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摘要 
 

 

氮化矽記憶體(SONOS memory) 將是未來非揮發性記憶體元件的主流，它相較於快閃

記憶體(flash)，有著較簡單的結構、簡單的製程，而且可以比傳統浮閘結構快閃記憶體有更

佳的微縮能力(scalability)。對於 SONOS 來說，耐久性(endurance)及保存性(retention)是最主

要的二項可靠性課題。 

 

在本論文中，我們將探討各種不同上氧化層(blocking oxide)及穿隧氧化層(tunnel oxide) 

SONOS 結構的資料保存以及元件耐久特性。經由實驗，可以了解直接穿隧的漏電流有一部

份是經由上氧化層，而非一般所假設全部經由薄的穿隧氧化層。首先，我們量化注入電荷

及電荷流失的量。結果顯示，我們發現到較薄上氧化層 SONOS 元件所流失的電荷較多，尤

其是當上氧化層厚度降到 40 Å 以下，而這也證明了電荷從上氧化層端所流失。我們也提出

一種區分三種漏電流機制的方法，結果發現到直接穿遂(DT)在短時間主導電荷流失，但是

長時間(>10000s)情況下，電荷流失成分以熱放射(thermionic emission)為多，且在 P/E cycle

之後，因為氧化層劣化造成的缺陷促進穿隧(trap assisted tunneling)將逐漸顯著，對較厚的氧

化層而言，此漏電將更加嚴重。 

 

接著，我們更深入探討 cycling 效應對於 SONOS 記憶體元件的 ONO 層個別的影響。
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由實驗結果更得知，較厚的下氧化層的耐久性的劣化主要原因是下氧化層的劣化，至於薄

的下氧化層耐久性之劣化的主因卻是上氧化層的劣化。除此之外，我們得知在整個 cycling

過程中，初期因為氮化矽層的缺陷增加導致操作效率提高，在操作多次後操作效率將因上

氧化層的劣化而降低。因此，薄的上氧化層有較佳的耐久性，較小的操作電壓等優點，但

是有電荷流失，操作區間(operation window)較小等缺點。尤其是在元件不斷的縮小化的時

候，這些結果可以幫助我們更了解電荷流失的情形及其主導的物理機制。  
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Abstract 
 

 

SONOS (Silicon Oxide Nitride Oxide Silicon) will become the main stream of nonvolatile 

memory products because of its simplicity in structure and scalable by comparing with 

conventional floating gate cells. For the scaling of SONOS memory, the endurance and retention 

are the two major reliability issues.  

 

In this thesis, data retention for various top (blocking) and bottom oxide (tunnel oxide) 

SONOS cells has been investigated. The direct tunneling through either tunnel or blocking oxide 

can also be identified experimentally. Results show that the cell with thinner blocking oxide has 

more charge loss under various baking temperatures, especially when the blocking oxide is 

thinner than 40 Å. A leakage current separation technique has been developed to distinguish the 

two leakage components via thermionic and direct tunneling. The direct tunneling dominates the 

short-term leakage while the long-term leakage is dominated by thermionic emission. After P/E 

cycling, the trap assisted tunneling will be more important because of the degradation of oxide, 

and it is more serious for thicker oxide. 

 iii



Then, we will further study the influence of the cycling effect on the ONO layer of the 

SONOS memory device. It was found that for thicker tunneling oxide, the degradation of the 

endurance is originated from the degraded tunneling oxide and the degradation of the endurance 

comes from the blocking oxide for thinner tunneling oxide device. In addition, we also know that 

during the whole cycling process, the programming efficiency will be enhanced since the traps 

generated in nitride increase initially, and then decrease after long term cycles as the blocking 

oxide degraded. Thick blocking oxide cell has larger operation window and less charge loss, but 

needs larger gate voltage during program and erase and has poorer endurance. Finally, this will 

help us to understand the dominant leakage and degradation mechanism of endurance during the 

scaling of SONOS cells.  
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Table Caption 
 

Table 2.1    The split conditions of samples used in this work, in which devices have three 

different blocking oxide thickness and two different tunnel oxide thicknesses. 
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Figure Captions 
 
Fig. 1.1   (a) The MNOS device with a relative thick nitride(>150A) and high program/erase 

bias, 

         (b) MONOS device with metal gate and added blocking oxide, and                 

         (c) SONOS device with poly-silicon gate and blocking oxide.         

Fig. 2.1    The process steps of SONOS memory to grow thermal tunnel oxide, LPCVD nitride, 

and LPCVD blocking oxide. 

Fig. 2.2    The experimental setup of the current-voltage and the transient characteristics 

measurement in flash cells. An automatic controlled characterization system is setup 

based on the PC controlled instrument environment. 

Fig. 2.3    The timing diagrams of the triggered pattern mode method during (a) program, (b) 

erase, and (c) PE cycling operations, respectively. 

Fig. 2.4    The scheme we used to program/erase SONOS, with the drain, source, and substrate 

connected to ground. 

Fig. 2.5    The schematic diagram of FN tunneling, direct tunneling, and modified FN tunneling. 

Fig. 2.6    The schematic diagram of FN program and FN erase for SONOS memory. 

Fig. 3.1   The charge loss path and the two dominant leakage components in a SONOS cell, 

         Component (1): thermionic emission , Components, (2) and (3) : direct tunneling, 

         Components, (4) and (5) : trap-assisted tunneling. 

Fig. 3.2   The direct tunneling through ONO exhibits different time constants. Top figure has one 

time constant, while bottom figure, for a thin blocking oxide, shows two time 

constants. 

Fig. 3.3   The cycling-induced leakage components in a SONOS cell, 

         (a) Trap-to-trap tunneling 

         (b) Trap-assisted tunneling 
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         (c) Positive charge-assisted tunneling 

Fig. 3.4   The calculated charge loss versus bake time for different blocking oxide thickness. 

Thin blocking oxide sample exhibits larger charge loss. 

Fig. 3.5   The data retention of O/N/O = 25/54/65 sample at various temperatures. 

Fig. 3.6   TheΔVth vs temperature plot, calculated from Fig. 4.7, showing that ΔVth has  

         maximum slope between 80oC and 150oC, for sample 3- O/N/O = 25/54/65.  

Fig. 3.7   Two dominant leakage components in a SONOS cell. Note that short term leakage is 

dominated by direct tunneling, while long term leakage is dominated by thermionic 

emission.  

Fig. 3.8   Further calculations can be done by differentiating the charge loss through tunnel 

oxide (2) and blocking oxide (3).  

Fig. 3.9   The comparison of GIDL current for fresh and after 10k PE cycles. The increasing of 

GIDL current indicates that there are oxide traps be generated after cycling. 

Fig. 3.10  The charge loss of the fresh cell and after the cycling. We can separate the trap 

assisted tunneling component from the direct tunneling and thermionic emission 

components. 

Fig. 3.11  The calculated decay rate versus block oxide thickness for sample no.5 and no.6 

measured at fresh and 1000 PE cycles at 80oC 

Fig. 4.1   The endurance of three cells, samples 1 and 4, with different tunneling oxide thickness, 

in which thin tunneling oxide cell shows better endurance characteristic. 

Fig. 4.2   The charge pumping measurement of two cells, samples 1 and 4, with different 

tunneling oxide thickness. It reveals that the thinner tunneling oxide cell shows much 

lower charge pumping current. 

Fig. 4.3   The subthreshlod characteristic of two cells with different tunneling oxide thickness. 

There is no difference before and after cycling for thinner tunneling oxide. 

Fig. 4.4   The subthreshlod characteristic of sample no.3. The subthreshold swing changes after 
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3000 P/E cycles 

Fig. 4.5   The charge pumping measurement of sample no. 3. The charge pumping current shift 

is consistent with the value calculated from the subthreshold swing in Fig. 4.4. 

Fig. 4.6   The endurance of three cells with different blocking oxide thickness. There is no 

obvious distinction between these cells.  

Fig. 4.7   The programming transient of sample 6 before and after cycling. The programming 

and erase efficiency is enhanced apparently. 

Fig. 4.8   Schematic representation of the location of oxide charge and interface states generated 

by CHE injection under various voltage condition. 

Fig. 4.9   Cycling effect for the floating gate memory reduces the programming curve. 

Fig. 4.10  The recombined charge per cycle (QCP) for the fresh and cycled conditions. The 

charge increases for lower frequencies confirming the cycling-induced nitride traps 

behavior. 

Fig. 4.11  Endurance of cells with various blocking oxide thickness. This shows good operation 

window for 104 PE-cycles and poorer endurance for thicker blocking oxide cell. 

Fig. 4.12  (a) Measured charge pumping current after 105 PE cycles for samples 4, 5, and 6.  

(b) Gate-pulse representation in a CP measurement. 

Fig. 4.13  The band diagram of SONOS cell during negative gate bias when the electrons are 

trapped in the blocking oxide. 

Fig. 4.14  (a) The programming characteristic of sample no. 4 for the different cycle numbers.  

(b) The enhancement and degradation of the programming efficiency is shown in this 

figure. 
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List of Symbols 
 
 

∆Vth       The threshold voltage shift (V). 

Eox       The electric field across the tunnel oxide (MV/cm). 

f            The occupation ratio of traps in nitride 

nt         The trapped electron density (1/cm3) 

Nt       The trap density (1/cm3.eV) 

PN       Tunneling probability through the nitride 

Pox       Tunneling probability through the oxide 

φ1           The barrier height for electron between silicon and oxide (eV) 

φ2           The barrier height for electron between nitride and oxide (eV) 

φs             The surface potential (V) 

φt           The trap energy level (eV) 

q        Magnitude of the electron charge (1.6×10-19C) 

t          The time (s) 

T        The temperature (oK) 

Teff       The effective thickness of the ONO structure (Å). 

τ                 The time constant (s) 

τ0                The reciprocal of the “attempt-to-escape” frequency (~10-13s ) 

Vfb         The flat-band voltage (V). 

Vfb0       The initial flat-band voltage (V). 

Vth       The threshold voltage (V). 

Vth0       The initial threshold voltage (V). 
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