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1. Introduction  

 

Linear slide systems are one of the most common applications 

of motion control. Most linear slide systems are ball-screw-driven, 

but linear-motor-driven systems become popular in recent years 

because of their simple structures and an absence of flexible 

coupling. Backlash and compliance in a ball-screw-driven system 

may induce nonlinear phenomena and multi-source friction effects,1 

preventing the distinguishing of friction from other nonlinear 

effects. By contrast, linear-motor-driven systems are free from such 

complexities because of the nonexistence of a nonlinear backlash 

and multi-source friction. The observed friction behaviors of the 

two systems differ for the same reason.  

In servo motor drive applications, variation of inertia, viscous 

coefficient, and friction degrades drive performance. Once the 

principle parameters of motors are found, the motion control loop 

gains can be tuned automatically in order to maintain a consistent 

dynamic response.2 Owing to the nonlinear characteristics of 

velocity-dependent friction term, the three parameters (inertia, 

viscous coefficient, and friction) can be hardly estimated 

simultaneously using classical identification method easily, e.g., the 

least square method.3 The common approach would be the separate 

identification of the friction parameter. In this approach, at first the 

friction parameter using constant velocity motion is identified. This 

parameter is then considered to be known for the identification of 

the other parameters.4,5 Analogously, one can perform a lot of time-

consuming experiments to build up the friction-velocity map, then 

to identify the viscous coefficient, and friction parameters from the 

map.6 However, these simple methods induce the risk of error 

accumulation between two steps. Other methods have also been 

proposed to estimate the moment of inertia, for example, recursive 

extended least square, Kalman filter, and Lunberger-type state 

observer.7-9 Kim10 presented a sequential parameter auto-tuning 

algorithm at motion startup. The flux linkage and the disturbance 

torque were estimated separately from two reduced-order observers. 

Then, the inertia was obtained from the orthogonal property of the 

periodic speed reference; however, the controlled bandwidth might 

decrease due to the lack of viscous coefficient identification. 

In recent years, the disturbance observer (DOB) has been 

introduced into motion control systems to eliminate as much of the 

“equivalent disturbance” as possible, and to force the actual system 

to become a nominal model. The equivalent disturbance consists of 
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external disturbance signals which include friction and signals 

associated with model uncertainties and nonlinearity. If these 

uncertainties are eliminated by disturbance observer, the linear 

feedback controller can be applied to construct an asymptotically 

stable system. Ohnishi11 introduced this equivalent disturbance, 

which was refined by Umeno and Hori.12 Lee and Tomizuka13 and 

other researchers14-26 demonstrated the effectiveness of the 

disturbance observer by performing experiments with various 

uncertainties and external disturbances, to improve performance in 

tracking or point-to-point control. 

The disturbance observer (DOB) is also used for parameter 

identification. Kobayashi et al.27 presented an identification 

algorithm using DOB by applying an orthogonal condition to 

decouple the inertia term from the motion response. In the proposed 

method the authors initially obtained the inertia, calculated the 

viscous coefficient based on the inertia, and finally calculated the 

constant applied force. Since the three parameters are not evaluated 

simultaneously, the error in the estimate of one parameter affects 

another. Restated, the viscous friction, the Coulomb friction and 

other unknown position-dependent forces influence the evaluation 

of inertia. A biased estimate of inertia will in turn affect the 

accuracies of the estimates of the viscous coefficient and the 

Coulomb friction. Additionally, the approach in27 requires the 

controller to be tuned according to the evaluated parameters, and 

several experimental tests to be performed and still does not 

guarantee convergence to nominal values.  

This work presents a new algorithm that can evaluate the three 

parameters in a single motion test. The rest of this paper is 

organized as follows. The following section describes the 

experimental system. Section 3 discusses in detail the experimental 

methods required for the advanced parameter identification of a 

linear-motor-driven motion system. Section 4 compares the 

simulated and experimental results obtained using different 

identification methods. Section 5 draws conclusions. 

 

 

2. Experimental System 

 

2.1 Hardware setup 

The experimental motion system, presented in Fig. 1, has the 

following components: a linear-motor-driven motion system, a laser 

displacement meter, and a PC (PC1 in Fig. 1) with a DAC and 

encoder interface. The linear motor system has a linear motor (IL6-

050A1) and an AC servo amplifier (SERVOSTAR CD) operating 

in torque (current) mode, both of which were obtained from the 

Kollmorgen Corporation.28 Two sensors were used in this system - 

one with a linear scale (RENISHAW RGH24Y, resolution 0.1 

micrometer) to provide position information for the vector control 

of the servo amplifier, and a fiber optic laser encoder (RENISHAW 

RLE10) to measure the displacement of the motion table with an 

adjustable resolution. The accuracy of the resolution supplied by 

RLE10 is influenced by such environmental effects as relative 

humidity, temperature, pressure and cosine errors. Hence, 

calibration must be performed using another measurement 

instrument. The RENISHAW laser interferometer system which 

includes an environmental compensation unit (EC10) was adopted. 

Following calibration, the basic length units (BLU) for coarse and 

fine resolutions were found to be 0.0791 mµ  and 0.020 ,mµ  

respectively. The selection of the resolution scale depends on the 

encoder transition time (1 MHz in our system), the desired 

maximum velocity, and the travel range. The velocity was 

estimated from the fiber optic laser encoder using an αβ -filter29 in 

the motion system.  

 

 

Fig. 1 Experimental linear-motor-driven motion system and the 

resolution calibration system 

 

2.2 Model of the mechanical system  

The bandwidth of current loop is much higher than that of the 

mechanical system. If the high-frequency modes are ignored, then 

the system equation can be simplified to 

 
1

Jx Bx F u+ + =�� �  (1) 

where J denotes the inertia (equivalent mass); 
1

Bx F+�  is the 

friction force, and u is the force input to the system generated by a 

current-controlled servo amplifier with a velocity loop controller 

and a position loop controller. The damping coefficient is regarded 

as a parameter of the controlled plant herein. Therefore, 
1
F  

represents a friction force without a viscous friction term. 
1
F  is 

generally a function of position, velocity and control input force. 

 

 

3. Parameters Identification of the Linear-Motor Stage 

 

The DOB is proposed in a system to reduce the effort required 

to obtain a highly accurate system model. The internal loop 

compensator formed by the DOB can generate corrective control 

inputs to reject as much of the equivalent disturbance as possible, so 

to force the actual system to become a given nominal model. The 

equivalent disturbance consists of a real external disturbance and an 

extra force to eliminate the model uncertainty. The internal loop 

compensator may become unstable if the control input is saturated 

because of large plant uncertainty.30 

Figure 2 presents block diagrams of the disturbance observer; 

Fig. 2(a) presents the original structure. In Fig. 2(b), a low-pass 

filter is adopted to yield an implementable strictly proper rational 

function. The output of DOB is an estimate of disturbance, which 

can be used for compensation. However, the DOB herein is used for 

parameter identification. The symbols are defined as follows. 
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(b) Structure for implementation 

Fig. 2 Block diagrams of disturbance observers 

 

Ignore the low-pass filter ( ).Q s  From Fig. 2(a), the following 

relations can be derived;  

 ( ))()(
)(

1
)()( ssv

sP
sus

n

ζτ +−=  (2) 

Substituting 
nn

n

BsJ
sP

+

=

1
)(  into the above equation yields 

 ( )ζζτ
nnnn

BJvBvJu +−−−=
��  (3) 

Similarly, )(
)(

1
)()( sv

sP
sdsu =−  and 

1
( ) ,P s

Js B
=

+

 yielding 

 BvvJdu ++= �  (4) 

Therefore, 
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where ,
n

J J J= + ∆  .

n
B B B= + ∆  

If no measurement noise or modeling error is involved, such 

that 
n

JJ =  and ,
n

B B=  then the real external disturbance d can be 

estimated perfectly. In Fig. 2(a), the relationship between the 

unfiltered signal τ  and the real estimate of the equivalent 

disturbance τ̂  is defined as follows. 

 ττ )(ˆ sQ=  (6) 

The choice of )(sQ  for control is to let the low-frequency 

dynamics of )(sQ  be close to 1 for disturbance and model 

uncertainties rejection. The high-frequency dynamics must be close 

to 0 for sensor noise rejection. The order of )(sQ  is determined 

considering the rational proper property of 
( )

.
( )

n

Q s

P s
 Umeno and 

Hori12 and Lee and Tomizuka13 proposed some forms of )(sQ  

filters. In this work, a second-order filter which exhibits the above 

stated properties is selected as 

 
12

1

)1(

1
)(

222
++

=

+

=

qssqqs
sQ  (7) 

where q is the time constant of the filter. Notably, 1)( ≈sQ  for 

frequencies under 1/ ,q  and )(sQ  rolls off at -40 dB/decade for 

frequencies over 1/ .q  The active frequency range of DOB is 

inversely proportional to q. For control, the magnitude of q 

represents a compromise between the desired active dynamic range 

and the measurement noise. A larger q corresponds to a smaller 

bandwidth of a low-pass filter, Q(s), and a less robust system. Choi 

et al.30 recommended that q should be 10 to 15 times the sampling 

time. For identification, q can be easily decided. The frequencies of 

the disturbance are typically low. The bandwidth of the open-loop 

system is also low. The cutoff frequency of )(sQ  can be chosen to 

exceed slightly the maximum of the frequency of velocity 

command, the frequency of the disturbance and the bandwidth of 

the system plant. Although the latter two frequencies are not exactly 

known, a rough estimate can be made according to the system 

configuration and the operating conditions. In this work, 5 Hz is set 

as the cutoff frequency of ( ).Q s  This low pass filter can reduce 

most of the measurement noise while preserving the required signal. 

If the table is not at an incline, the gravitational force can be 

neglected. Furthermore, based on the assumption that the friction, 

1
,F  is the only disturbance one is interested in, the equivalent 

disturbance is obtained from Eqs. (5)-(6) as follows. 

 ( )( ) 1
ˆ

n n
Q d Jv Bv J B F Jv Bvτ ζ ζ δ= + ∆ + ∆ − + ≅ + ∆ + ∆ +

�� �  (8) 

where δ  consists of equivalent forces associated with measurement 

noise, cogging force, torque ripples, servo lag and other factors. The 

drop in the order of the plant model also introduces some equivalent 

forces. A new method based on the orthogonal relation is proposed 

below. It yields reasonable estimates of system inertia, the viscous 

coefficient, and the Coulomb friction force. The parameters can be 

estimated in both positive and negative directions. For positive 

direction, the system parameters can be estimated with the velocity 

command: 
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Its corresponding acceleration profile will be 
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where 010 >> vv  and 
p

T  is the period of this sinusoidal function.  

The chosen 
r
v  should not be too close to zero to avoid 

nonlinear effects around zero velocity, such as stiction and the 

Stribeck effect. The motion is designed to be a unidirectional 

motion without velocity reversal. If the Stribeck velocity, ,
s
v  is 

already known from some other experiment, a better relationship 

between 0v  and 1v  can be given as 

 
s
vvv >− 10  (11) 

When the table slides at above the Stribeck velocity, ,
s
v  the 

friction force is reduced to the Coulomb friction, i.e., 
1

.

C
F F=  For 

parameter identification, the frequency component of applied 

velocity command is quite low; therefore, the system response will 

be assumed to catch up with the command easily after a short time 

if the PI velocity controller is tuned properly. Moreover, since the 

velocity and acceleration response are all sinusoidal functions, the 

orthogonal relations can be employed to decouple different 

components associated with the error estimates of different 

parameters. Notably, the transitional response data at the start of 

motion are not suitable for identification because the tracking error 

is large. A suitable range of steady-state signals over a period p
T  

should be carefully chosen to meet the orthogonal conditions. 

Multiplying (8) by v�  and integrating the result over a chosen 

period ,
p

T  yields Eq. (12). 
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ppppp
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ΤΤΤ

dtvdtvFdtvvBdtvvJdtv ������ δτ )()()()ˆ(  (12) 

From the following orthogonal relations and trigonometric 

properties, 

 0)( =∆∫ dtvvB

p
Τ

�  (13) 

and 
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p

Τ
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Assume that the following equation is true, 
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Then the estimated error of the inertia parameter is  
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where N denotes the sampling number over a period and T is the 

sampling time. Mathematically, the accuracy of the integration can 

be improved by increasing N or decreasing T. An updated value of 

inertia can be obtained using the following equation: 

 JJJ oldnew ∆+=

∧

ˆ  (17) 

One problem remains here. The measured noise will be 

amplified when the acceleration and velocity are estimated by 

differentiating the position data. Furthermore, in our system, the 

resolution of the fiber optic laser encoder (RENISHAW RLE10) is 

0.0791 mµ  and the sampling rate is 2 kHz. One pulse error between 

two consecutive measured positions will induce the minimum 

acceleration error of 2
4.316 smm  due to the double differentiation 

from the measured data. For instance, when the velocity command 

is )5sin(3040 tv
r

+=  mm/s, the theoretic acceleration is 
2150cos(5 ) ,t mm s  which is less than the acceleration resolution. 

As for the velocity, although the minimum estimated velocity error 

smm
1

10582.1
−

×  is not large when compared with the velocity 

command, the estimated velocity also suffers noise problem. As a 

solution to the problem, the frequency of the command is chosen to 

be less than 1 Hz so that the system response can catch up the 

command easily using the tuned PI velocity controller while the 

system bandwidth is around 60Hz in our simulation and experiment. 

Therefore, both the reference velocity 
r
v  and reference 

acceleration 
r
v�  are adopted in our identification processes, based 

on the assumption that if 
r
vv =  is true, then 

r
vv �� =  will also be 

true. 

Extend the similar operation to estimate the viscous coefficient 

B. Multiplying (8) with v  and integrating it over a chosen period, 

,
p

T  one get (18). 
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Since v  and 
r
v  are sinusoidal functions with a constant offset, the 

first term in the right-hand side of the above equation is zero due to 

the orthogonal relations, that is, 

 0)( =∆∫ dtvvJ

p
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�  (19) 

Since 
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and assume that the following equation is true; 
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2
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
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from Eq. (18) the estimated error of B is given by Eq. (22). 
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If CF  is known, then an updated viscous coefficient is given by the 

following equation 

 BBB oldnew ∆+= ˆˆ  (23) 

Of course, the Coulomb friction CF  and the viscous coefficient 

B can be obtained by performing other experiments, such as those 

experiments performed elsewhere to plot friction-velocity map. 

However, these experiments are quite time-consuming and they are 

unable to estimate the important inertia parameter. It does not 

matter whether the friction-velocity map is constructed 

experimentally or not, this proposed method yields the best solution 

for the three parameters from the viewpoint of signal decomposition. 

Furthermore, this method can estimate three parameters from just 

one set of measured data. 

The key to solving Eq. (22) is to estimate the value of CF  first. 

Rewrite (8) as follows 

 δτ +∆+∆+= BvvJFC
�ˆ  (24) 

Some facts are known about the right-hand side of the above 

equation: a) CF  is a constant; b) vJ �∆  is a pure sinusoidal function 

with zero offset, and c) Bv∆  is a sinusoidal function with a 

constant offset. The mean values of all τ̂  sampled over the period 

p
T  yields the following equation, 
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CF̂  is the estimate of .

C
F  It can be further evaluated as follows, 
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N is the number of sampled points over a period. Again, if the 

noise-related term is zero, such that 

 0][
1

≈∑
N

k
N

δ  (27) 

then CF̂  will converge. If 0=∆B  is true, then CC FF =
ˆ  will be 

true. 

Clearly, a large N helps to yield an accurate estimate of .

C
F  

Averaging the data over several periods is a way to increase the 

number N. Increasing the sampling rate is another effective method. 

However, some physical limitations, such as travel length and the 

memory size of the computer, constrain the sampled number N. 

Since the estimate of CF̂  exhibits the large sample property, the 

estimator defined by Eq. (25) is a consistent estimator. Notably, 

however, the above three parameter estimators are all biased 

estimators, unless the expectation of the term δ  is zero. During the 

identification process, the errors B∆  and J∆  in the parameters 

converge toward zero following several iterations. In the meantime, 

the value of CF  converges to ˆ .
C

F  If B and CF  are not updated 

iteratively, the estimate of J will become more seriously biased 

because of the degradation of the orthogonal conditions caused by 

the larger tracking error. Likewise, an erroneous estimate of J 

degrades the estimates of B and .

C
F   

From the above discussions, the following steps are proposed to 

estimate three system parameters. 
 

Step 1: Perform a velocity tracking control experiment. The 

reference command must look like Eq. (9) and be 

unidirectional. Figure 3 presents the proposed control 

structure, in which the PI controller must be tuned to uphold 

the assumptions of 
r
vv =  and .

r
v v=� �  The notations aK  

and 
t

K  are the gain of current driver and the force constant 

of motor, respectively, and these two coefficients are 

generally constant values.25 

Step 2: Calculate J∆  using the following equation. 
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Step 3: Update the estimate of inertia. 

 JJJ oldnew ∆+= ˆˆ  (29) 

Step 4: Estimate the Coulomb friction .

C
F  
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N
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N

F ][ˆ
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Step 5: Calculate B∆  using the following equation. 
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Step 6: Update the viscous coefficient B.  

 BBB oldnew ∆+= ˆˆ  (32) 

Step 7: Refresh the updated 
new

Ĵ  and newB̂  in ( )
n
P s  of DOB. The 

experimental control input )(su  and the estimated velocity 

v  are fed into the new DOB to yield a new series of 

disturbance estimates ˆ.τ  Then return to step 2 to perform 

next estimation. If J∆  and B∆  are almost zero by 

satisfying the convergent conditions, then stop. When the 

following errors are considered, that is, 
r
vv ≠  and ,

r
v v≠� �  
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one shows the convergence condition of the iterative 

process in the Appendix. 
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Fig. 3 Block diagrams of proposed identification experiment 

 

3.1 Discussion and simulation 

In one experimental test, the estimate of the three parameters is 

repeated several times until a final steady state is reached. If the 

tracking error is made small by tuning the PI controller, one 

experiment is enough to estimate these three parameters. Otherwise, 

the new estimates can be used to redesign the controller for 

improving the tracking performance, and also as the initial values in 

another motion control test.  

Three simulations are performed to demonstrate the 

effectiveness of the proposed method with different initial values. 

Notably, the 14-bit D/A quantization effect and ±4 BLU measured 

noise (1 BLU=0.0791µm, uniform distribution) are included in the 

simulation. The reference command is defined as 

 )5sin(2030 tv
r

+=  mm/s  

Table 1 lists the nominal, initial and final values for each 

simulation. All simulations almost come to the same results. Figure 

4 draws the results of simulation I which indicates good parameter 

convergence. Therefore, it is concluded that the parameters can 

converge to the actual ones with different initial values in the 

proposed identification process. In addition, a method proposed 

elsewhere27 is used for comparison. In the reference method, the 

whole system might be unstable due to improper initial value of the 

equivalent inertia, such as 0 .J kg=  Figure 5 draws the simulations 

where the initial values in our proposed method are zero and Table 

2 presents the values of the parameters used in the simulations and 

the final values obtained by the two methods. Our estimated 

parameters can reach the nominal value with accuracy smaller than 

1% after 10 iterations. In short, the proposed method is clearly 

superior. The convergence is very fast, and the values obtained by 

convergence are more accurate than those obtained using the 

reference method. The proposed method requires only one 

experiment to be performed to identify the three parameters, while 

the method from the literature depends on more experiments, and 

still does not guarantee convergence to nominal values. 

 

Table 1 Three simulations with different initial values using the 

proposed method 

Simulation I Simulation II Simulation III

Parameter 
Nominal 

Value Initial 

value 

Final 

value 

Initial 

value 

Final 

value 

Initial

value

Final

value

J(kg) 10.0 20 9.942 15 9.944 6 9.943

B(kg/s) 110.0 50 109.798 80 109.811 20 109.802

FC (N) 7.0 10 7.005 3.0 7.004 5 7.005

Table 2 Comparisons based on simulation using the proposed 

method and the method from the literature after ten iterations 

Proposed method 

Parameter
Nominal

value 
Initial value 

NP  

Final value 

1EP  

Estimated 

Accuracy 

%
1

N

NE

P

PP −

J(kg) 10.0 0.0 9.94 0.60% 

B(kg/sec) 110.0 0.0 109.8 0.18% 

FC (N) 7.0 0.0 7.0 0.00% 

Reference method 

Initial value 

NP  

Final value 

2EP  

Estimated 

accuracy 

%
2

N

NE

P

PP −

3.0 9.93 0.70% 

50.0 121.0 10.00% 

 

0.0 8.1 15.71% 

 

 

Fig. 4 Results of Simulation I with initial values listed in Table 1 
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Fig. 5 Identification performed using the method in the literature 

(dashed line) and the proposed method (solid line) 
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4. Experiment Results 

 

Figures 6-8 refer to an experimental study of the evaluation of 

parameters. The designed velocity command is 

)5sin(3040 tv
r

+=  mm/s 

A period between 0.314s and 1.57s is chosen with a sampling 

interval of 0.005s for parameter estimation, to avoid the transition 

near the motion-start region. Figure 6 presents the initial estimate of 

the equivalent disturbances τ̂  and the control forces. Since all 

initial parameters are set to zero, this equivalent disturbance is 

simply a filtered control force. Figure 7 presents the final estimate 

of the equivalent disturbance and the control force after 20 

iterations. The equivalent disturbances in Figs. 6 and 7 reveal that 

the original bowl-shaped disturbance becomes almost flat with a 

small variation, indicating that the parameter uncertainties are 

reduced. The mean value of the final equivalent disturbance is the 

Coulomb friction and the variation part is related to the term .δ  

The normalized parameter error indices are defined as: 

 ,
J B

J B
C C

J B

∆ ∆
= =  

with the convergent conditions (
J

C < 0.05) and (
B

C <0.05). 

Figure 8 displays five experimental results, to demonstrate the 

repeatability of the proposed method; and it takes at most 17 

iterations for each experiment to obtain the convergent estimated 

parameters. The mean values of estimated parameters are 

4.46 kg,J =  24.03 kg/s,B =  and 4.29N.
C

F =  All the parameters 

of the motion system including the estimated parameters, J, B, and 

c
F  are listed in Table 3. 
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Fig. 8 The three parameters converge to their final values after 50 

iterative estimations (in five experiments) 

 

Table 3 Parameters of experimental system 

Symbol and name Value Unit 

J, inertia 4.46 kg 

B, viscous friction coefficient 24.03 kg/s 

,
C

F  Coulomb friction force 4.29 N 

,
t

K  force constant of motor 28.5 N/A 

,
a

K  gain of current driver 0.349 A/V 

T, sampling rate 0.0005 s 

D, pole-pitch of motor 32 mm 

 

More simulations and experiments are conducted to further 

validate the estimated parameters from both frequency-domain and 

time-domain point of view. Figures 9-10 show the block diagrams 

of motion system with and without Coulomb friction model, 

respectively. The model in Fig. 9 is used for simulation I, while the 

model in Fig. 10 is for simulations II and III listed in Table 4. 

A conventional experiment is conducted to obtain system 

parameters J and B by the step response method for comparison. A 

1.5 V step force command is used and the parameters, 6.74 kgJ =  

and 28.69 kg/s,B =  obtained. The frequency response of the 

motion system - the linearized system - is measured as a base line 

of a peak-to-valley 4 V swept sin experiment over a frequency 

range from 0.3Hz to 10Hz using the dynamic signal analyzer, HP 

35665A. The solid line in Fig. 11 plots the experimental frequency 
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Fig. 6 Initial estimate of equivalent disturbance and measured 

control force in the chosen period 
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Fig. 7 Equivalent disturbance and measured control force in the 

chosen period after 20 iterations 



42  / OCTOBER 2009 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. 10, No. 4

 

response and is used to verify the fit of the following three sets of 

simulation results. Table 4 presents the system model, the 

identification algorithm, the identified parameters and the poles of 

the linearized system at low frequency for the experimental system 

and each simulation system. Notably, the fifth column in Table 4 

represents the locations of the pole and zero in each case, using the 

function INVFREQS in Matlab. Figure 11 also presents the 

frequency responses for the three simulation results. The plot of 

simulation I (dashed-line) is obtained from the swept sin simulation 

with frequency range from 0.3Hz to 10Hz to the system shown in 

Fig. 9. Figure 12 presents the typical time responses of the 

experimental and simulated (I) results using 2Hz sinusoidal 

command. Since the underlying system with friction is nonlinear, 

the velocity response is not a perfect sinusoid. The frequency 

response is calculated from the magnitude and the phase of the first 

harmonic of the input force and the velocity response. 

 

1
F

u

BJs +

1

ta
KK

v

 

Fig. 9 Block diagram of motion system with Coulomb friction 

model for simulation I 
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Fig. 10 Block diagram of motion system without Coulomb friction 

model for simulations II and simulation III 

 

As presented in Fig. 11, the simulated (I) almost fits the 

experimental response, implying that our identified algorithm can 

obtain the system parameters accurately. The simulated (II) (dotted 

line) is performed using the system shown in Fig. 10 with 

parameters listed in Table 4. Comparing the experimental and 

simulated (II) frequency response plots reveals that the magnitude 

of the latter response is close to the real value at frequencies of 

under 0.7 Hz and deviates from the real value at higher values. In 

the meantime, the phase decreases more rapidly than that of the real 

system. As shown in the fifth column in Table 4, the pole of the 

linearized underlying system in the low frequency range is at -6.31 

and exceeds the pole in simulated (II) at -4.26. Therefore, the 

simulated (II) cut-off frequency is smaller than the real value. 

Furthermore, if the system parameters in the simulation II are 

identified from our proposed method without taking the Coulomb 

friction parameter into account, frequency response in simulation 

III is as presented by the dashed-dotted line in Fig. 11. The 

magnitude of the response exceeds the real values because the DC-

gain in simulation III system exceeds the real system. The pole in 

simulation III system is close to that in simulation II and the phase 

response of the simulation III is similar to that in the simulation II. 

Other swept sin experiments with peak-to-valley amplitudes of 8 V 

and 10 V are performed, and similar results are obtained. In 

summary, the proposed method can catch the main features of the 

system from the frequency-domain aspect. 

In the time-domain, a 0.8 V step force command, presented in 

Fig. 13(a), is used to evaluate the time responses of the above three 

simulation systems, listed in Table 4. The solid line in Fig. 13(b) 

plots the experimental results of the motion system. The results 

reveal that time response of the simulated (I) almost matches that of 

 

Table 4 Condition of the experiment and simulated systems 

 System Identification method Identified Parameters
Poles (at low frequency range) and

DC gain of the linearized system 

Experiment Shown in Fig. 1 
Swept sin from  

HP 35665A 
None 

For 4 poles, no zero 

Pole= -6.31 

DC gain= 296.33 

Simulation I 

(dashed-line) 

Shown in Fig. 9 

BJs +

1
 and CF  

Proposed Method 

J=4.46 kg, 

B=24.03 kg/s, 

CF =4.29 N. 

For 4 poles, no zero 

Pole= -6.76 

DC gain= 306.60 

Simulation II 

(dotted-line) 

Shown in Fig. 10 with 

BJs +

1
 

Step response method
J=6.74 kg 

B=28.69 kg/s. 

Pole= -4.26 

DC gain= 346.70 

Simulation III 

(dashed-dotted line) 

Shown in Fig. 10 with 

BJs +

1
 and no CF  

Proposed Method 
J=4.46 kg, 

B=24.03 kg/s 

Pole= -5.39 

DC gain=413.92 
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Fig. 11 Experimental and simulated frequency responses in peak-

to-valley 4 V swept sin tests. Table 4 provides the conditions of 

experimental and simulation systems 

 



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. 10, No. 4 OCTOBER 2009  /  43

 

the real system, except when the command changes abruptly.  

Meanwhile, the simulated time responses in simulations II and 

III have a larger magnitude than the real response. 
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Fig. 12 2Hz sinusoidal velocity command and associated 

experimental (solid line) and simulated (I) results (dashed line) 

 

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
-1

-0.5

0

0.5

1

(a)  Time(s)

F
o
rc
e
 I
n
p
u
t(
V
)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

-200

-100

0

100

200

(b)  Time(s)

V
e
lo
c
it
y
(m
m
/s
)

Simulation I

Experiment

Simulation III

Simulation II

 

Fig. 13 Experimental and simulated (a) force input and (b) velocity 

response results. Table 4 provides the conditions of experimental 

and simulation systems 

 

4.1 Application 

In the following experiments, the control configuration shown 

in Fig. 14, including a velocity P-controller (P), and the disturbance 

observer compensator (DOB) with a 10 Hz bandwidth, is designed 

for the underlying linear-motor-system with a 30Hz closed-loop 

bandwidth. The frequency response of the closed-loop system is 

measured from the swept sin test in a frequency range from 0.1Hz 

to 100Hz. As displayed in Fig. 15(a), the experimental bandwidth is 

34Hz, which is close to the desired control bandwidth, 30 Hz. If an 

extra mass 3.72Kg is mounted on the linear motor table, the 

experimental frequency response becomes worse as the bandwidth 

becomes 18Hz, as shown in Fig. 15(b). Figure 15(c) demonstrates 

that the performance at a bandwidth of 32Hz is recovered under the 

extra-inertia condition, if the system parameters are identified again 

by our proposed method and the controller gains are redesigned. 

Notably, the identification algorithm and the control algorithm are 

implemented digitally. Hence, the servo loop supports auto-tuning. 
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Fig. 14 Controller configuration (P+DOB) in the experiment 
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(a) Original system with the initial controller gains 
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(b) System with extra mass and initial controller gains 
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(c) System with extra mass and renewed controller gains 

Fig. 15 Frequency responses for each closed loop system 
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5. Conclusion 

 

This work demonstrated the effectiveness of an advanced 

identification procedures for a linear motor motion system. An 

efficient algorithm for estimating inertia, viscous coefficient and 

Coulomb friction is presented using DOB. These three parameters 

can be identified iteratively based on the orthogonal relationships 

and trigonometric properties among parameters and comments. 

Simulation and experimental results successfully validated our 

proposed algorithm, and the algorithm can be implemented digitally 

to enhance the control performance. Further study will be 

conducted to improve the current method by including those 

predictable disturbances such as the force ripple, cogging force in 

the motion system. 
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APPENDIX 

 

In the paper, one adopts the reference velocity 
r
v  and reference 

acceleration 
r
v�  in our identification processes, i.e., assumptions 

r
v v=  and 

r
v v=� �  were made. If 

r
v v≠  and ,

r
v v≠� �  the following 

equations are defined: 

 
r r

r r

v v v

v v v

= + ∆

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 (A-1) 

where 
r
v∆  and 

r
v∆ �  are velocity and acceleration following error, 

respectively. Moreover, multiplying Eq. (8) by 
r
v�  and integrating 

over a chosen period ,
P

T  yield Eq. (A-2). 
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and 0,

p

C r

T

F v dt =∫ �  0.

p

r

T

v dtδ ≈∫ �  Eq. (A-2) can be simplified as 
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Given that ( ) 0

p
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B v v dt∆ =∫ �  and divide both sides of the above 

equation by 2
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v dt∫ �  one obtained, 
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where 
r

J∆  denotes the inertia estimate error when considering the 

following errors. Compared with Eq. (16), the residual terms 

1 2
J B∆ ⋅Θ + ∆ ⋅Θ  caused by the following errors are found. In the 

same way, the following equation can also be obtained. 
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where 
r

B∆  denotes the estimate error of viscous coefficient when 

considering the following errors.  

Suppose the Coulomb friction 
C

F  is known in advance. For the 

1st iterative estimation process (1) (1)(
n

J J J∆ = − and (1)
B B∆ = −  

(1) ),
n

B  one obtains 
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And 
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where the superscript ( )n  denotes the number of iteration. 

Update the inertia estimate, 
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Also, update the estimate of viscous coefficient, 
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For the 2nd iterative estimation process, one obtains 
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Substituting (2)
J∆  and (2)

B∆  into Eqs. (A-4) and (A-5) yields (A-

11) and (A-12). 
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Again, update the inertia estimate, 
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Also, update the estimate of viscous coefficient, 
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Similarly, for the 3rd iterative estimation process, one obtains 
 







Θ∆+ΘΘ∆+ΘΘ∆+ΘΘ∆=∆

ΘΘ∆+ΘΘ∆+ΘΘ∆+Θ∆=∆
⇔













−=∆

−=∆
⇔

=

=

)()(

)()(

ˆ

ˆ

2
4

)1(
43

)1(
32

)1(
31

)1()3(

24
)1(

23
)1(

12
)1(2

1
)1()3(

)3()3(

)3()3(

)2()3(

)2()3(

BJBJB

BJBJJ

BBB

JJJ

BB

JJ

n

n

newn

newn

 

(A-15) 
 

Finally, the closed-form expression is obtained as follows. 
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Convergence conditions 

 

In the following, one will discuss the conditions for 

convergence when the proposed method suffers velocity and 

acceleration following errors. According to Eq. (A-16), the iterative 

estimation process will converge, if 
1 2

3 4

Θ Θ 
 Θ Θ 

 is a convergent 

matrix. The matrix can be decomposed as follows. 
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where 
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 is a diagonal matrix which is composed of 

eigenvalues of 
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 and 
V

E  is the corresponding eigenvector 

and 
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Moreover 
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Notably, the process will converge if the following condition is 

satisfied. 
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Suppose the velocity command and its corresponding acceleration 

are, 
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Also, the velocity and acceleration responses are, 
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where b  is a constant and φ  is the corresponding phase lag, which 

can be obtained from the Bode diagram of the closed-loop system at 

frequency .ω  Since the PI controller is applied, the DC-gain can be 

tuned to one so that the constant term on velocity remains the same. 

Then, the velocity and acceleration following errors can be obtained 

as follows. 
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Plugging Eqs. (A-22), (A-24) and (A-25) into Eq. (A-4) and Eq. (A-

5), one obtained 
1

Θ ~
4

Θ  in Eq. (A-21) as follows. 
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Substituting Eqs. (A-26)~(A-29) into Eq. (A-21) yields: 
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Notably, if 1b ≈  and 0,φ ≈  i.e., small tracking errors, then 

1 ( 1,2)
i

iλ << =  and J∆ and B∆  will converge toward zeros 

quickly. Thus, J
n
 approaches to J and B

n
 to B. If the Coulomb 

friction 
C

F  is unknown, according to Eqs. (26) and (31), 
C

F  will 

not affect the convergence conditions, Eq. (A-21) but only the 

convergence rate of B∆  and .J∆  

 




