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摘要 

 

 

  在本篇論文中的絕大部分將致力於分析以往不曾被探討過的半導體非對稱雙

量子井結構中之自旋相依能階分裂。跟隨著 E. A. de Andrada e Silva 先前於

半導體非對稱量子井結構中之自旋相依電子狀態分裂的工作成果，我們試圖去呈

現半導體非對稱雙量子井結構中之自旋相依能階分裂並示範如何去調整自旋相

依能階分裂的大小以實現實際的自旋電子學元件。 

 源自於八個能帶的 Kane 模型之標準封包函數讓我們得以研討在 III-V 族半導

體非對稱雙量子井結構中電子色散關係之自旋相依能階分裂。我們從亦為導電帶

和價電帶中的兩種成分之封包函數的似薛丁格方程式之有效質量 Hamiltonian

運算子開始我們的研究。最後憑藉著分別對於自旋向上以及自旋向下的數值解，

我們呈現出在 的結構中自旋相依能階

分裂的值會如何隨著不同的參數值做變化。 
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Abstract 
 

  In this paper we devote the most of it to the analysis of spin-orbit interaction 

in low dimensional semiconductor asymmetric double well structure which has 

never been done before. Following the previous work of spin-orbit splitting of 

electronic states in semiconductor asymmetric quantum wells by E. A. de 

Andrada e Silva, we attempt to present the spin-orbit splitting of electronic 

states in the semiconductor asymmetrical double well and demonstrate how to 

adjust the amplitude of the spin-orbit splitting in order to have a real spintronics 

device.  

  The spin-orbit splitting in the dispersion relation for electrons in III-V 

semiconductor asymmetric double well is studied within the standard envelope 

function formalism starting from the eight-band Kane model for the bulk. We 

start our investigation from the effective mass Hamiltonian which is the 

Schrödinger-like equation for the two components of the conduction band 

envelope function. At last we show how the spin-orbit splitting will vary with 

different parameters in  asymmetric 

quantum wells by solving the solutions for both spin up and spin down 

numerically. 
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Chapter 1   Introduction and Motivations 
 

The past few decades of research and development in solid-state 

semiconductor physics and electronics have witnessed a rapid growth in the 

drive to exploit quantum mechanics in the design and function of 

semiconductor devices. This has been fueled for instance by the remarkable 

advances in our ability to fabricate nanostructures such as quantum wells, 

quantum wires and quantum dots. Despite this contemporary focus on 

semiconductor quantum devices, a principal quantum mechanical aspect of 

the electron, its spin, has largely been ignored except in as much as it 

accounts for an added quantum mechanical degeneracy. 

A new paradigm of electronics based on the spin degree of freedom of the 

electron has begun to emerge in the recent years. This field of semiconductor 

which is named “the spintronics” places the electron spin rather than charge at 

the very center of interest. The underlying basis for this new electronics is the 

intimate connection between the charge and spin degrees of freedom of the 

electron. A crucial implication of this relationship is that spin effects can often 

be accessed through the orbital properties of the electron in the solid state. An 

example of this is the spin-dependent transport measurement such as giant 

magneto resistance (GMR). In this manner, the information can be encoded in 

not only the electron’s charge but also in its spin state, i.e. through the 

alignment of spin up or spin down, relative to a reference such as an applied 

magnetic field or magnetization orientation of the ferromagnetic film. This 

ability offers opportunities for a new generation of semiconductor devices 

which combine the standard microelectronics with the spin dependent effects 

that arise from the interaction between the spin of a charge carrier and the 
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magnetic properties of the material. The advantages of these new devices 

would include non-volatility, increased data processing speed, decreased 

electric power consumption, and increased integration densities compared to 

conventional semiconductor devices. 

Experiments to explore the transfer of a spin-polarized electric current within 

small devices have been ongoing for years. But attaining the same level of 

exquisite control over the transport of spin in micro-scale or nano-scale 

devices, as currently exists for the flow of charge in conventional electronic 

devices, remains elusive. Among the major problems of semiconductor 

spintronics is the understanding of spin-dependent transport in various 

semiconductor heterostructures.  

The reason for us to choose semiconductor is that semiconductor materials 

offer the possibility of new device functionalities which are not realizable in 

metallic systems. Equilibrium carrier densities can be varied through a wide 

range by doping. Furthermore, the electronic properties are easily tunable by 

gate potentials because the typical carrier densities in semiconductor are low 

compared to the metals. There is a vast body of knowledge concerning 

semiconductor materials and processing; and these are among the most pure 

materials available commercially. All these attributes converge to allow 

definition of microelectronic devices with power gain, enabling the fan-out 

necessary to create massively integrated systems. In addition, recent 

advances have allowed optimization of interfaces between different epitaxial 

materials at the level of atomic-scale control. In fact, many of these processes 

have already been scaled up to commercial production lines. These factors 

which are in concert with recent advances in materials science of high-quality 

magnetic semiconductors now make semiconductor materials perhaps the first, 
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and natural choice for future spintronics applications, especially those 

involving large scale integration of spintronics devices. 

For the real application of spintronics, Datta and Das proposed a “spin 

transistor” and drew the special attention to the possibility of spin injection in 

semiconductor systems in 1990. The structure of this “spin transistor” is shown 

in Figure 1.1. The idea of spin transistor proposed by Datta and Das was 

based on the manipulation of the spin state of the carrier by controlled spin 

precession. This device is similar to the conventional FET which has a drain 

terminal, a source terminal, and a channel which owns a tunable conductance 

between the source terminal and the drain terminal. However, the spin 

transistor is capable of injecting and accepting one spin component of the 

carrier contribution only. The materials of the source terminal and the drain 

terminal are both ferromagnetic metals and with the same alignment of 

electron spin orientation. The electron injects into the source terminal and gets 

aligned by the source terminal as the same way the drain terminal does. The 

current of electrons which have been aligned will flow through the channel 

from the source terminal to the drain terminal. It has been approved that the 

electrons which have been polarized are able to be manipulated via the 

additionally applied gate voltage. This additionally applied gate voltage will 

alter the spin-orbit interaction which originates from the asymmetry of the 

inversion in the macroscopic potential and is named the Rashba term. Further 

analysis to this structure will show us that the process of the control the 

injected electrons by applied gate voltage provides us a possibility to realize 

the spin device. 
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Figure 1.1 The Spin transistor proposed by Datta and Das 
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The gate control of spin splitting in quantum wells has been demonstrated in 

various two dimensional electron gas systems. There are considerable 

theoretical studies on the spin-splitting of the conduction band in zinc blende 

compounds. 

Most III-V semiconductor materials have zinc blende lattice structure which is 

asymmetric with respect to inversion. Even at zero magnetic field, the intrinsic 

crystal fields lead to a conduction band spin splitting which is proportional to 

. Spin orbit coupling can also be induced by an interfacial electric field within 

a heterostructure. The carrier which is confined to move in an asymmetric 

quantum well will experience an effective magnetic field. This effective 

magnetic field is called the Rashba field that may induce spin precession. It is 

possible to tune the rate of this Rashba-field-induced precession, which will 

alter the built-in confinement potential. The Rashba Hamiltonian is written as 

3k

 

zH R ˆ][ ⋅×= kσα                          (1) 

 

where α  is the spin-orbit interaction parameter which is linearly dependent 

on zE  through the energy gap and the effective mass.  is the direction of 

the electric field. 

ẑ

 The total Hamiltonian assumes that the Rashba effect dominates all other 

spin-coupled factors and is written as 

 

Rktot HHH +=                           (2) 

 

where 
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∗=
m
kH k 2

22h                              (3) 

 

 The eigenstates for the spin-up condition and the spin-down condition are 

then 

k
m
kkE α±= ∗

±

2
)(

22h                         (4) 

 

 The amplitude of the spin splitting energy is Fkα2  at zero magnetic field at 

the Fermi energy and is denoted by the notation R∆ . An electron will precess 

an amount θ∆ = FL vLω  in traversing a distance L in the quantum well, 

where FRL kLm 2h∗∆=ω . The angle which an electron precesses through in 

traversing a distance L  is 

 

θ∆ = 2

2
h

Lm α∗                            (5) 

 

 The range of values for α  given by Nitta et al. [6-7] and Heida et al. [8] is 

between 0.5 and 1  eVm, and gives us the corresponding energy 

splitting 1.5 to 6 meV. Thus, the tunability is achievable through tuning the 

value of 

1110−×

α  by an external gate voltage. 

In addition, Intel also proposed a new generation device which is the “InSb 

Quantum Well Transistor” recently and was built on the multi-layer epitaxial 

structure. The structure of the “InSb Quantum Well Transistor” is shown in 

Figure 1.2. In the structure as you can see in Figure 1.2, the carriers are 

confined within the InSb quantum well for transport. And we have found some 

great properties of the material InSb which make it the good candidate for the 

spintronics application.
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Figure 1.2 The InSb quantum well transistor 
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It has been recognized that the spin splitting in the asymmetrical quantum 

well contains two distinct contributions. The first one is due to the inversion 

asymmetry of the bulk material. The other is the Rashba term which comes 

from the asymmetry in the macroscopic confining potential. This term has been 

used to interpret the results of different asymmetric quantum well experiments. 

It is reasonable for us to believe that this is the term which provides the 

dominant contribution to the splitting. [1-5] 

All the examples above tell us that the spintronics will have the weight in the 

near future. Thus, more knowledge about it is needed in urgent in the 

spintronics related field either to build the real devices or to continue any 

deeper research. 

 The asymmetric double well structure which we proposed in this paper 

provides a configuration to enlarge the spin orbit splitting of the electronic 

states effectively. Also we demonstrated how the spin-splitting energy will vary 

with different parameters for any further application in the near future. 

We will organize this dissertation as several parts. Chapter 1 is the 

introduction and motivation of our work. Chapter 2 is the basic theories which 

are concerned in this work. Chapter 3 is the results of our work and will be 

shown in figures mainly. Chapter 4 is the conclusion of our work.
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Chapter 2  Theory 
 

2.1 The k •p method 
 

 The wave function and the electronic band structure can be derived from the 

Hamiltonian which satisfies the symmetry of the semiconductor crystal for a 

periodic potential. Our interest here is near the band edges of the direct band 

gap semiconductors. The wave vector k deviates by a small amount from a 

vector c where a local minimum or maximum occurs. The k •p method is a 

useful technique for us to analyze the band structure which is near a particular 

point . It will become especially useful when it is near an extremum of the 

band structure. We consider now the case that the extremum occurs at the 

zone center where  is zero (i.e. the Γ valley). This is a very practical case 

for III-V direct band gap semiconductor for employed in our work. 

0k

0k

 Consider the general Schrödinger equation for an electron wave function 

firstly 

 

                     )(
2

[
0

2

rV
m
p

+ ] )(rknΨ = )(knE )(rknΨ                 (6) 

 

where  is the electron wave function in the nth band with a wave vector 

k. 

)(rknΨ

 Next we assume the Block function  is constant over a small region in 

k-space and rewritten the equation (6) 

)(rknu

 

          )(
2

[
00

2

rpk V
mm

p
+⋅+

h ] =[)(rknu −)(knE
0

22

2m
kh ]             (7) )(rknu

 

 The above can be expanded near a particular point in the band structure. It 

will be expanded near  when =0, )0(nE 0k
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                pk ⋅+
0

2

0[
m

H h ] =[)(rknu −)(knE
0

22

2m
kh ]             (8) )(rknu

 where 

)(
2 0

2

0 rV
m
pH +=                           (9) 

)()0()( 000 rr nnn uEuH =                     (10) 

 

 We know that the set of functions  forms a complete set of function. 

Thus, we can employ them to expand the solution at a particular k point 

)(0 rnu

 

nnnn mm
kEE pkk ⋅++=

00

22

2
)0()( hh + 2

0

2

m
h ∑

≠ −

⋅

nn nn

nn

EE' '

'

)0()0(

2
pk

        (11) 

 

)(rknu = +)(0 rnu ∑
≠ −

⋅

nn
n

nn

nn u
EEm'

'

'

'
)(]

)0()0(
[

0
0

r
pkh  

∑≡
'

'' )(0
n

nn ua r                                 (12) 

)(rnkΨ =                             (13) )(e rk
rk

n
i u•

 
where the momentum matrix elements are defined as  
 

rrprp 3
00 )()( '' duu n

cell
unit

nnn ∫ ∗=                         (14) 

 
and ’s are normalized as  )(rknu
 

∫ =∗

cell
unit

nnnn duu ''

3
00 )()( δrrr                         (15) 

 

 If only two strongly interacting nondegenerate bands are considered now, we 
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assume  

 

)(rknu =∑
'

'' )()(
n

onn ua rk                         (16) 

 

 By substituting equation (16) into equation (8) for , then multiply by 

 and integrate over a unit cell 

)(rknu

)(0 r∗
nu

 

∑ ⋅++
'

'' }]
2

)0({[
00

22

n
nnnnn mm

kE pkhh δ 'na =           (17) )(knE na

 
 where the orthogonality relation is  
 

∫ =∗
''

3
00 )()( nnnn duu δrrr                         (18) 

 

 For two coupled bands labeled by n and n’ respectively, the equation (17) can 

be solved through the determinant equation 

 

0

2
)0(

2
)0(

0

22

0

00

22

''

'

=
−+⋅

⋅−+

E
m
kE

m

m
E

m
kE

nnn

nnn

hh

hh

pk

pk
                 (19) 
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2.2 Kane’s model for band structure 
 

 The spin orbit interaction is taken into account in Kane’s model for direct band 

semiconductors. The four bands are the conduction band, heavy-hole band, 

light-hole band, and the spin orbit split-off band respectively. The four bands 

considered in Kane’s model have double degeneracy with their spin 

counterparts. The band structure of Kane’s model is shown in Figure 2.1. In 

other words, Kane’s model is the k• p method with the spin orbit interaction 

which we need in this work. 

 First, let’s consider the Hamiltonian near the zone center which represents 

=0 0k

 

pσ ×∇⋅+= V
cm

HH 22
0

0 4
h                    (20) 

)(
2 0

2

0 rV
m
pH +=                           (21) 

 

 where the second term in equation (20) represents the spin orbit interaction, 

σ is the Pauli spin matrix. 

 From the original Schrödinger equation combined with the Bloch function one 

could obtain, 

 

{ )(
2

[
0

2

rV
m
p

+  + σp ⋅×∇ ][
4 22

0

V
cm

h
} )(rnkΨ = )(knE )(rnkΨ       (22) 

 

 Then we could obtain the Schrödinger equation for the cell periodic function 

 )(rknu
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Figure 2.1 The k• p method in Kane’s model. 
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{ )(
2

[
0

2

rV
m
p

+ +
0m
h k p+• σp ⋅×∇ ][

4 22
0

V
cm

h + σk ⋅×∇V
cm 22

0

2

4
h }

 

=)(rknu

)(' rknuE

   (23) 

 

where 

'E = −)(knE
0

22

2m
kh  

 

 The fifth term on the left side of equation (23) is a k-dependent spin-orbit 

interaction. This term is very small compared with the other terms because the 

crystal momentum  is very small compared with the atomic momentum p 

in the far interior of the atom where most of the spin orbit interaction occurs. 

Thus we could rewrite equation (23) as follows 

kh

 

)(rknHu ≅ ( +0H
0m
h k• p+ σp ⋅×∇ ][

4 22
0

V
cm

h ) =      (24) )(rknu )(' rknuE

 

 The term 'E  in equation (24) is the eigenvalue which we look for and which 

has a corresponding eigenfunction as 

 

)(rknu =∑
'

'' )(0
n

nn ua r                         (25) 

 

 The band edge functions  are )(0 rnu ↑S  and ↓S  which correspond to 

the eigenenergy  for the conduction band, and sE ↑X  , ↑Y , ↑Z , 

↓X  , ↓Y , and ↓Z  which correspond to the eigenenergy  for the pE
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valence band. The wave functions in each band are degenerate with respect to 

Hamiltonian . In other words, 0H

 

0H ↑S = sE ↑S , 0H ↓S = sE ↓S  

0H ↑X = pE ↑X , 0H ↓X = pE ↓X  

0H ↑Y = pE ↑Y , 0H ↓Y = pE ↓Y  

0H ↑Z = pE ↑Z , 0H ↓Z = pE ↓Z  

 

 It is convenient to choose the following basis functions since the electron 

wave functions are p-like near the top of the valence band and s-like near the 

bottom of the conduction band. The first set of basis functions is degenerate 

with the second set. 

 

↓iS , ↑
−
2
iYX , ↓Z , ↑

+
−

2
iYX  

and 

↑iS , ↓
+

−
2
iYX , ↑Z , ↓

−
2
iYX

 

where 

10Y = Z  

11±Y =m iYX ±
2

1  

 

 The 8×8 matrix becomes the equation (26) by assuming that the wave vector 

k is set along z direction. 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

H
H
0

0                            (26) 

 

where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
+

∆

∆∆
−

=

3
000

0
3
2

0
3
2

3
0

00

p

p

p

s

E

EkP

E

kPE

H                   (27) 

 

where P is the Kane’s parameter , and Δ is the spin-orbit split-off energy. 

They are defined as, 

 

P ≡ i− ZpS
m z

0

h  

Δ≡ Yp
y
Vp

x
VX xy ∂

∂
−

∂
∂                  (28) 

 

Define =pE
3
∆

−  and =  to set the proper reference. The top of the 

valence band for now is zero reference energy. The Hamiltonian thus becomes 

sE gE

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
−

∆

∆∆
−

=

0000

0
33

2

0
3
2

3
20

00

kP

kPE

H

g

                     (29) 

 

 By equation det IH E ′− =0, we can get the four eigenvalues for E ′  and also 
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the corresponding eigenfunctions. For the conduction band, 

 

)(kEc = +gE
0

22

2m
kh
+

)(
)23(

3

22

∆+

∆+

gg

g

EE
EPk ≡ gE + ∗

em
k

2

22h        (30) 

↓= iSc αφ ,                           (31) 

↑= iSc βφ ,                           (32) 
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2.3 The Spin Orbit Interaction 
 

 The spin orbit interaction is the most important property of the III-V 

semiconductor materials to be adopted in the spintronics device. This effect 

comes from the relativistic collection to the non-relativistic electronic 

Hamiltonian. There are two recognized factors which contribute to the 

spin-orbit interaction for asymmetric III-V semiconductor quantum wells. The 

first one is caused by the inversion asymmetry of the zinc blende lattice and is 

the common modification for III-V semiconductors. The inversion asymmetry 

will lead to a splitting of conduction band. The energy level of this spin splitting 

is of the third order of  and is often referred to as the Dresselhaus term. k

 The other one comes from the asymmetry in the macroscopic confining 

potential and is described by the Rashba term. This term has been used to 

interpret the results of asymmetric quantum wells and quantum wires 

successfully. There are also many reasons which make us to believe that this 

is the most dominant contribution to the spin splitting in the narrow gap 

heterostructures. To derive the Rashba term, we start from the Kane model. In 

order to obtain the convenience for the heterostructure problem which has 

been shown, we choose the following linear combinations as basis functions. 

[9]  

1u = ↑S ,  

2u = ↑Z
3
2 + )(

6
1

↓+↑ YiX ,  

3u = )(
2

1
↓+↑−− YiX , 

4u = ])([
3

1
↑−−↓− iXZY ,                   (33) 

5u = ↓− S , 
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6u = ↓− Z
3
2 + )(

6
1

↑+↓ YiX , 

7u = )(
2

1
↑+↓−− YiX , 

8u = ])([
3

1
↓++↑− iXZY , 

 

where , S X , , and Y Z  denotes the conduction- and the tree-valence bulk 

Bloch functions at the zone center. The arrows represent the spin state with 

respect to the y axis. In order to make use of the spherical symmetry of the 

Kane model, we set the parallel wave vector k along the x axis and the growth 

direction along the z axis. Then the electron wave function will be given by  

 

)(rψ =                       (34) ∑
=

8

1
)()(

j
jj

ikx uzfe r

 

where  are the envelope functions. And the effective-mass Hamiltonian can 

be block diagonalized as  

jf

 

H=                            (35) ⎥
⎦

⎤
⎢
⎣

⎡

−

+

H
H
0

0

with 

±H =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆−−±−

−

−−

±

g

g

g

EzVk
dz
dP

EzVPk

EzVk
dz
dP

k
dz
dPPkk

dz
dPzV

)(00][
2

0)(0
2
3

00)(]
2

[

][
22

3]
2

[)(

m

m

mm

       (36) 

 

 19



where  is the confining potential,  is the band gap, ∆  is the 

spin-orbit energy splitting, and  is the momentum matrix element defined as  

)(zV gE

P

 

P = XpiS
m x

e

h

3
2                        (37) 

 

where  is the bare electron mass. em

 The kinetic energy term is neglected from the diagonal matrix elements 

because of its relatively small value compared with the off-diagonal elements. 

By eliminating the other components, we can obtain the equation listed below 

for the conduction band envelope functions.  

 

[
dz
d

zmdz
d

),(
1

2

2

±

−
ε

h +
),(2

22

±εzm
kh + )(zV m ±± − εεα kz ),( ] =0    (38) ±f

with 

]
)(
1

)(
2[

),(
1

2

2

∆++−
+

+−
=

±±± gg EzVEzV
P

zm εεε h
         (39) 

and 

]
)(
1

)(
1[

2
),(

2

∆++−
−

+−
=

±±
±

gg EzVEzVdz
dPz

εε
εα        (40) 

 

 In order to fit the notation parameters which are employed in our structure, we 

will rewrite equation (38), (39), and (40) as (41), (42), and (43) respectively. 

The potential profile and the parameters are shown in Figure 2.2. 
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Figure 2.2 The potential profile of the asymmetric double well structure 
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[
dz
d

zmdz
d

),(
1

2

2

±

−
ε

h +
),(2

22

±εzm
kh + +)(zEc )(zV m ±± − εεβ kz

dz
d )),(( ] =0   (41) ±f

with 

]
)()()(

1
)()(

2[
),(

1
2

2

zzEzVzEzV
P

zm vv ∆+−−
+

−−
=

±±± εεε h
       (42) 

and 

]
)()()(

1
)()(

1[
2

),(
2

zzEzVzEzV
Pz

vv ∆+−−
−

−−
=

±±
± εε

εβ        (43) 

 

The  sign in the equations above refers respectively to spin up and spin 

down along the y direction. 

±

 The term β is the spin coupling parameter. Now let us discuss the boundary 

conditions in the calculation. Firstly we consider the case at 0=z  an interface 

between two semi-infinite layers of semiconductors 1 and 2. And we may write 

this as 

 

)(1)(11

21

z
m

z
mm

θθ +−=                       (44) 

and 

)()( 21 zz θβθββ +−=                         (45) 

 

 By integrating across the interface, we can obtain boundary conditions as 

 

±f  continuous                             (46) 

and 

±
±− kf

dz
df

m
βmh

2

2

 continuous                   (47) 

 

The two-spin components are always decoupled. The basis functions for the 
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spin states are those which point along the y direction. If we denote Ψ as the 

spinor with components  and , the boundary conditions can be written 

as 

+f −f

 

Ψ continuous                             (48) 

and 

Ψ+Ψ k
dz
d

m yβσ
2

2h  continuous                (49) 

where yσ  is the Pauli spin matrix.  

This is the simpler form which shows the cross product symmetry in the 

Rashba term. Because we set the spin quantization direction along the 

k-dependent effective magnetic field, the decoupling of the spins and the 

consequent simplicity in the expressions listed above occur. If  or Δ goes 

to zero, the boundary conditions above will reduce to the generalized Ben 

Daniel-Duke boundary conditions. Also, in the case of symmetric quantum 

wells, the Rashba splitting is exactly zero because of the mirror reflection 

which will take the spin-up condition into the spin-down condition and vice 

versa. 

k

By considering the dependence of β on z in equation (41), and thereby two 

contributions to the Rashba spin-orbit splitting are distinguishable. The first 

one is the discontinuity of the band parameters, while the second one is 

related to the space charge and/or the external electrostatic field. The 

discontinuity of the band parameters will set the spin dependent boundary 

conditions, while the external electric field gives a spin dependent term in the 

effective mass Hamiltonian. These two contributions to the Rashba term have 

been identified in a previous estimation of the Rashba coupling parameter. [10]
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Chapter 3  Results 
 

3.1 Asymmetrical Square Double Well 
 

  The discontinuities of the band parameters and the space charge and/or the 

external electrostatic potential would contribute to the Rashba term in a similar 

way only if the band edge discontinuities were all the same. But the two 

contributions are of a different character and are both presented in the real 

sample. 

 Let us first consider the problem of the bound states of the electrons which 

are confined in the semiconductor double well structure of the type 

 with SbInSb/InSb/AlInSb/InSb/AlInAl y-1yy-1yx-1x yx ≠ . The potential profile is 

shown in the Figure 3.1. By solving equation (41) we can obtain the 

eigenvalues ±ε  for each value of . We set the wave functions as k

 

zqleC11 =ϕ  

)sin()cos( 322 zkCzkC ww +=ϕ  

zqzq rr eCeC −+= 543ϕ  

)sin()cos( 764 zkCzkC ww +=ϕ  

zqreC −= 85ϕ                                (50) 

 

The wave vectors in the growth direction are given by 

 

2
,2 )(2 kEmq lc

l
l +−= ε

h
                       (51) 

2
,2 )(2 kEmk wc

w
w −−= ε

h
                      (52)
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Figure 3.1 The potential profile of  

asymmetric double well 

SbInSb/InSb/AlInSb/InSb/AlInAl y-1yy-1yx-1x
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2
,2 )(2 kEmq rc

r
r +−= ε

h
                       (53) 

 

where  denotes the barrier of the region 1.  denotes the wells in the 

region 2 and 4. 

l w

r  denotes the barrier in the region 3 and 5. 

 By the boundary conditions from equations (46) and (47), we can get 

 

021 == zϕϕ  

022

2

111

2

22 =+∂−=+∂− zwz
w

z
l

k
m

k
m

ϕβϕϕβϕ hh  

Lz== 32 ϕϕ  

Lzrz
r

wz
w

k
m

k
m =+∂−=+∂− 33

2

22

2

22
ϕβϕϕβϕ hh   

                             Laz +== 43 ϕϕ                          (54) 

Lazwz
w

rz
r

k
m

k
m +=+∂−=+∂− 44

2

33

2

22
ϕβϕϕβϕ hh  

Laz 254 +== ϕϕ  

Lazrz
r

wz
w

k
m

k
m 255

2

44

2

22 +=+∂−=+∂− ϕβϕϕβϕ hh  

 

 Next we write down the plane wave solutions for iϕ  in the different regions 

which match the boundary conditions at the interfaces. The solutions are 
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      (55) 

 

And  and im iβ  could be obtained by equation (42) and (43) respectively. 

L  is the well width in region 2 and 4.  is the barrier width in region 3. a ±ε  is 

the energy which satisfies equation (55) with iβ± . 
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3.2 The Energy Levels and Spin Splitting in the Asymmetric Double Well 
Structure 

 

 Consider the case x =1, 15.0=y  as shown in Figure 3.2. Then we will 

obtain an  asymmetric double well 

structure. In this structure, we set the well width 

SbInSb/InSb/AlInAlAlSb/InSb/ 0.850.150.850.15

L  in region 2 and region 4 as 

5 nm and the barrier width  in region 3 as 5 nm initially. For , the energy 

gap is 2.384 eV, Δ is 0.673 eV, and the effective mass is . For , 

the energy gap is 0.2352 eV, Δ  is 0.81 eV, and the effective mass is 

. For the conduction band offset, we adopt the 72% rule. Then we 

can obtain the barrier height  at the AlSb/InSb interface as 1.547 eV, and the 

barrier height  at the interface as 0.232 eV respectively. 

In Figure 3.3, we plot the energy levels of this structure as a function of . We 

can see that there are two energy levels exist in this well, but we can not obtain 

any further information through this plot.  

a AlSb

026.0 m InSb

001359.0 m

1V

2V SbInInSb/Al 0.850.15

k

 For more information, we need the plot of the spin splitting of the energy 

levels as shown in Figure 3.4. We can see clearly the splitting of the energy 

levels increases with in-plane wave vector  in Figure 3.4. Thus we can 

confirm the spin splitting of the asymmetric double well does exist and needs 

further exploration from us. We will demonstrate some configurations which 

can alter the characteristic of this asymmetric double well structure to see how 

the spin splitting of energy will vary with different variables in the following 

sections. 

k
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Figure 3.2 The potential profile of  

asymmetric double well 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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Figure 3.3 The energy levels in  

asymmetric double well with respect to in-plane wave vector 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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Figure 3.4 The spin splitting of energy in 

 asymmetric double well with respect 

to in-plane wave vector 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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3.3 The Variation of the Barrier Width in the Asymmetric Double Well 
 

In this case, we set the well width in region 2 and 4 as 5nm, x  as 1, and y  

as 0.15 to see how the spin splitting will behave with different values of the 

wave vector  and the barrier width . Withk a x  is 1, and y  is 0.15, we could 

obtain the structure . The potential 

profile of this case is the same as Figure 3.2. Figure 3.5 is the plot of the spin 

splitting of the ground state with respect to  and . Figure 3.6 is the plot of 

the spin splitting of the first excited state with respect to  and . In Figure 

3.5, we can clearly see that the amplitude of the spin splitting decreases with 

the increase of the barrier width  , while it increases with the increase of the 

in-plane wave vector . We also show the variation caused by different value 

of the mole fraction 

SbInSb/InSb/AlInAlAlSb/InSb/ 0.850.150.850.15

k a

k a

a

k

x  for the ground state and the first excited state in Figure 

3.7 and Figure 3.8 respectively. 
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Figure 3.5 The spin splitting of the ground state in 

 asymmetric double well with respect 

to the in-plane wave vector k and the barrier width a 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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Figure 3.6 The spin splitting of the first excited state in 

 asymmetric double well with respect 

to the in-plane wave vector k and the barrier width a 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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Figure 3.7 The spin splitting of the ground state in 

 asymmetric double well with respect to 

the in-plane wave vector k and the mole fraction 

SbInSb/InSb/AlInAlAlSb/InSb/ 11 xxxx −−

x  
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Figure 3.8 The spin splitting of the first excited state in 

 asymmetric double well with respect to 

the in-plane wave vector k and the mole fraction 

SbInSb/InSb/AlInAlAlSb/InSb/ 11 xxxx −−

x  
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3.4 The Variation of the Barrier Height in the Asymmetric Double Well 
  

 In addition to the variation of the barrier width in the asymmetric double well 

structure, one can also modify the barrier height of the barrier to control the 

spin splitting of energy.. In this structure, the well width and the barrier width 

are both set as 5nm. The mole fraction x  is 1 while the mole fraction  is 

0.15, and which provide us the double quantum well structure of  

. And the term 

y

SbInSb/InSb/AlInAlAlSb/InSb/ 0.850.150.850.15 V∆  is the increment of 

the barrier height. The band structure for this case is shown in Figure 3.9. Note 

that the effective mass  and the spin coupling parameter 3m 3β  for region 3 

are concerned with the parameter V∆  since it will change the conduction 

band edge of this region as a consequence. With the same procedure which 

had been mentioned in section 3.1, we could obtain the dispersion relation for 

this case 
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Figure 3.9 The potential profile of  

asymmetric double well with the barrier height changed by the amount ΔV 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15

 
 
 
 
 
 
 
 
 

 38



 

 In Figure 3.10, we plot the spin splitting with a fixed in-plane wave vector 

 as a function of the barrier width and the increment of the 

barrier height. In this figure, the large spin splitting could be obtained even 

when the parameter  is zero. We had already shown how the splitting 

varies with the barrier width in section 3.3. However this is the less elastic way 

to control the splitting since it relates to the process mainly and are fixed 

initially. But we can still enlarge the amplitude of the splitting by applying the 

external voltage which will modify the barrier height. Obviously this use can 

provide people more flexibility to correlate this effect with any further 

application. 

16 cm102 −×=k

V∆
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Figure 3.10 The spin splitting of energy in 

 asymmetric double well with respect 

to the barrier width a and ΔV 

SbInSb/InSb/AlIn/InSb/AlAlSb 0.850.150.850.15
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Chapter 4   Conclusion 
 

The most structures or theories for the spintroics are based on the metal or 

the dielectric materials only. But our proposal here attempts to realize the spin 

splitting mechanism in the total semiconductor structure. This will provide us 

the convenience of both the easier operation and the massive production as a 

consequence. 

 In this research we have presented a theoretical study of the spin orbit 

splitting in energetic levels in asymmetric double well structure and 

demonstrated some configurations which enlarge the amplitude of the spin 

splitting effectively. We began with the energy levels and the spin splitting 

which exist in the well. After that, we organized some achievable and effective 

configurations to control the spin splitting and observed how spin splitting 

behaves with different factors. To control it as we wish in real applications, 

there are two essentials which we need. The first one is the large amplitude of 

the spin splitting. And the second is that this effect must be controllable. No 

lack of the two essentials described above at the same time is the only way to 

make sure this mechanism can function as well as we wish since the energy 

levels at the stage right now are on the electron volt scale. 

Our research is the first step for this application and can be the starting point 

for the more detailed calculation. More experimental results are required to 

confirm the results in this research further. 
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