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Abstract 
 

Designing a network with optimal deployment cost 

and maximum reliability considerations is a hard 

problem, especially when the all-terminal reliability is 

required. For efficiently finding out an acceptable 

solution, Genetic Algorithms (GAs) have been widely 

applied to solve this problem. In these GAs, the 

reliability values could be calculated in their objective 

functions. In year 2002, an extended network 

reliability model was proposed which considers the 

connection important level between each pair of nodes. 

This paper proposes an approximation algorithm 

based on Monte Carlo simulation for the new network 

reliability model. This approximation algorithm can be 

integrated into GAs to solve the optimal cost reliable 

network design problem under the extended model. 

 

1. Introduction 
 

Reliability and cost are two important 

considerations for designing communications networks, 

such as backbone telecommunications networks, wide 

area networks and data communications networks 

located in industrial facilities [1]. Based on the 

reliability and cost considerations, the design goal of a 

communications network is either to increase network 

reliability or to decrease deployment cost. However, 

increasing reliability needs to add redundancy to the 

network while optimizing cost needs to remove any 

extra redundancy from the network. It is not easy to 

find out a saddle point that compromises both 

maximum reliability and optimal cost considerations at 

the same time. 

To find out an acceptable solution that meets both 

the reliability and cost considerations, the above 

network design problem can be transformed into a 

simpler problem that is to either maximize the 

reliability given a maximum cost constraint, or to 

minimize the cost given a minimum reliability 

constraint. Both these two problems are NP-hard [2], 

which means these problems are unlikely to be solved 

within polynomial time, and all the existing algorithms 

require huge computational effort that will increase 

exponentially as the network size increases. 

Several genetic algorithms (GAs) [2,3,4,5] have 

been proposed for minimizing the topology deployment 

cost under a given reliability constraint. In these GAs, a 

communications network is modeled as an undirected 

probability graph g = G(N, L, p) where N is a set of 

nodes (e.g., computer sites), L is a set of links (e.g., 

communication connections), and p is the connection 

(link) failure probability (0 ≤ p ≤ 1). The GAs encode 

each of the possible network topologies into a bit-string 

as a ‘gene’, and then perform GA operations on these 

genes for cost optimization. 

A typical execution flow of the GAs is illustrated in 

Fig. 1 where the population pool (Fig. 1 ○A ) stores 

many encoded genes. From the population pool, 

several genes are selected as parents (Fig. 1 ○B ) for 

generating the offspring (Fig. 1 ○C ). The offspring are 

also genes that are recombined (Fig. 1 ○2 ) and mutated 

(Fig. 1 ○3 ) from the parent genes. These offspring 

return to the population pool after a survival selection 

(Fig. 1 ○4 ). The above process (Fig. 1 ○1 , ○2 , ○3  and 

○4 ) repeats for a predetermined number of rounds, or 

until the optimization requirement is reached, 

depending on which one happens earlier. Both the cost 

and the reliability could be calculated in the GA 

objective function that is a scoring system that 

calculates evolutionary fitness of a gene for the parent 

selection and survival selection functions (Fig. 1 ○1  

and ○4 ). 
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Figure 1: A typical execution flow of GAs. 

 

The network design problem is especially difficult 

when considering all-terminal network reliability that 

is defined as the probability that every pair of nodes 

can communicate with each other. The all-terminal 

reliability is difficult because it is also NP-hard [6]. To 

efficiently estimate the all-terminal network reliability, 

cut set count [7] and Monte Carlo simulation [8] are 

widely used in the GAs. These approximation methods 

ensure the all-terminal reliability to be calculated in 

polynomial time. Otherwise, the fitness calculation for 

each gene would be an NP-hard problem and thus the 

overall calculation of the GAs would not be practical. 

In year 2002, Feng et al. proposed an extended 

network reliability model [9], which extended the 

original model [1] with a weighting on each pair of 

nodes. It is more meaningful than the basic model 

under link failure. Unfortunately, according to our best 

understanding, no approximation algorithm has been 

proposed for it. In this paper, we propose an 

approximation algorithm based on Monte Carlo 

simulation for the extended network reliability model. 

This paper is organized as follows. Section 2 

describes the basic network reliability model (the 

calculation is NP-hard), and introduces two 

approximation methods for reliability estimation. Also, 

the extended network reliability model (the calculation 

is harder than the basic model) is described in this 

section. In Section 3, we propose an approximation 

algorithm for the extended reliability model and then 

prove its correctness. Section 4 demonstrates the 

proposed algorithm by a numerical example. Finally, 

Section 5 concludes this paper. 

 

2. Previous works 
 

A network is a set of facilities, i.e., nodes and links, 

where a failure probability pi is associated with each 

facility i. In this network model, the nodes are assumed 

to be perfectly reliable and the links have independent 

failure probabilities. If a network has only three nodes 

a, b, c and two links (a, b) and (b, c), then the 

probability that both the links (a, b) and (b, c) are 

working is (1 - p(a, b))(1 - p(b, c)), which is also defined 

as the reliability of that network. 

Given a minimum network reliability constraint Rel0, 

the cost optimization problem for the GAs is: 

Minimizing the total cost C(g) =∑
−

=

1||

1

N

i

∑
+=

||

1

N

ij

cij xij 

Subject to: Rel(g) ≥ Rel0.                                        (1) 

 

Where cij is the cost of the (i, j) link, xij∈{0, 1}  

indicates whether the link (i, j) is working or not, and 

Rel(g) is the reliability of the network g (0 ≤ Rel(g) ≤ 1, 

0 ≤ Rel0 ≤ 1). 

Based on the basic network reliability measure, the 

all-terminal reliability Relall(g) of a network g = G(N, L, 

p) is: 

Relall(g) = ∑
Ω∈sg

Rel(gs)                                         (2) 

Where gs = G(N, Ls, p) is a sub-network of g and 

Ls ⊆ L. Ω is the set of g’s sub-networks that every pair 

of nodes can communicate with each other (e.g., Fig. 2 

(B) and (C)). Rel(gs) is the reliability of the sub-

network gs. Each gs corresponds to a link failure 

scenario of g, and the reliability of gs is: 

Rel(gs) = ∏
∈workingi

(1- pi) ∏
∉workingi

pi                          (3) 

 

(C)

3

1

2

4

(D)

3

1

2

4

(A)

3

1

2

4

(B)

3

1

2

4

 

Figure 2: Network configurations. (A): g; (B) and (C): 

gs∈Ω; (D) gs∉Ω. 

 

The |L|-links-network g has 2
|L|

 failure scenarios. It 

means to obtain Relall(g), there are at most 2
|L|

 failure 

scenarios to be examined. The time for calculating 

Relall(g) grows exponentially as the number of links in 

g increases. To approximate Relall(g) efficiently, cut set 

count and Monte Carlo simulation are two widely used 

methods in the GAs. 
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2.1 Cut set count 
 

The cut set count method applies Set Theory to 

estimate the all-terminal reliability. The basic 

definitions in this method are: 1) Fi is the event that all 

links connected to node i failed, and 2) iF  is Fi’s 

complement. Apparently, Fi is a cut set of the network 

g = G(N, L, p), and the network g fails (which means 

some pair of nodes in this network are unable to 

communicate with each other) under the scenarios 

containing the event Fi. Since F1, F2, F3…F|N| are 

collectively a subset of all the possible network failure 

scenarios that fail the network g, the network failure 

probability, i.e., 1 - Relall(g), could be written as: 

1 - Relall(g) ≥  Pr[F1∪F2 …∪ ∪F|N|] 

= Pr[F1] +Pr[F2∩ 1F ] +Pr[F3∩ 2F ∩ 1F ] 

+…+Pr[F|N|∩ 1|| −NF ∩…∩ 1F ] 

= Pr[F1] +Pr[F2]Pr[ 1F |F2]  

+Pr[F3]Pr[ 2F ∩ 1F |F3]  

+…+Pr[F|N|]Pr[ 1|| −NF ∩…∩ 1F |F|N|]      (4) 

From derivation in [7], inequality (4) could be 

rewritten as: 

Relall(g) ≤ 1 –Pr[F1] –Pr[F2]Pr[ 1F |F2] 

–Pr[F3]Pr[ 2F |F3]Pr[ 1F |F3] –…– 

– Pr[F|N|] Pr[ 1|| −NF | F|N|]…Pr[ 1F | F|N|] (5) 

The cut set count method could be calculated in 

polynomial time, which is suitable to be used in the 

GAs. However, sometimes the estimation derived by 

this method is not accurate enough for practical usage 

[8].  

 

2.2. Monte Carlo simulation 
 

For larger networks, Monte Carlo simulation is used 

to approximate the network reliability [10,11]. For the 

network g = G(N, L, p), Monte Carlo simulation 

randomly generates failure scenarios gs = G(N, Ls, p). 

The random generation process is repeated many times 

to create multiple failure scenarios. Whenever a failure 

scenario gs is randomly generated, this gs is examined 

to see if every pair of nodes can communicate with 

each other. After this process is repeated for several 

iterations, the average of all feasible solutions will give 

an approximation to the exact all-terminal reliability. 

With T iterations, the Monte Carlo simulation 

algorithm for measuring the all-terminal reliability of 

the network g is shown in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Monte Carlo simulation. 

 

As shown in [8], this method can approximate the 

all-terminal reliability more accurately than the cut set 

count method. 

 

2.3. Extended reliability model 
 

The all-terminal reliability model in Equation (2) is 

the summation of the probabilities that every pair of 

nodes remain able to communicate with each other 

under different network failure scenarios. According to 

this model, different network configurations, e.g., Fig. 

2 (B) and (C) may have the same all-terminal reliability 

[9]. This means that the all-nodes-connected 

probabilities of the two networks are the same. 

However, the two network configurations having the 

same all-nodes-connected probability does not imply 

that all their network failure scenarios have the same 

impact on them, e.g., the link failure on link (2, 3) for 

the network configuration in Fig. 2 (B) causes four 

pairs of nodes losing their connectivity, while the same 

link failure only disconnects three pairs of nodes in Fig. 

2 (C). Because the all-terminal reliability is the 

summation of probabilities, it only represents the 

probability that every pair of nodes can communicate 

with each other in that network configuration. In real-

life networks, different pairs of nodes have different 

importance to the whole network, and each pair of 

nodes shall have a connection importance level (CIL) 

[9]. If the connectivity of a node pair is more important 

in the network, its CIL would be higher than all other 

pairs of nodes in the network. 

With a CIL defined on each pair of nodes, the 

extended all-terminal reliability of the network g is: 

 

Rel’all(g) = ∑
Ω∈sg

Rel(gs) + ∑
Ω∉sg

w(gs)*Rel(gs)       (6) 

Input: A network g = G(N, L, p). 

Output: an approximation of Rall(g). 

 

1. Initialization: X ← 0. 

2. For iteration k = 1 to T, do: 

(a) Generate a random failure scenario gs 

of g: for each link i in g, sample U 

from Uniform(0,1); if (U > pi), xi=1; 

else xi=0. 

(b) Use depth first search to check if every 

pair of nodes in gs can communicate 

with each other: if true, X ← X +1. 

3. Return X/T. 
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The Rel’all(g) includes two parts. The first part is the 

fully connectivity probability (every pair of nodes can 

communicate with each other), which is the same as the 

basic model in (2). The second part is related to partial 

connectivity probability (not every pair of nodes can 

communicate with each other). gs = G(N, Ls, p) is a 

failure scenario of g. Ω is the set of sub-networks that 

every pair of nodes can communicate with each other, 

and Rel(gs) is the reliability of gs. As defined in [9], 

w(gs) is the weighting function as follows. 

w(gs) =  

  








∑

∑

) in pairs node all of CIL(

) in connected remain pairs node  theof CIL(

g

gs
n
, 

for n ≥ 0.        (7) 

 

The extended model in (6) extends the basic model 

in (2), and its calculation is thus more complex than 

that of (2). 

 

3. Proposed approximation algorithm 
 

To solve the all-terminal reliability network design 

(optimal cost) problem using GAs and adopt the 

extended model in (6) to calculate the reliability 

constraint, apparently an approximation of the 

extended reliability measure should be used. If we 

could not find an approximation algorithm to calculate 

the reliability constraint in polynomial time, measuring 

the fitness of each gene would require exponential time, 

and therefore makes the GAs impractical at all. 

As described in Section 2, the cut set count method 

and Monte Carlo simulation are useful for estimating 

the reliability of the basic model. Based on the Monte 

Carlo simulation for the basic reliability model, we 

propose an algorithm (see Algorithm 2) to approximate 

the extended reliability model. 

In this algorithm, a network failure scenario gs is 

randomly generated according to the link failure 

probabilities. With T iterations, (1/T)*W is an 

estimation for Rel’all(g), W is the summation of all the 

w(gs) values generated in the T iterations. U is a 

random number sampled uniformly from (0, 1) for each 

link i in g. Let indicator xi be a random variable 

indicating whether the i-th link of g is working or not. 

That is 

1    if U > pi (link working), 

xi =  

0    otherwise (link failure). 

 

Together, the variables x1, x2,…, x|L| generate a 

failure scenario gs of g, gs = G(N, Ls, p) and Ls ⊆ L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Estimation algorithm for the extended 
all-terminal reliability model. 

 

We use these definitions to prove the correctness of 

Algorithm 2. 

 

Lemma 1: The probability that a gs to be chosen in one 

iteration is Rel(gs). 

Proof:       Pr[a gs is chosen] 

= Pr[the variables x1, x2,…, x|L| match the link 

configuration in gs] 

= ∏
∈workingi

(1- pi) ∏
∉workingi

pi 

= Rel(gs).                                                        ■ 

 

For a chosen gs, let Yi be an indicator random 

variable with 

1    if the gs is chosen in the i-th iteration, 

Yi =  

0    otherwise. 

 

Because we use an independent and identical 

method for choosing gs in the T iterations, Y1, Y2, …, YT 

are independent identically distributed (i.i.d.) random 

variables. By Lemma 1, we obtain that for a chosen gs 

 

Pr[Yi = 1] = Rel(gs).                                                (8) 

 

Lemma 2: Among T iterations, if Ngs of them choose a 

gs, then Rel(gs) ≈ Ngs/T for a sufficiently 

large T. 

Proof: Let Y = (1/T)*(Y1 + Y2 +…+ YT) be sample mean 

of Y1, Y2, …, YT, then Y = Ngs/T and 

 

E[Y] = (1/T)*T*E[Yi] = Pr[Yi = 1] 

= Rel(gs).               (by Equation (8))    (9) 

 

Input: a network g = G(N, L, p). 

Output: an approximation of R’all(g). 

 

1. Initialization: W←0. 

2. For iteration k = 1 to T, do: 

(a) Generate a random failure scenario gs 

of g: for each link i in g, sample U 

from Uniform(0,1); if (U > pi), xi=1; 

else xi=0. 

(b) Use depth first search to check if every 

pair of nodes in gs can communicate 

with each other and compute w(gs);    

W←W+w(gs). 

3.  Return (1/T)*W. 
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Because Yi = Yi
2
, so 

 

E[Y i
2
] = E[Yi] = Rel(gs),                              (10) 

and 

 Var[Yi] = E[Yi
2
] - E

2
[Yi] 

= Rel(gs) - Rel
2
(gs).                         (11) 

 

By differentiation on (11), we obtain that Var[Yi] 

has a maximum 0.25 when Rel(gs)=0.5. 

Applying Chebyshev inequality, we obtain 

Pr[ |Y – E[Y]| ≥  ε ] ≤  Var[Y]/ε
2
 which is 

 

Pr[ |Ngs/T –Rel(gs)| ≥  ε ] ≤ (Var[Yi]/T)/ε
2
  

≤ 0.25/Tε
2
           (12) 

 

Therefore, by choosing a sufficiently large 

number of samples T, the probability that we 

make an inaccurate estimation (which differs 

from Rel(gs) by more than ε) will be as close to 

zero as we wish1. In other words, it is a high 

probability that our estimation is accurate.        ■ 

 

Corollary 3: Suppose among T iterations, if Ngs of 

them have chosen a gs , then 

w(gs)*Rel(gs) ≈ w(gs)*(Ngs/T) for a 

sufficiently large T. 

Proof: Proved by Lemma 2.                                       ■ 

 

Lemma 4: w(gs) = 1 if every pair of nodes in gs can 

communicate with each other. 

Proof: Proved by the definition of w(gs) in (7).           ■ 

 

Theorem 5 (Correctness of Algorithm 2): Let Ngs be 

the total occurrences of chosen gs among 

T iterations and gsk be the k-th chosen gs 

in the T iterations, 

Rel’all(g) ≈ (1/T)* ∑
=

T

1k

w(gsk) for a 

sufficiently large T. 

Proof: From (6) and the definition of w(gs), the 

reliability of the extended model is 

 

Rel’all(g) = ∑
Ω∈sg

1*Rel(gs) + ∑
Ω∉sg

w(gs)*Rel(gs) 

= ∑
Ω∈sg

w(gs)*Rel(gs) + ∑
Ω∉sg

w(gs)*Rel(gs) 

(by Lemma 4) 

                                                           
1  Note that with the number of samples increases, the required 

computation effort also increases. To reduce the complexity while 

retaining the estimated accuracy is an important issue for future 

study. 

=∑
sg

w(gs)*Rel(gs) 

≈∑
sg

w(gs)*(Ngs/T)   (by Corollary 3) 

=(1/T)*∑
sg

w(gs)*Ngs 

=(1/T)*{w(gs1)+w(gs2)+…+w(gsT)} 

= (1/T)*∑
=

T

1k

w(gsk).                                  ■ 

 

The accuracy of Algorithm 2 increases as the 

number of iterations increases. It gives an excellent 

approximation as long as ε is small and we choose T 

which is large enough to make 0.25/Tε
2
 sufficiently 

small (as we has shown earlier in (12)). In other words, 

if we want to have 1-2δ confidence that the estimated 

reliability falls in the range of exact reliability ± ε, we 

must set 0.25/Tε
2 ≤ δ, i.e., set T ≥ 0.25/(δ*ε

2
). 

 

4. Numerical results 
 

In this section, we utilize the network configuration 

in Fig. 2 (A) as an example to demonstrate Algorithm 2. 

More complex scenarios are under study at the time 

this paper is written. We set the link failure 

probabilities and the CIL of the links in Fig. 2 (A) with 

the values in Tab. 1 (A) and (B). With the parameter n 

in w(gs) to be 1 (see Eq.(7))2, the exact all-terminal 

reliability of the network configuration is 0.98032. 

Table 1: Properties of the links. 
(A) Link failure probabilities. 

Links 2 3 4 

1 0.1 0.2 1 

2  0.2 0.1 

3   0.1 

(B) CIL. 

Links 2 3 4 

1 2 2 1 

2  2 1 

3   2 

 

The estimated results of the network configuration 

are illustrated in Fig. 3 and Fig. 4. Fig. 3 illustrates the 

relation between the number of the iterations (x-axis) 

and the estimated reliability (y-axis). Fig. 4 illustrates 

the relation between the number of iterations (x-axis) 

                                                           
2 Note that the cases for n unequal to 1 are exactly the same as the 

n=1 case, so they are not elaborated here. 

126



  

and the difference between the exact reliability and the 

estimated reliability. 

In Fig. 3, the estimated reliability approaches 

0.98032 as the number of iteration increases. When 

more than 118 iterations are performed, the difference 

between the exact reliability and the estimated 

reliability is always smaller than 0.005 (see Fig. 4). 

Fig. 4 shows that the estimated reliability converges 

to the exact reliability with a sufficiently large T value. 

Although for some small network configuration, we 

could directly examine the 2
|L|

 different gs to calculate 

the exact all-terminal reliability, it is almost infeasible 

to do that for more complex network configurations. 

For large networks, approximation is required to 

estimate the all-terminal reliability in order to get the 

computation done quickly. 
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Figure 3: Estimated all-terminal reliability. 
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Figure 4: Difference between the exact reliability and 

the estimated reliability. 

 

5. Conclusions 
 

This paper described the optimal cost reliable 

network design problem which is NP-hard. To solve 

this complex problem, several GAs were proposed to 

minimize network cost given a minimum required 

network reliability constraint. In these GAs, the all-

terminal network reliability needs to be calculated very 

frequently. However, the exact calculation of the all-

terminal network reliability is NP-hard, so 

approximation is required. For the basic network 

reliability model, the approximation of all-terminal 

network reliability was calculated using cut set count 

and Monte Carlo simulation. Nevertheless, for the 

extended network reliability model, no approximation 

algorithm was developed. 

We proposed an approximation algorithm based on 

Monte Carlo simulation for that extended network 

reliability model. By adopting our network reliability 

approximation algorithm, the GAs will be capable of 

solving the optimal cost reliable network design 

problem under the extended network reliability model. 

We did not mention the computational intensive of 

the proposed algorithm in this paper. This is an 

important issue for future study. 
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