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Fig. 4-1 (a)-(d) Multi-frequency C-V characteristics of Pt/HfOxNy/Ge MOS capacitor before 

and after the PDA. The sweep direction is from inversion to accumulation. (e) The PDA 

dependence of frequency dispersion observed in C-V characteristics. 
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(a) (b) 

Fig. 4-2 (a) The 100 kHz C-V and (b) I-V characteristics of Pt/HfOxNy/Ge (open symbols) 

MOS capacitors before and after the PDA. For comparison, as-deposited HfOxNy on Si (solid 

symbols) was also shown. 
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Fig. 4-3 Comparison of (a) the EOT and (b) hysteresis width of the HfOxNy film on Si (solid 

symbols) and Ge (open symbols) substrates for different PDA temperatures and times. 
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Fig. 4-4 (a) A sequence of 100 kHz C-V curves with various sweep voltage ranges. The inset 

shows the zoom-in figure. (b) The flatband voltage before and after the PDA extracted from 

the C-V measurement for Pt/HfOxNy/Ge MOS capacitors. 

 

 

 

 

(c) 
 

(a) (b) 
 

Fig. 4-5 (a) The hysteresis width as a function of sweep voltage range based on VFB for 

different PDA temperatures. (b) The hysteresis width as a function of sweep voltage range 

based on VFB for different PDA times. 
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Fig. 4-6 (a) The C-V characteristics of Pt/HfOxNy/Ge MOS capacitor with four sweep voltage 

ranges. Noted that 600°C annealing was performed for 5 min. The shift of VFB extracted from 

the sweep direction (b) from inversion to accumulation. (c) from accumulation to inversion. 
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Fig. 4-7 (a) The C-V characteristics of Pt/HfOxNy/Ge MOS capacitor with and w/o FGA. (b) 

The estimated EOT and frequency dispersion as a function of FGA temperature. (c) The 

Weibull plot shows the FGA effect on EBD. 
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Fig. 4-8 The (a) C-V and (b) I-V characteristics of Pt/HfSiON/p-Ge MOS capacitor before and 

after the PDA. 
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Fig. 4-9 Gate leakage currents versus the EOT for the deposited HfOxNy and HfSiON films on 

Ge substrate (solid symbols) were plotted together with other’s published data (open 

symbols). 
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(b)  

Fig. 4-10 (a) The Weibull plot shows the effect of PDA temperature on the variation of EBD. (b) 

The Weibull plot shows the effect of PDA time on the variation of EBD. 
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 (e) 

Fig. 4-11 (a)-(d) The C-V characteristics measured under the CCS of -10-5 A/cm2 for 

as-deposited and annealed HfOxNy films. (e) The variation of hysteresis width as a function of 

CCS time for as-deposited and annealed HfOxNy films. 
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 (e) 

Fig. 4-12 (a)-(d) The Weibull plot shows the QBD under three CCS tests for as-deposited and 

annealed HfOxNy films. (e) The Weibull plot shows the QBD under the CCS of -2x10-4 A/cm2 

for the as-deposited and annealed HfOxNy films. 



101 102 103

10-1

100

101

 Vg = -3.4 V

No PDA

Pt/HfOxNy/p-Ge

 Vg = -3.2 V Vg = -3.3 V

-ln
 (1

-F
)

Time-to-breakdown (sec.)

 

(e) 

(a) (b) 

100 101 102 103

10-1

100

101

 Vg = -3.1 V

400oC PDA, 5min

Pt/HfOxNy/p-Ge

 Vg = -3.2 V Vg = -3.3 V

-ln
 (1

-F
)

Time-to-breakdown (sec.)

 

 

 

 

(c) (d) 

100 101 102 103

10-1

100

101

 Vg = -2.7 V

500oC PDA, 5min

Pt/HfOxNy/p-Ge

 Vg = -2.8 V Vg = -2.9 V

-l

 

100 101 102 103

10-1

100

101

 Vg = -2.5 V

600oC PDA, 5min

Pt/HfOxNy/p-Ge

 Vg = -2.6 V

 Vg = -2.7 V

-ln
 (1

-F
)

Time-to-breakdown (sec.)Time-to-breakdown (sec.)

 

n 
(1

-F
)

 

 

 

 

-4 -3 -2 -1
101

102

103

104

105

106

107

108

109

1010

10 year life time

-2.4 V

 No PDA
 400oC PDA
 500oC PDA
 600oC PDA

-2.3 V

-1.7 V
-1.6 V

M
TT

F 
(s

ec
.)

Vg (volts)

 

 

 

 

 

Fig. 4-13 (a)-(d) The Weibull plot shows the TBD under three CVS tests for as-deposited and 

annealed HfOxNy films. (e) TDDB data reveal the 10-year lifetime extrapolated operating 

voltage is decreased with PDA temperature. 
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(b)  

Fig. 4-14 (a) The HRTEM images of as-deposited HfOxNy film on Ge and Si substrate.  
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(b)  

Fig. 4-15 (a) The HRTEM images of as-deposited HfOxNy film on Ge and Si substrate after 

thermal annealing at 600°C. 
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(c)  

Fig. 4-16 (a) The HRTEM images of as-deposited HfOxNy film on Ge substrate after post 

thermal annealing. 
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(b)  

Fig. 4-17 (a) The EDS spectra of as-deposited HfOxNy film on Ge substrate before and after 

thermal annealing at 600°C. 
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(b)  

Fig. 4-18 (a) The EDS spectra of as-deposited HfOxNy film on Si substrate before and after 

thermal annealing at 600°C. 
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(b)  

Fig. 4-19 (a) Glancing-angle XRD spectra of HfOxNy deposited film on Ge and Si substrate 

before and after thermal annealing. (b) The FTIR spectra of HfOxNy deposited film on Ge 

substrate before and after thermal annealing. 
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(b)  

Fig. 4-20 (a) The AES depth profiles of as-deposited HfOxNy film on Ge and Si substrate. 
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(c)  

Fig. 4-21 The AES depth profiles of as-deposited HfOxNy film on Ge substrate before and 

after the PDA. (a) NKL1. (b) Ratio of N KL1 to OKL1. (c) GeLM2. 



 

 

 

 

 

 

 

Fig. 4-22 The universal curve of electron IMFP versus kinetic energy. The inset shows the 

schematic of XPS incident and emission procedures. 
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(b) (a)  

Fig. 4-23 Angle-resolved XPS survey from 1200 to 1300 eV for as-deposited and annealed 

HfOxNy films. (a) Take-off angle = 30°. (b) Take-off angle = 60°. 
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(c)  

Fig. 4-24 Angle-resolved XPS spectra of as-deposited HfOxNy films w/o PDA. (a) the Hf 4f 

core level; (b) the N 1s core level; (c) the O 1s core level. 
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(c)  

Fig. 4-25 Angle-resolved XPS spectra of the annealed HfOxNy film at 400°C for 5 min. (a) the 

Hf 4f core level; (b) the N 1s core level; (c) the O 1s core level. 
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Fig. 4-26 Angle-resolved XPS spectra of the annealed HfOxNy film at 500°C for 5 min. (a) the 

Hf 4f core level; (b) the N 1s core level; (c) the O 1s core level. 
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(c)  

Fig. 4-27 Angle-resolved XPS spectra of the annealed HfOxNy film at 600°C for 1 min. (a) the 

Hf 4f core level; (b) the N 1s core level; (c) the O 1s core level. 
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(c)  

Fig. 4-28 Angle-resolved XPS spectra of the annealed HfOxNy film at 600°C for 5 min. (a) the 

Hf 4f core level; (b) the N 1s core level; (c) the O 1s core level. 
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(c)  

Fig. 4-29 Angle-resolved XPS spectra of the Hf 4f core level for the as-deposited and 

annealed HfOxNy films. (a) Angle = 30°; (b) Angle = 45°; (c) Angle = 60°. 
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(c)  

Fig. 4-30 Angle-resolved XPS spectra of the N 1s core level for the as-deposited and annealed 

HfOxNy films. (a) Angle = 30°; (b) Angle = 45°; (c) Angle = 60°. 
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(c)  

Fig. 4-31 Angle-resolved XPS spectra of the O 1s core level for the as-deposited and annealed 

HfOxNy films. (a) Angle = 30°; (b) Angle = 45°; (c) Angle = 60°. 
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Chapter 5 

Conclusions and Suggestions for Future Work 
 

5-1  Conclusions 

Firstly, the flatness of the Ge surface was promoted with decreasing the acid etching 

concentration, whereas the hydrophobic phenomenon was also vanished. The optimized 

surface roughness was ~0.113 nm after the cyclical rinse of HF/DIW (1:30) and DIW. From 

the ellipsometry measurement and XPS examination, it showed that the growth of native 

oxide and carbon contamination on Ge surface as the exposure time increased. On the other 

hand, the oxidation behavior of Ge substrate showed two regimes, i,e., the linear oxidation 

rate was at initial stages, and the saturated oxidation rate was at prolonged stages. Nearly two 

monolayers of GeOx layer were formed at lower temperature of 350°C for 30 sec in an O2 

ambient. Besides, thermal desorption of GeO2 film was observed after 500°C annealing in an 

Ar and N2 ambient. Considering the easily oxidized properties of Ge, these experimental 

findings suggest that the processing temperature is limited below 500°C and the interface 

damage may be occurred during the deposition of high-k material. 

Next, the electrical and physical properties of MOCVD HfO2 film deposited on Ge 

substrate were studied. For as-deposited HfO2 film, the manifest frequency dispersion with a 

larger hysteresis was observed in multi-frequency C-V characteristics. Rapid thermal 

annealing of as-deposited film in an N2 ambient also resulted in the degradation of the 
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electrical performances, especially for the C-V distortion and gate leakage increment. For 

MOCVD HfO2 deposition process, the lower deposition temperature of 400°C facilitated to 

obtain smoother deposition film, however, with a larger leakage current, while the higher 

deposition temperature of 500°C revealed the opposite tendency. Through the EDS analysis, 

the resultant composition of deposited HfO2 film was found to be hafnium-germanium mixed 

oxide. Furthermore, it was found that the surface passivation, e.g., NH3 pre-treatment, was 

essential to improve the quality of HfO2 films on Ge surface. We suggested that the 

optimization of NH3 plasma process, including the time, power, pressure, and gas flow, etc., 

might obtain the high-quality HfO2 thin film on Ge substrate. 

Subsequently, we also in-depth investigated the MOS capacitor characteristics of 

sputtered hafnium-oxynitride dielectric film on both Ge and Si substrates. The difference of 

electrical and material properties between two capacitor stacks may be closely related with the 

compositions and thicknesses of the resultant IL and bulk dielectric. The higher PDA 

temperature and longer PDA time were found to obtain the lower EOT of HfOxNy/Ge gate 

stack, however, with a larger hysteresis width. A lower EOT of 19.5 Å with a low leakage 

current of 1.8 x 10-5 A/cm2 at Vg = -1 V, which is ~4 orders of magnitude reduction as 

compared to the standard SiO2/Si, have been achieved after 600°C annealing for 5 min. 

Unfortunately, the 10-year lifetime obtained from the TDDB test was gradually degraded after 

the higher annealing temperature perhaps because of the severe charge trapping effect. From 

the physical characterization of these films, the inhomogeneous oxidation of as-deposited 
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HfN film was concluded and transferred into the homogeneous HfOxNy film after post 

thermal annealing. Meanwhile, a significant Ge incorporation and the presence of GeOx oxide 

were examined upon 500°C. 

Finally, we believe that the continuous optimization of the interface structure through 

process modification is expected to further improve the electrical performance of the 

HfOxNy/Ge gate stack, which thus be considered as a promising gate dielectric of Ge device. 

 

5-2  Future Work 

For the Ge cleaning, the absence of the hydrophobic phenomenon gives rise to our 

attention, differing from the traditional hydrogen-terminated Si. We suppose that this 

phenomenon is closely related to the required formation energy and the strength of 

Ge-H/Ge-F bonding. Because of such an interest difference between Si and Ge substrate, how 

to obtain the suitable cleaning procedures for Ge wafer and clarify the discrepancy of surface 

bonding mechanism between these two substrates is an attractive issue. 

In the Chapter 3, we have demonstrated that the surface nitridation through NH3 plasma 

is required to improve the HfO2 dielectric film on Ge, especially the leakage performance. 

Several investigators also reported the need of surface passivation to obtain the high quality of 

HfO2 thin film. On the other hand, the easily oxidized properties of Ge and the thermal 

instability of the GeO2 have been noticed in our experiments. Therefore, the attempt of 

different surface pre-treatments, such as the NH3, SiH4 and CF4, in order to change the surface 
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bonding states may be a essential procedure to improve the electrical characteristics of HfO2 

film and other oxide-based high-k materials. 

In the Chapter 4, a considerable hysteresis width observed in sputtered HfOxNy film on 

Ge is the most serious problem, which in turn lead to threshold instability of Ge MOSFET. 

The PDA resulting in the reliability degradation of dielectric film may be owing to the Ge 

incorporation and the formation of GeOx bonding, since these events may serve as the 

trapping states and/or dielectric defects. One solution is the attempt of surface passivation has 

mentioned above, another is the enhanced nitrogen incorporation into the HfOxNy film to 

suppress the crystallinity. In addition, the post CF4-plasma treatment of the HfOxNy film 

before the PDA is performed. The aims of fluorine incorporation are expected to diminish the 

defects inside the gate dielectric and increase the resistance to Ge inter-diffusion. For the 

physical characterization, i.e., XPS and AES, the change of composition bonding and their 

mechanism for bulk dielectric and interface layer before and after the PDA can be 

characterized in depth. 

On the other hand, although the electrical performance of sputtered HfSiON thin film on 

Ge substrate is out of expectation, it is believed that the HfSiON film can be considered as the 

suitable insulator on Ge through the modification of fabrication process. For example, the 

co-sputtering of Hf and Si target replaces the HfSi2 target to form the HfSiON film. We also 

suggest that other nitrided high-k gate dielectrics with closer lattice match to Ge may be good 

candidates for epitaxial in high-k/Ge MOS devices. 
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