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Abstract

In this paper we devote the most of it to the analysis of spin-orbit interaction
in low dimensional semiconductor asymmetric double well structure which has
never been done before. Following the previous work of spin-orbit splitting of
electronic states in semiconductor, asymmetric quantum wells by E. A. de
Andrada e Silva, we attempt.to present-the spin-orbit splitting of electronic
states in the semiconductor asymmetrical double: well and demonstrate how to
adjust the amplitude of the spin-orbit splitting in order to have a real spintronics
device.

The spin-orbit splitting in the dispersion relation for electrons in IlI-V
semiconductor asymmetric double well is studied within the standard envelope
function formalism starting from the eight-band Kane model for the bulk. We
start our investigation from the effective mass Hamiltonian which is the
Schrodinger-like equation for the two components of the conduction band

envelope function. At last we show how the spin-orbit splitting will vary with

different parameters in Al In,_ Sh/InSb/Al In, Sb/InSb/Al In, Sb asymmetric

gquantum wells by solving the solutions for both spin up and spin down

numerically.



Contents

Chapter 1 Introduction and Motivations----------------------eee-- 1
Chapter 2  Theory-—m e 9
2.1 The Ke P MEtNOO--===mnmmmmm oo 9
2.2 Kane’s model for band Structure---------======mmmmmmmmmeeeoeeeeeeeeeeeee - 12
2.3 The Spin Orbit INtEraction-=-========mmmmmm e 18
Chapter 3 RESUIS —mmmmmmmm e 24
3.1 Asymmetrical Square Double Well--------===--e s 24

3.2 The Energy Levels and Spin Splittingrin. the Asymmetric Double Well

R (N [ [ P 28
3.3 The Variation of the Barrier Width in‘the Asymmetric Double Well---------- 32
3.4 The Variation of the Barrier Height in the /Asymmetric Double Well--------- 37
Chapter 4 CoNCIUSTON - 41

References



Figure 1.1
Figure 1.2
Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

The Spin transistor proposed by Datta and Das
The InSb quantum well transistor
The ke p method in Kane’s model.

The potential profile of the asymmetric double well structure

The potential profile of Al, In, ,Sb/InSb/Al In, Sb/InSb/Al, In,  Sb

asymmetric double well

The potential profile of AISb/InSh/Al, ,;In, g Sb/InSb/Al, . In, ;. Sb
asymmetric double well

The energy levels in  AISb/InSb/Al, ,cIn, ;- Sb/INSb/Al, ;. In, ;- Sb
asymmetric double well with respect to in-plane wave vector

The spin splitting of energy.in
AISb/InSb/Al, ;s Inge-Sb/INShiAL, . In, ,.Sb asymmetric double well
with respect to in-plane wave vector

The spin splitting-of the.ground state in

AISb/InSb/Al, ;s In, o SBANSPIAL; . In,,.Sb asymmetric double well
with respect to the in-plane wave vector k and the barrier width a
The spin splitting of the first excited state in
AISb/InSb/Al ;s In, 4. Sb/InSh/Al, . In,,.Sb asymmetric double well
with respect to the in-plane wave vector k and the barrier width a
The spin splitting of the ground state in
AISb/InSb/Al, In,_ Sb/InSb/Al, In, ,Sb asymmetric double well with
respect to the in-plane wave vector k and the mole fraction x
The spin splitting of the first excited state in
AISb/InSb/Al, In,_ Sb/InSb/Al, In, ,Sb asymmetric double well with

respect to the in-plane wave vector k and the mole fraction x



Figure 3.9 The potential profile of AISb/InSb/Al, . In, - Sb/INSb/AI, ;1N 4.Sb

asymmetric double well with the barrier height changed by the

amount AV

Figure 3.10 The spin splitting of energy in
AISb/InSb/Al, ;sIn, ¢ Sb/INSb/Al, ;In,,:Sb asymmetric double well

with respect to the barrier width a and AV



Chapter 1 Introduction and Motivations

The past few decades of research and development in solid-state
semiconductor physics and electronics have witnessed a rapid growth in the
drive to exploit quantum mechanics in the design and function of
semiconductor devices. This has been fueled for instance by the remarkable
advances in our ability to fabricate nanostructures such as quantum wells,
guantum wires and quantum dots. Despite this contemporary focus on
semiconductor quantum devices, a principal quantum mechanical aspect of
the electron, its spin, has largely been ignored except in as much as it
accounts for an added quantum mechanical degeneracy.

A new paradigm of electronics based.on the spin degree of freedom of the
electron has begun to emerge’in the recent years. This field of semiconductor
which is named “the spintronics” places the electron spin rather than charge at
the very center of interest. The underlying-basis for this new electronics is the
intimate connection between the charge and spin degrees of freedom of the
electron. A crucial implication of this relationship is that spin effects can often
be accessed through the orbital properties of the electron in the solid state. An
example of this is the spin-dependent transport measurement such as giant
magneto resistance (GMR). In this manner, the information can be encoded in
not only the electron’s charge but also in its spin state, i.e. through the
alignment of spin up or spin down, relative to a reference such as an applied
magnetic field or magnetization orientation of the ferromagnetic film. This
ability offers opportunities for a new generation of semiconductor devices
which combine the standard microelectronics with the spin dependent effects

that arise from the interaction between the spin of a charge carrier and the



magnetic properties of the material. The advantages of these new devices
would include non-volatility, increased data processing speed, decreased
electric power consumption, and increased integration densities compared to
conventional semiconductor devices.

Experiments to explore the transfer of a spin-polarized electric current within
small devices have been ongoing for years. But attaining the same level of
exquisite control over the transport of spin in micro-scale or nano-scale
devices, as currently exists for the flow of charge in conventional electronic
devices, remains elusive. Among the major problems of semiconductor
spintronics is the understanding of spin-dependent transport in various
semiconductor heterostructures.

The reason for us to choose semiconductor.is that semiconductor materials
offer the possibility of new device functienalities which are not realizable in
metallic systems. Equilibrium carrier-densities' can be varied through a wide
range by doping. Furthermore, the electronic properties are easily tunable by
gate potentials because the typical carrier densities in semiconductor are low
compared to the metals. There is a vast body of knowledge concerning
semiconductor materials and processing; and these are among the most pure
materials available commercially. All these attributes converge to allow
definition of microelectronic devices with power gain, enabling the fan-out
necessary to create massively integrated systems. In addition, recent
advances have allowed optimization of interfaces between different epitaxial
materials at the level of atomic-scale control. In fact, many of these processes
have already been scaled up to commercial production lines. These factors
which are in concert with recent advances in materials science of high-quality

magnetic semiconductors now make semiconductor materials perhaps the first,
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and natural choice for future spintronics applications, especially those
involving large scale integration of spintronics devices.

For the real application of spintronics, Datta and Das proposed a “spin
transistor” and drew the special attention to the possibility of spin injection in
semiconductor systems in 1990. The structure of this “spin transistor” is shown
in Figure 1.1. The idea of spin transistor proposed by Datta and Das was
based on the manipulation of the spin state of the carrier by controlled spin
precession. This device is similar to the conventional FET which has a drain
terminal, a source terminal, and a channel which owns a tunable conductance
between the source terminal and the drain terminal. However, the spin
transistor is capable of injecting and accepting one spin component of the
carrier contribution only. The materials of the source terminal and the drain
terminal are both ferromagnetic metals- and with the same alignment of
electron spin orientation. The-electron-injects into the source terminal and gets
aligned by the source terminal as the same way the drain terminal does. The
current of electrons which have been aligned will flow through the channel
from the source terminal to the drain terminal. It has been approved that the
electrons which have been polarized are able to be manipulated via the
additionally applied gate voltage. This additionally applied gate voltage will
alter the spin-orbit interaction which originates from the asymmetry of the
inversion in the macroscopic potential and is named the Rashba term. Further
analysis to this structure will show us that the process of the control the
injected electrons by applied gate voltage provides us a possibility to realize

the spin device.
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The gate control of spin splitting in quantum wells has been demonstrated in
various two dimensional electron gas systems. There are considerable
theoretical studies on the spin-splitting of the conduction band in zinc blende
compounds.

Most IlI-V semiconductor materials have zinc blende lattice structure which is
asymmetric with respect to inversion. Even at zero magnetic field, the intrinsic
crystal fields lead to a conduction band spin splitting which is proportional to
k®. Spin orbit coupling can also be induced by an interfacial electric field within
a heterostructure. The carrier which is confined to move in an asymmetric
guantum well will experience an effective magnetic field. This effective
magnetic field is called the Rashba field that may induce spin precession. It is
possible to tune the rate of this Rashba-field-induced precession, which will

alter the built-in confinement-potential. The Rashba Hamiltonian is written as

Hy=afoxk]-7 (1)

where « is the spin-orbit interaction parameter which is linearly dependent

on (E,) through the energy gap and the effective mass. Z is the direction of

the electric field.
The total Hamiltonian assumes that the Rashba effect dominates all other

spin-coupled factors and is written as
H

o = Hi +Hg (2)

where



H, = 3)

The eigenstates for the spin-up condition and the spin-down condition are

then

21,2
LIS @)

B (k)= -+

The amplitude of the spin splitting energy is 2ok. at zero magnetic field at
the Fermi energy and is denoted by the notation A,. An electron will precess
an amount A9 =w L/v. in traversing a distance Lin the quantum well,
where o, = A,m’L/#’k. . The angle which an electron precesses through in

traversing a distance L is

_2mal

i

(5)

The range of values for « given by Nitta et al. [6-7] and Heida et al. [8] is
between 0.5 and 1x10™ eVm, and gives us the corresponding energy
splitting 1.5 to 6 meV. Thus, the tunability is achievable through tuning the
value of a by an external gate voltage.

In addition, Intel also proposed a new generation device which is the “InSb
Quantum Well Transistor” recently and was built on the multi-layer epitaxial
structure. The structure of the “InSb Quantum Well Transistor” is shown in
Figure 1.2. In the structure as you can see in Figure 1.2, the carriers are
confined within the InSb quantum well for transport. And we have found some
great properties of the material InSb which make it the good candidate for the

spintronics application.
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It has been recognized that the spin splitting in the asymmetrical quantum
well contains two distinct contributions. The first one is due to the inversion
asymmetry of the bulk material. The other is the Rashba term which comes
from the asymmetry in the macroscopic confining potential. This term has been
used to interpret the results of different asymmetric quantum well experiments.
It is reasonable for us to believe that this is the term which provides the
dominant contribution to the splitting. [1-5]

All the examples above tell us that the spintronics will have the weight in the
near future. Thus, more knowledge about it is needed in urgent in the
spintronics related field either to build the real devices or to continue any
deeper research.

The asymmetric double well.'structure which we proposed in this paper
provides a configuration to -enlarge the .spin orbit splitting of the electronic
states effectively. Also we demonstrated-how the spin-splitting energy will vary
with different parameters for any-further application in the near future.

We will organize this dissertation as several parts. Chapter 1 is the
introduction and motivation of our work. Chapter 2 is the basic theories which
are concerned in this work. Chapter 3 is the results of our work and will be

shown in figures mainly. Chapter 4 is the conclusion of our work.



Chapter 2 Theory

2.1 The ke p method

The wave function and the electronic band structure can be derived from the
Hamiltonian which satisfies the symmetry of the semiconductor crystal for a
periodic potential. Our interest here is near the band edges of the direct band
gap semiconductors. The wave vector k deviates by a small amount from a
vector ¢ where a local minimum or maximum occurs. The kep method is a
useful technique for us to analyze the band structure which is near a particular
point ko. It will become especially useful when it is near an extremum of the
band structure. We consider now the case that the extremum occurs at the
zone center where ko is zero (i.e.ithe Fvalley). This is a very practical case
for 11l-V direct band gap semiconductor for.employed in our work.

Consider the general Schrodinger.equation for an electron wave function

firstly

2

[p

+V () ¥ () =E, (k) ¥, (r) (6)

0

where W, (r) is the electron wave function in the nth band with a wave vector

k.

Next we assume the Block function u,, (r) is constant over a small region in

k-space and rewritten the equation (6)

2 h h2k?
P L Kep+V () ]u, () =LE, (k) -
2m, m, 2m,

[

JU (r) (7)

The above can be expanded near a particular point in the band structure. It
will be expanded near E,(0) when ko=0,

9



h? h2k?

[Ho +—k-pluy (r)=[E, (k) - JUp (r) (8)
m, 2m0
where
H, = P’ +V(r) (9)
2m,
HoUo(r) = E, (O)u,, (r) (10)

We know that the set of functions u,,(r) forms a complete set of function.

Thus, we can employ them to expand the solution at a particular k point

2

21,2 2 k.p ‘
n'k +ik.pnn+h_ ‘—““ (11)

E (k)=E_(0)+
(k) =E.(0) 2m, m, ms < E,(0)—E_(0)

i k’pnn'

Une (1) = (0* US55

n'#n

Ju,, ()
= Zan.un. M(a) (12)
LPnk (r) = eikor unk (r) (13)

where the momentum matrix elements are defined as

P = [Uro (PU, (F)dr (14)
unit
cell

and u,, (r)’s are normalized as

Juro@)u,o@)d’r =5, (15)
unit
cell

If only two strongly interacting nondegenerate bands are considered now, we

10



assume

U (1) =2 (K, (r) (16)

By substituting equation (16) into equation (8) for u, (r), then multiply by

u.,(r) and integrate over a unit cell

SHIEO+2 15, +k-p,}a, =E ) a, (17)

m

where the orthogonality relation is

[uso()ug,(rd’r =5, (18)

For two coupled bands labeled. by n and.n’ respectively, the equation (17) can

be solved through the determinant eguation

21,2
En(0)+7;k £ Tkop_
h mo mo h2k2 =0 (19)
—k-p E_.(0)+ -E
mO nn n 2m0

11



2.2 Kane’s model for band structure

The spin orbit interaction is taken into account in Kane’s model for direct band
semiconductors. The four bands are the conduction band, heavy-hole band,
light-hole band, and the spin orbit split-off band respectively. The four bands
considered in Kane's model have double degeneracy with their spin
counterparts. The band structure of Kane’s model is shown in Figure 2.1. In
other words, Kane’s model is the ke p method with the spin orbit interaction
which we need in this work.

First, let's consider the Hamiltonian near the zone center which represents

ko =0

h
H=H,+—50 VV x 20
0 4m§CZ p ( )
p2
H, = ——+V(r) (21)
2m,

where the second term in equation (20) represents the spin orbit interaction,
O is the Pauli spin matrix.

From the original Schrddinger equation combined with the Bloch function one
could obtain,
p’ h

L -V +

m, 4m?c?

[VV X p] Y } \Pnk (r) = En (k) \Pnk (r) (22)

Then we could obtain the Schrodinger equation for the cell periodic function

unk (r)

12



Figure 2.1 The ke p method in Kane’s model.
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2

p
{y

2
+V(r)+i ke p+%[vv xp]-o+%vv xk-o}tu,(r) =
4am;c 4mc

0 0 0 0

EIunk (r)

(23)

where
h2k?
2m,

E=E,(K)-

The fifth term on the left side of equation (23) is a k-dependent spin-orbit
interaction. This term is very small compared with the other terms because the
crystal momentum 7k is very small compared with the atomic momentum p
in the far interior of the atom where most of the spin orbit interaction occurs.

Thus we could rewrite equation,.(23) as follows

Hu, () = (Ho +—- ke p¥il [WV'xp]-0)u, (=EU,(F)  (24)
0 4mge

The term E  in equation (24) is the eigenvalue which we look for and which

has a corresponding eigenfunction as

l'Ink (r) = Z an‘ un‘O (r) (25)

The band edge functions u,,(r) are ‘S T> and ‘S i«> which correspond to
the eigenenergy E, for the conduction band, and ‘X T> , ‘Y T>, ‘Z T>,

‘X J«> , ‘Y »L>, and ‘Z J«> which correspond to the eigenenergy E, for the

14



valence band. The wave functions in each band are degenerate with respect to

Hamiltonian H,, . In other words,

Ho | T)=E,

sT), Hy[s{)=E,

S V)

Ho\x T>:Ep\xT H, x¢>:Ep\x ¢>

),
), Ho[Y V)=E, Y V)

p

Ho[Y T)=E, [y T

Ho[Z1)=E,[27), H,|Z{)=E,|Z )

|

It is convenient to choose the following basis functions since the electron
wave functions are p-like near the top of the valence band and s-like near the
bottom of the conduction band. The first. set of basis functions is degenerate

with the second set.

i), [XEAIEY, |- X )

V2 V2
and
. X +iY X —iY
i), ‘_ ), \ZT>,‘ )
where
Yio=|Z)
Yﬁlz$%|XiiY>

The 8x8 matrix becomes the equation (26) by assuming that the wave vector

k is set along z direction.

15



F 2} (26)

where
'E, 0 kP 0 ]
H 33 27)
kP RELN E 0
3 p
0 0 0 Ep+é
L 3

where P is the Kane’s parameter , and A is the spin-orbit split-off energy.

They are defined as,

7
P=-
|m0<S|pZ|Z>

v
OX

&

AE<X| &

D, p,|Y) (28)

Define Ep:—é and E;=E, to set the proper reference. The top of the

valence band for now is zero reference energy. The Hamiltonian thus becomes

'E, 0 kP O]
_ o -2 —*/EA 0
H= (29)
@ Y2 A
3 3
0 0 0 0]

By equation det‘ﬁ— E'l =0, we can get the four eigenvalues for E’ and also

16



the corresponding eigenfunctions. For the conduction band,

21,2 223E ZA 21,2
n’k?  k*P? (BB, + )_E+hk

S =t o E,(E,+4) ° 2m; (30)
4o =|iS V) (31)
4., =is 1) (32)

17



2.3 The Spin Orbit Interaction

The spin orbit interaction is the most important property of the IlI-V
semiconductor materials to be adopted in the spintronics device. This effect
comes from the relativistic collection to the non-relativistic electronic
Hamiltonian. There are two recognized factors which contribute to the
spin-orbit interaction for asymmetric IlI-V semiconductor quantum wells. The
first one is caused by the inversion asymmetry of the zinc blende lattice and is
the common modification for IlI-V semiconductors. The inversion asymmetry
will lead to a splitting of conduction band. The energy level of this spin splitting
is of the third order of k and is often referred to as the Dresselhaus term.

The other one comes from the asymmetry in the macroscopic confining
potential and is described by.the Rashba term. This term has been used to
interpret the results of asymmetric .quantum: wells and quantum wires
successfully. There are also many reasons which make us to believe that this
is the most dominant contribution ‘to ‘the spin splitting in the narrow gap
heterostructures. To derive the Rashba term, we start from the Kane model. In
order to obtain the convenience for the heterostructure problem which has
been shown, we choose the following linear combinations as basis functions.
[9]

ulz‘S T>,

2 1 .
=22 ) ix 1)y 4,
Uy === (fix D)+ [y 1)),

2

1 .
u4=—ﬁ[‘Y -[@-ix) M, (33)
usz—‘S ¢>,

18



2 1 .
b= 22 1+ ey T,

1 .
u7:—ﬁ(—‘|x ~L>+‘Y T>),

1 .
ugz—ﬁ[‘Y M+l +ix) b,

where S, X, Y, and Z denotes the conduction- and the tree-valence bulk
Bloch functions at the zone center. The arrows represent the spin state with
respect to the y axis. In order to make use of the spherical symmetry of the
Kane model, we set the parallel wave vector k along the x axis and the growth

direction along the z axis. Then the electron wave function will be given by
.k 8
w(R)=e" > f (2)us(r) (34)
i=1

where f; are the envelope functions. And the effective-mass Hamiltonian can

be block diagonalized as

Ho o
o .
with
V(2) P[%ig] ¢§Pk %[%ik]
P97 vg-E, o 0
H,.= dz 2 (36)
3 py 0 V()-E, 0
p 24
Shgd o 0 V@-E-a

19



where V(z) is the confining potential, E, is the band gap, A is the

spin-orbit energy splitting, and P is the momentum matrix element defined as

2 h .
Pz\gm—<us|px|x> (37)

e

where m, is the bare electron mass.

The kinetic energy term is neglected from the diagonal matrix elements
because of its relatively small value compared with the off-diagonal elements.
By eliminating the other components, we can obtain the equation listed below

for the conduction band envelope functions.

w1 d g ek
2 dzm(z,e.)dz 2m(z;€,)

[

WV (2)F a(z,e,)k—-¢,]1f.=0  (38)

with
2
L P2 L ] (39)
m(z,e,) h° e, -V(2)+E, & -V(2)+E;+A
and
P2 d 1 1
a(z,e.)=——I[ ] (40)

2 dz e, -V(2)+E, & -V(2)+E, +A

In order to fit the notation parameters which are employed in our structure, we
will rewrite equation (38), (39), and (40) as (41), (42), and (43) respectively.

The potential profile and the parameters are shown in Figure 2.2.

20
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Figure 2.2 The potential profile of the asymmetric double well structure
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n*d 1 d h2k? dg

sy Iy OV (@ k-] 20 @D
with
S S S : 1 @
Mze) 1 oe V@-EQ) £ -V(@D)-E@)+AR)
and

1 1
&, -V(2)-E,(2) & -V(2)-E,(2)+AQ)

B(z.e.) = %[ ] (43)

The + sign in the equations above refers respectively to spin up and spin
down along the y direction.

The term [3 is the spin coupling parameter. Now let us discuss the boundary
conditions in the calculation. Firstly we consider the case at z=0 an interface
between two semi-infinite layers:of semiconductors 1 and 2. And we may write

this as

— L) o) (44)
m, m

1
m 2

and

B = p0(=2) + 5,0(2) (45)

By integrating across the interface, we can obtain boundary conditions as

f, continuous (46)
and
2
_A F pkf, continuous (47)
2m dz -

The two-spin components are always decoupled. The basis functions for the

22



spin states are those which point along the y direction. If we denote W as the

spinor with components f, and f_, the boundary conditions can be written

as
W continuous (48)
and
n? d :
——Y¥Y+o, Y continuous (49)
2m dz

where o, is the Pauli spin matrix.

This is the simpler form which shows the cross product symmetry in the
Rashba term. Because we set the spin quantization direction along the
k-dependent effective magnetic, field, the :decoupling of the spins and the
consequent simplicity in the expressions listed above occur. If k or A goes
to zero, the boundary conditions above will reduce to the generalized Ben
Daniel-Duke boundary conditions. Also, in the case of symmetric quantum
wells, the Rashba splitting is exactly zero because of the mirror reflection
which will take the spin-up condition into the spin-down condition and vice
versa.

By considering the dependence of [3 on z in equation (41), and thereby two
contributions to the Rashba spin-orbit splitting are distinguishable. The first
one is the discontinuity of the band parameters, while the second one is
related to the space charge and/or the external electrostatic field. The
discontinuity of the band parameters will set the spin dependent boundary
conditions, while the external electric field gives a spin dependent term in the
effective mass Hamiltonian. These two contributions to the Rashba term have

been identified in a previous estimation of the Rashba coupling parameter. [10]
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Chapter 3 Results

3.1 Asymmetrical Square Double Well

The discontinuities of the band parameters and the space charge and/or the
external electrostatic potential would contribute to the Rashba term in a similar
way only if the band edge discontinuities were all the same. But the two
contributions are of a different character and are both presented in the real
sample.

Let us first consider the problem of the bound states of the electrons which

are confined in the semiconductor double well structure of the type

Al In,,Sb/InSb/Al, In,  Sb/InSb/Al In, Sb with x=y. The potential profile is

shown in the Figure 3.1. By solving eguation (41) we can obtain the

eigenvalues ¢, for each value of k. We setthe wave functions as

¢, =Ce e

@, =C, cos(k,z)+C,sin(k,z)
@, =C,e* +Cse ™"’
@, =C,cos(k,z)+C,sin(k,2z)

Os = Cseiq'z (50)

The wave vectors in the growth direction are given by

q = thﬂ(E o)k (51)
K, = J 2;}“ (6—E,,) K (52)
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Figure 3.1 The potential profile of Al In,  Sb/InSb/Al, In,  Sb/InSb/Al In,  Sb

asymmetric double well
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g, - J 2 (B )+ (53)
where 1 denotes the barrier of the region 1. w denotes the wells in the
region 2 and 4. r denotes the barrier in the region 3 and 5.

By the boundary conditions from equations (46) and (47), we can get

0 = §92| 2=0

2 2

/) h
—%52% + ke, = —Haz(ﬂz + Bk, o

| w

®, = ¢3| =L
h? h?
_Razwz + B Kpyi= 777y 0,0, + Bk,
7 1 ¢4| z=a+L (54)

2 2

h h
_Raz% +ﬂrk¢3 3 —H 82(04 + ﬂwk¢4| z=a+L

r w

Py = ¢5| z=a+2L

2 2

h h
_Waz¢4 +ﬂwk¢4 = _Raz% +ﬂrk¢5|z:a+2L

W r

Next we write down the plane wave solutions for ¢. in the different regions

which match the boundary conditions at the interfaces. The solutions are
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(~L+e™* Xm{m, [2°ky, +4° G (B, = B,) (B, = B,)]+ 2i°ka,mi, (B, —,)}+
rPqmG[r*a, +2km (B, - B, )M of g, +m7 [a°k; +4k*m;, (B, - 5,)°]
+4n’kg,m i (=B + B,

2e** cos@k, L)|2n°k;a, cosh@g, )m mi{n*a,m, +m[A*q, +2km, (5 - B.)]}+
sinhq, ){-" 7 m(, +m? [k, +4k*mi, (8, - 8,)° 1}

(m{m, [11°k;, +4K* MG (6, - B,)(B. ~ B+ (55)
2°kg M, (=4 + B )R amGn*g, +2km (=5, + 4,)D| =

2e™% n’k, sink, L)m, [sinh(ag, ){n2a,m, +m [A%q, +2km, (5 - B.)1}
{htarm +mi[n'k;, +4k*mg (B, - 4,)°TH2h"q, cosh@g, )m,

(mdm, [n%k;, +4k*m (8 —B,) (B, = B.)]+2°ka,m, (=4 +5,)}-

g mulia, +2km (-4, +4,)D)

And m, and g, could be obtained by equation (42) and (43) respectively.

L is the well width in region 2 andi4."a is the barrier width in region 3. ¢, is

the energy which satisfies equation (55).with. 7. .
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3.2 The Energy Levels and Spin Splitting in the Asymmetric Double Well
Structure

Consider the case x=1, y=0.15 as shown in Figure 3.2. Then we will
obtain an AISb/InSb/Al ;In, . Sb/INSb/Al, . In,,.Sb  asymmetric double well
structure. In this structure, we set the well width L in region 2 and region 4 as
5 nm and the barrier width a in region 3 as 5 nm initially. For AlSb, the energy
gap is 2.384 eV, A is 0.673 eV, and the effective mass is 0.26m,. For InSh,
the energy gap is 0.2352 eV, A is 0.81 eV, and the effective mass is
0.01359m,. For the conduction band offset, we adopt the 72% rule. Then we
can obtain the barrier height V, at the AlSb/InSb interface as 1.547 eV, and the
barrier height V, at the InSb/Al ,.In g Sbinterface as 0.232 eV respectively.
In Figure 3.3, we plot the energy.levels of this'structure as a function of k. We
can see that there are two energy levels exist in this well, but we can not obtain
any further information through this-plot.

For more information, we need. the plot: of the spin splitting of the energy
levels as shown in Figure 3.4. We can see clearly the splitting of the energy
levels increases with in-plane wave vector k in Figure 3.4. Thus we can
confirm the spin splitting of the asymmetric double well does exist and needs
further exploration from us. We will demonstrate some configurations which
can alter the characteristic of this asymmetric double well structure to see how
the spin splitting of energy will vary with different variables in the following

sections.
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X Z

Figure 3.2 The potential profile of AISb/InSh/Al, . In, . Sh/INSb/AI ;1N 4.Sb

asymmetric double well
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Figure 3.3 The energy levels in  AISb/InSb/Al, ;In, ¢ Sb/INSb/Al . In,.Sb

asymmetric double well with respect to in-plane wave vector
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Spin Splittngmey)

'i 2 k(10Fcm™")
Figure 3.4 The spin splitting of energy in
AISb/InSb/Al ,;In, 4. Sb/InSh/Al, . In,,.Sb asymmetric double well with respect

to in-plane wave vector
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3.3 The Variation of the Barrier Width in the Asymmetric Double Well

In this case, we set the well width in region 2 and 4 as 5nm, x as 1, and y
as 0.15 to see how the spin splitting will behave with different values of the
wave vector k and the barrier width a. Withx is1,and y is 0.15, we could
obtain the structure AISb/InSb/Al, In,.Sb/InSb/Al,,.In,,.Sb . The potential
profile of this case is the same as Figure 3.2. Figure 3.5 is the plot of the spin
splitting of the ground state with respectto k and a. Figure 3.6 is the plot of
the spin splitting of the first excited state with respect to k and a. In Figure
3.5, we can clearly see that the amplitude of the spin splitting decreases with
the increase of the barrier width a , while it increases with the increase of the
in-plane wave vector k. We also show the variation caused by different value
of the mole fraction x for the.ground state.and.the first excited state in Figure

3.7 and Figure 3.8 respectively.
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5 2

Figure 3.6 The spin splitting of the first excited state in

AISb/InSb/Al ,;In, 4. Sb/InSb/Al, . In,,.Sb asymmetric double well with respect

to the in-plane wave vector k and the barrier width a
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Figure 3.7 The spin splitting of the ground state in
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Figure 3.8 The spin splitting of the first excited state in

AISb/InSb/Al In,_ Sb/InSb/Al, In,_ Sb asymmetric double well with respect to

the in-plane wave vector k and the mole fraction x
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3.4 The Variation of the Barrier Height in the Asymmetric Double Well

In addition to the variation of the barrier width in the asymmetric double well
structure, one can also modify the barrier height of the barrier to control the

spin splitting of energy.. In this structure, the well width and the barrier width

are both set as 5nm. The mole fraction x is 1 while the mole fraction y is

0.15, and which provide us the double quantum well structure of

AISb/InSb/Al - In ;- Sb/INSb/AI . In,4.Sb . And the term AV is the increment of

the barrier height. The band structure for this case is shown in Figure 3.9. Note

that the effective mass m, and the spin coupling parameter g, for region 3
are concerned with the parameter AV since it will change the conduction
band edge of this region as a consequence. With the same procedure which
had been mentioned in section 3.1, we could gbtain the dispersion relation for

this case

sinh(aqg,)mZ(~#°k,, cos(k,,L)m, [0, + 2km, (=53, + B,)] +

sin(k, L)Y{m, [2*k;, +4k*mg (B, = B.,)(B, — B+ 2h°kaymy (B = B,)P

(—hzkw cos(k,, L)mw[hzqr + 2km, (B, — B,)]+sin(k, L)

{m, [7°k;, +4k*my (B = BB, — B+ 2h°ka,mi, (=5, + B,)D +

h*q? sinh(aq,)m2{#nk , cos(k ,L)m, +sin(k, L)m, [#*q, +2km, (B, - B)]} (56)
{n*k,, cos(k,,L)m, +sin(k,L)m,[#>q, +2km (=B, + B, )]} + 74K, 0s
cosh(ag,)m,m, [k, cos(k, L)m, {r2q,m, +m,[7q, +2km, (5, - 5,)]}+
sin(2k, L)(n*q,m’[h*q, +2km (=B, + B,)]+

m {2i°kq,mg, (B, = B,) +m, [-h*k; +4k*mi (B, = B.) (B, + BIP| =0
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X Z
Figure 3.9 The potential profile of AISh/InSb/Al, . In, . Sh/INSb/AI ;. In,4.Sb

asymmetric double well with the barrier height changed by the amount AV
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In Figure 3.10, we plot the spin splitting with a fixed in-plane wave vector
k=2x10°cm™ as a function of the barrier width and the increment of the
barrier height. In this figure, the large spin splitting could be obtained even
when the parameter AV is zero. We had already shown how the splitting
varies with the barrier width in section 3.3. However this is the less elastic way
to control the splitting since it relates to the process mainly and are fixed
initially. But we can still enlarge the amplitude of the splitting by applying the
external voltage which will modify the barrier height. Obviously this use can
provide people more flexibility to correlate this effect with any further

application.
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Figure 3.10 The spin splitting of energy in

AISb/InSb/Al, ;cIn, ;. Sb/INSb/Al, ;. In,,:Sb  asymmetric double well with respect

to the barrier width a and AV
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Chapter4 Conclusion

The most structures or theories for the spintroics are based on the metal or
the dielectric materials only. But our proposal here attempts to realize the spin
splitting mechanism in the total semiconductor structure. This will provide us
the convenience of both the easier operation and the massive production as a
consequence.

In this research we have presented a theoretical study of the spin orbit
splitting in energetic levels in asymmetric double well structure and
demonstrated some configurations which enlarge the amplitude of the spin
splitting effectively. We began with the energy levels and the spin splitting
which exist in the well. After that, we.organized some achievable and effective
configurations to control the .spin splitting. and observed how spin splitting
behaves with different factors. To control it as we wish in real applications,
there are two essentials which we-need.The first one is the large amplitude of
the spin splitting. And the second'is that‘this effect must be controllable. No
lack of the two essentials described above at the same time is the only way to
make sure this mechanism can function as well as we wish since the energy
levels at the stage right now are on the electron volt scale.

Our research is the first step for this application and can be the starting point
for the more detailed calculation. More experimental results are required to

confirm the results in this research further.
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