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The total consumption of electricity and petroleum energies accounts for almost 90% of the total energy
consumption in Taiwan, so it is critical to model and forecast them accurately. For univariate modeling,
this paper proposes two new hybrid nonlinear models that combine a linear model with an artificial
neural network (ANN) to develop adjusted forecasts, taking into account heteroscedasticity in the
model’s input. Both of the hybrid models can decrease round-off and prediction errors for multi-step-
ahead forecasting. The results suggest that the new hybrid model generally produces forecasts which, on
the basis of out-of-sample forecast encompassing tests and comparisons of three different statistic
measures, routinely dominate the forecasts from conventional linear models. The superiority of the
hybrid ANNs is due to their flexibility to account for potentially complex nonlinear relationships that are
not easily captured by linear models. Furthermore, all of the linear and nonlinear models have highly
accurate forecasts, since the mean absolute percentage forecast error (MAPE) results are less than 5%.
Overall, the inclusion of heteroscedastic variations in the input layer of the hybrid univariate model could
help improve the modeling accuracy for multi-step-ahead forecasting.

� 2009 Published by Elsevier Ltd.
1. Introduction

Worldwide energy consumption is rising sharply, owing to
increasing human population, continuing pressures for better living
standards and emphasis on large-scale industrialization in devel-
oping countries, thus sustaining positive economic growth rates.
Taiwan’s energy consumption increased sharply from 49.67 million
kiloliters of oil equivalent (KLOE) in 1990 to 113.85 million KLOE in
2007. The annual growth rate was 5.00% during this period. Among
the various forms of energy consumed in 2007, electricity
accounted for 51.18%, petroleum 38.35%, and the others 10.47%
(Bureau of Energy, Ministry of Economic Affairs in Taiwan). Total
electricity consumption rose sharply from 82.65 billion (kwh) in
1990 to 229.20 billion (kwh) in 2007 with an annual growth rate of
6.18%. Petroleum consumption increased from 22.97 KLOE in 1990
to 43.66 KLOE in 2007 with an annual growth rate of 3.85%. Given
this fact, the accuracy of energy demand forecasting is important
not only for energy utilities themselves but also for consumers.

A sound forecasting technique is essential for accurate invest-
ment planning in energy production/generation and distribution.
Multivariate modeling along with co-integrated techniques or
regression analysis has been used in a number of studies to analyze
and forecast energy consumption [1–6]. One limitation of
Elsevier Ltd.
multivariate models is that they depend on the availability and
reliability of data on independent variables over the forecasting
period, which requires further efforts in data collection and esti-
mation. On the other hand, univariate time series analysis provides
another modeling approach, which only requires the historical data
of the variable of interest to forecast its future evolution behavior.
The univariate Box–Jenkins autoregressive integrated moving
average (ARIMA) [7] analysis has been widely used for modeling
and forecasting many medical, environmental, financial, and
engineering applications [8–11]. In addition, Zhou et al. [12] pre-
sented a univariate trigonometric grey prediction approach for
forecasting electricity demand in China.

Recently, artificial neural network (ANN) techniques have also
gained popularity in energy demand and load forecasting. For
short-term forecasting, Gonzalez and Zamarreno [13] proposed
specifications for a self-exciting neural network (NN) model to
forecast energy consumption in buildings. Lauret [14] proposed the
use of Bayesian regularization as a technique to estimate the
parameters of a NN in order to forecast load. Since the Bayesian
methods provide an explicit handling of uncertainty in the
modeling, Lauret [14] concluded that the Bayesian NN approach to
modeling offers significant advantages over classical NN learning
methods for short-term load forecasting. Hipper et al. [15] made
a literature review and evaluation in forecasting load using NNs.
Amjady and Keynia [16] proposed a hybrid method composed of
wavelet transform, NN and evolutionary algorithm for load
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forecasting. Additionally, some mid-term forecast models have also
been proposed and implemented in this field [17–20]. For long-
term energy forecasting, Padmakumari et al. [21] used fuzzy NNs
for long-term load forecasting. Kermanshahi and Iwamiya [22] used
back-propagation networks and Jordan recurrent networks to
forecast Japan’s electricity energy consumption until 2020. Pao [23]
concluded that the forecasting performance of ANN for Taiwan’s
energy consumption is higher than that of the other linear models.
Moreover, Jebaraj and Iniyan [24] made a literature survey and gave
a brief overview of the different types of energy modeling and
forecasting.

For a univariate time series forecasting problem, the inputs of
the NN are the past lagged observations of the data series, and the
outputs are the future values. For multi-step-ahead forecasting,
however, one or more output nodes can be used. If one output node
is employed, then the iterative forecasting approach is assumed,
and each forecast value is used iteratively as input for the next
forecasts. In contrast, if the number of output nodes is equal to the
length of the forecasting horizon, then the direct forecasting
approach is used, in which the future values can be predicted
directly from the network outputs [25]. The iterative forecasting
approach may generate more prediction errors, because the fore-
cast values are iteratively used as inputs for the next forecasts. The
direct forecasting approach can raise serious round-off errors,
because the number of output nodes is equal to the length of the
forecasting horizon [17].

The aim of this paper is to focus on multi-step-ahead forecasts
for energy consumption in Taiwan using univariate modeling. In
order to avoid excessive round-off and prediction errors, taking
heteroscedastic variations into account, a new hybrid univariate
nonlinear network is proposed with two input nodes generated by
a linear model: level forecasts ðbytÞ and volatility forecasts ðbstÞ and
a single output node yt. The forecast encompassing tests and three
different statistical measures are used to assess the out-of-sample
performance of the proposed techniques to prevent data mining-
induced overfitting.

The rest of this paper is organized as follows. In Section 2, two
proposed new hybrid ANN models are described. Section 3 presents
the performance evaluation methods by using statistical measures
and forecast encompassing tests. The model construction and
model comparisons are explained in Sections 4 and 5, respectively.
The last section summarizes and concludes the paper.
2. Methodology

This section describes several linear models: the exponential
smoothing model (Winters), the exponential form of the general-
ized autoregressive conditional heteroscedasticity (EGARCH) and
seasonal EGARCH (SEGARCH) models, the combined Winters with
volatility EGARCH model (WARCH), and an artificial neural network
(ANN) nonlinear model. They are briefly described below as the
basis on which to present two new hybrid nonlinear models:
SEGARCH–ANN and WARCH–ANN. Both hybrid models are formed
by combing a linear model with a NN to predict Taiwan’s
consumption of electricity and petroleum.
2.1. Winters models

Exponential (EXPO) smoothing methods are often useful for
forecasting a time series whose parameters change slowly over
time. These methods can be implemented by using the Box–Jenkins
methodology [7]. For seasonal data, an exponential smoothing
approach is the Winters method. In particular, an ARIMA
(0,1,1)� (0,1,1)S model may be a good alternative to the additive
Winters method, where S is the seasonal periodicity. The additive
Winters ARIMA(0,1,1)� (0,1,1)S model can be written as

�
1� B

��
1� BS

�
zt ¼ ð1� q1BÞ

�
1�Q1BS

�
nt ; (1)

where B is a backward shift operator and vt is a random error. Let bzt

be the forecasting time series; then the residual n0tð¼ zt � bztÞ time
series is both detrended and deseasonalized.
2.2. EGARCH and seasonal EGARCH (SEGARCH) models

The generalized autoregressive conditional heteroscedasticity
(GARCH) model is an approach to modeling time series with het-
eroscedastic errors [26]. Nelson and Cao [27] argued that the
nonnegative constraints on the parameters ai and gi in the linear
GARCH model are too restrictive. There are no restrictions on these
parameters in the exponential form of the GARCH model (EGARCH).
In this model, the conditional variance s2

t is an asymmetric function
of the lagged disturbances 3t�i. The EGARCH regression model can
be written as

zt ¼ x0tbþ 3t ;

3t ¼ stet ;

ln
�

s2
t

�
¼ uþ

Xq

i¼1

aigðet�iÞ þ
Xp

j¼1

gj ln
�

s2
t�j

�
; (2)

where gðetÞ ¼ qet þ jet j � Ejet j; and etwNð0;1Þ:

Note that Ejet j ¼
ffiffiffiffiffiffiffiffiffi
2=p

p
if etwNð0;1Þ: The function g(et) is

linear in et with slope qþ 1 if et is positive, and with slope q� 1 if et

is negative.
The seasonal intervention model employs dummy variables to

forecast the time series. The model with autoregressive errors and
EGARCH variances (SEGARCH) is expressed as follows:

zt ¼ a0 þ a1t þ d1xs1;t þ d2xs2;t þ/þ d10xs10;t þ d11xs11;t þ nt ;

nt ¼ 3t � 41nt�1 �/� 4mnt�m;
3t ¼ stet ;

ln
�

s2
t

�
¼ uþ

Xq

i¼1

aigðet�iÞ þ
Xp

j¼1

gj ln
�

s2
t�j

�
; (3)

where gðetÞ ¼ q et þ jet j � Ejet j; etwINð0;1Þ; and

xs1;t ¼
n1 if period t is January

0 otherwise
/

xs11;t ¼
n1 if period t is November

0 otherwise
:

This model could be called an AR(m)-SEGARCH(p,q) regression
model (henceforth SEGARCH (m,p,q)). The optimal lag length m is
determined based on the information criteria, AIC and SBC, and the
Durbin Watson (DW) statistic. Both the Portmanteau Q statistic [28]
and the Lagrange multiplier (LM) test [29] are used to determine the
lag lengths p and q of the ARCH model. These tests are significant
(p< 0.0001) for lags between 1 and 12, which indicate that a very high
order ARCH process is needed to model the heteroscedasticity. Both
the forecasted values of bzt and bst are used as inputs of the SEGARCH–
ANN model, discussed in the following sections.
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Fig. 1. Neural network model.
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2.3. The combined Winters with volatility EGARCH model (WARCH)

Let n0t ¼ zt � bzt be the t-th residual, where zt is the observed
value and bzt is the predicted value given by the Winters model.
Therefore, fn0tg is a detrended and deseasonalized time series. The
Ljung–Box Q* statistics are used to test the autocorrelation. If the
p-values of Q* are less than 0.05, this is an evidence that the fn0tg is
highly autocorrelated. To construct the EGARCH model for fn0tg, the
three statistical tests, DW, AIC and SBC, are used for the autocor-
relation to determine the lag length m, and both the Q and LM tests
are used for the ARCH process to determine the lag lengths p and q.
Once these tests indicate heteroscedasticity with p< 0.05 for lag
between 1 and 12, the EGARCH model can be used to produce
a forecasted conditional error variance bs2

t by modeling the resid-
uals fn0tg with heteroscedastic errors. The proposed two-step
WARCH (m,p,q) model combines a Winters model in the first step to
obtain the detrended and deseasonalized residuals fn0tg with the
AR(m)-EGARCH (p,q) model in the second step to produce the
estimated heteroscedastic error variance bst for the historical and
forecast periods. The WARCH (m,p,q) model is expressed as

Step 1 :
�

1� B
��

1� BS
�

zt ¼ ð1� q1BÞ
�

1�Q1BS
�

nt ; n
0
t ¼ zt � bzt ;

Step 2 :n0t ¼ 3t � 41n0t�1 �/� 4mn0t�m;

3t ¼ stet ;

ln
�

s2
t

�
¼ uþ

Xq

i¼1

aigðet�iÞ þ
Xp

j¼1

gj ln
�

s2
t�j

�
;

where gðetÞ ¼ qet þ jet j �
ffiffiffiffiffiffiffiffiffi
2=p

p
; and etwINð0;1Þ:

Both forecasted values of bzt and bst from the Winters and ARCH
steps, respectively, are used in the WARCH–ANN model discussed
below.
2.4. Artificial neural network (ANN) model

NNs can be described as an attempt by humans to mimic the
functioning of the human brain. The models are analytical tech-
niques modeled after the processes of learning in the cognitive
system and the neurological functions of the brain and are capable
of predicting new observations (of specific variables) from other
observations (of the same or other variables) after executing
a process of so-called learning from existing data [20]. The models
can be built without explicitly formulating the possible relationship
that exists between variables. Theoretical results show that NNs are
also able to sufficiently approximate arbitrary mappings to the
desired accuracy if given a large enough network [30]. In this sense,
NNs may be seen as multivariate, nonlinear and nonparametric
methods, and they should be expected to model complex nonlinear
relationships much better than the traditional linear models.

Fig. 1 shows a popular three-layer feedforward NN model. It
consists of one input layer with m input variables, one hidden layer
with h hidden nodes, and one output layer with a single output
node. The hidden layers perform nonlinear transformations on
the inputs from the input layer and feed the transformed values to
the output layer. The connection weights and node biases are the
model parameters. The model estimation process is called network
training. Usually in applications of ANNs, the total available data are
split into a training set and a test set. The training set is used to
calibrate the network model, while the test set is used to evaluate
its forecasting ability. During the training procedure, an overall
error measure is minimized to get the estimates of the parameters
of the models. More detailed materials about NN learning can be
found in Bishop [31].

For m-step-ahead forecasting (m> 1), both iterative and direct
forecasting approaches can be used. The iterative forecasting
approach with p input nodes has a mapping function of the form

ytþ1 ¼ f
�

yt ; yt�1; .; yt�pþ1

�
;

ytþ2 ¼ f
�bytþ1; yt ; .; yt�pþ2

�
;

ytþ3 ¼ f
�bytþ2; bytþ1; yt ; .; yt�pþ3

�
;

«

ytþm ¼ f
�bytþm�1; bytþm�2; .; bytþ1; yt ; .; yt�pþm

�
: ð5Þ

The direct forecasting approach has a mapping function of the
form

�
ytþm; ytþm�1; .; ytþ1

�
¼ f

�
yt ; yt�1; .; yt�pþ1

�
: (6)

The iterative forecasting approach may generate more predic-
tion errors, because the forecast values are iteratively used as
inputs for the next forecasts. The direct forecasting approach,
however, is subject to serious round-off errors, because the number
of output nodes is equal to the length of the forecasting horizon.

In order to avoid excessive round-off and prediction errors, taking
heteroscedastic variations into account, a new hybrid univariate
network with two input nodes, bst and byt , and a single output node is
proposed. The form of the mapping function can be expressed as

ytþ1 ¼ f
�bstþ1; bytþ1

�
; ytþ2 ¼ f

�bstþ2; bytþ2

�
; .; ytþm

¼ f
�bstþm; bytþm

�
; (7)

where ðbstþ1; bytþ1Þ; ðbstþ2; bytþ2Þ; .; ðbstþm; bytþmÞ can be pre-
dicted by using a linear model. This hybrid model, using a univar-
iate modeling approach for multi-step-ahead forecasting, is
described in the next section.
2.5. The hybrid SEGARCH–ANN and WARCH–ANN models

The practical advantage of ANN models is that the relationships
between input and output variables do not need to be specified in
advance, since the method itself establishes these relationships
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through a training process. Also, ANNs do not require any
assumptions on the underlying population distributions.

Both the SEGARCH and WARCH linear approaches are outlined
above. The two-step WARCH (p,q) model produces bzt and the
detrained and deseasonalized residual n0t in the first Winters step,
and the estimated heteroscedastic error variance bst in the second
ARCH step for the historical and forecast periods. The SEGARCH
model generates predicted values bzt and its conditional standard
deviation estimates bst for the historical and forecast periods. The
step proposed here takes only the two values bzt and bst as inputs to
an ANN model.

The new hybrid nonlinear univariate model is constructed by
using a two-step process. In step 1, a linear model with an error
volatility component (SEGARCH or WARCH) is estimated to
generate values for both the level forecasts bzt and the volatility
forecasts bst . In step 2, both of the values estimated in step 1, bst andbzt , are plugged into an ANN model with the corresponding output
target zt. These models are called the WARCH–ANN and SEGARCH–
ANN models. All of the proposed hybrid ANN models are formed by
combining a linear model with a NN to develop an adjusted forecast
for Taiwan’s electricity and petroleum consumption levels.

In order to prevent data mining-induced overfitting, this paper
uses out-of-sample tests to compare the multi-step-ahead fore-
casting capabilities of the WARCH, SEGARCH, WARCH–ANN, and
SEGARCH–ANN univariate models, where WARCH and SEGARCH
are the benchmark models.
3. Forecasting evaluation methods

For the purpose of evaluating out-of-sample forecast capability,
two different testing approaches are used. The first test associates
the three evaluation statistics, root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage forecast
error (MAPE), to each model. They are expressed as below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðPi � AiÞ2
.

n

vuut ;

MAE ¼
Xn

i¼1

jPi � Aij
.

n; (8)

MAPE ¼
Xn

i¼1

jðPi � AiÞ
.

Aij
.

n� 100:

where Pi and Ai are the i-th forecasting and actual values, respec-
tively, and n is the total number of predictions. Lewis [32] interprets
the MAPE results as a means to judge the accuracy of the forecast:
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Fig. 2. Taiwan’s electricity consumption f
less than 10% is a highly accurate forecast, 10–20% is a good forecast,
20–50% is a reasonable forecast, and more than 50% is an inaccurate
forecast.

The second test for forecast encompassing was introduced
by Chong and Hendry [33]. This test formalizes the intuition that
model i should be preferred to model j if model i can explain what
model j cannot explain, without model j being able to explain
what model i cannot explain. Granger and Newbold [34] argued
that forecast encompassing was more stringently required than
forecast accuracy. Clements and Hendry [35] proposed the argu-
ment that the encompassing test is implemented through testing
the significances of the a1 and b1 coefficients in the following two
regression equations:

Ei ¼ a0 þ a1Dij þ ut ; (9)

Ej ¼ b0 þ b1Dij þ nt ;

where Ei and Ej denote the forecast errors for model i and model
j (Ei¼ Pi� Aj, Ej¼ Pj� Aj), respectively; Dij denotes the differences
between the forecast results i and j models (Dij¼ Pi� Pj), and ut and
nt are random errors. The null hypothesis is that neither model
encompasses (outperforms) the other. If a1 is significantly different
from zero and b1 is not, then the null hypothesis is rejected in favor
of the alternative hypothesis that model j encompasses model
i. Conversely, if b1 is significant but a1 is not, then this is an
evidence that model i encompasses model j. If neither a1 nor b1 is
significant, or conversely if both a1 and b1 are significant, then we
fail to reject the null hypothesis and conclude that neither model
encompasses the other. Table 4 reports the results of the forecast
encompassing tests.
4. Experimental results

In this section, the performance of the alternative modeling
approaches is compared using two seasonal time series: electricity
consumption and petroleum consumption in Taiwan. The period
under examination extends from January 1993 to December 2007
with a total of 180 observations for each series. The period from
January 1993 to December 2005 is treated as the estimation
(or training) period for the models. The subsequent period, from
January 2006 through December 2007, is the testing or out-of-
sample period.
4.1. Electricity consumption series

As shown in Fig. 2, the time series data of Taiwan’s electricity
consumption show strong seasonality and growth trends. The peak
Jan-
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02

Jan-
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Jan-
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rom January 1993 to December2007.



Table 1
The best results of neural networks for electricity consumption data.

WARCH–ANN SEGARCH–ANN

Input nodes 2 2
The number of hidden neurons 3 4
Learning rate 0.04 0.1
Momentum 0.1 0.1
RMSE of training data 0.019 0.016
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season for each year generally occurs in June or July, because energy
use is greatest in the summer.

4.1.1. Winters and WARCH models for electricity
The electricity consumption series zt, given in Fig. 2, assumes

that the seasonality and the growth trend exist in the historical data
and extend to the future with the same pattern. The statistical
properties can be examined by using the autocorrelation function
(acf) and the partial autocorrelation function (pacf). The result
reveals that zt is non-stationary. The first regular differences and
first seasonal differences are calculated in order to remove the
growth trend and the seasonality characteristics. In this step, the
first 13 observations are lost. The stationary time series thus
acquired can be used to identify the Winters model. The estimated
equation is presented as follows:

�
1� B

��
1� B12

�
zt ¼ ð1� 0:820BÞ

�
1� 0:671B12

�
nt : (10)

Let bzt be the point prediction of zt and n0t ¼ zt � bzt be the t-th
residual, where fn0tg is the detrended and deseasonalized time
series with 143 observations. The Augmented Dickey-Fuller (ADF)
unit root test can be rejected for the residuals fn0tg at the 5% level of
significance, since the ADF test statistic �12.27 is lower than the
critical value �2.88. This indicates that the series is stationary. The
p-values for the Ljung–Box test statistics are less than 0.05, this
means that the fn0tg is highly autocorrelated. Both the Q and LM
tests are significant with p< 0.05 for lags between 1 and 12, which
indicate that an ARCH process is needed to model hetero-
scedasticity. The conditional error variance bst for fn0tg can be
forecasted by estimating the parameters of EGARCH process. The
new WARCH model is constructed by combining the Winters with
the AR(13,18,23,24)-EGARCH (q¼ (1,24)) model describing the
error variance, which can be expressed as

Step 1 :
�

1� B
��

1� B12
�

zt ¼ ð1� 0:820BÞ
�

1� 0:671B12
�

nt ;

n0t ¼ zt � bzt ;

0 0 0 0
Step 2 : nt ¼ �39783� 0:148nt�13 þ 0:183nt�18 � 0:330nt�23

þ0:041n0t�24 þ 3t ; 3t ¼ stet ;
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Fig. 3. Taiwan’s petroleum consumption f
ln
�

s2
t

�
¼ 25:623þ 0:541gðet�1Þ þ 0:725gðet�24Þ;

where gðetÞ ¼ 0:042et þ jet j �
ffiffiffiffiffiffiffiffiffi
2=p

p
;

etwINð0;1Þ: (11)

Once estimated, Eq. (11) can be used to compute bzt and bst in the
historical and forecast periods from the Winters and ARCH steps,
respectively. Both the values ofbzt and bst are used as the input variables
in the WARCH–ANN model whose corresponding output value is zt.

4.1.2. SEGARCH model
The electricity consumption series zt given in Fig. 2 exhibits

a reasonable deterministic linear trend and monthly seasonal
variation. Seasonal intervention models are employed to forecast
this time series. The derived SEGARCH model with autoregressive
error AR(1,2,8)-SEGARCH (q¼ (1,24)) is

zt ¼ 5609782þ 58818t � 243591xs1;t � 1049180xs2;t

� 40242xs3;t þ 25837xs4;t þ 788991xs5;t þ 1284619xs6;t

þ 1902389xs7;t þ 2334958xs8;t þ 1684728xs9;t

þ 1498304xs10;t þ 818588xs11;t þ nt ;

nt ¼ 3t � 0:230nt�1 � 0:196nt�2 � 0:102nt�8;

3t ¼ stet ; (12)

ln
�

s2
t

�
¼ 25:716þ 0:360gðet�1Þ þ 0:533gðet�24Þ;

where gðetÞ ¼ 0:477et þ jet j �
ffiffiffiffiffiffiffiffiffi
2=p

p
; etwINð0;1Þ and

xs1;t ¼
n1 if period t is January

0 otherwise
/

xs11;t ¼
n1 if period t is November

0 otherwise
:

The estimated parameters and estimated values of bzt and bst are
obtained simultaneously for the sample and forecast periods. The
values of both bzt and bst are used as input variables in SEGARCH–
ANN model where the corresponding output value is zt.

4.1.3. WARCH–ANN and SEGARCH–ANN models
In this step, bzt and bst values from the WARCH and SEGARCH

estimation steps are regarded as input variables to WARCH–ANN
and SEGARCH–ANN models inwhich zt is used in the output layer. All
networks are trained with the forecasting data from January 1993 to
December 2005 and forecast for 24 months from January 2006 to
December 2007. A back-propagation learning algorithm is used in
the training process. More than 50 experiments are conducted to
Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07

rom January 1993 to December 2007.



Table 2
The best results of neural networks for petroleum consumption data.

WARCH–ANN SEGARCH–ANN

Input nodes 2 2
The number of hidden neurons 5 5
Learning rate 0.4 0.06
Momentum 0.1 0.05
RMSE of training data 0.029 0.023
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determine the best combination of the learning rates, momentum,
and number of hidden nodes. Throughout the training, the Neural-
Ware [36] utility ‘SAVEBEST’ is used to monitor and save the lowest
RMSE from the training set. For WARCH–ANN, the best RMSE result
is obtained by using a learning rate of 0.08, a momentum rate of 0.1,
and 3 nodes in a single hidden layer that uses the generalized data
learning rule and a sigmoid transfer function (y¼ 1/(1þ e�x)). The
best architecture for the network is {2:3:1}. For the SEGARCH–ANN,
the data period and the estimation details for the ANN are the same
as those discussed above. The best architecture of the network is
{2:4:1}. The results are reported in Table 1.

4.2. Petroleum consumption series

The petroleum consumption time series is recorded monthly
wise from 1993 to 2007. These data include trend and seasonal
varia tions, as shown in Fig. 3. With their electric data, the values
from 1993 to 2005 (156 observations) are used for estimating the
models, and the monthly data from 2006/1 to 2007/12 are used for
testing.

4.2.1. Winters, WARCH, and SEGARCH models
Investigation of the acf for the petroleum data reveals that it is

non-stationary. The first regular differences and first seasonal
differences are calculated in order to remove the growth trend and
the seasonality characteristics. This process loses the first 13
observations. The resulting stationary time series (143 observa-
tions) can be used to identify the Winters model. The estimated
equation is presented below:

�
1� B

��
1� B12

�
yt ¼ ð1� 0:804BÞ

�
1� 0:668B12

�
nt (13)

The ADF unit root test can be rejected for the residuals fn0tg at
the 5% level of significance, since the ADF test statistic �11.02 is
lower than the critical value �2.88. This indicates that the series is
stationary. Both the Q and LM tests are significant with p< 0.05 for
lags between 1 and 12. This enables us to estimate the conditional
14

19

24

Jan-06 Jul-06 Jan-

Billion

Fig. 4. Actual and model values for
error variances bs2
t by using EGARCH process in historical and

forecast periods. The final WARCH((16),0,5) model, combining the
Winters with the AR(16)-EGARCH (q¼ (5)) model, is expressed as
follows:

Step 1 :
�

1� B
��

1� B12
�

yt ¼ ð1� 0:804BÞ
�

1� 0:668B12
�

nt ; n
0
t ¼ yt � byt ; (14)

Step 2 : n0t ¼ 3935þ 0:215n0t�16 þ 3t ;

3t ¼ stet ;

ln
�

s2
t

�
¼ 23:061þ 0:356gðet�5Þ;

where gðetÞ ¼ �0:339et þ jet j �
ffiffiffiffiffiffiffiffiffi
2=p

p
; etwINð0;1Þ:

For the SEGARCH model with autoregressive errors, the final
specification for the petroleum series is AR(1,5)-SEGARCH
(q¼ (1,24)), and the estimated model is as follows:

yt ¼1919088þ 8615t � 97131xs1;t � 374934xs2;t

� 59440xs3;t � 134773xs4;t � 54148xs5;t � 112180xs6;t

� 54368xs7;t � 85199xs8;t � 176545xs9;t � 62519xs10;t

� 88123xs11;t þ nt ;

nt ¼ �0:208nt�1 � 0:302nt�5 þ 3t ;

3t ¼ stet ; (15)

ln
�

s2
t

�
¼ 22:682þ 0:2293gðet�1Þ � 0:4362gðet�24Þ;where

gðetÞ ¼ 0:458et þ jet j �
ffiffiffiffiffiffiffiffiffi
2=p

p
; etwINð0;1Þ;

xs1;t ¼
n1 if period t is January

0 otherwise
/

xs11;t ¼
n1 if period t is November

0 otherwise
:

4.2.2. WARCH–ANN and SEGARCH–ANN models
The predicted values and the conditional variance estimates

from the WARCH and SEGARCH models for petroleum are used to
estimate the ANN models in this section. The back-propagation
learning algorithm is used in the training process. For the
07 Jul-07

Actual
WARCH
WAR-ANN
SEGARCH
SEGAR-ANN

electricity consumption data.
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Fig. 5. Actual and model values for petroleum consumption data.
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WARCH–ANN model, the best RMS error is obtained using
a learning rate of 0.4, a momentum of 0.1, and 5 nodes in a single
hidden layer ({2-5-1}). For the SEGARCH–ANN model, the best
RMS error result is obtained by using a learning rate of 0.06,
a momentum of 0.05, and 5 hidden nodes ({2-5-1}). The results
are reported in Table 2.
5. Out-of-sample forecasting performance comparison

In this section, the out-of-sample forecasting ability of four
models (WARCH, SEGARCH, WARCH–ANN and SEGARCH–ANN)
is evaluated over a 24-month forecast period, where WARCH and
SEGARCH are the benchmark models. For the years 2006 and 2007,
the forecasting values given by the proposed four models as well as
the actual values for both types of energy are shown in Figs. 4 and 5.
Clark [37] showed that out-of-sample forecast comparisons can
help prevent data mining-induced overfitting. While the hybrid
ANN would clearly be expected to dominate in the sample, since it
nests the linear model, there is in fact no a prior guarantee that the
hybrid ANNs will dominate with out-of-sample data. Indeed, it is
possible that ANN could overfit the data in the sample and thus
produces out-of-sample forecasts that are inferior to forecasts from
the linear model [38]. Thus, three different statistical measures and
forecast encompassing tests are employed to evaluate the out-of-
sample forecast capability of each of the linear and hybrid
nonlinear models.
Table 3
Comparative forecasting performance of energy consumption.

WARCH WARCH–ANN SEGARCH–ANN SEGARCH

Panel A: electricity energy consumption
Input nodes bzt ; bst bzt ; bst

RMSE 643744.33 531545.14 596013.96 824500.08
MAE 474189.18 404184.25 464632.42 606629.27
MAPE 2.90% 2.56% 2.98% 3.65%

Panel B: petroleum energy consumption
Input nodes bzt ; bst bzt ; bst

RMSE 165753.68 134832.21 148234.91 204369.84
MAE 134300.13 112542.53 122320.08 167031.13
MAPE 4.08% 3.51% 3.71% 4.88%

The forecasting period is from January 2006 to December 2007.
5.1. Root mean square, mean absolute and mean absolute
percentage forecast errors

Table 3 reports the RMSE, MAE and MAPE for each model for the
out-of-sample period from January 2006 to December 2007. The
results show that the WARCH model is better than the SEGARCH
model, SEGARCH–ANN is better than the SEGARCH model, and
WARCH–ANN is the best of the four models for both electricity and
petroleum consumption. However, SEGARCH–ANN is better than
the WARCH model on petroleum consumption only. All of the
models have highly accurate forecasts, because the MAPE results
are less than 5% [32].

Furthermore, none of the comparisons, neither by RMSE nor by
MAE and MAPE, can provide any indication of whether any one
model’s performance is significantly better than that of other
models in a formal statistical sense [38]. Therefore, in the next
section we present an additional means of comparison between
forecasting models, namely comparison by forecast encompassing,
which allows us to test whether one model has significantly better
performance than another.
5.2. Forecast encompassing tests

The forecast encompassing test was applied to the out-of-
sample comparison for nested models by Clark and McCracken
[39]. The results from the encompassing tests reported in Table 4
paint a picture similar to that in Table 3. This table reports the t-
statistics of the estimated coefficients ba1 and bb1 from Eq. (9) and
the corresponding p-values. As clearly seen from the Table 4
(Panel A for the electricity consumption and Panel B for the
petroleum consumption), the differences D14, D24, and D34

between the WARCH–ANN and the other three models (Winters,
SEGARCH, SEGARCH–ANN) explain the forecasting errors E1, E2,
and E3 well from each of the alternative models, respectively.
Moreover, the forecasting errors (E4) of the WARCH–ANN model
cannot be accounted for by any of the differences, D14, D24, or D34,

for either fuel. Pairwise comparisons for the encompassing reveal
that WARCH–ANN is the only model whose forecast is not
encompassed by the other models, and WARCH–ANN signifi-
cantly encompasses the other models. Thus, WARCH–ANN can be
considered the dominant forecasting device for both energy
consumptions. Table 4 also reveals that SEGARCH–ANN signifi-
cantly encompasses the SEGARCH model. The graphical repre-
sentation of encompassing tests is shown in Fig. 6 for both the
types of energy.

As a result, it should be clear that the ANN steps reproduce
the predicted values from the initial linear model and the ANN
step encompassing step 1. Moreover, a poor linear model may
produce a poor hybrid nonlinear model. The output of the
SEGARCH model is poorer than that of the Winters one, so the
WARCH–ANN results are better than the SEGARCH–ANN ones.
The significantly superior performance of the hybrid nonlinear
ANN models compared with other conventional linear models in



Table 4
Encompassing tests of forecasting performance of alternative models.

Dependent variable: forecasting errors Independent variable: forecasting difference from two models

D12
b D13

b D23
b D14

b D24
b D34

b

Panel A: electricity consumption (forecast period: from January 2006 to December 2007)
E1

a (WARCH) �1.52*(�2.98) 0.52*(1.26) 0.81*(2.84)
E2

a (SEGARCH) �2.52*(�4.95) 1.34*(3.57) 0.97*(4.73)
E3

a (SEGARCH–ANN) �0.48*(�1.15) 0.34(0.90) 0.70*(3.08)
E4

a (WARCH–ANN) �0.19(�0.69) �0.03(�0.16) �0.30(�1.33)

Panel B: petroleum consumption (forecast period: from January 2006 to December 2007)
E1

a (WARCH) 0.90(1.17) 1.66(1.24) 0.82*(2.71)
E2

a (SEGARCH) �0.10(�0.21) 1.00*(4.55) L0.10*(L3.02)
E3

a (SEGARCH–ANN) 0.66(1.03) �0.13(�0.21) L0.65*(L2.90)
E4

a (WARCH–ANN) �0.12(�0.09) �1.18(�1.05) �1.65(�1.08)

Which indicates that statistical significance is at the 0.1 level.
The values in parentheses are t-statistics.

a 1¼WARCH, 2¼ SEGARCH, 3¼ SEGARCH–ANN, 4¼WARCH–ANN and Ei denotes the forecast error for model i.
b Dij denotes the difference between the forecast from the model i and model j.
* Which indicates that statistical significance is at the 0.05 level.

WARCH-ANN 

WARCH

SEGARCH-ANN 

SEGARCH 

Fig. 6. Results of encompassing tests for both types of energy.
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out-of-sample test suggests that flexible hybrid ANNs may be
able to account for potentially complex nonlinear relationships
not easily captured by linear models.
6. Conclusion

Forecasting energy consumption is of utmost importance to the
reconstruction process going on in Taiwan, specifically in the
energy generation systems. It is a challenge for us to develop
forecast tools with the data obtained in Taiwan due to her rapid
economic growth and increasing demand for both electricity and
petroleum. Taking the heteroscedastic variation into account, this
study proposes two hybrid univariate nonlinear models, SEGARCH–
ANN and WARCH–ANN for multi-step-ahead forecasting. Both
hybrid ANNs can decrease round-off and prediction errors for
multi-step-ahead forecasting.

The out-of-sample forecasting performance of each model is
assessed by three statistical measures: RMSE, MAE, MAPE, and
encompassing tests. The results of the statistical measures suggest
that the WARCH model is better than the SEGARCH model,
SEGARCH–ANN is better than the SEGARCH model, and WARCH–
ANN is the best of the four models for both electricity and petro-
leum consumption. However, SEGARCH–ANN is better than the
WARCH model on petroleum consumption only. All of the models
have highly accurate forecasts, since the MAPE results are less than
5%. Furthermore, the WARCH–ANN model significantly encom-
passes the other three models, while SEGARCH–ANN considerably
encompasses the SEGARCH model in the consumption of both the
types of energy. So it should be clear that the ANN steps would
reproduce the predicted values from the initial linear model, and
the ANN step would encompass the linear step. The WARCH–ANN
model is the dominant forecasting approach for both electricity and
petroleum.
In summary, the preponderance of the statistical evidence
presented in this paper suggests that the proposed hybrid ANNs
forecasts generally outperform the forecasts from a variety of linear
models in predicting the data on Taiwan’s energy consumption. The
practical significance of this result is evident from the out-of-
sample nature of the tests employed. Although the hybrid ANN
nests the linear model as a special case and would therefore be
expected to dominate this model in the sample, assuming there
was no a priori guarantee that hybrid ANNs would dominate out-
of-sample, especially if the ANNs overfit the in-sample data. The
fact that the proposed hybrid ANNs did outperform the conven-
tional linear models in the out-of-sample tests therefore reveals
that flexible hybrid ANNs may be to account for potentially complex
nonlinear relationships not easily captured by linear models.
Furthermore, the information on the interactions and nonlinear
integrating effects between ðbzt ; bszt Þ and zt are important because
both types of energy consumption are well accommodated by the
hybrid nonlinear algorithm. Overall, the inclusion of hetero-
scedastic variations in the input layer of the hybrid univariate
model could help improve the modeling accuracy of multi-step-
ahead forecasts.
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