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Maximum Likelihood Timing and Carrier Frequency
Offset Estimation for OFDM Systems

With Periodic Preambles
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Abstract—Symbol timing offset (STO) and carrier frequency
offset (CFO) estimation are two main synchronization opera-
tions in packet-based orthogonal frequency division multiplexing
(OFDM) systems. To facilitate these operations, a periodic pream-
ble is often placed at the beginning of a packet. CFO estimation
has been extensively studied for the case of two-period preambles.
In some applications, however, a preamble with more than two pe-
riods is available. A typical example is the IEEE802.11a/g wireless
local area network system, which features a ten-period preamble.
Recently, researchers have proposed a maximum likelihood (ML)
CFO estimation method for such systems. This approach first
estimates the received preamble using a least squares method and
then maximizes the corresponding likelihood function. In addi-
tion to the standard calculations, this method requires an extra
procedure to solve the roots of a polynomial function, which is
disadvantageous for real-world implementations. In this paper, we
propose a new ML method to solve the likelihood function directly
and thereby perform CFO estimation. Our method can obtain a
closed-form ML solution, without the need for the root-finding
step. We further extend the proposed method to address the
STO estimation problem as well as derive a lower bound on
the estimation performance. Our simulations show that while the
performance of the proposed method is either equal to or better
than the existing method, the computational complexity is lower.

Index Terms—Frequency offset, maximum likelihood
(ML), orthogonal frequency division multiplexing (OFDM),
synchronization.

I. INTRODUCTION

O RTHOGONAL frequency division multiplexing (OFDM)
is known as an efficient modulation technique [21], [22].

However, the performance of OFDM systems is sensitive to
both symbol timing offset (STO) [19], [20] and carrier fre-
quency offset (CFO). STO will reduce the effective cyclic prefix
(CP) length and induce intersymbol interference, while CFO
will damage the orthogonality among subcarriers and thereby
induce intercarrier interference. For typical OFDM receivers,
STO and CFO have to be estimated and compensated before
data detection can be conducted.
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Estimation methods for CFO and STO in OFDM systems can
be classified into the following two categories: 1) data aided
and 2) blind. The former is more suitable for packet-based
transmission, while the latter is appropriate for continuous
transmission such as broadcasting. Blind methods exploit the
periodic structure of CPs to accomplish the estimation task
[1]–[7]. Data-aided methods insert a known preamble, or pilot
symbol, in front of each data packet such that it can easily be
used by the receiver to achieve synchronization [9]–[18]. In this
paper, we consider only the data-aided method.

CFO estimation usually consists of a fractional part and
an integer part. Most researchers focus on how to estimate
the fractional part, which is also the focus of this paper. For
integer part estimation, see [9] and [10]. It has been shown
that the performance of OFDM systems is greatly affected
by CFO [30], and an accurate CFO estimation is required
for real-world applications. A maximum likelihood (ML) CFO
estimator using a preamble with two identical pilot symbols was
first proposed in [11]. Using the same periodic preamble and
taking null subcarriers into consideration, Huang and Letaief
[12] propose a method that is able to estimate both fractional
and integer CFOs. To avoid the extra overhead required in [12],
Schmidl and Cox [13] introduce a preamble composed of two
OFDM symbols: The first one has two identical periods (to
estimate the fractional CFO and STO), and the second one has
a special correlation with the first one (to estimate the integer
CFO). To improve the performance, Morelli and Mengali [14]
extend this area of research to treat preambles with periodicities
of greater than two. Using the approach in [14], one can remove
the second pilot symbol as required in [13]. As an improved
version, Minn et al. [15] propose a CFO estimation based on
the best linear unbiased estimation principle. Note that Morelli
and Mengali [14] and Minn et al. [15] still use the same STO
estimator as that in [13]. When the number of periods is greater
than two, the method in [11] is no longer optimal. An ML
CFO estimator for this problem was proposed in [16]. However,
the required computational complexity is high. To alleviate this
problem, a low-complexity approach was then proposed in [17].
Another simplified algorithm was also proposed in [18].
However, due to excessive approximation in the likelihood
function, the performance of the CFO estimation in [18] does
not approach the Cramér–Rao lower bound (CRLB) [25].

In this paper, we focus on CFO and STO estimation in
the OFDM system with a periodic preamble. Specifically, we
consider a preamble with more than two periods. The ML CFO
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estimation for the system has been considered in [17]. The
method in [17] is essentially a two-step approach: it first es-
timates the received preamble with a least squares (LS) method
and then maximizes the corresponding likelihood function. In
addition to regular computations, this method requires an extra
procedure to solve for the roots of the derivative of the like-
lihood function. Thus, its computational complexity is higher,
and the cost for real-world implementations is also increased.

In this paper, we develop a new ML method that solves the
likelihood function directly for the CFO-estimation problem.
Our method generates a closed-form ML solution, and the root-
finding procedure is not required. As a result, the computational
complexity and the implementation cost are lower than those
in [17], while the performance of the proposed method is either
equal to or better than that in [17]. The proposed method is
further extended to STO estimation, and a theoretical lower
performance bound is derived. Note that the performance bound
for STO estimation has not previously been addressed in the
literature. This paper is organized as follows. In Section II,
the CFO-estimation method in [17] is briefly reviewed. The
proposed CFO- and STO-estimation procedures are described
in Sections III and IV. A lower bound on STO estimation
performance is presented in Section V. Our simulation results
are reported and discussed in Section VI. Our conclusions are
presented in Section VII.

II. EXISTING APPROACH

In this section, we briefly review the algorithm proposed in
[17]. Let the preamble in the OFDM system be periodic with
period N and length QN . Denote the preamble signal as s(k),
where k = 0, 1, . . . , QN − 1. The preamble is placed at the
beginning of a packet and is subsequently transmitted through
a wireless channel. Denote the channel response as h(k) and
the output signal as x(k). Then, we have x(k) = s(k) ∗ h(k),
where ∗ denotes the convolution operation. Assume that the
maximum channel delay is N . Then, we can discard the first
received N samples and retain the periodic property of the
preamble x(k). Thus, the received preamble can be expressed
as [1]

y(k) = e
j2πεk

N x(k) + w(k) (1)

where k = N,N + 1, . . . , QN − 1, ε is CFO, and w(k) repre-
sents additive white Gaussian noise with a variance of σ2

w. We
can perform an index transformation by letting k = mN + n,
where m = 1, . . . , Q and n = 0, . . . , N − 1 such that x(k) =
x(mN + n). For notational simplicity, we further let xm(n) =
x(mN + n), denoting the nth sample of the mth period of
x(k). Due to periodicity, we have xp(n) = xq(n) for p, q ∈
{1, . . . , Q}. Similarly, we can define ym(n) = y(mN + n) =
y(k), and wm(n) = w(mN + n) = w(k). Let K = Q−1, and

y(n) = [ y1(n) y2(n) · · · yK(n) ]T

x(n) = [x1(n) x2(n) · · · xK(n) ]T

w(n) = [w1(n) w2(n) · · · wK(n) ]T . (2)

In addition, we define four matrices as follows:

Y = [y(0) y(1) · · ·y(N − 1) ]

X =
[
x(0) x(1)e

j2πε
N · · ·x(N − 1)e

j2πε(N−1)
N

]
W = [w(0) w(1) · · ·w(N − 1) ]

A =

⎡
⎢⎢⎣
ej2πε 0 · · · 0

0 ej2πε·2 · · · 0
...

...
. . .

...
0 0 · · · ej2πε·K

⎤
⎥⎥⎦ . (3)

The received preamble in (1) can then be rewritten as

Y = AX + W. (4)

The method in [17] uses a two-step approach: it first estimates
X using an LS method and then estimates CFO by maximizing
the likelihood function. Since the noise is a Gaussian
random variable, y(n) is a Gaussian random vector with
a covariance matrix of σ2

wI, where I denotes the identity
matrix. For a given A, the LS estimate of X can be expressed
as XLS = (1/K)AHY ≡ A+Y, where (·)H denotes
the Hermitian operation. Substituting XLS back into (4),
we can obtain the log-likelihood function as Λ(A) =∑N

n=1 ‖y(n) − AA+y(n) ‖2 = N · trace((I − AA+)RY ),
where RY = E[YYH ]. The (p, q)th entry of RY is
(1/N)

∑N−1
n=0 yp(n)y∗q(n), p, q ∈ [1,K] [28]. The desired CFO

estimation can then be derived as

ε̂ = arg
{

min
ε

trace
(
(I − AA+)RY

)}
= arg{max

ε
aHRY a} (5)

where a is a vector consisting of the diagonal elements of A.
It was shown in [26] that

aHRY a =
K−1∑

m=−(K−1)

b(m)ej2πmε (6)

where b(m) =
∑

q−p=m(1/N)
∑N−1

n=0 yp(n)y∗q(n). Taking the
derivative of (6) with respect to ε and letting the result be zero,
we obtain

K−1∑
m=1

mb(m)zm =
K−1∑
m=1

mb(−m)z−m (7)

where z = ej2πε. Equation (7) can be rewritten as

Im

(
K−1∑
m=1

mb(m)zm

)
= 0 (8)

where Im(·) is an operator that isolates the imaginary part of
a scalar value. Denote the set containing the roots of (8) by Ω.
The CFO can then be estimated as follows [17]:

ε̂ =
1
j2π

ln(ẑ) (9)

where ẑ = arg{maxz∈Ω(Λ(z))}, and |ẑ| = 1.
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The procedure for CFO estimation in [17] can now be
summarized as follows.

1) Construct the correlation matrix RY .
2) Calculate the coefficient of (8) using RY .
3) Find the nonzero roots of (8).
4) Substitute the roots into (6), find the maximum root, and

calculate ε̂ using (9).

As we see, (8) requires a root-finding operation. Thus, a set
of suboptimum algorithms to address this issue was proposed
in [17]. Unfortunately, these suboptimum methods cannot
effectively reduce the computational complexity while still
maintaining good performance.

III. PROPOSED ML CFO ESTIMATION

In this section, we develop a new CFO estimation method
that solves the likelihood function directly. The signal model
we use is the same as that in (4). We assume that each
data packet is transmitted through a slow-fading channel
with an impulse response of h(k), k = 0, . . . , L− 1. Here,
the h(k)s have Rayleigh distributions, and they are statisti-
cally independent. Note that the time-domain preamble sig-
nal is obtained from the discrete Fourier transform of the
frequency-domain preamble signal, and the frequency-domain
preamble signal is generally a white sequence. From the
central limit theorem, the time-domain preamble signal can
then be approximated as a white Gaussian sequence. Thus,
the channel output x(k), which equals

∑L−1
l=0 h(l)s(k − l),

and the received preamble y(k) in (1) can be approxi-
mated as Gaussian sequences. Let the variance of the time-
domain preamble signal, i.e., s(k) be σ2

s . Then, the variance
of x(n) equals σ2

x = E{∑L−1
j=0

∑L−1
l=0 h(j)s(k − j)h(l)∗s(k −

l)∗} = σ2
s

∑L−1
l=0 |h(l)|2 = σ2

sσ
2
h, and that of y(k) equals σ2

x +
σ2

w. Note that s(k) can be a psuedonoise sequence. In such a
case, σ2

s indicates the averaged preamble power of s(k).
Let f(·) be a probability density function. Then, we explicitly

write out the log-likelihood function of ε as follows [1]:

Λ(ε) = ln

⎧⎨
⎩
∏
n∈Ĩ

f (y(n))

⎫⎬
⎭

= ln

⎧⎪⎨
⎪⎩

∏
n∈Ĩ

f (y(n))
∏

m∈[1,K]

∏
n∈Ĩ

f (ym(n))

·
∏

m∈[1,K]

∏
n∈Ĩ

f (ym(n))

⎫⎪⎬
⎪⎭

= ln

⎧⎨
⎩
∏
n∈Ĩ

f (y(n))
f (y1(n)) · · · f (yK(n))

·
∏

m∈[1,K]

∏
n∈Ĩ

f (ym(n))

⎫⎬
⎭ . (10)

It is clear that the last term in (10), i.e.,
∏

m∈[1,K],n∈Ĩ ×
f(ym(n)), is independent of ε [1]. As a result, this term can
be dropped. Let

u(n) = e
j2πεn

N [x1(n)ej2πε · · · xK(n)ej2πε·K ]T . (11)

We then rewrite (4) as Y = U + W, where U = AX =
[u(0),u(1), . . . ,u(N − 1)]. Then, y(n) = u(n) + w(n).
Define Ru = E[u(n)uH(n)] and Ry = E[y(n)yH(n)]. Then,
we have

Ru = σ2
x

⎡
⎢⎢⎣

1 e−j2πε · · · e−j2π(K−1)ε

ej2πε 1 · · · e−j2π(K−2)ε

...
...

. . .
...

ej2π(K−1)ε ej2π(K−2)ε · · · 1

⎤
⎥⎥⎦
(12)

and Ry = Ru + σ2
wI, where I is an identical matrix. Thus, we

can express f(y(n)) as [23], [24]

f (y(n)) =
(
πK det(Ry)

)−1
exp

[−y(n)HR−1
y y(n)

]
. (13)

According to the matrix inversion lemma [8], we derive the
inverse of Ry as

R−1
y = σ−2

w I − σ−4
w Ru

1 + σ−2
w E{uHu} . (14)

Note that for n ∈ Ĩ , we have

E
{
yp(n)y∗q(n)

}
=
{
σ2

x + σ2
w, if q − p = 0

σ2
xe

−j2πε(q−p), if q − p �= 0
(15)

where p, q ∈ [1,K]. As a result, R−1
y = σ−2

w I − [Ru/(σ4
w +

Kσ2
wσ

2
x)], and

f (yp(n)) =
exp

(
−yp(n)y∗

p(n)

σ2
x+σ2

w

)
π (σ2

x + σ2
w)

(16)

where p ∈ [1,K]. Thus, the exponential term in (13) becomes

y(n)HR−1
y y(n)=σ−2

w

K∑
p=1

yp(n)y∗p(n)

−C0

K∑
p=1

K∑
q=1

yp(n)y∗q(n)ej2π(q−p)ε

=
(
σ−2

w −C0

) K∑
p=1

yp(n)y∗p(n)

−2C0Re

{
K−1∑
p=1

K∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

(17)

whereC0 = σ2
x/(σ

4
w +Kσ2

wσ
2
x), and Re{·} denotes the opera-

tion that isolates the real part of the indicated complex variable.
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Dropping the superfluous terms and substituting (13)–(17) into
(10), we finally express the log-likelihood function as

Λ(ε) =
N−1∑
n=0

ln

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ2

x + σ2
w

)K exp
[−y(n)HR−1

y y(n)
]

det(Ry) exp

⎡
⎢⎢⎣−

K∑
p=1

yp(n)y∗
p(n)

σ2
x+σ2

w

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

=C1 + C2φ+ C3

K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq) (19)

where

γpq =
N−1∑
n=0

yp(n)y∗q(n) (q ≥ p and p ≥ 1) (20)

ψpq = 2πε(q − p) + ∠γpq,

φ =
K∑

p=1

γpp (21)

C1 =N · ln
((

σ2
x + σ2

w

)K
det(Ry)

)
(22)

C2 = (1 −K)
ρ2

σ2
w (1 + (K − 1)ρ)

(23)

C3 =
2C2

(1 −K)ρ
(24)

ρ =
σ2

x

σ2
x + σ2

w

. (25)

Note that φ is the received signal energy and that det(Ry) is
a constant, independent of ε. The detailed derivation of (19) is
provided in Appendix A. Ignoring unrelated terms, we obtain
the log-likelihood as

Λ(ε) ∝
K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq). (26)

To maximize the function, we first take a derivative of Λ(ε) with
respect to ε and obtain

∂

∂ε
Λ(ε) = −

K−1∑
p=1

K∑
q>p

2π(q − p)|γpq| sin(ψpq). (27)

Thus, we have an alternative expression to that in (8). Now,
the problem is how to solve (27). Since (27) involves a non-
linear sine function, a closed-form solution will be difficult to

calculate. Here, we use a simple approximation method to
overcome the problem. Using (20) and (1), we obtain

γpq = ej2πε(p−q)
N−1∑
n=0

|x1(n)|2 +
N−1∑
n=0

wp(n)w∗
q(n)

+ ej2πε(pN+p)
N−1∑
n=0

x1(n)w∗
p(n)

+ ej2πε(pN−q)
N−1∑
n=0

x∗1(n)wq(n). (28)

In (28), we have used the periodic property that x1(n) =
xp(n) = xq(n). Now, if the noise level is low, the noise related
terms in (28) can be ignored. We then have

∠γpq ≈ 2πε(p− q). (29)

From (29), we write

ψpq ≈ 2πε(q − p) + 2πε(p− q) = 0. (30)

From (30), we can then assume that sin(ψpq) ≈ ψpq and ap-
proximate the expression in (27) by

∂

∂ε
Λ(ε) 
 −

K−1∑
p=1

K∑
q>p

2π(q − p)|γpq|(ψpq). (31)

Setting the result in (31) to zero, we can estimate CFO as

ε̂ = −

K−1∑
p=1

K∑
q>p

|γpq|(q − p)∠γpq

2π
K−1∑
p=1

K∑
q>p

|q − p|2|γpq|
. (32)

Note that the approximation in (30) will become exact if noise
is not present and if ε is the true CFO. In other words, (27)
and (31) will have the same zero-crossing point although the
two functions are different, indicating that (31) and (27) will
yield the same optimum solution. If noise is present, however,
(31) and (27) will not have the same optimum solution. The
accuracy of the solution in (31) depends on the signal-to-noise
ratio (SNR) in (28). We define the SNR in (28) as SNRγ and
that in (1) as SNR. Then, SNR = σ2

x/σ
2
w, as typically defined.

From (28), it is simple to see that

SNRγ =
N2σ4

x

Nσ4
w + 2Nσ2

xσ
2
w

=
N · SNR2

1 + 2SNR
. (33)

From (33), we can see that SNRγ can be much larger than SNR
as long as N is reasonably large and SNR is not very low.
Subsequently, the approximation in (31) will introduce only a
small error for a wide SNR range. As a simple example, letN =
16 and SNR = 0 dB. From (33), we obtain SNRγ = 7.27 dB,
which is much higher than SNR.

Note that the proposed estimate requires that we extract
the phase from γpq . It is simple to see that the result is only
unambiguous when |∠γpq| < π. For a particular combination
of p and q, the estimation range for CFO is |ε| ≤ 1/[2(q − p)].
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON FOR THE ALGORITHM IN [17] AND FOR THE PROPOSED ALGORITHMS

Since the maximum value for q − p is K − 1, the estimation
range for CFO is |ε| ≤ 1/[2(K − 1)]. When K is large, the
range becomes small. In the following, we propose a method
to remedy this problem. The basic idea is to apply the phase-
unwrapping procedure. We first calculate the phase angle for
each γpq. Then, for each p, we calculate the phase difference of
∠γpq , q = p+ 1, p+ 2, . . . ,K. Let dr,s denote the phase dif-
ference, i.e., dr,s = ∠γrs − ∠γr(s−1), r = 1, 2, . . . ,K − 2 and
s = r + 2, r + 3, . . . ,K. Since the maximum value of |dr,s| is
π, whenever |dr,s| > π, the phase need to be unwrapped. This
can be performed with the following operation:

dr,s =
{
dr,s − 2π if dr,s > π
dr,s + 2π if dr,s < −π. (34)

For a value of r, the dr,s values should have the same signs. We
can use this property to further correct occasional errors. Let
g be the sum of all dr,s values, i.e., g =

∑K−2
r=1

∑K
s=r+2 dr,s.

Then, we use the sign of g to determine the sign of dr,s and to
evaluate ∠γpk, k = p+ 1, . . . ,K. Finally, the unwrapped ∠γpq

can be written (with q ≥ p+ 2) as

∠γpq = ∠γp(p+1) +
q∑

s=p+2

dp,s. (35)

Substituting (35) into (32), we can estimate CFO. Using our
proposed procedure, the CFO estimation range can be greatly
extended up to |ε| < 1/2.

Now, the procedure for our proposed ML CFO estimation
can be summarized as follows.

1) Construct all γpq’s, where p ∈ [1,K − 1] and q ∈ [p+
1,K], and calculate their amplitude.

2) Use the phase unwrapping scheme to estimate the phase
of γpq.

3) Substitute the results into (32), and calculate the ML
estimate.

Clearly, the proposed estimate does not require the root-finding
procedure, and this, in turn, effectively reduces the computa-
tional complexity. Step 1) above is similar to the calculation of
R in Section II. However, our method is easier since we only
have to compute γpq for q > p.

In this paragraph, we compare the computational complexity
of the proposed ML estimate with that of the algorithm in [17].
Three algorithms are proposed in [17], which are referred to
as algorithms A, A′, and B. While algorithm A is optimal,

algorithms A′ and B are suboptimal. Table I summarizes this
result. In Table I, MUL, ADD, LN, ABS, PH, and DIV denote
the multiplication, addition, natural logarithm, absolute value,
phase derivation, and division operations, respectively. In ad-
dition, the algorithm proposed in this section is referred to as
proposed algorithm I, and the one in Section IV is termed pro-
posed algorithm II. For the proposed algorithms, we consider
the worst case in which all the phase differences dr,s need to
be unwrapped. Fig. 1 shows several examples of how Q and N
affect the complexity. Note that the computational complexity
for the root-finding procedure in [17] is not included here.
For convenience, we treat all operations other than addition as
multiplications. As we can see, the computational complexity
for the proposed algorithm is slightly lower than that for
algorithms A and B in [17], and algorithm A′ in [17] is the
lowest. However, algorithm A′ truncates the polynomials with
order higher than two in (6), i.e., Λ(z) =

∑2
m=−2 b(m)zm.

This impacts the estimation accuracy. Note that we can always
truncate the summation terms in (32) and thereby reduce the
computational complexity of proposed algorithm I. Since sub-
optimum approaches are not our focus, we will not consider the
details here. We will now discuss the computational complexity
of the root-finding procedure. As shown in [27] and [29], the
root-finding procedure requires O(K3) multiplications. Table I
shows that the computational complexity of algorithm A is
O(NK2). Thus, the computational complexity of the root-
finding procedure will be high when K is large. Furthermore,
its implementation cost will also be higher, since we may need
dedicated electronic circuitry to implement this function.

It is well known that the performance of an unbiased estima-
tor is bounded by the CRLB [25]. If the variance of an unbiased
estimator reaches the CRLB, we consider the estimator effi-
cient. Following the procedure to derive performance bounds
in [25], we can calculate the CRLB for our CFO estimation
procedure. Let ε̂ be an estimate of ε. The CRLB for our CFO
estimation is then

CRLB(ε̂) = − 1

E
[

∂2

∂ε2 Λ(ε)
]

=
(8π2ρ)−1σ2

w (1 + (K − 1)ρ)

E

[
K−1∑
p=1

K∑
q>p

(q − p)2Re
{
γpqej2πε(q−p)

}]
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Fig. 1. Computational complexity comparison for the algorithm in [17] and proposed algorithm I. Note that the complexity of the root-finding procedure is not
considered in [17].

=
σ2

w (1 + (K − 1)ρ)

8π2ρNσ2
x

K−1∑
p=1

K∑
q>p

(q − p)2

=
1 +K · SNR

8π2N · SNR2

1
K−1∑
p=1

K∑
q>p

(q − p)2
(36)

where E[·] denotes the expectation.

IV. PROPOSED JOINT ML STO AND CFO ESTIMATION

In this section, we extend the method developed in Section III
to solve the STO-estimation problem. The core idea is to apply
a sliding data window for the received (Q+ 1)N samples;
each window covers the preamble in the context of a particular
timing offset. We perform the ML CFO estimation for data
in each window and store the estimated CFO and the corre-
sponding maximum log-likelihood. Thereafter, the estimated
CFO with the largest log-likelihood is selected as the ML
CFO estimate. The corresponding window position is taken
as the ML STO estimate. Let the window size be QN , and
define the set Vi = {y(i), y(i+ 1), . . . , y(i+QN − 1)} to be
the received data in window i. Since the maximum delay is
shorter than N , it is clear that 0 ≤ i ≤ N − 1. If we let the
STO be θ, Vθ will cover the complete preamble. In Appendix B,

we show that the log-likelihood function for Vi can be ex-
pressed by

Λi(ε) = Ci
1 + Ci

2φ
i + Ci

3

Q−2∑
p=0

Q−1∑
q>p

∣∣γi
pq

∣∣ cos
(
ψi

pq

)
(37)

where the superscript i indicates that all the variables are
calculated within Vi, and Ci

1, Ci
2, and Ci

3 can be treated as
window independent. Thus, we can simplify the above log-
likelihood function using

Λi(ε) ≈ C2φ
i + C3

Q−2∑
p=0

Q−1∑
q>p

∣∣γi
pq

∣∣ cos
(
ψi

pq

)
(38)

where C2 and C3 are the same as those in (23) and (24). Since
the received signal power φi is independent of CFO, we can
estimate CFO using (32) as

ε̂i = −

Q−2∑
p=0

Q−1∑
q>p

∣∣γi
pq

∣∣ (q − p)∠γi
pq

2π
Q−2∑
p=0

Q−1∑
q>p

|q − p|2 ∣∣γi
pq

∣∣ . (39)

Note that the upper bound in the summation terms of (39) is Q
instead of K. The estimated STO is then

θ̂ = arg
{

max
i

(
Λi(ε̂i)

)}
= iopt. (40)
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Now, the procedure for the proposed joint ML STO and CFO
estimation can be summarized as follows.

1) Calculate γi
pq and its amplitude, where i ∈ [1, N ], p ∈

[0, Q− 2], and q ∈ [p+ 1, Q− 1].
2) Use the phase unwrapping procedure outlined above to

calculate ∠γi
pq .

3) Substitute the results into (38) and (39), and calculate
Λi(ε̂i) and ε̂i.

4) Find iopt such that Λiopt(ε̂iopt) > Λi(ε̂i), i �= iopt.
5) The ML STO estimate is iopt, and the ML CFO estimate

is then ε̂iopt .
As we can see from the above procedure, the computational
complexity of the algorithm will be N times higher than that
in Section III. Note also that the upper limit of p is Q− 2
instead of K − 2. In other words, we have an extra period for
CFO estimation. By leveraging the sliding window structure,
we can effectively reduce the computational complexity in
calculating γi

pq. Similar to the definition of γpq, we obtain

γi
pq =

∑i+N−1
n=i yp(n)[yq(n)]∗. Then, it is simple to show that

γi
pq = γi−1

pq + yp(i+N − 1) [yq(i+N − 1)]∗

−yp(i− 1) [yq(i− 1)]∗ . (41)

From (41), we can see that except for i = 0, the calculation of
γi

pq requires only two complex multiplications and two complex
additions. This will greatly reduce the required computational
complexity in the scenario of joint STO and CFO estimation.
The required computational complexity has been summarized
in Table I.

We can also obtain the CRLB for the CFO estimate. All we
have to do is to replaceK withQ in (36). SinceQ = K + 1, the
CRLB is lower than that in (36). Note that the STO is a discrete
value. No performance lower bounds have been reported to date
in the literature. In Section V, we will derive a lower bound to
address this omission.

V. PERFORMANCE ANALYSIS OF STO ESTIMATION

In this section, we analyze the performance of the proposed
STO estimation method. We first redefine (38) as Λi(ε) =
C2φ

i + C3ξ
i, where

φi =
K∑

p=0

i+N−1∑
n=i

yp(n)y∗p(n)

=
K∑

p=0

N−1∑
n=0

xp(n)x∗p(n) + wp(n)w∗
p(n)

+ 2Re
{
xp(n)w∗

p(n) exp
(
j2πε

pN + n

N

)}
(42)

ξi =
K−1∑
p=0

K∑
q>p

∣∣γi
pq

∣∣ cos
(
ψi

pq

)

=
K−1∑
p=0

K∑
q>p

N−1∑
n=0

xp(n)w∗
q(n) exp

(
j2πε

qN + n

N

)

+ wp(n)x∗q(n) exp
(
−j2πεpN + n

N

)
+ wp(n)w∗

q(n) exp (j2πε(q − p)) + xp(n)x∗q(n). (43)

Note here that φi and ξi are random variables. The mean value
of Λi(ε), which is denoted by μi

Λ, is equal to C2μ
i
φ + C3μ

i
ξ,

where μi
φ and μi

ξ are the mean of φi and ξi, respectively.
The variance of Λi can be expressed by νi

Λ = C2
2ν

i
φ + C2

3ν
i
ξ +

2C2C3κ
i
φξ, where νi

φ and νi
ξ denote the variance of φi and ξi,

respectively, and κi
φξ the covariance between φi and ξi. The

whole set of Vi, 0 ≤ i ≤ N − 1, has (Q+ 1)N samples, and it
may cover three regions. The first region consists of the noise
samples, the second region the periodic preamble samples, and
the third region the data samples. We denote these regions
by IN , IP , and ID. Thus, the signal variance in IN is σ2

w,
that in IP is σ2

x + σ2
w, and that in ID is σ2

d + σ2
w, where σ2

d

represents the variance of data samples. Recall that θ is the
actual STO in the system. Using θ as a reference, we can have
the following three cases for the value of i: 1) i = θ; 2) i < θ;
and 3) i > θ (0 ≤ i ≤ N − 1). The statistics of φi and ξi are
different across these three cases. In Appendix C, we provide a
detailed derivation of μi

φ, μi
ξ, νi

φ, νi
ξ, and κi

φξ.
For the proposed STO-estimation algorithm, an error occurs

when iopt �= θ. Thus, we can define the error probability of
STO estimation as P (∪i,i �=θ{Λθ < Λi}), where P (·) denotes
the probability of a certain event. Note that the evaluation
of P (Λθ < Λi) only requires 1-D integration. If the log-
likelihood functions for all i’s are independent and identically
distributed, we have P (∪i,i �=θ{Λθ < Λi}) =

∑
i,i �=θ P (Λθ <

Λi). Unfortunately, the log-likelihood functions are not inde-
pendent. As a result, we have to conduct multidimensional
integration, which is both complex and difficult. Therefore, we
propose a simple alternative to overcome the problem. Instead
of the exact error probability, we attempt to derive a lower
bound.

As shown in [13], the likelihood function is approximately
Gaussian. We denote the distribution of Λi using G(μi

Λ, ν
i
Λ),

where G(·) denotes the Gaussian distribution. Consider the
joint density function of Λi and Λj . Using the Gaussian as-
sumption, we write the bivariate Gaussian distribution as

P (Λi,Λj) =
1

2π · νi
Λ · νj

Λ ·√1 − Cc(i, j)

· exp
(
− zij

2 (1 − Cc(i, j))

)
(44)

where 1 ≤ i, j ≤ N , and

zij =

(
Λi − μi

Λ

)2
νi
Λ

+

(
Λj − μj

Λ

)2

νj
Λ

−
2Cc(i, j)

(
Λi − μi

Λ

) (
Λj − μj

Λ

)
√
νi
Λ · νj

Λ

(45)

Cc(i, j) =
E
{
Λi(Λj)∗

}− μi
Λμ

j∗
Λ√

νi
Λ · νj

Λ

. (46)
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Fig. 2. Comparison of simulated and theoretical P (Λθ > Λj).

Note that Cc(i, j) is the corresponding correlation coefficient.
The numerator of Cc(i, j) is expressed as

E
{
Λi(Λj)∗

}
= μi

Λμ
j∗
Λ + C2

2κ
ij
φφ + C2

3κ
ij
ξξ

+ C2C3κ
ij
φξ + C2C3κ

ij
ξφ (47)

where κij
ab denotes the covariance of ai and bj∗ (ai, bj ∈ {φi,

φj , ξi, ξj}). The main idea here is only to calculate P (Λθ >
Λi) for all i’s (except for i = θ) and then use the result to derive
a lower bound. Thus, we only have to consider Cc(i, θ) as

κiθ
φφ = 2σ2

xσ
2
w (QN − |i− θ|) (48)

κiθ
ξξ =Q(Q− 1)σ2

xσ
2
w

[
N

3
(2Q− 1) − 1

2
|i− θ|

]

+
1
2
QN(Q− 1)σ4

w (49)

κiθ
φξ =κiθ

ξφ = (Q− 1)2Nσ2
xσ

2
w

+ (Q− 1) (N − |i− θ|)σ2
xσ

2
w. (50)

Substituting (45)–(50) into (44), we can then evaluate
P (Λθ > Λi). Given this definition, we have P (Λθ > Λi) =∫∞
−∞
∫ Λθ

−∞ P (Λi,Λθ)dΛidΛθ. Simulations have been conducted
to evaluate the validity of our theoretical results. Using the
scenario depicted in Section VI, we compare the theoretical
and simulated P (Λθ > Λi) in Fig. 2. In the figure, we see that
the theoretical P (Λθ > Λi) is close to the simulated result. If
we let Pmin = min

i�=θ
P (Λθ > Λi), we can then treat Pmin as an

upper bound for the correct probability of STO estimation (i.e.,
iopt = θ). Thus, we can then have a lower bound for the error
probability of STO estimation (LBSTO) as 1 − Pmin.

VI. SIMULATIONS AND DISCUSSIONS

In this section, we report our simulation results, which eval-
uate the performance of the proposed algorithms. We adopt a
Rayleigh multipath channel with an exponential power decay
and five channel taps. The preamble, which is generated from a

Fig. 3. Performance comparison of CFO estimation, the algorithm in [17],
and proposed algorithm I; SNR = 10 dB.

Fig. 4. BER comparison for systems with and without CFO.

frequency-domain binary-phase-shift-keying-modulated signal,
has ten periods, and each period has 16 samples. The data
following the preamble are transmitted using a 16-quadratic-
amplitude-modulation scheme. The mean square error (MSE)
of the estimated CFO is used as a performance measure. We first
consider the CFO-only estimation problem. In this case, the first
received N samples are discarded. As previously mentioned,
we term the proposed approach for this scenario as algorithm I
(as described in Section III). We compare the proposed ML
estimator with that in [17]. One optimum algorithm (algorithm
A) and two suboptimum algorithms (algorithm A′ and B) in
[17] are simulated. Fig. 3 shows the simulation result for SNR
at 10 dB. In the figure, we can see that the performances of
algorithms A′ and B are poorer. Algorithm A and the proposed
algorithm offer a similar level of performance that is very close
to the CRLB. To evaluate the impact of CFO on system perfor-
mance, we conduct simulations for systems with and without
CFO. For the system with CFO, we first use the proposed
method to estimate CFO and then conduct CFO compensation.
Fig. 4 shows the BER comparison for ε = 0.2. As we can see in
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Fig. 5. Performance comparison for CFO estimation, the algorithm in [17],
and proposed algorithm II; SNR = 10 dB.

Fig. 6. Performance comparison for CFO estimation, the algorithm in [17],
and proposed algorithms I and II; N = 16, and Q = 10.

the figure, the BER performance degrades slightly when CFO
is present.

We then consider the case of the joint STO and CFO esti-
mation process. In this case, discarding the first received N
samples is not necessary. As a result, one additional pream-
ble is available. This means that the proposed method may
offer better performance compared with the previous scenario.
However, the price we pay for the additional STO estimation
is the increase in computational complexity. As mentioned,
we name this approach proposed algorithm II (as explained in
Section IV). Using a similar approach, the method in [17] can
also be used to estimate STO. However, its computational com-
plexity increases much more than our method. Fig. 5 shows the
simulation result for the CFO estimate. The proposed method
offers good performance. Only when CFO is very close to
±0.5 does the performance of the proposed algorithms degrade.
Fig. 6 shows the CFO estimation result for various SNRs. In
the figure, we see that the proposed method still works well
for SNRs as low as −5 dB. The algorithms in [17] perform

Fig. 7. Error probability of STO estimation (proposed algorithm II).

Fig. 8. Performance comparison for STO estimation (SNR = 2 and 10 dB).

well until SNR reaches −7 dB, which is somewhat better
than the proposed algorithms. However, when SNR falls below
−8 dB, the proposed algorithms again outperform those in
[17]. This may be because the correlation matrix in (6) is very
noisy, and the roots therefore cannot be solved reliably. Fig. 7
shows the error probability for the STO estimation. We observe
that the derived lower bound for the STO estimation is tight
when the SNR is high. Note that the error probability we de-
fined is only relevant to performance evaluation. If the channel
response is shorter than the CP (which is the typical case),
we can always has some tolerance for the STO estimation.
Thus, there is no need to calculate the exact channel delay.
In real-world applications, it is a common practice to reduce
the estimated STO by a couple of samples when conducting
STO compensation. Another property is that STO estimation
performance is not particularly impacted when CFO is close to
0.5. In the literature, there exist a number of STO estimation
methods. We select the two algorithms proposed in [13] and
[18] for comparison. Fig. 8 shows the MSE curves for these
approaches and for the proposed algorithms (θ = 8). The figure
confirms that the proposed method performs best.
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VII. CONCLUSION

In this paper, we have developed new algorithms for ML STO
and CFO estimation in OFDM systems with periodic pream-
bles. The proposed algorithms do not have to calculate the
roots of the derivative of the likelihood function. The operations
are simple, and the computational complexity is low. With the
proposed method, we can simultaneously solve the STO and
CFO estimation problems. We also derive a lower bound for
the STO estimation error. Simulations show that the proposed
methods offer good performance, and the derived lower bound
is tight when the SNR is high.

APPENDIX A
DERIVATION OF (19)

The likelihood function in (18) can be rewritten as

Λ(ε) =
N−1∑
n=0

ln

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ2

x + σ2
w

)K exp
[−y(n)HR−1

y y(n)
]

det(Ry) exp

⎡
⎢⎢⎣−

K∑
p=1

yp(n)y∗
p(n)

σ2
x+σ2

w

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
N−1∑
n=0

{
ln
[(
σ2

x + σ2
w

)K (det(Ry))−1
]

+

K∑
p=1

yp(n)y∗p(n)

σ2
x + σ2

w

− y(n)HR−1
y y(n)

}
.

(51)

Then, by substituting (17) into (51), we derive the log-
likelihood function as

Λ(ε) =
N−1∑
n=0

{
ln

[(
σ2

x + σ2
w

)K
det(Ry)

]
+

K∑
p=1

yp(n)y∗p(n)

σ2
x + σ2

w

− (σ−2
w − C0

) K∑
p=1

yp(n)y∗p(n)

+ 2C0Re

{
K−1∑
p=1

K∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}}

=
N−1∑
n=0

{
ln
[(
σ2

x + σ2
w

)K (det(Ry))−1
]

+
[

1
σ2

x + σ2
w

− (σ−2
w − C0

)] K∑
p=1

yp(n)y∗p(n)

+ 2C0Re

{
K−1∑
p=1

K∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}}

=
(1 −K)σ4

x

σ2
w (σ2

x + σ2
w) (Kσ2

x + σ2
w)

K∑
p=1

N−1∑
n=0

yp(n)y∗p(n)

+ 2C0Re

{
K−1∑
p=1

K∑
q>p

N−1∑
n=0

yp(n)y∗q(n)ej2π(q−p)ε

}

+N
{

ln
[(
σ2

x + σ2
w

)K (det(Ry))−1
]}

(52)

where C0 = σ2
x/(σ

4
w +Kσ2

wσ
2
x). By substituting (21) and (25)

into (52), we can express (52) as

Λ(ε) =C1 + C2

K∑
p=1

γpp

+ C3Re

{
K−1∑
p=1

K∑
q>p

γpqe
j2π(q−p)ε

}

=C1 + C2

K∑
p=1

γpp

+ C3Re

{
K−1∑
p=1

K∑
q>p

(|γpq|ej∠γpq
)
ej2π(q−p)ε

}

=C1 + C2φ+ C3

K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq) (53)

where ψpq, φ, C1, C2, and C3 are defined as (22)–(24).

APPENDIX B
DERIVATION OF (38)

We assume that the channel noise, the received preamble,
and the received data are statistically uncorrelated with one
another. We define three column vectors y1(n) = [y0(n), . . . ,
yQ−1(n)]T , y2(n) = [y1(n), . . . , yQ−1(n)]T , and y3(n) =
[y0(n), . . . , yQ−2(n)]T and their autocorrelation matrix as Ryk

for k = 1, 2, and 3. Note that i is the window index of (37),
and θ is the real STO. Therefore, (19) can be derived for the
following two cases: 1) i ≤ θ and 2) i > θ. Using the approach
taken to derive (18), we obtain the log-likelihood function for
the first case as

Λi≤θ(ε) = ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n=i+N−1∏
n=i

f (y(n))
Q∏

k=1

f (yk−1(n))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
θ−1∑
n=i

ln
{

f (y2(n))
f (y1(n)) · · · f (yQ−1(n))

}

+
i+N−1∑

n=θ

ln
{

f (y1(n))
f (y0(n)) · · · f (yQ−1(n))

}
(54)

=
θ − i

N
C12 +

i+N − θ

N
C ′

1

+
θ−1∑
n=i

C2

Q−1∑
p=1

yp(n)y∗p(n)



4234 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 8, OCTOBER 2009

+
θ−1∑
n=i

C3Re

{
Q−2∑
p=1

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+
i+N−1∑

n=θ

C ′
3Re

{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+
i+N−1∑

n=θ

C ′
2

Q−1∑
p=0

yp(n)y∗p(n) (55)

where

C12 =N · ln
((

σ2
x + σ2

w

)K
det(Ry2)

)
(56)

C ′
1 =N · ln

((
σ2

x + σ2
w

)Q
det(Ry1)

)
(57)

C ′
2 = (1 −Q)

ρ2

σ2
w (1 + (Q− 1)ρ)

(58)

C ′
3 = =,

2C ′
2

(1 −Q)ρ
. (59)

Similarly, we can derive the log-likelihood function for
i > θ as

Λi>θ(ε) =
i+N−1∑
n=θ+N

ln
{

f (y3(n))
f (y0(n)) · · · f (yQ−2(n))

}

+
θ+N−1∑

n=i

ln
{

f (y1(n))
f (y0(n)) · · · f (yQ−1(n))

}
(60)

=
i− θ

N
C13 +

θ +N − i

N
C ′

1

+
i+N−1∑
n=θ+N

C2

Q−2∑
p=0

yp(n)y∗p(n)

+
i+N−1∑
n=θ+N

C3Re

{
Q−3∑
p=0

Q−2∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+
θ+N−1∑

n=i

C ′
2

Q−1∑
p=0

yp(n)y∗p(n)

+
θ+N−1∑

n=i

C ′
3Re

{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

(61)

where

C13 = N · ln
((

σ2
x + σ2

w

)K
det(Ry3)

)
.

Since y2(n), i ≤ n ≤ θ − 1 in (54) and y3(n), θ +N ≤ n ≤
i+N − 1 in (60) contain Q− 1 periods of the preamble,
det(Ry2) and det(Ry3) will be the same as det(Ry) [see (22)].
Consequently, C12 = C13 = C1. From (22)–(24), we see that
C1, C2, and C3 can be calculated by replacing Q and Ry1 with

K and Ry , respectively, in (57)–(59). When Q is reasonably
large, we obtain C ′

1 ≈ C1, C ′
2 ≈ C2, and C ′

3 ≈ C3. Thus, we
rewrite (55) and (61) as

Λi≤θ(ε) 

θ−1∑
n=i

C3Re

{
Q−2∑
p=1

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+
i+N−1∑

n=θ

C3Re

{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+ C1 +
θ−1∑
n=i

C2

Q−1∑
p=1

yp(n)y∗p(n)

+
i+N−1∑

n=θ

C2

Q−1∑
p=0

yp(n)y∗p(n) (62)

Λi>θ(ε) 

θ+N−1∑

n=i

C3Re

{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+
i+N−1∑
n=θ+N

C3Re

{
Q−3∑
p=0

Q−2∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}

+ C1 +
i+N−1∑
n=θ+N

C2

Q−2∑
p=0

yp(n)y∗p(n)

+
θ+N−1∑

n=i

C2

Q−1∑
p=0

yp(n)y∗p(n). (63)

We now approximate
∑Q−1

p=1 yp(n)y∗p(n) and
∑Q−2

p=1

∑Q−1
q>p ×

yp(n)y∗q(n)ej2π(q−p)ε in (62) with
∑Q−1

p=0 yp(n)y∗p(n)
and

∑Q−2
p=0

∑Q−1
q>p yp(n)y∗q(n)ej2π(q−p)ε, respectively.

Similarly, we also approximate
∑Q−2

p=0 yp(n)y∗p(n)
and

∑Q−3
p=0

∑Q−2
q>p yp(n)y∗q(n)ej2π(q−p)ε in (63) with∑Q−1

p=0 yp(n)y∗p(n) and
∑Q−2

p=0

∑Q−1
q>p yp(n)y∗q(n)ej2π(q−p)ε,

respectively. Given these approximations, Λi≤θ(ε) and Λi>θ(ε)
can be identically written as

Λi(ε) 
 C1 + C2

i+N−1∑
n=i

Q−1∑
p=0

yp(n)y∗p(n)

+C3

i+N−1∑
n=i

Re

{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q(n)ej2π(q−p)ε

}
. (64)

Using the approach that is similar to that in Appendix A, we
finally obtain

Λi(ε) 
 C1 + C2φ
i + C3Re

{
Q−2∑
p=0

Q−1∑
q>p

∣∣γi
pq

∣∣ cos
(
ψi

pq

)}

(65)

where γi
pq =

∑i+N−1
n=i yp(n)y∗q(n), φi =

∑Q−1
p=0 γ

i
pp, and

ψi
pq = 2πε(q − p) + ∠γi

pq . Note that the approximations we
made are equivalent to adding |θ − i| samples (noise or data)
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in calculating the likelihood functions. Since the number
of samples in the ith sliding data window QN is usually
much larger than the number of added samples |θ − i|, the
added samples will not change the likelihood functions too
much. The approximation errors also depend on the distance
between the window position and the actual STO, i.e., |θ − i|.
When the distance is larger, the error is also larger. However,
if the distance is larger, the likelihood function tends to be
smaller, and a larger error is then tolerable. Finally, we note
that the added samples, either noise or data, are uncorrelated
with the preamble samples.

APPENDIX C
DERIVATIONS OF μi

φ , μi
ξ , νi

φ, νi
ξ , AND κi

φξ

We first note that θ is the real STO in the system. Using θ as
a reference, we have the following three cases for the value of i:
1) i = θ; 2) i < θ; and 3) i > θ (0 ≤ i ≤ N − 1). For the first
case, the window covers the preamble data only (IP ). Thus,
(42) and (43) can be simplified to

φθ =
Q−1∑
p=0

θ+N−1∑
n=θ

xp(n)x∗p(n) + wp(n)w∗
p(n)

+ 2Re
{
xp(n)w∗

p(n) exp
(
j2πε

pN + n

N

)}
(66)

ξθ =
Q−2∑
p=0

Q−1∑
q>p

θ+N−1∑
n=θ

xp(n)x∗q(n)

+ xp(n)w∗
q(n) exp

(
j2πε

qN + n

N

)

+ wp(n)x∗q(n) exp
(
−j2πεpN + n

N

)

+ wp(n)w∗
q(n) exp (j2πε(q − p)) . (67)

The mean values of φi and ξi for the first case are then

μθ
φ,1 =QN

(
σ2

x + σ2
w

)
(68)

μθ
ξ,1 =

QN(Q− 1)
2

σ2
x. (69)

The corresponding variance values are

νθ
φ,1 = 2QN

(
σ2

xσ
2
w

)
(70)

νθ
ξ,1 =

QN(Q− 1)
2

σ4
w

+ σ2
xσ

2
w

QN(Q− 1)(2Q− 1)
3

. (71)

The corresponding covariance value is

κθ
φξ,1 = QN(Q− 1)

(
σ2

xσ
2
w

)
. (72)

Here, κi
φξ,j denotes κi

φξ in the jth case discussed. For the
second case, the window covers the sets IN and IP . Thus, φi

and ξi can be expressed as

φi =
θ−1∑
n=i

w0(n)w∗
0(n)

+
i+N−1∑

n=θ

x0(n)x∗0(n) + w0(n)w∗
0(n)

+ 2Re
{
x0(n)w∗

0(n) exp
(
j2πε

n

N

)}

+
Q−1∑
p=1

i+N−1∑
n=i

xp(n)x∗p(n) + wp(n)w∗
p(n)

+ 2Re
{
xp(n)w∗

p(n) exp
(
j2πε

pN + n

N

)}
(73)

ξi =
Q−1∑
q>0

θ−1∑
n=i

w0(n)x∗q(n) exp
(
−j2πε n

N

)
+ w0(n)w∗

q(n) exp(j2πεq)

+
Q−1∑
q>0

N+i−1∑
n=θ

x0(n)x∗q(n)

+ x0(n)w∗
q(n) exp

(
j2πε

qN + n

N

)

+ w0(n)x∗q(n) exp
(
−j2πε n

N

)
+ w0(n)w∗

q(n) exp(j2πεq)

+
Q−2∑
p=1

Q−1∑
q>p

i+N−1∑
n=i

xp(n)x∗q(n)

+ xp(n)w∗
q(n) exp

(
j2πε

qN + n

N

)

+ wp(n)x∗q(n) exp
(
−j2πεpN + n

N

)
+ wp(n)w∗

q(n) exp (j2πε(q − p)) . (74)

Their mean values are

μi
φ,2 = (QN + i− θ)

(
σ2

x + σ2
w

)
+ (i− θ)σ2

x (75)

μi
ξ,2 = (Q− 1)(N + i− θ)σ2

x

+
(Q− 1)(Q− 2)

2
Nσ2

x (76)

the corresponding variance values are

νi
φ,2 = 2σ2

xσ
2
w[QN + i− θ] (77)

νi
ξ,2 =

QN(Q− 1)
2

σ4
w + σ2

xσ
2
wN(Q− 1)

·
[
(Q− 1)

(
2 +

i− θ

N

)
+

(Q− 2)(2Q− 3)
3

]
(78)

and the covariance value is

κi
φξ,2 = (QN + i− θ)(Q− 1)

(
σ2

xσ
2
w

)
. (79)
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For the third case, the window covers sets IP and ID, and we
write φi and ξi as

φi =
Q−2∑
p=0

i+N−1∑
n=i

{
xp(n)x∗p(n) + wp(n)w∗

p(n) + 2Re

×
[
xp(n)w∗

p(n) exp
(
j2πε

pN + n

N

)]}

+
θ+N−1∑

n=i

{
xQ−1(n)x∗Q−1(n) + wQ−1(n)w∗

Q−1(n)

+ 2Re

[
xQ−1(n)w∗

Q−1(n)

× exp
(
j2πε

(Q− 1)N + n

N

)]}

+
i+N−1∑
n=θ+N

{
xQ−1(n)x∗Q−1(n) + wQ−1(n)w∗

Q−1(n)

+ 2Re

[
xQ−1(n)w∗

Q−1(n)

× exp
(
j2πε

(Q− 1)N + n

N

)]}

(80)

ξi =
Q−3∑
p=0

Q−2∑
q>p

i+N−1∑
n=i

xp(n)x∗q(n)

+ xp(n)w∗
q(n) exp

(
j2πε

qN + n

N

)

+ wp(n)x∗q(n) exp
(
−j2πεpN + n

N

)
+ wp(n)w∗

q(n) exp (j2πε(q − p))

+
Q−2∑
p=0

θ+N−1∑
n=i

xp(n)x∗Q−1(n)

+ xp(n)w∗
Q−1(n) exp

(
j2πε

(Q− 1)N + n

N

)

+ wp(n)x∗Q−1(n) exp
(
−j2πεpN + n

N

)
+ wp(n)w∗

Q−1(n) exp (j2πε(Q− p− 1))

+
Q−2∑
p=0

i+N−1∑
n=θ+N

xp(n)x∗Q−1(n)

+ xp(n)w∗
Q−1(n) exp

(
j2πε

(Q− 1)N + n

N

)

+ wp(n)x∗Q−1(n) exp
(
−j2πεpN + n

N

)
+ wp(n)w∗

Q−1(n) exp (j2πε(Q− p− 1)) . (81)

Thus, the mean values are

μi
φ,3 = (QN + θ − i)

(
σ2

x + σ2
w

)
+ (i− θ)

(
σ2

d + σ2
w

)
(82)

μi
ξ,3 = (Q− 1)(N − i+ θ)σ2

x +
(Q− 1)(Q− 2)

2
Nσ2

x (83)

the variance values are

νi
φ,3 = 2σ2

xσ
2
w(QN − i+ θ) + 2(i− θ)σ2

dσ
2
w (84)

νi
ξ,3 =σ2

xσ
2
wN(Q− 1)

×
[
(2Q− 3)

(
1 +

θ − i

N

)
+

(Q− 2)(2Q− 3)
3

+ 1
]

+
QN(Q− 1)

2
σ4

w + (Q− 1)2(i− θ)(σ2
d + σ2

w) (85)

and the covariance value is

κi
φξ,3 = (Q− 1)σ2

xσ
2
w [QN + 2(θ − i)] . (86)
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