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A Recurrent Self-Evolving Interval Type-2 Fuzzy
Neural Network for Dynamic System Processing

Chia-Feng Juang, Senior Member, IEEE, Ren-Bo Huang, and Yang-Yin Lin

Abstract—This paper proposes a recurrent self-evolving inter-
val type-2 fuzzy neural network (RSEIT2FNN) for dynamic sys-
tem processing. An RSEIT2FNN incorporates type-2 fuzzy sets in
a recurrent neural fuzzy system in order to increase the noise re-
sistance of a system. The antecedent parts in each recurrent fuzzy
rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the
consequent part is of the Takagi–Sugeno–Kang (TSK) type with
interval weights. The antecedent part of RSEIT2FNN forms a lo-
cal internal feedback loop by feeding the rule firing strength of each
rule back to itself. The TSK-type consequent part is a linear model
of exogenous inputs. The RSEIT2FNN initially contains no rules;
all rules are learned online via structure and parameter learning.
The structure learning uses online type-2 fuzzy clustering. For the
parameter learning, the consequent part parameters are tuned by
a rule-ordered Kalman filter algorithm to improve learning per-
formance. The antecedent type-2 fuzzy sets and internal feedback
loop weights are learned by a gradient descent algorithm. The
RSEIT2FNN is applied to simulations of dynamic system identi-
fications and chaotic signal prediction under both noise-free and
noisy conditions. Comparisons with type-1 recurrent fuzzy neural
networks validate the performance of the RSEIT2FNN.

Index Terms—Dynamic system identification, online fuzzy clus-
tering, recurrent fuzzy neural networks (RFNNs), recurrent fuzzy
systems, type-2 fuzzy systems.

I. INTRODUCTION

THE TOPOLOGIES of recurrent networks include feed-
back loops, which are used to memorize past information.

In contrast with pure feedforward architectures, which exhibit
static input–output behavior, recurrent networks are able to store
information from the past (e.g., prior system states) and are, thus,
more appropriate for the analysis of dynamic systems. Some
recurrent fuzzy neural networks (RFNNs) have already been
proposed [1]–[9] to deal with temporal characteristic problems,
and have been shown to outperform feedforward FNNs and re-
current NNs. One category of RFNNs uses feedback loops from
the network output(s) as a recurrence structure [1]–[3]. The au-
thors in [1] and [3] proposed an output RFNN where the output
values are fed back as input values. A recurrent neural fuzzy
network is proposed in [2], where the consequent of a rule is
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a reduced linear model in autoregressive form with exogenous
inputs. Another category of RFNNs uses feedback loops from
internal state variables as its recurrence structure [4]–[9]. The
recurrence property in studies [4] and [5] is achieved by feeding
the output of each membership function (MF) back to itself,
and therefore, each membership value is influenced by and only
by its past values. Recurrent self-organizing neural fuzzy in-
ference networks (RSONFINs) [6] and Takagi–Sugeno–Kang
(TSK) type recurrent fuzzy networks (TRFN) [7], [9] use a
global feedback structure, where the firing strengths of each
rule are summed and fed back as internal network inputs.

All of the aforementioned RFNNs use type-1 fuzzy sets. In
recent years, studies on type-2 fuzzy logic systems (FLSs) have
drawn much attention [10]–[14]. Type-2 FLSs are extensions
of type-1 FLS, where the membership value of a type-2 fuzzy
set is a type-1 fuzzy number. Type-2 FLSs appear to be a more
promising method than their type-1 counterparts in handling
problems with uncertainties, and have already been successfully
applied in several situations [15]–[18]. Some interval type-2
FNNs have been proposed for the automatic design of inter-
val type-2 FLS [19]–[23]. A gradient descent algorithm was
proposed for interval type-2 FNN learning in [19]–[22]. In the
center-of-sets type reduction process, the consequent values in
the interval type-2 FLS are rearranged in ascending order to
compute the interval outputs using the Karnik–Mendel iterative
procedure [19]–[23]. During the parameter learning process, the
consequent values change, and their ascending orders and cor-
responding fuzzy rule orders should change accordingly. The
parameter learning equations in [19], [20], [22], and [23] did
not explicitly address this fuzzy rule reordering problem. Pa-
rameter learning equations that considered the fuzzy rule re-
ordering problem using a gradient descent algorithm were pro-
posed in [21]. This paper proposes a rule-ordered Kalman filter
algorithm for recurrent type-2 FNN consequent part parameter
learning. The algorithm derives detailed learning equations, tak-
ing into account the rule-reordering problem in network output
computation.

This paper proposes a recurrent type-2 FNN, i.e., the re-
current self-evolving interval type-2 FNN (RSEIT2FNN), for
dynamic system processing. The self-evolving property means
that the RSEIT2FNN can automatically evolve its network struc-
ture and parameters according to training data, i.e., the task of
preassigning network structure (rule numbers and initial fuzzy
set shapes) is no longer necessary. The major contributions of
the RSEIT2FNN are twofold. The first contribution is the pro-
posal of a novel RFNN structure with the introduction of type-
2 fuzzy sets. Current studies on type-2 FNNs only focus on
feedforward network structures to handle static input–output
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mapping problems. In the RSEIT2FNN structure, local feed-
back loops in the antecedent part are formed by feeding the rule
firing strength of each rule back to itself, and the consequent
part is a combination of current and lagged network inputs.
The second contribution is the proposal of novel structure and
parameter learning algorithms to improve the network learn-
ing performance. The aforementioned type-2 FNNs learn only
parameters, where the structures are all fixed and must be as-
signed in advance. The RSEIT2FNN learns both the structure
and parameters concurrently and online. All of the rules in an
RSEIT2FNN are generated online. The consequent parameters
in the RSEIT2FNN are learned by a rule-ordered Kalman filter
algorithm to improve learning performance. The antecedent part
parameters and rule feedback weights are learned by a gradient
descent learning algorithm. Several simulations are conducted to
verify RSEIT2FNN performance. These simulations also com-
pare the RSEIT2FNN with recurrent type-1 FNNs, feedforward
type-1 FNNs, and other type-2 FNNs.

The rest of this paper is organized as follows. Section II in-
troduces the RSEIT2FNN structure. Section III introduces the
structure and parameter learning methods in an RSEIT2FNN.
Section IV simulates three examples on dynamic systems iden-
tification and chaotic series prediction. Finally, Section V draws
conclusions.

II. RSEIT2FNN STRUCTURE

This section introduces the structure of an RSEIT2FNN.
Suppose that the dynamic system to be processed is a multi-
input–multioutput (MIMO) system that consists of nu control
inputs and no outputs and that the control input and dynamic
system output vectors are denoted by u = (u1 , . . . , unu

) and
yp = (yp1 , . . . , ypnO

), respectively, where nu and no denote
the input and output dimensions, respectively. Fig. 1 shows the
proposed MIMO six-layered RSEIT2FNN structure. The con-
sequent of each recurrent fuzzy rule is of first-order Takagi–
Sugeno-Kang (TSK) type and executes a linear function. The
detailed mathematical functions of each layer are introduced
next.

1) Layer 1 (Input Layer): The inputs are crisp values. Only
the current states x(t) = (u(t),yp(t)) are fed as inputs to this
layer, in contrast to feedforward FNNs where both current and
past states are fed as inputs to the input layer. To unify the input
range, each node in this layer scales the inputs to lie in the range
around [−1, 1]. Note that there are no weights to be adjusted in
this layer.

2) Layer 2 (MF Layer): Each node in this layer defines an
interval type-2 MF. For the ith interval type-2 fuzzy set Ãi

j

in input variable xj , j = 1, . . . , nu + no , two types of MFs are
studied. For the first type, we use a Gaussian primary MF having
a fixed standard deviation (STD) σi

j and an uncertain mean that
takes on values in [mi

j1 ,m
i
j2 ] [see Fig. 2(a)], i.e.,

µÃi
j

= exp


−1

2

(
xj − mi

j

σi
j

)2

 ≡ N(mi

j , σ
i
j ;xj )

mi
j ∈ [mi

j1 ,m
i
j2 ]. (1)

Fig. 1. Structure of the RSEIT2FNN, where each node in layer 4 forms an
internal feedback loop and each node in layer 5 functions as a linear combination
of current and lagged network inputs (denoted as xz ).

Fig. 2. Interval type-2 fuzzy set. (a) Uncertain mean. (b) Uncertain STD.

An RSEIT2FNN using this type of MF is called RSEIT2FNN-
UM. The footprint of uncertainty (FOU) of this MF can be
represented as a bounded interval in terms of its upper MF µi

j
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and lower MF µi
j
, where

µi
j (xj ) =




N(mi
j1 , σ

i
j ;xj ), xj < mi

j1

1, mi
j1 ≤ xj ≤ mi

j2

N(mi
j2 , σ

i
j ;xj ), xj > mi

j2

(2)

and

µi
j
(xj ) =




N(mi
j2 , σ

i
j ;xj ), xj ≤

mi
j1 + mi

j2

2

N(mi
j1 , σ

i
j ;xj ), xj >

mi
j1 + mi

j2

2

(3)

i.e., the output µÃi
j

of each node can be represented as an interval

[µi
j
, µi

j ]. For the second type, we use a Gaussian primary MF

having a fixed mean mi
j and an uncertain STD that takes on

values in [σi
j1 , σ

i
j2 ]. An RSEIT2FNN using this type of MF is

called RSEIT2FNN-UD. The membership value is µÃi
j

= [µi
j
,

µi
j ], where

µi
j (xj ) = N(mi

j , σ
i
j2 ;xj ) (4)

and

µi
j
(xj ) = N(mi

j , σ
i
j1 ;xj ). (5)

The two types of interval type-2 MFs mentioned before are
also widely used in many previous studies [19]–[25].

3) Layer 3 (Spatial Firing Layer): Each node in this layer
corresponds to one fuzzy rule and functions as a spatial rule
node. Each node performs a fuzzy meet operation on inputs
from layer 2 using an algebraic product operation to obtain a
spatial firing strength F i . The spatial firing strength is an interval
type-1 fuzzy set and is computed as follows [26]:

F i = [fi, f
i
], i = 1, . . . , M (6)

where

f
i
=

nu +no∏
j=1

µi
j , f i =

nu +no∏
j=1

µi
j

(7)

and M is the total number of rules.
4) Layer 4 (Temporal Firing Layer): Each node in this layer

is a recurrent rule node that forms an internal feedback loop.
The output of a recurrent rule node is a temporal firing strength
that depends not only on the current spatial firing strength but
on the previous temporal firing strength as well. The temporal

firing strength Ψi
q (t) = [ψ

i
q (t), ψ

i
q
(t)], i = 1, . . . , M and q =

1, . . . , no is an interval given as a linear combination of the
spatial firing strength F i(t) and the last temporal firing strength
Ψi

q (t − 1) by the equation

Ψi
q (t) = λi

q · F i(t) + (1 − λi
q )Ψ

i
q (t − 1) (8)

where λi
q is a feedback weight and 0 ≤ λi

q ≤ 1. Equation (8)
may be written as

[ψ
i
q (t), ψ

i
q
(t)]= λi

q [f
i
(t), f i(t)]+(1− λi

q )[ψ
i
q (t−1), ψi

q
(t−1)]

(9)

where

ψ
i
q (t) = λi

q f
i
(t) + (1 − λi

q )ψ
i
q (t − 1) (10)

and

ψi
q
(t) = λi

q f
i(t) + (1 − λi

q )ψ
i
q
(t − 1). (11)

5) Layer 5 (Consequent Layer): Each node in this layer
is called a consequent node and functions as a linear model
with exogenous inputs and time-delay synapses. Each re-
current rule node in layer 4 has a corresponding conse-
quent node in layer 5. The linear model is a linear com-
bination of the current input states x(t) = (u(t),yp(t)) =
(u1(t), . . . , unu

(t), yp1(t), . . . , ypno
(t)), together with their

lagged values. The output ỹi
q (t + 1), i = 1, . . . ,M and q =

1, . . . , no , of the ith consequent node connecting to the qth net-
work output variable is computed as follows:

ỹi
q (t +1)=

nu∑
j=0

Nj∑
k=0

ãi
jkquj (t−k)+

no∑
j=1

Oj∑
k=0

ãi
(j+nu )kq ypj (t−k)

(12)

where u0(t)
∆= 1 and N0

∆= 0, Nj and Oj are the maximum lag
numbers of the control input uj (t) and the system output ypj (t),
respectively, and ãi

jkq are interval sets denoted by

ãi
jkq = [ci

jkq − si
jkq , c

i
jkq + si

jkq ] (13)

where ci
jkq and si

jkq denote the center and spread, respectively,
of the interval. The inclusion of the lagged values of u(t) and
yp(t) in the linear consequent part instead of the antecedent
part simplifies the network computation process for dynamic
system processing, especially when interval type-2 fuzzy sets
are used. The output ỹi

q (t + 1) is an interval type-1 set, which is
denoted by [ỹi

lq , ỹ
i
rq ], where the indices l and r denote left and

right limits, respectively. According to (12) and (13), the node
output is given as

ỹi
q = [ỹi

lq , ỹ
i
rq ] =

nu∑
j=0

Nj∑
k=0

[ci
jkq − si

jkq , c
i
jkq + si

jkq ]uj (t − k)

+
no∑

j=1

Oj∑
k=0

[ci
(j+nu )kq − si

(j+nu )kq , c
i
(j+nu )kq

+ si
(j+nu )kq ]ypj (t − k) (14)

i.e.,

ỹi
lq =

nu∑
j=0

Nj∑
k=0

ci
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

ci
(j+nu )kq ypj (t − k)

−
nu∑
j=0

Nj∑
k=0

si
jkq |uj (t − k)|−

no∑
j=1

Oj∑
k=0

si
(j+nu )kq |ypj (t−k)|

(15)



JUANG et al.: RECURRENT SELF-EVOLVING INTERVAL TYPE-2 FUZZY NEURAL NETWORK FOR DYNAMIC SYSTEM PROCESSING 1095

and

ỹi
rq =

nu∑
j=0

Nj∑
k=0

ci
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

ci
(j+nu )kq ypj (t − k)

+
nu∑
j=0

Nj∑
k=0

si
jkq |uj (t − k)|+

no∑
j=1

Oj∑
k=0

si
(j+nu )kq |ypj (t − k)|.

(16)

6) Layer 6 (Output Layer): Each node in this layer cor-
responds to one output variable. The qth output layer node
computes the network output variable y′

q using type reduc-
tion followed by defuzzification operations. In the type re-
duction, the type-reduced set is an interval type-1 fuzzy set
[y′

lq , y
′
rq ]. The outputs y′

lq and y′
rq can be computed using the

Karnik–Mendel iterative procedure [11]. In this procedure, the
consequent parameters are reordered in ascending order. Let
ỹlq = (ỹ1

lq , . . . , ỹ
M
lq ) and ỹrq = (ỹ1

rq , . . . , ỹ
M
rq ) denote the origi-

nal rule-ordered consequent values, and let ŷlq = (ŷ1
lq , . . . , ŷ

M
lq )

and ŷrq = (ŷ1
rq , . . . , ŷ

M
rq ) denote the reordered sequences,

where ŷ1
lq ≤ ŷ2

lq ≤ · · · ≤ ŷM
lq and ŷ1

rq ≤ ŷ2
rq ≤ · · · ≤ ŷM

rq . The
relationship between ỹlq , ỹrq , ŷlq , and ŷrq is

ŷlq = Ql ỹlq and ŷrq = Qr ỹrq (17)

where Ql and Qr are M × M permutation matrices with el-
ementary vectors (i.e., vectors all of whose elements are zero
except one element that is equal to one) as columns, and these
vectors are arranged (permuted) to move elements in ỹlq and
ỹrq to new locations in ascending order in the transformed vec-
tors ŷlq and ŷrq , respectively. The original rule firing strength

orders ψ = (ψ1
q
, ψ2

q
, . . . , ψM

q
)T and ψ = (ψ

1
q , ψ

2
q , . . . , ψ

M
q )T

are reordered accordingly. To compute the output y′
lq , the new

rule orders for ψ and ψ are Qlψ and Qlψ, respectively. To
compute the output y′

rq , the new rule orders for ψ and ψ are
Qrψ and Qrψ, respectively. According to [21], the output y′

lq

can be computed as

y′
lq =

∑L
i=1 (Qlψ)i ŷ

i
lq +

∑M
i=L+1 (Qlψ)i ŷ

i
lq∑L

i=1 (Qlψ)i +
∑M

i=L+1 (Qlψ)i

=
ψ

T
QT

l ET
1 E1Ql ỹlq + ψT QT

l ET
2 E2Ql ỹlq

pT
l Qlψ + gT

l Qlψ
(18)

where L and R denote the left and right crossover points,
respectively

pl
∆= (1, 1, . . . , 1︸ ︷︷ ︸

L

, 0, . . . 0)T ∈ �M ×1

gl = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
M −L

)T ∈ �M ×1 (19)

E1 = (e1 ,e2 , . . . ,eL ,0, . . . ,0) ∈ �L×M

E2 = (0, . . . ,0, ε1 , ε2 , . . . , εM −L ) ∈ �(M −L)×M (20)

and where ei ∈ �L×1 and εi ∈ �M −L are elementary vectors.
Similarly, the output y′

rq can be computed as

y′
rq =

∑R
i=1 (Qrψ)i ŷ

i
rq +

∑M
i=R+1 (Qrψ)i ŷ

i
rq∑R

i=1 (Qrψ)i +
∑M

i=R+1 (Qrψ)i

=
ψT QT

r ET
3 E3Qr ỹrq + ψ

T
QT

r ET
4 E4Qr ỹrq

pT
r Qrψ + gT

r Qrψ
(21)

where

pr
∆= (1, 1, . . . , 1︸ ︷︷ ︸

R

, 0, . . . 0)T ∈ �M ×1

gr = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
M −R

)T ∈ �M ×1 (22)

E3 = (e1 ,e2 , . . . ,eR ,0, . . . ,0) ∈ �R×M

E4 = (0, . . . ,0, ε1 , ε2 , . . . , εM −R ) ∈ �(M −R)×M (23)

and where ei ∈ �R×1 and εi ∈ �(M −R)×1 are elementary vec-
tors. In contrast to the prior studies [19], [20], [22], [23], the
outputs y′

lq and y′
rq in (18) and (21) are expressed in the orig-

inal rule-ordered format. This expression is helpful in deriv-
ing the proposed parameter learning algorithm discussed in
Section III-B. Finally, the defuzzification operation defuzzifies
the interval set [y′

lq , y
′
rq ] by computing the average of y′

lq and y′
rq .

Hence, the defuzzified output for network output variable y′
q is

y′
q =

y′
lq + y′

rq

2
. (24)

III. RSEIT2FNN LEARNING

The RSEIT2FNN evolves all of its composing recurrent type-
2 fuzzy rules by simultaneous structure and parameter learning.
The following sections introduce more details on the structure
and parameter learning algorithms.

A. Structure Learning

The structure learning algorithm is responsible for online rule
generation. A previous study [28] used the rule firing strength as
a criterion for type-1 fuzzy rule generation. This idea is extended
to type-2 fuzzy rule generation criteria in an RSEIT2FNN. The
spatial firing strength F i in (6) is used as the criterion to de-
termine whether a rule should be generated. Since this firing
strength is an interval, its center is

fi
c =

1
2
(f

i
+ f

i
). (25)

The spatial firing strength center then serves as a rule gener-
ation criterion.

Structure learning of an RSEIT2FNN-UM is introduced as
follows. For the first incoming piece of data x, a new rule is
generated, with the uncertain mean and center of each new
type-2 fuzzy set assigned by

[m1
j1 ,m

1
j2 ] = [xj − 0.1, xj + 0.1] and σi

j = σfixed

j = 1, . . . , nu + no (26)
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where σfixed is a predefined threshold (σfixed = 0.3 in this paper)
that determines the fuzzy set width. For each subsequent piece
of incoming data x(t), find

I = arg max
1≤i≤M (t)

fi
c (

⇀
x) (27)

where M(t) is the number of existing rules at time t. If fI
c (⇀

x) ≤
fth , for some prespecified threshold fth ∈ (0, 1), then a new rule
is generated. Once a new rule is generated, the initial uncertain
means and widths of the corresponding new type-2 fuzzy sets
are assigned as

[mM (t)+1
j1 ,m

M (t)+1
j2 ] = [xj (t) − 0.1, xj (t) + 0.1] (28)

and

σ
M (t)+1
j = β


nu +no∑

j=1

(
xj −

(
mJ

j1 + mJ
j2

2

))2

0.5

. (29)

The network inputs are scaled to lie in the range [−1, 1] in
layer 1. Equations (26) and (28) set an initial uncertain mean
range of 0.2 according to this input range. If the uncertain mean
range is too small, then the initial type-2 fuzzy set becomes too
close to a type-1 fuzzy set. In contrast, if this range is too large,
then the uncertain mean covers most of the input range. Equation
(29) indicates that the initial width is equal to the Euclidean
distance between the current input data point x and its nearest
cluster mean average times an overlapping parameter β. In this
paper, we set β = 0.5 so that the width of the new fuzzy set is
half the Euclidean distance, and a suitable overlapping between
clusters is generated.

For structure learning of an RSEIT2FNN-UD, the learning
process is similar to RSEIT2FNN-UM, except that (26), (28),
and (29) are slightly modified. Equation (26) is changed to be

m1
j = xj and [σ1

j1 , σ
1
j2 ] = [σfixed , σfixed + 0.1]

j = 1, . . . , nu + no. (30)

Equations (28) and (29) are changed to be

m
M (t)+1
j = xj (t) (31)

and

[σM (t)+1
j1 , σ

M (t)+1
j2 ]

=


β


nu +no∑

j=1

(xj − mJ
j )2


0.5

, σ
M (t)+1
j1 + 0.1


 (32)

where setting of σ
M (t)+1
j1 is similar to (29), and β is also set

to 0.5. Like (28), the initial value of σ
M (t)+1
j2 is assigned to

generate a suitable FOU.
Previous studies [24], [25] have shown that different uncer-

tain mean (STD) ranges generate different FOU areas and may
influence the final results. In these studies, a constant uncertain
range is manually selected in advance, and all MFs share the
same range. In RSEIT2FNN, different MFs use different un-
certain mean (STD) ranges, which are all automatically tuned
using the following MF parameter learning algorithm.

B. Parameter Learning

The parameter learning phase occurs concurrently with the
structure learning phase. For each piece of incoming data, all the
free RSEIT2FNN parameters are tuned, whether the rules are
newly generated or originally existent. For clarity, consider only
the qth network output. The objective of the parameter learning
process is to minimize the error function

E =
1
2
[y′

q (t + 1) − yd(t + 1)]2 . (33)

Here, y′
q (t + 1) and yd(t + 1) denote the RSEIT2FNN and

desired outputs, respectively. The Karnik–Mendel iterative pro-
cedure for computing y′

lq and y′
rq has the premise that ỹi

lq and ỹi
rq

have been rearranged in ascending order. During the parameter
learning process, the consequent values ỹi

lq and ỹi
rq change, and

their corresponding rule orders change accordingly. To update
the parameters, it is necessary to know the precise locations of
specific antecedent and consequent parameters, and this is very
difficult to ascertain when the rule orders are different at each
learning time step. The proposed rule-ordered Kalman filtering
algorithm addresses this problem by keeping the original rule
order during the parameter learning process. This is achieved by
mapping the consequent values in ascending order with respect
to the original rule order [see (17)]. According to this mapping,
(18) and (21) are expressed by ỹlq and ỹrq , i.e., with the con-
sequent values arranged in the original rule order, despite their
changes during the parameter learning process. Based on this
original rule-ordered expression, the rule-ordered Kalman fil-
tering algorithm is derived as follows. Equations (18) and (21)
can be reexpressed as

y′
lq = φT

lq ỹlq

φlq =
ψ

T
QT

l ET
1 E1Ql + ψT QT

l ET
2 E2Ql

pT
l Qlψ + gT

l Qlψ
∈ �M ×1 (34)

and

y′
rq = φT

rq ỹrq

φrq =
ψT QT

r ET
3 E3Qr + ψ

T
QT

r ET
4 E4Qr

pT
r Qrψ + gT

r Qrψ
∈ �M ×1 (35)

respectively. Thus, the output y′
q in (24) can be reexpressed as

y′
q =

1
2
(y′

lq + y′
rq ) =

1
2
(φT

lq ỹlq + φT
rq ỹrq )

= [φ
T
lqφ

T
rq ]

[
ỹlq

ỹrq

]

= [φ
1
lq · · ·φ

M
lq φ

1
rq · · ·φ

M
rq ]




ỹ1
lq

...

ỹM
lq

ỹ1
rq

...

ỹM
rq




(36)
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where φ
T
lq = 0.5φT

lq , and φ
T
rq = 0.5φT

rq . According to (15) and
(16), (36) can be further expressed as in (37), shown at the
bottom of the page.

Since RSEIT2FNN rules are generated online, the dimen-
sion of ỹlq in (37) increases with time, and the positions
of ci

jkq and si
jkq in the same vector change accordingly. To

keep the positions of ci
jkq and si

jkq constant in the vector,
the vector components in (37) are rearranged in rule order
in the proposed rule-ordered Kalman filtering algorithm. Let
ỹTSK ∈ �2M (Σn u

j = 0 (Nj +1)+Σn o
j = 1 (Oj +1))×1 denote all of the con-

sequent parameters ci
jkq and si

jkq , i.e.,

ỹTSK = [c1
00q . . . c1

(no +nu )Nn o q s
1
00q . . . s1

(no +nu )Nn o q . . .

cM
00q . . . cM

(no +nu )Nn o q s
M
00q . . . sM

(no +nu )Nn o q ]
T (38)

where the parameters are positioned according to the rule order
so that their positions remain constant as the rule numbers in-
crease during the structure learning process. Equation (37) can
then be expressed as

y′
q = [φc1u0 . . . φc1ypno

(t − Ono
) − φs1 |u0 | . . .

− φs1 |ypno
(t − Ono

)| . . . . . . φcM u0 . . .

φcM ypno
(t − Ono

) − φsM |u0 | . . .
− φsM |ypno

(t − Ono
)|]ỹTSK

= φ′T
T SK ỹTSK (39)

where φ
j
cq = φ

j
lq + φ

j
rq and φ

j
sq = φ

j
rq − φ

j
lq , j = 1, . . . ,M .

The consequent parameter vector ỹTSK is updated by executing

the following rule-ordered Kalman filtering algorithm:

ỹTSK(t + 1) = ỹTSK(t) + S(t + 1)φ
′
TSK(t + 1)(yd(t + 1)

− φ
′
TSKT (t + 1)ỹTSK(t))

S(t + 1) =
1
λ

[
S(t)−S(t)φ

′
TSK(t+1)φ′T

TSK(t+1)S(t)

λ+φ′T
TSK(t+1)S(t)φ

′
TSK

]

(40)

where 0 < λ ≤ 1 is a forgetting factor (λ= 0.9995 in this paper).
The dimensions of the vectors ỹTSK and φ

′
TSK and the matrix

S increase when a new rule evolves. When a new rule evolves,
RSEIT2FNN augments S(t) as in (41), shown at the bottom of
this page, where C is a large positive constant, and the size of
the identity matrix I is 2(

∑nu

j=0(Nj + 1) +
∑no

j=1 (Oj + 1)) ×
2(
∑nu

j=0(Nj + 1) +
∑no

j=1 (Oj + 1)).
The RSEIT2FNN antecedent parameters are tuned by a gradi-

ent descent algorithm. Detailed learning equations can be found
in the Appendix. Finally, it should be emphasized that after pa-
rameter update at each time step, rule consequent values ỹlq and
ỹrq change. Therefore, the two permutation matrices Ql and Qr

in (17) should change accordingly at each time step.

IV. SIMULATIONS

This section describes four examples of RSEIT2FNN sim-
ulations. These examples include single-input–single-output
(SISO) dynamic system identification (Example 1), chaotic se-
ries prediction (Example 2), MIMO dynamic system identifica-
tion (Example 3), and real-time series prediction (Example 4).
The performance of an RSEIT2FNN is compared with recurrent

y′
q = [φ

T
lq φ

T
rq ]

[
ỹlq

ỹrq

]
= [φ

1
lq · · ·φ

M
lq φ

1
rq · · ·φ

M
rq ]




nu∑
j=0

Nj∑
k=0

c1
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

c1
(j+nu )kq ypj (t − k) −

nu∑
j=0

Nj∑
k=0

s1
jkq |uj (t − k)| −

no∑
j=1

Oj∑
k=0

s1
(j+nu )kq |ypj (t − k)|

...
nu∑
j=0

Nj∑
k=0

cM
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

cM
(j+nu )kq ypj (t − k) −

nu∑
j=0

Nj∑
k=0

sM
jkq |uj (t − k)| −

no∑
j=1

Oj∑
k=0

sM
(j+nu )kq |ypj (t − k)|

nu∑
j=0

Nj∑
k=0

c1
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

c1
(j+nu )kq ypj (t − k) +

nu∑
j=0

Nj∑
k=0

s1
jkq |uj (t − k)| +

no∑
j=1

Oj∑
k=0

s1
(j+nu )kq |ypj (t − k)|

...
nu∑
j=0

Nj∑
k=0

cM
jkquj (t − k) +

no∑
j=1

Oj∑
k=0

cM
(j+nu )kq ypj (t − k) +

nu∑
j=0

Nj∑
k=0

sM
jkq |uj (t − k)| +

no∑
j=1

Oj∑
k=0

sM
(j+nu )kq |ypj (t − k)|




. (37)

S(t) = block diag[S(t) CI]

∈ �2(M +1)
(∑n u

j = 0
(Nj +1)+

∑n o

j = 1
(Oj +1)

)
×2(M +1)

(∑n u

j = 0
(Nj +1)+

∑n o

j = 1
(Oj +1)

)
(41)
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TABLE I
PERFORMANCE OF RSEIT2FNN AND OTHER FEEDFORWARD AND RECURRENT MODELS FOR SISO PLANT IDENTIFICATION IN EXAMPLE 1

type-1 FNNs and feedforward type-1 and type-2 FNNs in these
examples.

A. Example 1 (SISO Dynamic System Identification)

This example uses the RSEIT2FNN to identify an SISO linear
time-varying system, which is a problem that was introduced
in [7]. The dynamic system with input delays is guided by the
difference equation

yp1(t + 1) = 0.72yp1(t) + 0.025yp1(t − 1)u1(t − 1)

+ 0.01u2
1(t − 2) + 0.2u1(t − 3). (42)

This system has a single input (nu = 1) and a single output
(no = 1), and therefore, the two current variables u1(t) and
yp1(t) are fed as inputs to the RSEIT2FNN input layer. The
current output of the plant depends on three previous inputs and
one previous output. Therefore, the lag numbers N1 and O1 in
RSEIT2FNN consequent part are set to 3 and 1, respectively.
The training procedure for the RSEIT2FNN uses the plant out-
put yp1(t + 1) as the desired output yd(t + 1). In training the
RSEIT2FNN, we use only ten epochs, each of which contains
900 time steps. As in [7], the input is an independently and
identically distributed (i.i.d.) uniformly random sequence over
[−2, 2] for about half of the 900 time steps and a sinusoid given
by 1.05 sin(πk/45) for the remaining time. There is no repeti-
tion in these 900 training data, i.e., we have different training
sets for each epoch. This type of training is similar to an online
training process, where there are a total number of 9000 online
training time steps. There is no repeated training for the training
dataset obtained in each time step. The structure learning thresh-
old fth determines the number of fuzzy rules to be generated.
For RSEIT2FNN-UM, two rules are generated when fth is set
to 0.05. Table I shows the root-mean-squared error (RMSE) of
the training data. To see the identification result, the following
input used in [7] is also adopted for the test:

u1(t) =




sin
(

πt

25

)
, t < 250

1.0, 250 ≤ t < 500

−1.0, 500 ≤ t < 750

0.3 sin
(

πt

25

)
+ 0.1 sin

(
πt

32

)

+ 0.6 sin
(

πt

10

)
,

750 ≤ t < 1000.

(43)

Fig. 3 shows the outputs of the plant and the RSEIT2FNN-
UM for these test inputs. Fig. 4 shows the test error y′

1(t + 1) −

Fig. 3. Outputs of the dynamic plant (solid line) and RSEIT2FNN-UM (dotted
line) in Example 1.

Fig. 4. Test errors between the RSEIT2FNN-UM and actual plant outputs.

yp1(t + 1) between the outputs of the RSEIT2FNN-UM and the
actual plant. Table I shows the network size, and training and
test RMSEs of RSEIT2FNN-UM. Table I also shows perfor-
mance of an RSEIT2FNN-UD with the same network size as
the RSEIT2FNN-UM. The results show that these two networks
have similar performance.

The performance of RSEIT2FNN is compared with that of
TSK-type feedforward type-1 and type-2 FNNs, a recurrent
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TABLE II
INFLUENCE OF fth ON THE PERFORMANCE OF AN SEIT2FNN-UM WITH

β = 0.5

NN, and recurrent type-1 FNNs. The compared feedforward
type-1 FNN is a self-constructing neural fuzzy inference net-
work (SONFIN) [29], which is a powerful network with both
structure and parameter learning. As in an RSEIT2FNN, the
consequent part of a SONFIN is also trained using the Kalman
filter algorithm. The feedforward type-2 FNN for comparison is
the interval type-2 FNN [21], where all the network parameters
are learned using the steepest descent algorithm. In the original
interval type-2 FNN, the network structure is fixed and assigned
in advance. Since an RSEIT2FNN uses structure learning for
network design, the proposed structure learning in Section III-A
is also incorporated in the interval type-2 FNN in this and the
following examples. Comparisons are based on a similar net-
work size, i.e., the total number of parameters in a feedforward
type-1 FNN is similar to that in a feedforward interval type-2
FNN. The number of rule parameters in an interval type-2 FNN
is larger than that in a type-1 FNN due to the use of additional
free parameters in type-2 fuzzy sets and rule consequent part.
Therefore, the total number of rules in a feedforward type-1 FNN
is set to be larger than that in an interval type-2 FNN, as shown
in Table I. The recurrent NN used for comparison is Elman’s
recurrent NN (ERNN) [30], which is applied to the same prob-
lem in [7]. The recurrent type-1 FNNs include the RFNN [4],
the wavelet-based RFNN (WRFNN) [5], and the TSK-type re-
current fuzzy network with supervised learning (TRFN-S) [7].
All these networks use the same training data, test data, and
number of training epochs as the RSEIT2FNN. Table I shows
the number of rules, the total number of network parameters,
and the training and test errors of these compared networks.
Among all the recurrent type-1 networks being compared, the
TRFN-S achieves the minimum test error. The results show that
the RSEIT2FNN achieves smaller training and test errors than
the other feedforward and recurrent networks.

We now analyze the practical computational cost of construct-
ing an RSEIT2FNN. Since the functions in an RSEIT2FNN-UM
are similar to those in an RSEIT2FNN-UD, only the former
network is studied. All simulations are performed on an Intel
3.0 GHz dual CPU, and the programs are written in Visual
C++. The total learning time of the RSEIT2FNN-UM men-
tioned before is 0.344 s, which is a very short time. We com-
pare the computational costs for training the two representative
networks SONFIN and TRFN-S for feedforward and recurrent
type-1 FNNs. The SONFIN and TRFN-S take 0.891 and 4.407 s,
respectively. The results show that the RSEIT2FNN-UM takes
less training time than these two networks.

We consider the influence of the values of fth and β on the
RSEIT2FNN-UM performance. The threshold fth decides the

TABLE III
INFLUENCE OF β ON THE PERFORMANCE OF AN RSEIT2FNN-UM

WITH fth = 0.05

number of rules in the RSEIT2FNN-UM. Table II shows the
RSEIT2FNN-UM performance for different values of fth when
β = 0.5. Larger values of fth generate larger numbers of rules
and improve the learning performance of the network in general.
However, when the value of fth is too large, the performance
saturates. One reason is that it is easier to get stuck in a local
optimum when training a larger network. Another reason is
that it requires a larger number of training epochs for network
convergence. For a constant value of fth , smaller values of β
generate larger numbers of rules because of the smaller initial
type-2 fuzzy set width. Table III shows the RSEIT2FNN-UM
performance for different values of β when fth = 0.05. The
influence of rule number on network performance is similar to
that discussed before. Table III shows that for a constant rule
number of 2, the network performance is insensitive to variations
inβ. The general rule for selecting fth and β is to set a constant
value of β (e.g., β = 0.5 in this paper), first for the given problem
and then to select fth based on a compromise between network
size and performance.

This example also studies the RSEIT2FNN test performance
when the measured plant output yp1 contains noise. The test
also uses the control input sequence in (43). The added noise is
artificially generated white Gaussian noise with three different
STDs of 0.1, 0.5, and 0.7. There are 30 Monte Carlo realiza-
tions for statistical analysis. Table IV shows the statistical mean
and STD (denoted as mean ± STD) of RSEIT2FNN-UM and
RSEIT2FNN-UD for different noise levels. The results show
that these two networks have similar performance. The primary
MFs in both RSEIT2FNN-UM and RSEIT2FNN-UD are of
Gaussian type. The numbers of additional flexible parameters
provided by the FOU in each MF of both networks are identical
and are tuned by the same parameter-learning algorithm. It is
reasonable that these two networks have similar performance in
Tables I and IV.

The performance of feedforward type-1 and type-2 FNNs
and TRFN-S for the same noisy test patterns is compared with
that of the RSEIT2FNN. Though the performance of different
recurrent models is studied in Table I, this example only com-
pares RSEIT2FNN with TRFN-S. The reason is that TRFN-S
achieves the minimum test RMSE among the compared recur-
rent models in Table I. Table IV shows the average RMSEs of
the feedforward and recurrent models for different noise levels.
For the two feedforward FNNs, the test errors of the type-2 FNN
are smaller than those of the type-1 FNN for different noise lev-
els. The results show that the test errors of RSEIT2FNN are
smaller than those of the other models tested for all of the test
noise levels.
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TABLE IV
PERFORMANCE OF RSEIT2FNN AND OTHER FEEDFORWARD AND RECURRENT MODELS WITH DIFFERENT NOISE LEVELS IN EXAMPLE 1

Fig. 5. Results of the phase plot for the chaotic system (©) and RSEIT2FNN-
UM (×).

B. Example 2 (Chaotic Series Prediction)

The chaotic system is described by

yp1(t + 1) = −Py2
p1(t) + Qyp1(t − 1) + 1.0. (44)

The study [31] shows that the system produces a chaotic
strange attractor when the parameters P and Q are set to 1.4 and
0.3, respectively. The system has no control input (nu = 0) and
a single output (no = 1); therefore, only the state yp1(t) is fed as
input to the RSEIT2FNN input layer. The system is of second
order with one delay, so the lag number O1 in the RSEIT2FNN
consequent part is set to one. The desired output is yd(t + 1)
= yp1(t + 1). Two thousand patterns are generated from the
initial state [yp1(1), yp1(0)] = [0.4, 0.4], where the first 1000
patterns are used for training, and the remaining 1000 patterns
are used for testing. In RSEIT2FNN-UM training, the structure
learning threshold fth is set to 0.3. After 90 epochs of training,
six rules are generated. Fig. 5 shows the phase plane of the
actual and RSEIT2FNN-UM prediction results for the test pat-
terns. Table V shows the structure and training and test RMSEs
of RSEIT2FNN-UM. The performance of an RSEIT2FNN-UD
with the sane network size is also shown in Table V. Like the
results in Example 1, Table V shows that RSEIT2FNN-UM and
RSEIT2FNN-UD have similar performance. As in Example 1,
the performance of the RSEIT2FNN is compared with that of
feedforward type-1 and type-2 FNNs [21], [29] and recurrent
type-1 FNNs, including RFNN [4], WRFNN [5], and TRFN-S

[7]. These compared networks use the same number of training
epochs and training and test data as in the RSEIT2FNN. Table V
shows the numbers of rules and network parameters and training
and test RMSEs of these compared networks. The results show
that the RSEIT2FNN achieves better performance than other
networks.

This example also studies the RSEIT2FNN test performance
when the measured plant output yp1 contains noise. The added
noise is artificially generated white Gaussian noise with STD
of 0.3, 0.5, and 0.7. Table VI shows the test RMSEs over 30
Monte Carlo realizations. The results in Table VI show that
RSEIT2FNN-UM and RSEIT2FNN-UD have similar perfor-
mance. For comparison, Table VI also shows the test RMSEs of
feedforward type-1 and type-2 FNNs, and TRFN-S. The results
show that the RMSE of the RSEIT2FNN is smaller than that of
the other networks for all of the test noise levels.

C. Example 3 (MIMO Dynamic System Identification)

The identified MIMO plant is the same as that used in [32].
The plant is described by

yp1(t + 1) = 0.5

[
yp1(t)

1 + y2
p2(t)

+ u1(t − 1)

]

yp2(t + 1) = 0.5

[
yp1(t)yp2(t)
1 + y2

p2(t)
+ u2(t − 1)

]
. (45)

This plant has two inputs (nu = 2) and two outputs (no = 2)
so that the four current input and output variables u1(t), u2(t),
yp1(t), and yp2(t) are fed as inputs to the RSEIT2FNN input
layer. The current output of the plant depends on the control
inputs with one time-step delay and current plant states. There-
fore, the lag numbers N1 , N2 , O1 , and O2 in the RSEIT2FNN
consequent part are set to be 1, 1, 0, and 0, respectively. The
two desired outputs for the RSEIT2FNN training are yp1(t + 1)
and yp2(t + 1). During the training phase, the RSEIT2FNN
is trained online from time step t = 1 to t = 11 000. The
two control inputs u1(t) and u2(t) are i.i.d. uniformly ran-
dom sequences over [−1.4, 1.4] from t = 1 to t = 4000 and
sinusoid signals given by sin(πt/45) from t = 4001 to t =
11 000. In the RSEIT2FNN-UM training, the structure learn-
ing threshold fth is set to 0.07. A larger network is generated
when fth is larger than 0.1. The threshold value (0.07) is deter-
mined based on a compromise between network size and per-
formance, as discussed in Example 1. After the training, three
rules are generated. Table VII shows the structure and RMSE of
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TABLE V
PERFORMANCE OF RSEIT2FNN AND OTHER FEEDFORWARD AND RECURRENT MODELS IN EXAMPLE 2

TABLE VI
PERFORMANCE OF RSEIT2FNN AND OTHER FEEDFORWARD AND RECURRENT MODELS WITH DIFFERENT NOISE LEVELS IN EXAMPLE 2

TABLE VII
PERFORMANCE OF RSEIT2FNN AND OTHER RECURRENT MODELS FOR MIMO PLANT IDENTIFICATION IN EXAMPLE 3

RSEIT2FNN-UM. To test the identification result, the two con-
trol input sequences are as follows:

u1(t) = u2(t)

=




sin
(

πt

25

)
, 1001 ≤ t < 1250

1.0, 1250 ≤ t < 1500

−1.0, 1500 ≤ t < 1750

0.3 sin
(

πt

25

)
+ 0.1 sin

(
πt

32

)

+ 0.6 sin
(

πt

10

)
, 1750 ≤ t < 2000.

(46)

Fig. 6 shows the test results. Table VII shows the test RMSEs
for outputs yp1 and yp2 .

For comparison, Table VII shows the performance of the
memory NN (MNN) [32], feedforward type-1 and type-2 FNNs,
and recurrent type-1 FNNs studied in Example 2. The MNN
is a kind of recurrent NN, and has been applied to the same
problem in [32]. These networks use a total number of 11 000
training time steps as in the RSEIT2FNN-UM, except in the
case of the MNN, where a total number of 77 000 time steps
is used for training in [32]. The results in Table VII show that
the RSEIT2FNN-UM achieves smaller RMSEs for both outputs
than these feedforward and recurrent networks.

Fig. 6. Outputs of the MIMO plant (solid curve) and RSEIT2FNN-UM (dotted
curve) in Example 3. (a) Output yp1 . (b) Output yp2 .

This example also studies the RSEIT2FNN-UM test perfor-
mance when the measured plant outputs yp1 and yp2 contain
noise. The added noise is artificially generated white Gaussian
noise with STD of 0.3, 0.5, and 0.7. Table VIII shows the
average test RMSEs of the RSEIT2FNN-UM, feedforward type-
1 and type-2 FNNs, and TRFN-S over 30 Monte Carlo realiza-
tions. The results show that the RMSEs of RSEIT2FNN-UM
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TABLE VIII
PERFORMANCE OF RSEIT2FNN AND TRFN-S WITH DIFFERENT NOISE LEVELS IN EXAMPLE 3

TABLE IX
PERFORMANCE OF RSEIT2FNN AND DIFFERENT MODELS FOR THE SERIES-E PREDICTION PROBLEM IN EXAMPLE 4

are smaller than those of the comparable networks when there
is noise.

D. Example 4 (Practical Time Series Prediction)

This example studies the performance of an RSEIT2FNN-
UM for a real-world series database. The Series-E from the Sante
Fe Time Series [33] is used (database Web site: http://www-
psych.standford.edu/∼andress/Time-Series/). This series is a set
of astrophysical data (variation in light intensity of a star). The
objective is to predict the intensity of the star at time t + 1,
yp1(t + 1), according to its past intensities. This benchmark
series is selected because it is very noisy and discontinuous.
According to [34], 2048 observations were collected, of which
90% were used for training and the remaining 10% for testing.

Since the appropriate number of lagged intensities for pre-
diction is unknown in advance for this practical series, the lag
number O1 in the RSEIT2FNN-UM is simply set to zero. Only
the intensity yp1(t) is fed as input to the RSEIT2FNN-UM input
layer, because the system has no external input (nu = 0), i.e.,
only yp1(t) is fed as input to the RSEIT2FNN-UM for predict-
ing yp1(t + 1), and the past values yp1(t − j) are automatically
memorized in the feedback loops. If the appropriate lag num-
ber O1 is known in advance, then more past values other than
yp1(t) can be included in the RSEIT2FNN-UM consequent part
for a better prediction performance. The threshold fth is set to
0.03, and the number of rules is 6 (48 parameters in total) after
100 epochs of training. Table IX shows the test RMSE of the
RSEIT2FNN-UM. Fig. 7 shows the actual and RSEIT2FNN-
UM-predicted intensities. For comparison, Table IX also shows
the test RMSEs of the feedforward type-1 and type-2 FNNs
using the same input–output pairs. The numbers of rules (pa-
rameters) in the feedforward type-1 and type-2 FNNs are 12 (48)
and 7 (49), respectively. The test error of the RSEIT2FNN-UM
is smaller than those of these two networks.

A model called pattern modeling and recognition system
(PMRS) was proposed in [34] to predict the same series. The
prediction results using feedforward NN and statistical exponen-
tial smoothing (ES) method are also reported in that study. In

Fig. 7. Prediction results of the RSEIT2FNN-UM for the Series-E problem in
Example 4.

these methods, an appropriate number of past intensities should
be determined for each model input, which burdens model de-
sign effort. For example, the NN uses the past five intensities as
network inputs. Table IX shows the test RMSEs of these three
models, all of which have larger errors than the RSEIT2FNN-
UM and the two feedforward FNNs.

V. CONCLUSION

This paper proposes a new recurrent type-2 FNN, i.e., the
RSEIT2FNN. In contrast to existing feedforward type-2 FNNs,
this network is especially useful for handling problems with
temporal properties. For RSEIT2FNN learning, there is no need
to determine the RSEIT2FNN structure in advance because the
proposed structure learning ability enables the RSEIT2FNN to
evolve its structure online. Moreover, the proposed rule-ordered
Kalman filter algorithm helps tune the consequent parameters
online and improves learning accuracy. Simulation results show
that the RSEIT2FNN achieves a better performance than exist-
ing recurrent type-1 FNNs in both noise-free and noisy envi-
ronments. The FOU in the RSEIT2FNN helps handle the nu-
merical uncertainty associated with system inputs and outputs.
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Therefore, the RSEIT2FNN has the potential to achieve better
performance than type-1 fuzzy systems when dealing with noisy
data, as demonstrated in the examples given in Section IV. Future
studies will theoretically analyze the learning convergence of the
RSEIT2FNN and examine possible practical applications of the
RSEIT2FNN to temporal problems with noise or uncertainty.

APPENDIX

This Appendix derives the antecedent parameter learning
equations using a gradient descent algorithm. For convenience in
notation of the gradient descent results, (18) can be reexpressed
according to [21] as

y′
lq =

ψ
T
alq + ψT blq

ψ
T
clq + ψT dlq

(A1)

where

alq = QT
l ET

1 E1Ql ỹlq ∈ �M ×1

blq = QT
l ET

2 E2Ql ỹlq ∈ �M ×1 (A2)

clq = QT
l pl ∈ �M ×1 dlq = QT

l gl ∈ �M ×1 . (A3)

Similarly, (21) can be reexpressed as

y′
rq =

ψT arq + ψ
T
brq

ψT crq + ψ
T
drq

(A4)

where

arq = QT
r ET

3 E3Qr ỹrq ∈ �M ×1

brq = QT
r ET

4 E4Qr ỹrq ∈ �M ×1 (A5)

crq = QT
r pr ∈ �M ×1 , drq = QT

r gr ∈ �M ×1 . (A6)

Using the gradient descent algorithm, we have

λi
q (t + 1) = λi

q (t) − η
∂E

∂λi
q (t)

(A7)

where η is a learning constant (η = 0.08 in this paper), and

∂E

∂λi
q

=
∂E

∂y′
q

(
∂y′

q

∂y′
lq

∂y′
lq

∂λi
q

+
∂y′

q

∂y′
rq

∂y′
rq

∂λi
q

)

=
1
2
(y′

q − yd)

[(
∂y′

lq

∂ψ
i
q

+
∂y′

rq

∂ψ
i
q

)
∂ψ

i
q

∂λi
q

+

(
∂y′

lq

∂ψi
q

+
∂y′

rq

∂ψi
q

)
∂ψi

q

∂λi
q

]
(A8)

where

∂y′
lq

∂ψ
i
q

=
alqi − y′

lq clqi

ψ
T
clq + ψT dlq

∂y′
rq

∂ψ
i
q

=
brqi − y′

rq drqi

ψT crq + ψ
T
drq

(A9)

∂y′
lq

∂ψi
q

=
blqi − y′

lq dlqi

ψ
T
clq + ψT dlq

∂y′
rq

∂ψi
q

=
arqi − y′

rq crqi

ψT crq + ψ
T
drq

(A10)

∂ψ
i
q

∂λi
q

= f
i ∂ψi

q

∂λi
q

= fi. (A11)

Let wi
j denote a parameter in the ith interval type-2 fuzzy set

Ãi
j in input variable xj . This parameter is updated as follows:

wi
j (t + 1) = wi

j (t) − η
∂E

∂wi
j (t)

(A12)

where

∂E

∂wi
j (t)

=
1
2
(y′

q − yd)

[(
∂y′

lq

∂ψ
i
q

+
∂y′

rq

∂ψ
i
q

)
∂ψ

i
q

∂wi
j

+

(
∂y′

lq

∂ψi
q

+
∂y′

rq

∂ψi
q

)
∂ψi

q

∂wi
j

]
. (A13)

1) RSEIT2FNN with uncertain mean (RSEIT2FNN-UM): The
parameters mi

j1 , mi
j2 , and σi

j in (2) and (3) are updated accord-
ing to (A12) and (A13). If wi

j = mi
j1 , then we have

∂ψ
i
q

∂wi
j

=
∂ψ

i
q

∂mi
j1

=
∂ψ

i
q

∂f
i

∂f
i

∂µi
j

∂µi
j

∂mi
j1

=




λi
q f

i ×
xj − mi

j1

(σi
j )2 , xj ≤ mi

j1

0, otherwise

(A14)

∂ψi
q

∂wi
j

=
∂ψi

q

∂mi
j1

=
∂ψi

q

∂f i

∂f i

∂µi
j

∂µi
j

∂mi
j1

=




λi
q f

i ×
xj − mi

j1

(σi
j )2 , xj >

mi
j1 + mi

j2

2

0, otherwise.

(A15)

Similarly, if wi
j = mi

j2 , then we have

∂ψ
i
q

∂wi
j

=
∂ψ

i
q

∂mi
j2

=




λi
q f

i ×
xj − mi

j2

(σi
j )2 , xj > mi

j2

0, otherwise

(A16)

∂ψi
q

∂mi
j2

=


 λi

q f
i ×

xj − mi
j2

(σi
j )2 , xj ≤

mi
j1 + mi

j2

2
0, otherwise.

(A17)

If wi
j = σi

j , then we have

∂ψ
i
q

∂wi
j

=
∂ψ

i
q

∂σi
j

=




λi
q f

i ×
(xj − mi

j1)
2

(σi
j )3 , xj < mi

j1

λi
q f

i ×
(xj − mi

j2)
2

(σi
j )3 , xj > mi

j2

0, otherwise

(A18)

and

∂ψi
q

∂wi
j

=
∂ψi

q

∂σi
j

=




λi
q f

i ×
(xj − mi

j2)
2

(σi
j )3 , xj ≤

mi
j1 + mi

j2

2

λi
q f

i ×
(xj − mi

j1)
2

(σi
j )3 , xj >

mi
j1 + mi

j2

2
.

(A19)
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2) RSEIT2FNN with uncertain STD (RSEIT2FNN-UD): The
parameters mi

j , σi
j1 , and σi

j2 in (4) and (5) are updated according
to (A12) and (A13). If wi

j = mi
j , then we have

∂ψ
i
q

∂mi
j

= λi
q f

i ×
xj − mi

j

(σi
j2)2 and

∂ψi
q

∂mi
j

= λi
q f

i ×
xj − mi

j

(σi
j1)2 .

(A20)
If wi

j = σi
j1 , then we have

∂ψ
i
q

∂σi
j1

= 0 and
∂ψi

q

∂σi
j1

= λi
q f

i ×
(xj − mi

j )
2

(σi
j1)3 . (A21)

If wi
j = σi

j2 , then we have

∂ψ
i
q

∂σi
j2

= λi
q f

i ×
(xj − mi

j )
2

(σi
j2)3 and

∂ψi
q

∂σi
j2

= 0. (A22)
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