir iral inductor with substrate removal

Fig. 13 Scheme of octagonal spiral inductor with substrate removal.
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spiral inductor with substrate removal.

Fig. 14 Scheme of :C-i'rcul_arI

e =
| k ]

The self-resonant frequencig:s'__'o_:.f.-.:lrect'angu__iar.;"- octagonal, circular inductors could be
predicted well by means of utilizing the-équét'i'(-)n (34), (36), (38), and (40), and the values are
shown in Table 1. Then, we could determine the required inductances at particular frequency
by the equation (53) for rectangular spiral inductor and the values are shown as in Table 2. In
table 1 and 2, we will see that our model is examined by comparing with the contemporary
calculations including the results derived from Greenhouse based model [2] and Ansoft-HFSS
simulator, respectively. A good S-parameter match between the measurement and HFSS
simulation in a Smith chart which is shown in Figure 15 presents the fact that the accuracy of
the HFSS analysis is experimentally validated in the Table 1 and 2. It is noted that
Greenhouse based model does not provide the frequency dependence of the inductance. The
symbol, X, used in Table 2 means it does not be available. The material utilized here is copper

with the properties of 7, =8.45x10®*m™, m, =9.11x107'kg , and &, =5.6x10" (mQ)".
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TABLE 1

SELF-RESONANT FREQUENCY WITH DIFFERENT TYPE OF INDUCTORS

Self-resonant frequency

Comparisons (n=3.5)

Self-resonant frequency

based on our model (GHz) based on HFSS (GHz)
Rectangular inductor 23.9 22.9
Octagonal inductor 24.9 23.6
Circular inductor 25.8 24.6
TABLE 2

COMPARISON RESULTS OF RECTANGULAR SPIRAL INDUCTORS

Number of Turns

1.5 2.5 3.5 4.5 55
Comparisons (n)

o, for HFSS (GHz) 39.5 27.1 229 206 194
o, for K. K. model (GHz) 38,6 28,6 239 214 199
w, for Greenhouse (GHz) based model X X X X X
L for HFSS @ 3GHz (nH) 1.58 294 427 531 6.01
L for K. K. model @ 3GHz (nH) 1.18 265 413 532 5095
L for Greenhouse based model @ 3GHz (nH) 1.60 3.02 428 5.18 5.60
L for HFSS @ 5GHz (nH) 1.58 299 438 549 6.21
L for K. K. model @ 5GHz (nH) 1.19 271 425 551 6.20
L for HFSS @ 9GHz (nH) 1.63 322 492 631 723
L for K. K. model @ 9GHz (nH) 1.24 291 474 633 7.30

37



—— Ml easurement Data
—= Measurement Data

—- Simulation Data
—=— Simulation Data

freq (100 .0MHzto 20 .00GHzZ)

Fig. 15 Smith chart in which a good s-parameter match between measurement and simulation is present.

The inductance expression based on this model is closely fitted with the simulation and
experimental data for the structure of the spiral inductor with substrate removal. The above
table also indicated that not alike our model the greenhouse model does not provide the
self-resonant frequency itself and can not determine the inductances associated with the

frequency change. The comparison of inductance spectrum is shown as Figure 16.
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Fig. 16 Comparison of inductance spectrum of rectangular spiral inductors and results of simulation

Utilizing similar boundary -conditions, the comparison of octagonal and circular spiral
inductors between inductance extracted-from the simulator and equation (54) and (55) are

shown in Figure 17 and 18, respectively.
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Fig. 17 Comparison of inductance spectrum of octagonal spiral inductors and results of simulation
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Fig. 18 Comparison of inductance spectrum of circular spiral inductors and results of simulation

Note that again this inductor.model could, predict the self-resonant frequency and
inductance of a on-chip freely “spiral ‘inductor-and the designer could easily satisfy their
requirements by means of modifying the geometry and material parameters of their inductor
circuit. The analytical method based on Kramers-Kronig relations, EM field theory and solid
state physics could provide us mathematically convenience for the inductor design in physical

SENsSeEs.

40



6.2 Discussion and Future Work

A premise must be emphasized again that the physical model are constructed with
substrate removal for the simplification. Since the substrate coupling effect is not included in
this model at this moment, the micromachined type inductor is the best test vehicle to
examine this model. In comparison with the other calculations as listed in Table 2, this
closed-form integral model can provide a very closely prediction with less than 2% relative
deviation. Besides, it also reveals the relations between the inductor characteristics and the
geometry factors and material properties of inductor. The physical parameters will allow us to
optimize the inductor design. At present, the integral can only well simulate the behaviors of
micromachined inductor and has its potential applications for the design of high performance
RFICs due to the high quality characteristic of the inductor [20, 21]. However, we think that
the integral can be further modified for general on-chip inductors by considering the
affections of magnetic factor and. self-resonant frequency resulted by substrate coupling
effect.

In addition, based on the Boltzmann transpett-equation and the principle of least action,
the universe formulations of prediction of self-resonant frequency and inductance might be
searched out to match the nature principle of physics. Thus, the energy lose into the substrate
can be only treated as a frequency-depended operator associated with geometrical and
material parameters in the modeling prediction. By deeply exploring the underlying physical
meaning of the Pauli spin paramagnetism at “room” temperature and the carefully calculating
the energy perturbation near the Fermi surface, the physical model can have more widely
utilization and compatibility of materials. Furthermore, this closed-form physical model can
also potentially be utilized to modify the characteristics of spiral inductors which are
constructed by nanocomposite materials. The self-resonant frequency and inductance can be
exactly determined by means of the superposition of susceptibility functions of inductor itself
and the nano-fillers and the geometrical parameters.

In the future, other characteristics of the on-chip inductor, such as qualify factor, energy
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loss mechanics, parasitic capacitors, parasitic resistors must be developed and discussed in
details. We hope that a Smith chart constructed by this model with strongly physical senses

will be presented to achieve the goals of optimized designs.
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