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Many business process analysis models have been proposed, however there are few discussions for arti-
fact usages in workflow specifications. A well-structured business process with sufficient resources might
fail or yield unexpected results dynamically due to inaccurate artifact specification, e.g. an inconsistency
between artifact and control flow, or contradictions between artifact operations. This paper, based on our
previous work, presents a model for describing the input/output of a workflow process and analyzes the
artifact usages upon the model. This work identifies and formulates thirteen cases of artifact usage anom-
alies affecting process execution and categorizes the cases into three types. Moreover, the methods for
detecting these anomalies with time complexities O(n2), less than O(n3) in previous methods, are pre-
sented. Besides, the paper uses an example to demonstrate the processing of them.
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1. Introduction

A workflow is seemingly a set of interrelated tasks systematized
to achieve certain business goals by accomplishing each task in a
particular order under automatic control (The Workflow Manage-
ment Coalition, 1995). Workflow implementation requires re-
sources for supporting process execution. Resource allocation and
resource constraint analysis (Senkul and Toroslu, 2005; Li et al.,
2004; Liu et al., 2003; Du and Shan, 1999; Muehlen, 1999) are pop-
ular workflow research topics. However, data flow within work-
flow is seldom addressed (Sadiq et al., 2004; Sun and Zhao, 2004;
Sun et al., 2004, 2006).

An artifact is a data instance within a workflow. Introducing
artifact usage analysis into (control-oriented) workflow designs
can help maintain consistency between execution order and data
transition (Sadiq et al., 2004; Sun and Zhao, 2004; Sun et al.,
2004, 2006), as well as prevents exceptions due to contradiction
between data flow and control flow. In contrast to structural cor-
rectness, accuracy in artifact manipulation helps determine
whether the execution result of a workflow is meaningful and
desirable. Our earlier work (Hsu, 2005; Wang et al., 2006; Hsu
and Wang, 2007) introduced the artifact usage analysis into work-
flow design phase and identified preliminary improper artifact
usages affecting workflow execution.

This paper proposes a process model for describing the input/
output of business processes and addresses three types of artifact
usage anomalies. The model is based on component-based design
technique (Zhuge, 2003; Hitomi and Le, 1998) and is compatible
ll rights reserved.
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with existing control-oriented workflow design models. It provides
an easier way to extract knowledge of artifact usages in a work-
flow. With the model, an analysis procedure of artifact usage is ap-
plied before deploying the workflow schema. On the other hand,
the checking between data flow and control flow and the informa-
tion of manipulating artifacts can be applied stepwise along with
the specification process. An example demonstrating the contribu-
tion of our work and a comparison among related works and ours
is also presented.

The remainder of this paper is organized as follows. Section 2
presents the research background and related works. Section 3 pre-
sents our process model, including the control flow and artifact
flow. There are thirteen cases of artifact usage anomalies identified
and then categorized into three types in Section 4. In Section 5, we
present a method for detecting each type of anomalies. A compar-
ison between our approach and some related works is given in Sec-
tion 6. Finally, a conclusion and some recommendations of future
work are given in Section 7.

2. Related work and background

2.1. Analysis in workflow specification

A workflow can be deemed as a collection of cooperating and
coordinated activities designed to carry out a well-defined com-
plex process, such as a trip planning, conference registration proce-
dure, or business process in an enterprise. In addition, the
technology is adopted further in developing service-oriented archi-
tecture in the last decade (Yau et al., 2008, 2007). A workflow mod-
el describes a workflow in terms of various elements, such as roles
and resources, tools and applications, activities, and data, which
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represent different perspectives of a workflow (Curtis et al., 1992;
Jablonski and Bussler, 1996). Roles and resource elements repre-
sent organizational perspective that describes the performers of
the tasks instantiated. Tools and application elements represent
operational perspectives by specifying what tools and applications
are used to execute a particular task. Activity elements are defined
with two perspectives: (1) functional: what tasks a workflow per-
forms; and (2) behavioral: when and how tasks are performed.
Data elements represent the informational perspective, i.e., what
information entities are produced or manipulated in corresponding
workflow activities.

A well-defined workflow model leads to efficient development
of an effective and reliable workflow application. Correctness is-
sues in a workflow might be classified into three dimensions: con-
trol-flow, resource, and data-flow. Generally, the analyses in
control-flow dimension are focused on correctness issues of con-
trol structure in a workflow. Common control-flow anomalies in-
clude deadlock, livelock (infinite loop), lack of synchronization,
and dangling reference (Karamanolis et al., 2000a; van der Aalst,
1998a, 1997, 1998b; van der Aalst and ter Hofstede, 2000; van
der Aalst et al., 2000a,b, 2003; van der Aalst and Basten, 2002; Ver-
beek and van der Aalst, 2000; Karamanolis et al., 2000b; Verbeek
et al., 2001). For example, a deadlock anomaly occurs if it is no
longer possible to make any progress for a workflow instance,
e.g. synchronization on two mutually exclusive alternative paths.

Activities belonging to different workflows or parallel activities
in the same workflow might access the same resources. A resource
conflict occurs when these activities execute over the same time
interval. Thus, the analyses in resource dimension include identifi-
cation of resource conflicts under resource allocation constraints
and/or under temporal and/or causality constraints (Senkul and
Toroslu, 2005; Li et al., 2004; Liu et al., 2003; Du and Shan, 1999;
Muehlen, 1999). On the other hand, missing, redundancy, and con-
flict use of data are common anomalies in data-flow dimension
(Sadiq et al., 2004; Sun and Zhao, 2004; Sun et al., 2004, 2006). A
missing data anomaly occurs when an artifact is accessed before
it is initialized. A redundant data anomaly occurs when an activity
produces an intermediate data output but this data is not required
by any succeeding activity. A conflicting data anomaly represents
different versions of the same artifact.

Current workflow modeling and analyzing paradigms mainly
focus on soundness of control logic, i.e., in the control-flow dimen-
sion, including process model analysis (van der Aalst and ter Hof-
stede, 2000; van der Aalst et al., 2000a,b, 2003; van der Aalst,
1997, 1998b; van der Aalst and Basten, 2002; Verbeek and van
der Aalst, 2000; Karamanolis et al., 2000b; Verbeek et al., 2001;
Gong and Wang, 2004; Sadiq and Orlowska, 2000), workflow pat-
terns (van der Aalst et al., 2000a,b, 2003; van der Aalst, 1997,
1998b; van der Aalst and Basten, 2002; Verbeek and van der Aalst,
2000; Karamanolis et al., 2000b; Verbeek et al., 2001; Gong and
Wang, 2004; Sadiq and Orlowska, 2000, 1997, 1999; Russell
et al., 2004) and automatic control of workflow process (Bae
et al., 2004). Aalst and ter Hofstede van der Aalst and ter Hofstede
(2000) proposed a WorkFlow net (WF-net), based on Petri nets, to
model a workflow: transitions representing activities, places repre-
senting conditions, tokens representing cases, and directed arcs
Table 2.1
Summary of comparisons.

Sadiq et al. Sun et al.

Process model Conceptual level Data-flow matrices proc
Operations concerned Read, write Read, write
Detecting method N/A Data dependency analys
Concrete algorithm N/A Yes
Complexity N/A O(n3)
connecting transitions and places. Son and Kim (2005) defined a
well-formed workflow based on closure and control block con-
cepts. He claimed that a well-formed workflow is free from struc-
tural errors, and that complex control flows can be made with
nested control blocks. Sadiq and Orlowska (2000) proposed a visual
verification approach and algorithm with a set of graph reduction
rules to discover structural conflicts in process models for given
workflow modeling languages.

There are several research topics discussed in resource dimen-
sion, including resource allocation constraints (Senkul and Toroslu,
2005; Li et al., 2004), resource availability (Liu et al., 2003), re-
source management (Du and Shan, 1999) and resource modeling
(Muehlen, 1999). Senkul Senkul and Toroslu (2005) developed an
architecture to model and schedule workflow with resource alloca-
tion constraints and traditional temporal/causality constraints. Li
et al. (2004) concluded that a correct workflow specification
should have resource consistence and provided a series of detec-
tion algorithms. Both Pinar and Hongchen extended workflow
specifications with constraint descriptions. Liu et al. (2003) pro-
posed a three-level bottom-up workflow design method to effec-
tively incorporate confirmation and compensation in case of
failure.

There was little attention paid to the data-flow dimension,
although related analysis in the data-flow dimension is very
important since activities cannot be executed properly without
sufficient data information. For example, Sadiq et al. (2004) identi-
fied and justified the importance of data modeling in the overall
workflow design process. In addition, data-flow validation issues
and essential requirements of data-flow modeling in workflow
specifications are identified. They illustrated and defined seven ba-
sic data validation problems: redundant data, lost data, missing
data, mismatched data, inconsistent data, misdirected data, and
insufficient data. However, Sadiq worked only on the conceptual
level and thus, neither concrete data-flow model nor detecting
algorithms are proposed. Furthermore, operations on data are only
classified into read and write type.

Sun and Zhao (2004), Sun et al. (2004, 2006) formulate the data-
flow perspective by means of dependency analysis. The data-flow
matrix and an extension of the unified modeling language (UML)
activity diagram are proposed to specify the data flow in a business
process. Then, three basic types of data-flow anomalies, missing
data, redundant data, and conflicting data, were defined. Based
on the dependency analysis, algorithms to data-flow analysis for
discovering the data-flow anomalies are presented and execute
in O(n3) time. However, as in Sun’s work, there is no explicit model
proposed to characterize data behaviors. Also, the operation types
are considered only with read and initial write.

Our previous work (Hsu and Wang, 2007) was concerned with
five different types of operations, read, write, specify, destroy and
revise, but the behaviors of an artifact are not explicitly modeled
by a finite state machine. The three-layer workflow model is pro-
posed for constructing state transition diagrams of each flow struc-
ture to detect inaccurate artifact usage. Detection algorithms are
designed based on critical paths for discover the inaccurate state
transition of an artifact. However, the time complexity of the algo-
rithms is O(n3). Table 2.1 summaries the comparisons.
Our previous approach

ess data diagram Three-layer workflow model State transition diagram
Read, write, specify, destroy, revise

is Artifact usage analysis
Yes
O(n3)
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2.2. BPEL, BPMN and loop-simplification

BPEL is one of the most popular workflow languages. In BPEL
(Alves et al., 2007), the control structures, proposed to indicate
the order where the individual activities are executed, include
‘‘sequential processing” (Sequence), ‘‘repetitive execution” (While
and RepeatUtil), ‘‘parallel processing” (Flow), ‘‘exclusive branches”
(If and Pick) and ‘‘inclusive branches” (OR and Complex). All types
of business processes can be defined by nesting and/or combining
the five structures in arbitrary ways (White, 2008).

BPMN (White, 2008) is a solution to represent the business pro-
cess in a graph. The elements defined in BPMN are classified into
sequence flow and object. A sequence flow links two objects to show
the execution order. An object can be an event, a task or a gateway.
An event may signal the start (start event), the end (end event) of a
process, a message that arrives or a specific time-date being
reached during a process (intermediate message/timer event). A task
is an atomic activity and stands for the work to be performed with-
in a process. A gateway is a routing construct used to control the
divergence and convergence of sequence flow. For a set of parallel
sequences, a parallel fork/join gateway creates/synchronizes
concurrent sequence flows. For a set of exclusive sequences, a
data/event-based XOR decision/merge gateway selects one from/
joins a set of mutually exclusive sequence flows. The selection is
based on either the process data (data-based) or external event
(event-based). Besides, there are two pairwise OR and complex
Fig. 2.1. Examples of well-s
gateways: OR decision gateway, OR merge gateway, complex decision
gateway and complex merge gateway, their functions can be re-
placed by combining and/or nesting two or more gateways indi-
cated above.

Ouyang et al. (2006) asserts that the control structures can be
represented with BPEL or BPMN in patterns; moreover, the well-
structured components representing these patterns with BPMN
are proposed. Fig. 2.1 shows examples depicted with BPMN in a
well form. In the exclusive branch structures (c) and (d), no matter
which succeeding sequence flow is selected (due to the data prop-
agated from its preceding activities in (c) or an event signaled for a
notification in (d)), the data propagation mechanisms of both cases
are the same in an implicit data flow model (Sadiq et al., 2004). A
data exchange between activities is done through global vari-
able(s) stored in a common database. However, the analysis in an
iteration is not well concerned.

The set of gateways defined in BPMN is not intended to be min-
imal (White, 2008). The semantics of one structure might be imple-
mented with other structure(s). To simplify the discussion, this
paper minimizes the set of gateways by excluding the ones whose
functions are replaceable. In addition, the elements defined in a
general model, e.g. BPMN or BPEL, which do not support the anal-
ysis of artifact usage, are omitted in our model. For example, the
event object of BPMN determining the succeeding flow does not af-
fect the design of data propagation mechanism, it is not concerned
here.
tructured control flows.
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3. Process modeling

3.1. Basic concept of loop reduction

Our major concern is to find artifact usage anomalies and re-
duce the computation time. The basic concept of loop reduction
is to transform a loop into an XOR structure. The condition(s) of
a RepeatUntil structure R is evaluated after each iteration but that
of a While structure W is done before each iteration. Obviously, the
least time k of RepeatUntil(R)/While(W) execution is 1/0 if the
evaluation result in R/W is not concerned. An artifact can be asso-
ciated with a state representing the latest activity on the artifact
(Hsu and Wang, 2007). For iteration times k > 2, all the possible
state variations of the artifacts operated are the same as those
for iterations k = 2. Therefore, the state variations in a loop can
be grouped according to k. For R, there are two groups of state vari-
ations. The first group is for k = 1 and the second one is for k P 2.
For W, besides above two groups, there is a group for k = 0.

Each above group of operation(s) can be translated into a se-
quence flow (of operations). The R and W can be represented with
corresponding XOR gateways and the flows in order to analyze the
abnormal behaviors due to these operations. The XOR structures
for the loops shown in Fig. 2.1e and f are presented in Fig. 3.1a
and b, correspondingly.

3.2. Process specifications

A process consists of a network of activities designed to produce
a product or service for a particular customer or market. A process
specification, a formalized view of a business process, defines a set
of linked (parallel and/or sequential) activities associated with
clear defined inputs and outputs respectively. Each activity takes
a subset of the process input(s) or the output(s) of its previous
activity(ies) and transforms them into data for later use or as pro-
cess outputs. These data are called artifacts. Thus, a process speci-
fication contains not only the control flow but also the artifact flow
inside the business process. Here, we give a formal definition of
process with these two parts in Definition 3.1.

Definition 3.1. A process specification is a tuple BP = (G,VT,D,
IW,OW), where
Fig. 3.1. The XOR structures of the loops shown in Fig. 2.1e and f.
– G = (V,E), representing the control flow, is a directed and acyclic
graph, where V is a set of vertices of which each represents an
activity and E � V � V is a set of directed edges indicating the
precedence relation between two activities.

– VT : V ? T is a type function that maps each activity into one of
the activity types in T, where

T ¼ fTask; SubProcess; ProcessStart; ProcessEnd;AndSplit;

AndJoin;XorSplit;XorJoing:

The activities whose types are Task are called task activities while
the others are called control activities.

– D is a set of artifacts used in the process.
– IW � D, a subset of D, denotes the set of process inputs.
– OW � D, a subset of D, denotes the set of process outputs.
3.3. Control flow specification

3.3.1. Activities and control blocks
An activity in a business process might be atomic or non-atomic

(compound). An atomic activity is an indecomposable unit of work
that is scheduled by a workflow engine. A sub-process activity
within a process represents a compound activity. The function-
based classification of atomic activities divides these activities into
two groups: Task and control. A task activity is defined as making
some function progress provided from its associated business pro-
cess. Three pairs of control activities can be defined to bound a
group of activities: (1) ProcessStart and ProcessEnd, (2) AndSplit
and AndJoin and (3). XorSplit and XorJoin. Each pair and the activ-
ities bounded by them are named as a control block. Notations for
activities in BPMN (White, 2008) are partially adopted and shown
in Fig. 3.2.

Three control structures ‘‘sequential”, ‘‘parallel branch” and
‘‘conditional branch” are constructed from typed activities and
their precedence relations, as the figures shown in Fig. 3.3. These
structures are used in analyzing the artifact usages. In this paper,
the three structures are implemented with Sequential, AND Control
and XOR Control Block, respectively. Statements of the four imple-
mentations are given below:

� Sequential block: Activities within this structure are executed
sequentially. Serial activities are fired while completing their
preceding activities. Succeeding activities are triggered after
their execution.
Fig. 3.2. The adopted notations.



Fig. 3.3. Graphical presentation of the three control structure implementations.
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� AND control block: An AndSplit activity connects with more than
one outflow. All outflows of the AndSplit activity execute cur-
rently. These outflow executions merge synchronously into
one on AndJoin activity.

� XOR (eXclusive OR) control block: An XorSplit activity connects
with more than one outflow, called branches. The evaluation
result of the XorSplit activity decides one of the outflows to con-
tinue. After execution, these branches converge on an XorJoin
activity. No synchronization is required since there is only one
thread chosen for execution.

The control flow G = (V,E) of a process specification is well-
formed if the following constraints hold:

– G has a unique vertex v of type ProcessStart, which has no incom-
ing edge and one outgoing edge.

� $!v : VT(v) = ProcessStart ? InDegree(v) = 0 ^ OutDegree(v) = 1.

– G has a unique ProcessEnd vertex v of type ProcessEnd, which has

one incoming edge and no outgoing edge.

� $!v : VT(v) = ProcessEnd ? InDegree(v) = 1 ^ OutDegree(v) = 0.

– Vertices of type AndSplit and XorSplit have one incoming edge

and more than one outgoing edge.
� "v : (VT(v) = AndSplit _ XorSplit) ? InDegree(v) = 1 ^

OutDegree(v) > 1.

– Vertices of type AndJoin and XorJoin have more than one incom-

ing edge and one outgoing edge.
� "v 2 (VT(v) = AndJoin _ XorJoin) ? InDegree(v) > 1 ^ OutDe-

gree(v) = 1.

– Any two control blocks can be nested but not overlapped.
� A typed control block b is denoted with a startVertex and an

endVertex. The two vertices corresponds to a pair of control
activities defined in Section 3.3.1.
8b1 ¼ ½v i;v j�; b2 ¼ ½vx;vy�;
b1 – b2 ! b1 � b2 _ b2 � b1 _ b1 \ b2 ¼ ;:
3.3.2. Relations among activities and control blocks
In this session, relations among activities and control blocks are

identified as follows.

Definition 3.2 (Paths). A path from v1 to vk is a sequence of
vertices hv1, . . . ,vki in a control graph G = (V,E) such that each node
is connected to the next vertex in the sequence i.e., the edges
(vi,vi+1) for i = 1,2, . . . ,k � 1 are in the edge set E. The path from v1 to
vk is denoted by Path(v1,vk).

Definition 3.3 (Reachability). Given two vertices u and v, IsReach-
able(u,v) is a Boolean function that indicates whether there is a
path from u to v.

8u;v 2 V ; IsReachableðu; vÞ ¼ true$ 9Pathðu;vÞ _ u ¼ v :

Definition 3.4 (Predecessors and successors).

VIsPredecessor
v ¼ u 2 V jðu;vÞ 2 Ef g;

VIsPredecessor
v ¼ t 2 V jt 2 VIsPredecessor

v _ 9u 2 VIsPredecessor
v : t 2 VIsPredecessor

u

� �n o
;

VIsSuccessor
v ¼ fu2 V jðv ;uÞ 2 Eg;

VIsSuccessor
v ¼ t 2 V jt 2 VIsSuccessor

v _ 9u2 VIsSuccessor
v : t 2 VIsSuccessor

u

� �n o
;

VIsPredecessor
v comprises the set of vertices which are the source of an

edge with destination vertex v 2 V. Each element u in VIsPredecessor
v is

called a direct predecessor of the vertex and is denoted by u ? v.

VIsPredecessor
v denotes the transitive closure of VIsPredecessor

v . 8u 2
VIsPredecessor

v , v is reachable from u. Each element u in VIsPredecessor
v is

called a predecessor of v and is denoted by uv. VIsSuccessor
v and its

transitive closure VIsSuccessor
v are defined similarly.

Definition 3.5 (Ancestor blocks and level of an activity). "v 2 V, let
v.PB denote the parent control block containing v. AncestorBlock
comprises the set of all control blocks that contain v

AncestorBlockðvÞ
¼ fbjb ¼ v :PB _ ðb 2 AncestorBlockðv :PB:startVertexÞÞg:

In addition, the cardinality of AncestorBlockðvÞ identifies the nested
level of v

LevelðvÞ ¼

AncestorBlockðvÞ
��� ��� if v 2 V ;

AncestorBlockðv :StartVertexÞ
��� ���

if v represents a control block:

8>>><
>>>:
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Definition 3.6 (Common ancestor blocks and nearest common ances-
tor blocks). Given a set of vertices, v1, . . . ,vn, Bi is a common ancestor
block of v1, . . . ,vn if and only if the following holds:

Bi 2
\n
i¼1

AncestorBlockðv iÞ; denoted by Bi 2 CABðv1; . . . ; vnÞ:

Bi is the Nearest common ancestor of v1, . . . ,vn if and only if the fol-
lowing holds:

8Bj 2 CABðv1; . . . ; vnÞ ^ Bj – Bi : LevelðBjÞ
< LevelðBiÞ; denoted by NCABðv1; . . . ;vnÞ ¼ Bi:

Definition 3.7 (Parallel activities). Given two vertices, u and v,
IsParallel(u,v) is a Boolean function to represent if u and v might
be executed in parallel within a workflow instance.

IsParallelðu;vÞ ¼ true() NCABðu;vÞ:Type

¼ \AND" ^ qIsReachableðu; vÞ ^ qIsReachableðv; uÞ:

IsParallel(u,v) = true, denoted as u � v, indicates that u and v might
be executed in parallel and v is called a parallel activity of u.

Definition 3.8 (Exclusive activities). Given two vertices, u and v,
IsExclusive(u,v) is a Boolean function to represent some XOR
characteristics of u and v. Within a workflow instance, if u will
not be selected for execution, v is selected for execution and vice
versa

IsExclusiveðu; vÞ ¼ true() NCABðu;vÞ:Type

¼ \XOR" ^ qIsReachableðu;vÞ ^ qIsReachableðv ;uÞ;

IsExclusive(u,v) = true, denoted as u � v, indicates that at most one
of u and v can be selected for execution and v is called an exclusive
activity of u.

Definition 3.9 (Companion activities). Given two vertices, u and v,
IsCompanion(u,v) is a Boolean function which indicates whether
both u and v are selected for computation

IsCompanionðu; vÞ ¼ true ^ LevelðuÞ – LevelðvÞ () 8b

2 AncestorBlockðuÞ [ AncestorBlockðvÞ
n CABðu;vÞ : b:type ¼ \AND";

IsCompanionðu; vÞ ¼ true ^ LevelðuÞ ¼ LevelðvÞ () 8b

2 fNCABðu; vÞg : b:type ¼ \AND";

IsCompanion(u,v) = true, denoted as u 	 v, indicates that neither or
both of them are selected for execution. v is called a companion
activity of u.
 

Fig. 3.4. The state diagram of an artifact.
3.4. Artifact flow specification

Currently, as identified in Sadiq et al. (2004), there are three
major implementation models for artifact flow: explicit data flow,
implicit data flow through control flow, and implicit data flow
through a process data store. This paper adopts implicit data flow
model through a common process data store. Artifact exchanges
between tasks are done through global variables stored in a com-
mon database. In a workflow, some activities store their output
artifacts in the database, and their following activities may access
these artifacts later. The activities in our model are regarded as
black boxes, i.e., neither the internal computations nor intermedi-
ate execution states are visible for each activity. Thus, the artifact
usages of an activity are identified as the inputs/outputs of the
activity.
3.4.1. Artifacts and artifact operations
Artifacts are the information entities involved in a process,

including the input data to the process, the intermediate data pro-
duced within the process, and the (final) output data from the pro-
cess. An artifact is an atomic data item (e.g. a number, a character
string, or an image) or a collection of atomic data items (e.g. a doc-
ument). Intuitively, all artifacts participating in a workflow execu-
tion must be pre-defined in a process specifications. Each artifact
contains a set of legal operations for its internal data. An activity
designed to manipulate a certain artifact can work only with the
legal operation(s) for the artifact. From the data storage point of
view, each artifact operation can be regarded as one of the follow-
ing operations, regardless of its semantic meaning:

� Initialize: all definition operations, e.g. ‘‘fill in”, ‘‘create”, and
‘‘define” operations.

� Read: all reference operations, e.g. ‘‘use”, ‘‘fetch”, ‘‘select”, and
‘‘retrieve” operations.

� Update: all modification operations, e.g. ‘‘write”, ‘‘change”, and
‘‘update” operations.

� Destroy: all deletion operations, e.g. ‘‘remove”, ‘‘erase”, ‘‘cancel”,
and ‘‘discard” operations.

In general, an Initialize operation is used to create an artifact in-
stance in a process. Read and Update operations are then used to
access the instance. Finally, a Destroy operation is used to delete
the artifact instance. Destroy operations are applied for temporary
artifacts created during the workflow execution, but may not be
strict for all artifacts (see Fig. 3.4).

Fig. 3.4 shows the state diagram of an artifact with the above four
kinds of operations, ‘‘Uninitialized”, ‘‘Initialized”, ‘‘Updated”, and
‘‘Read”. ‘Uninitialized’ represents the initial state of an artifact. ‘‘Ini-
tialized”, ‘‘Updated”, and ‘‘Read” represent states after an Initialize,
Update, and Read operation is performed respectively. In addition,
the artifact state is set to ‘‘Uninitialized” after a Destroy operation.

3.4.2. Artifact flow and artifact usages
To simplify the discussion of artifact usages, a formal and com-

plete definition of a task/control activity is shown below:

Definition 3.10 (Task/control activities).
An task/control activity is a tuple v = (ATv,SCv,ECv,RCv, Iv,Ov,ASv),
where

� ATv represents the type of the activity.
� SCv, ECv, and RCv are the sets of logical expressions which are

evaluated by a workflow engine.
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– SCv is the set of pre-conditions of which each is evaluated to
decide whether an activity within a process instance can be
started (only used by task activities).

– ECv is the set of post-conditions of which each is evaluated to
decide whether an activity within a process instance is com-
pleted (only used by task activities).

– RCv is the set of routing conditions of which each is evaluated
to decide the sequence of activity execution within a process
(only used by control activities).
� Iv, the input set, identifies all the artifacts required to be
accessed by the activity.
– For a task activity, Iv contains all the artifacts required for its

computation.
– For a control activity, Iv contains all the artifacts used to eval-

uate the routing conditions.
Table 4.1
Symbols used in usage patterns.

Wd: a writer ðd 2 Oþv Þ : no consumer of d exists

Cd: a consumer (d 2 Iv) : no producer of d exists

Ud: a updator ðd 2 Iv and d 2 Oþv Þ : no reader of d exists

Pd: a producer ðd R Iv and d 2 Oþv Þ : no destroyer of d exists

Rd: a reader d 2 Iv and d R Oþv�

�� �
(): a control block
� Ov, the output set, identifies all the artifacts produced, updated,
or destroyed after executing the activity v. Ov is divided into two
disjoint subsets, Oþv and O�v , where Oþv represents the set of the
artifacts initialized or updated by v and O�v represents the set
of the artifacts destroyed by v.

� ASv is the activity specification (only used by task activities).

Based on Definition 3.10, a usage relation between an activity
and an artifact can be defined as follows:

Definition 3.11 (Consumer, producer, updator, and destroyer activ-
ities of an artifact).
For a given artifact d, the memberships between artifact d
and Iv ;O

þ
v , and O�v can be applied for identifying the usage of

artifact d at activity v. All the possible usages are categorized as
follows:

� if d 2 Iv and d R Oþv
d R O�v

�
, v is called a Reader (Activity) of artifact d.

� if d 2 Iv and d 2 Oþv ;v is called an Updator (Activity) of artifact
d.

� if d 2 Iv and d 2 O�v ;v is called a Destroyer (Activity) of artifact
d.

� if d R Iv and d 2 O�v , v is called a Illegal Destroyer1 (Activity) of
artifact d.

� if d R Iv and d 2 Oþv , v is called a Producer (Activity) of artifact d.

� if d R Iv and d R Oþv
d R O�v

�
, v is called an Irrelevantor (Activity) of arti-

fact d.

In addition, if d 2 Iv, v is generally called a Consumer (Activity) of
artifact d and if d 2 Oþv ,v is generally called a Writer (Activity) of
artifact d.

Definition 3.12 (Consumer, updator, destroyer and producer activity
sets of an artifact).

� VIsConsumer
d ¼ fv 2 V jd 2 Ivg is called the Consumer Activity Set of

artifact d.
� VIsUpdator

d ¼ fv 2 V jd 2 Iv and d 2 Oþv g is called the Updator Activ-
ity Set of artifact d.

� VIsDestroyer
d ¼ fv 2 V jd 2 Iv and d 2 O�v g is called the Destroyer

Activity Set of artifact d.
� VIsProducer

d ¼ fv 2 V jd R Iv and d 2 Oþv g is called the Producer Activ-
ity Set of artifact d.

� VIsReader
d ¼ fv 2 V jd 2 Iv ; d R Oþv and d R O�v g is called the Reader

Activity Set of artifact d.
The illegal destroyer is not concerned in our model because the activity destroy
ifact arbitrarily. Any useful artifact could be destroyed by the activity during the
rkflow execution.
4. Artifact usage anomalies

4.1. Artifact usage anomalies

In process specification, the following three types of anomalies
might occur: (1) missing production, (2) redundant write, and (3)
conflict write. In the subsections, these anomalies are defined
and the corresponding usage patterns that cause the anomalies
are identified. Every usage pattern is given a name, description,
and formulated detection conditions. Table 4.1 shows the symbols
used in the usage patterns.

4.2. Missing production anomalies

A missing production anomaly occurs when an artifact is con-
sumed before it is produced or after it is destroyed. In order to for-
mulate this type of anomaly, the propagation of an artifact is
introduced in Definition 4.1.

Definition 4.1 (Propagation of artifacts to an activity). Given an
activity v, let a preceding execution order to v denote an execution
order leading to v without any parallel activities of v, i.e., only
consisting of the predecessors of v. Given an artifact d, if there is at
least one preceding execution order to v such that d is produced
but not destroyed yet (i.e., d is not in Uninitialized state), d can be
propagated to v. The propagations of artifact d regarding only the
preceding execution orders to v are called preceding propagations of
d to v and can be classified into three cases: (1) no preceding
propagation, (2) conditional preceding propagation, and (3) uncon-
ditional preceding propagation:

Case (1) indicates that d is always Uninitialized for all preceding
execution orders to v.

Case (2) indicates whether d is Uninitialized depends on the pre-
ceding execution orders to v taken.

Case (3) indicates that d is Initialized for all preceding execution
orders to v.

Let AAv be the set composed of all artifacts which can be prop-
agated from the predecessors of v. AAv can be divided into two dis-
joint subsets, AAu

v and AAc
v , where AAu

v contains artifacts propagated
from the predecessors of v unconditionally and AAc

v contains those
propagated from the predecessors of v conditionally.

The causes of missing production anomalies can be discussed as
follows. Intuitively, if v 2 VIsConsumer

d and d R AAv hold, a missing
production anomaly might occur due to No Preceding Propagation
of d to v. Similarly, if v 2 VIsConsumer

d and d 2 AAc
v hold, a missing pro-

duction anomaly might occur by Conditional Preceding Propagation
of d to v. Furthermore, considering the parallel activities of v, even
d R Ov

Dd: a destroyer ðd 2 Iv and d 2 O�v Þ (�): XOR control block

�: reachable link (�): AND Control block
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though v 2 VIsConsumer
d and d 2 AAu

v hold, a missing production
anomaly might occur when there is a destroy activity of d in the
parallel activities. The execution order of the parallel activities de-
cides the production of d. This kind of anomaly is named Uncertain
Preceding Propagation.

For each cause of the missing production anomaly, possible
usage patterns are characterized by its name, description, and re-
quired condition as following:

(1) No preceding propagation: v 2 VIsConsumer
d ^ d R AAv .
Usage Pattern 1: �Cd�
� Name: No Production.
� Description: Artifact d has at least one consumer activity

v; however, no producer activity of d exists in the
process.

� Conditions: 9v 2 VIsConsumer
d ^ VIsProducer

d ¼ ;.
Usage Pattern 2: �Cd�Pd�
� Name: Delayed Production.
� Description: Artifact d has a consumer activity v which

precedes every producer activity of d.
� Conditions: 9v 2 VIsConsumer

d ^ ðVIsPredecessor
v \ VIsProducer

d Þ ¼
; ^ ðVIsSuccessor

v \ VIsProducer
d Þ– ;.
Usage Pattern 3: �Pd� Dd� Cd�
� Name: Early Destruction.
� Description: Artifact d is produced and then destroyed

before it is consumed.
� Conditions:
9v 2 VIsConsumer
d ^ d R AAv ^ VIsPredecessor

v \ VIsProducer
d

� �
– ; ^ VIsPredecessor

v \ VIsDestroyer
d

� �
– ;
Usage Pattern 4: �ðCd � PdÞ�

� Name: Exclusive Production.
� Description: Given two exclusive activities v and u such

that v is a consumer of artifact d and u is a producer of d.
Due to the characteristic of exclusive activities, only one
of v and u might be selected for execution. Although u is a
producer of d, it makes no contribution to the propaga-
tion of d to v and thus a missing production anomaly
occurs.

� Conditions:
9v 2 VIsConsumer

d ^ d R AAv ^ ðVIsExclusive
v \ VIsProducer

d Þ – ;.
Usage Pattern 5: �ðCd � PdÞ�
� Name: Uncertain Production.
� Description: Given two parallel activities v and u such

that v is a consumer of artifact d and u is a producer of
d. Due to the race hazard of parallel activities, v might
be executed before u. Therefore, u may not make contri-
bution to the propagation of d for v. Consequently, a
missing production anomaly occurs if artifact d will not
be propagated from the predecessors of v.

� Conditions:
9v 2 VIsConsumer

d ^ d R AAv ^ ðVIsParallel
v \ VIsProducer

d Þ – ;.

(2) Conditional Preceding Propagation:v 2 VIsConsumer
d ^ d 2

AAc
v .Whether d is propagated depends on what preceding

path of v is taken. Consequently, a missing production
anomaly occurs when those preceding paths of v in which
d is not propagated are taken.
Usage Pattern 6: �ðPd � Þ�Cd�
� Name: Conditional Production.
� Description: Artifact d is produced conditionally before a

consumer activity of d.
� Conditions: 9v 2 VIsConsumer

d ^ d 2 AAc
v .
Usage Pattern 7: �Pd�ðDd � Þ�Cd�
� Name: Conditional Destruction.
� Description: Artifact d is destroyed conditionally before

a consumer activity of d.
� Conditions: 9v 2 VIsConsumer

d ^ d 2 AAc
v .

(3) Uncertain Preceding Propagation: v 2 VIsConsumer
d ^ d 2 AAu

v .

Usage Pattern 8: �Pd�ðDd � CdÞ�
� Name: Uncertain Destruction.
� Description: Given two parallel activities v and u such

that v is a consumer of artifact d and u is a destroyer of
d. Due to the race hazard of parallel activities, v might
be executed before u. d is unconditionally propagated
from the predecessors of v, but d might be destroyed
by u before v is executed. A missing production anomaly
occurs.

� Conditions:
9v 2 VIsConsumer

d ^ d 2 AAu
v ^ ðV

IsParallel
v \ VIsDestroyer

d Þ– ;.
Theorem 1 (Missing production verification). A process BP is free
from missing production anomalies if the following condition holds:
"v 2 V, "d 2 Iv: d 2 AAu

v and ðVIsParallel
v \ VIsDestroyer

d Þ ¼ ;.

Proof. This theorem is proven by contradiction. Firstly, we assume
a missing production anomaly in BP. The assumption indicates an
activity v 2 V, an artifact d 2 Iv, and an execution order C such that
v 2C and d is Uninitialized when v is selected for execution. How-
ever, d 2 AAu

v implies that d is always propagated from the prede-
cessors of v. Furthermore, ðVIsParallel

v \ VIsDestroyer
d Þ ¼ ; implies that

none of parallel activities of v affects the propagation of d to v.
Thus, no matter what preceding execution order of v is taken, d
is always propagated to v. It is obvious that C does not exist. The
fact contradicts the assumption given in the beginning and thus
Theorem 1 holds. h
4.3. Redundant write anomalies

A redundant write anomaly occurs when an artifact is written
(produced or updated) by an activity but the artifact is neither re-
quired by the succeeding activities nor a member of the process
outputs. Redundancy is not an error; nevertheless, it causes ineffi-
ciency. In order to formulate this type of anomalies, the set of arti-
facts unused in the following activities is introduced in Definition
4.2.

Definition 4.2. (The set of artifacts unused before an activ-
ity). Given an activity v and an artifact d, if there is one
preceding execution path to v, where d is written but not
consumed, d is unused before v. If artifact d is unused for the
predecessors of the Process End vertex and is not a member of the
set of process outputs, a redundant write anomaly occurs. The
anomalies can be divided into two classes: complete and condi-
tional. Artifact d is completely unused indicates that d is unused
for all preceding paths of v. Artifact d is conditionally unused
indicates that d is unused in certain preceding path(s) of v, i.e.,
that an anomaly occurs depending on which preceding path of v
is taken.



Fig. 5.1. E-mail voting process.

Table 5.1
Artifacts in the e-mail voting process.

Artifacts
d1 Issue list d9 Integrated results
d2 Applicant data d10 Data shared
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Let NCv be the set composed of all unused artifacts for the
predecessors of v. NCv can be divided into two disjoint subsets NCu

v
and NCc

v , where NCu
v contains completely unused artifacts and NCc

v
contains conditionally unused artifacts.

The causes of redundant write anomalies can be discussed as
follows. Intuitively, for every artifact d 2 NCu

ProcessEnd and d R Ow, an
Explicit Redundant Write anomaly always occurs for artifact d of
the process. For every artifact d 2 NCc

ProcessEnd and d R Ow, a potential
redundant write anomaly might occur for artifact d.

For each category of the redundant write anomaly, the possible
usage patterns are characterized by its name, description, and re-
quired condition as following:

(1) Explicit redundant write
d3 Discussion participant data d11 Deadline warning message
d4 Calendar d12 Conference time
d5 Signature of manager d13 Vote participant data
d6 Announce issues d14 Vote result
d7 Comment on announce issues d15 Increment tally
d8 Discussion result d16 Vote final result

Artifact usages
R Reader P Producer
U Updator D Destroyer
Usage Pattern 9:

�Wd�

�Wd�

�ð �WdÞ�

�ð �WdÞ�
� Name: No Consumption After Last Write.

� Description: For an artifact d, d does not belong to the

process outputs, when d is written by an activity v and
when the artifact is unused for all succeeding activities
of v, a redundant write occurs for the artifact.

� Conditions: 9d 2 NCu
ProcessEnd : d R Ow.

(2) Potential redundant write

Usage Pattern 10:



Fig. 5.2. E-mail voting process presented with our process model.
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�Wd�ðRd � ð ^ ÞÞ

�Wd�ðDd � ð ^ ÞÞ

�ðRd �WdÞ�ð ^ Þ

�ðDd �WdÞ�ð ^ Þ
� Name: Conditional Consumption After Last Write.
� Description: For an artifact d, d does not belong to the

process outputs. When d is written by an activity v and
the artifact is unused for some succeeding activities of
v conditionally, a redundant write might occur for the
artifact.

� Conditions: 9d 2 NCc
ProcessEnd : d R Ow.
Theorem 2 (Redundant write verification). A process BP is free
from the redundant write anomalies if NCProcessEndnOw = ; holds.

Proof. NCProcessEndnOw = ; indicates that artifacts produced in the
process either contribute to the process output directly after its
last write (d 2 Ow) or is read/destroyed after its last write on all
possible (preceding) execution orders leading to Process End
(d R NCProcessEnd). Therefore, no redundant write anomaly exists if
NCProcessEndnOw = ; holds. h
4.4. Conflict writes anomalies

The conflict writes anomalies can be divided into three classes:
(1) multiple parallel productions, (2) multiple parallel updates
and (3) parallel read and update. An anomaly of multiple parallel
productions occurs when more than one activity tries to initialize
the same artifact in parallel. An anomaly of multiple parallel up-
dates occurs when more than one activity updates the same arti-
fact in parallel. An anomaly of parallel read and update anomaly
occurs when two activities perform read and update on the same
artifact concurrently. Each of these anomalies corresponds to the
execution order. The anomalies make the artifact version hard to
control.

Usage Pattern 11: �ðPd � PdÞ�
� Name: Multiple Parallel Productions.
� Description: More than one activity initializes the same

artifact in parallel.
� Conditions: 9v 2 VIsProducer

d ^ ðVIsProducer
d \ VIsParallel

v Þ – ;.

Usage Pattern 12: �Pd�ðUd � UdÞ�
� Name: Multiple Parallel Updates.
� Description: More than one activity updates the same arti-

fact in parallel.
� Conditions:
9v 2 VIsUpdator

d ^ d 2 AAv ^ ðVIsUpdator
d \ VIsParallel

v Þ – ;.

Usage Pattern 13: �Pd�ðRd � UdÞ�
� Name: Parallel Read and Update.
� Description: Two activities perform read and update

respectively on the same artifact concurrently.
� Conditions:
9v 2 VIsReader

d ^ d 2 AAv ^ ðVIsUpdator
d \ VIsParallel

v Þ– ;.
Theorem 3 (Conflict writes verification). A process BP is free from
the anomalies of conflict writes if for any two parallel activities v and
u, ðOþv n Iv Þ \ ðOþu n IuÞ ¼ ;, ðOþv \ IvÞ \ ðOþu \ IuÞ ¼ ;, Iv \ ðOþu \ IuÞ ¼
;, and Iu \ ðOþv \ IvÞ ¼ ; hold.



Table 5.2
Artifacts usages in the e-mail voting process.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

ps P P P P t12 R
t1 R R R R xs3 R P
t2 R R U P P P U xs4

t3 R t13 R R P
as1 t14 R R P
xs1 R xj4
as2 P t15 U
t4 P xs5

t5 P t130 R R P
aj2 t140 R R P
t6 R U xj5
as3 P t150 U
t40 P xs6

t50 P t1300 R R P
aj3 t1400 R R P
t60 R U xj6
as4 P t1500 U
t400 P xj3 D
t500 P t16 R R R R R R R P
aj4 as5

t600 R U t17 R R
xj1 D t18 R
t7 R R R aj5

t8 P pe
t9 R
xs2 R
t10 P
t11 R R
xj2
aj1
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Table 5.3
Steps to detect missing production anomalies.

ps AAu = {d1,d2,d3,d13}, AAc = ;
t1 AAu ¼ fd1; d2; d3;d13g;AAc ¼ ;; It1 ¼ fd1;d2;d3;d13g; It1 n AA ¼ ;
t2 AAu ¼ fd1; d2; d3;d13; ðd5Þ; ðd6Þ; ðd7Þg;AAc ¼ ;; It2 ¼ fd1; d2; d3; d13g; It2 n AA ¼ ;
t3 AAu ¼ fd1; d2; d3;d13;d5; d6; d7g;AAc ¼ ;; It3 ¼ fd6g; It3 n AA ¼ ;
as1 AAu ¼ fd1; d2; d3;d13;d5; d6; d7g;AAc ¼ ;; Ias1 ¼ ;; Ias1 n AA ¼ ;
xs1 AAu ¼ fd1; d2; d3;d13;d5; d6; d7g;AAc ¼ ;; Ixs1 ¼ fd3g; Ixs1 n AA ¼ ;
as2 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; ðd9Þg;AAc ¼ ;; Ias2 ¼ ;; Ias2 n AA ¼ ;
t4 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9; ðd8Þg;AAc ¼ ;; It4 ¼ ;; It4 n AA ¼ ;
t5 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9; ðd10Þg;AAc ¼ ;; It5 ¼ ;; It5 n AA ¼ ;
aj2 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; Iaj2

¼ ;; Iaj2
n AA ¼ ;

t6 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; It6 ¼ fd8;d9g; It6 n AA ¼ ;
as3 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; ðd9Þg;AAc ¼ ;; Ias3 ¼ ;; Ias3 n AA ¼ ;
t40 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9; ðd8Þg;AAc ¼ ;; It40 ¼ ;; It40 n AA ¼ ;
t50 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9; ðd10Þg;AAc ¼ ;; It50 ¼ ;; It50 n AA ¼ ;
aj3 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; Iaj3

¼ ;; Iaj3
n AA ¼ ;

t60 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; It60 ¼ fd8; d9g; It60 n AA ¼ ;
as4 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d8;d10; ðd9Þg;AAc ¼ ;; Ias4 ¼ ;; Ias4 n AA ¼ ;
t400 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d10;d9; ðd8Þg;AAc ¼ ;; It400 ¼ ;; It400 n AA ¼ ;
t500 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d8;d9; ðd10Þg;AAc ¼ ;; It500 ¼ ;; It500 n AA ¼ ;
aj4 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; Iaj4

¼ ;; Iaj4
n AA ¼ ;

t600 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; d9;d8;d10g;AAc ¼ ;; It600
¼ fd8;d9g; It600

n AA ¼ ;

xj1 AAu ¼ fd1; d2; d3 ;d13;d5; d6; d7g;AAc ¼ fd9; d8; d10g; IXj1
¼ fd3g; IXj1

n AA ¼ ;

t7
AAu ¼ fd1; d2;d3;d13; d5; d6; d7g;AAc ¼ ;; It7 ¼ fd3; d9; d11g
It7 n AA ¼ fd9;d11g ¼> no preceding propagation

t8 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; ðd11Þg;AAc ¼ ;; It8 ¼ ;; It8 n AA ¼ ;

t9
AAu ¼ fd1; d2;d3;d13; d5; d6; d7g;AAc ¼ ;; It9 ¼ fd4g
It9 n AA ¼ fd4g ¼> no preceding propagation

xs2 AAu ¼ fd1; d2; d3;d13;d5; d6; d7g;AAc ¼ ;; Ixs2 ¼ fd3g; Ixs2 n AA ¼ ;
t10 AAu ¼ fd1; d2; d3;d13;d5; d6; d7; ðd12Þg;AAc ¼ ;; It10 ¼ ;; It10 n AA ¼ ;

t11
AAu ¼ fd1; d2;d3;d13; d5; d6; d7g;AAc ¼ ;; It11 ¼ fd3; d12g
It11 n AA ¼ fd12g ¼> no preceding propagation

xj2 AAu ¼ fd1; d2; d3;d13;d5; d6; d7g;AAc ¼ fd12g; Ixj2
¼ ;; Ixj2

n AA ¼ ;

aj1

AAu ¼ fd1; d2;d13;d5; d6; d7; d11g;AAc ¼ fd9;d8;d10; d12g; Iaj1 ¼ ;
It7 \ O�xj1

¼ fd3g ¼> uncertain preceding propagation
Ixs2 \ O�xj1

¼ fd3g ¼> uncertain preceding propagation
It11 \ O�xj1

¼ fd3g ¼> uncertain preceding propagation

t12 AAu ¼ fd1; d2; d13;d5;d6; d7; d11g;AAc ¼ fd9; d8; d10;d12g; It12 ¼ fd6g; It12 n AA ¼ ;
xs3 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; ðd15Þg;AAc ¼ fd9;d8;d10; d12g; Ixs3 ¼ fd13g; Ixs3 n AA ¼ ;
xs4 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15g;AAc ¼ fd9;d8;d10; d12g; Ixs4 ¼ ;; Ixs4 n AA ¼ ;

t13
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It13 ¼ fd6; d9g
It13 \ AAc ¼ fd9g ¼> conditional preceding propagation

t14
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It14 ¼ fd6; d9g
It14 \ AAc ¼ fd9g ¼> conditional preceding propagation

xj4 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; Ixj4
¼ ;; Ixj4

n AA ¼ ;
t15 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; It15 ¼ fd15g; It15 n AA ¼ ;
xs5 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15g;AAc ¼ fd9;d8;d10; d12g; Ixs5 ¼ ;; Ixs5 n AA ¼ ;

t130
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It130

¼ fd6; d9g
It130 \ AAc ¼ fd9g ¼> conditional preceding propagation

t140
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It140

¼ fd6; d9g
It140 \ AAc ¼ fd9g ¼> conditional preceding propagation

xj5 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; Ixj5
¼ ;; Ixj5

n AA ¼ ;
t150 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; It150

¼ fd15g; It150
n AA ¼ ;

xs6 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; Ixs6 ¼ ;; Ixs6 n AA ¼ ;

t1300
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It1300

¼ fd6; d9g
It1300
\ AAc ¼ fd9g ¼> conditional preceding propagation

t1400
AAu ¼ fd1; d2;d13;d5; d6; d7; d11;d15; ðd14Þg;AAc ¼ fd9; d8; d10;d12g; It1400

¼ fd6; d9g
It1400
\ AAc ¼ fd9g ¼> conditional preceding propagation

xj6 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; Ixj6
¼ ;; Ixj6

n AA ¼ ;
t1500 AAu ¼ fd1; d2; d13;d5;d6; d7; d11; d15;d14g;AAc ¼ fd9;d8; d10 ;d12g; It1500 ¼ fd15g; It1500 n AA ¼ ;

xj3 AAu ¼ fd1; d2; ;d5; d6; d7;d11;d15; d14g;AAc ¼ fd9; d8; d10;d12g; IXj3
¼ fd13g; IXj3

n AA ¼ ;

t16

AAu ¼ fd1; d2;d5;d6;d7; d11; d15;d14; ðd16Þg;AAc ¼ fd9; d8; d10;d12g; It16 ¼ fd1; d2; d3; d6;d9;d13; d15g
It16 n AA ¼ fd3;d13g ¼> no preceding propagation
It16 \ AAc ¼ fd9g ¼> conditional preceding propagation

as5 AAu ¼ fd1; d2; d5;d6;d7;d11; d15; d14;d16g;AAc ¼ fd9;d8; d10 ;d12g; Ias5 ¼ ;; Ias5 n AA ¼ ;

t17
AAu ¼ fd1; d2;d5;d6;d7; d11; d15;d14; d16g;AAc ¼ fd9; d8; d10;d12g; It17 ¼ fd13; d16g
It17 n AA ¼ fd13g ¼> no preceding propagation

t18 AAu ¼ fd1; d2; d5;d6;d7;d11; d15; d14;d16g;AAc ¼ fd9;d8; d10 ;d12g; It18 ¼ fd16g; It18 n AA ¼ ;

aj5 AAu ¼ fd1; d2; d5;d6;d7;d11; d15; d14;d16g;AAc ¼ fd9;d8; d10 ;d12g; Iaj5
¼ ;; Iaj5 n AA ¼ ;

pe AAu ¼ fd1; d2; d5;d6;d7;d11; d15; d14;d16g;AAc ¼ fd9;d8; d10 ;d12g; Ipe ¼ ;; Ipe n AA ¼ ;
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Table 5.4
Steps to calculate the unused artifacts.

ps NCu = {d1,d2,d3,d13}, NCc = ;

t1 NCu = {
2 3 131

}, NCc = ;

t2 NCu = {(d5), (d6), (d7), (d13)}, NCc = ;

t3 NCu = {d5,
6

,d7,d13}, NCc = ;

as1 NCu = {d5,d7,d13}, NCc = ;
xs1 NCu = {d5,d7,d13}, NCc = ;
as2 NCu ¼ fd5;d7;d13; ðd9Þg; NCc ¼ ;
t4 NCu ¼ fd5;d7;d13; d9; ðd8Þg; NCc ¼ ;
t5 NCu ¼ fd5;d7;d13; d9; ðd10Þg; NCc ¼ ;
aj2 NCu ¼ fd5;d7;d13; d9; d8; d10g; NCc ¼ ;

t6 NCu ¼ fd5;d7;d13; 8
;d10; ðd9Þg; NCc ¼ ;

as3 NCu ¼ fd5;d7;d13; ðd9Þg; NCc ¼ ;
t40 NCu ¼ fd5;d7;d13; d9; ðd8Þg; NCc ¼ ;
t50 NCu ¼ fd5;d7;d13; d9; ðd10Þg; NCc ¼ ;
aj3 NCu ¼ fd5;d7;d13; d9; d8; d10g; NCc ¼ ;

t60 NCu ¼ fd5;d7;d13; 8
;d10; ðd9Þg; NCc ¼ ;

as4 NCu ¼ fd5;d7;d13; d10 ; ðd9Þg; NCc ¼ ;
t400 NCu ¼ fd5;d7;d13; d10 ;d9; ðd8Þg;NCc ¼ ;
t500 NCu ¼ fd5;d7;d13; d9; ðd10Þg;NCc ¼ ;
aj4 NCu ¼ fd5;d7;d13; d9; d8; d10g; NCc ¼ ;

t600 NCu ¼ fd5;d7;d13; 8
;d10; ðd9Þg; NCc ¼ ;

xj1 NCu = {d5,d7,d13}, NCc = ;
t7 NCu = {d5,d7,d13}, NCc = ;
t8 NCu ¼ fd5;d7;d13; ðd11Þg; NCc ¼ ;
t9 NCu = {d5,d7,d13}, NCc = ;
xs2 NCu = {d5,d7,d13}, NCc = ;
t10 NCu ¼ fd5;d7;d13; ðd12Þg; NCc ¼ ;
t11 NCu = {d5,d7,d13}, NCc = ;
xj2 NCu = {d5,d7,d13}, NCc = {d12}

aj1 NCu ¼ fd5;d7;d13; d11g; NCc ¼ fd12g
t12 NCu ¼ fd5;d7;d13; d11g; NCc ¼ fd12g

xs3 NCu ¼ fd5;d7; ;d11; ðd15Þg; NCc ¼ fd12g

xs4 NCu ¼ fd5;d7;d11; d15g; NCc ¼ fd12g
t13 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
t14 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
xj4 NCu ¼ fd5;d7;d11; d15; d14g; NCc ¼ fd12g
t15 NCu ¼ fd5;d7;d11; d14; ðd15Þg; NCc ¼ fd12g
xs5 NCu ¼ fd5;d7;d11; d15g; NCc ¼ fd12g
t130 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
t140 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
xj5 NCu ¼ fd5;d7;d11; d15; d14g; NCc ¼ fd12g
t150 NCu ¼ fd5;d7;d11; d14; ðd15Þg; NCc ¼ fd12g
xs6 NCu ¼ fd5;d7;d11; d15; d14g; NCc ¼ fd12g
t1300 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
t1400 NCu ¼ fd5;d7;d11; d15; ðd14Þg; NCc ¼ fd12g
xj6 NCu ¼ fd5;d7;d11; d15; d14g; NCc ¼ fd12g
t1500 NCu ¼ fd5;d7;d11; d14; ðd15Þg; NCc ¼ fd12g
xj3 NCu ¼ fd5;d7;d11; d14; d15g; NCc ¼ fd12g
t16 NCu ¼ fd5;d7;d11; d14; ;ðd16Þg;

NCc ¼ fd12g

as5 NCu ¼ fd5;d7;d11; d14; d16g; NCc ¼ fd12g
t17 NCu ¼ fd5;d7;d11; d14; g; NCc ¼ fd12g

t18 NCu ¼ fd5;d7;d11; d14; g; NCc ¼ fd12g

aj5 NCu ¼ fd5;d7;d11; d14g; NCc ¼ fd12g
pe NCu ¼ fd5;d7;d11; d14g; NCc ¼ fd12g
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Proof. If any pair of parallel activities v and u such that
ðOþv n IvÞ \ ðOþu n IuÞ ¼ ;, no two activities initializes the same arti-
fact in parallel. If ðOþv \ Iv Þ \ ðOþu \ IuÞ ¼ ;, then no two activities
updates the same artifact in parallel. Furthermore, Iv \ ðOþu \ IuÞ ¼
; and Iu \ ðOþv \ Iv Þ ¼ ; indicate that no two activities perform read
and update respectively on the same artifact. Thus, BP is free from
conflict writes anomalies. h
5. The methods to detect artifact usage anomalies

The methods for detecting the artifact usage anomalies in a pro-
cess specification are presented in this section. The goal in our
study is to search the artifact usage anomaly only, and it is not nec-
essary to construct the possible artifact activities in each process.
Instead, loop can be replaced with a corresponding XOR structure.
From the top-level view, a well-formed control flow can be deemed
as one or a sequence of task(s) and/or top-level control block(s).
Thus, an entire flow can be deemed as a sequence of nodes in
which each node represents a task or a control block which repre-
sents a group of sequential flows. The same perspective can also be
applied to the branches of the control block(s). In our approach, a
business process is transformed into a sequence of nodes before
applying the detection methods. Each method in Section 5.2 is
aimed at detecting a type of artifact usage anomalies identified
in Section 4.
5.1. Process transformation

Let control flow G = (V,E) of a business process be transformed
into a sequence of nodes S. The data structure of S and the nodes
within S are defined in Definition 5.1.

Definition 5.1 (The data structure of a sequence and a node). S: a
structure containing a sequence of nodes (a node could represent a
task or a control block)
S.startVertex:
 the vertex is the first node of the sequence

S.endVertex:
 the vertex is the termination of the sequence

S.nodes:
 a set of ordered nodes

node: a node is a structure denoted with type, startVertex,

endVertex and subSequences
node.type:
 the type of a task or control block

node.startVertex:
 the start vertex of a control block

node.endVertex:
 the end vertex of a control block

node.subSequences:
 a set of sequences attached to

the node
The transformation is designed to convert a control flow en-
closed by ProcessStart and ProcessEnd vertices. The initial value
of the level attribute for each vertex in V is 0. An empty se-
quence is declared for the control flow in the beginning. During
the transformation, a node is created for each task and control
block visited. The task node is appended to the sequence directly.
Once a split activity s reached, its corresponding control block is
identified by function SetLevel which traverses a path with the
vertexes enclosed by s and its corresponding join activity j in
G. During the traverse, the level attributes of the vertexes tra-
versed are updated. The transformation is applied to the block
identified. Such a recursive operation continues until all activities
in the block are processed. The corresponding sequence of
node(s) generated for each branch of a control block is attached
to the node created for their own control blocks when the trans-
formation completes at the end of the branch. The details of
transforming a task and a control block are shown in
PseudoCode1.
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PseudoCode 1 TransformControlBlock(G, v, level,
controlNodes){

// Input: G=(V,E): a directed connected graph
// v: the traverse is started from vertex v.
// level: the level of start vertex v
// controlNodes: a stack containing a set of pairwise control

activities bounded control blocks
// Output: S: a structure containing a sequence of nodes

Stack currentControlNodes = new Stack();
S.startVertex=currentVertex=v;
while (currentVertex != null) {

switch (currentVertex.type) {
case ‘‘ProcessStart”:

nextVertex = currentVertex.next;
break;

case ‘‘Task”:
newNode.type=currentVertex.type;
newNode.startVertex=currentVertex;
newNode.endVertex=currentVertex;
newNode. subSequences.append(null);
S.nodes.append(newNode);
nextVertex = currentVertex.next;
break;

case ‘‘AndSplit” or ‘‘XorSplit”:
newNode.type=currentVertex.type;
newNode.startVertex=currentVertex;
if (controlNodes.get(currentVertex) == null)

currentControlNodes.push(currentVertex.level,
currentVertex);

for each edge (currentVertex, w) 2 E {
//recursively transform each branch within a
control block

if (w.level <= currentVertex.level) {
controlNodes = SetLevel(w, current
Vertex.level++, currentControlNodes,
controlNodes);
//record pairwise control activities in the
branch

}
endVertex = contrlNodes.get
(currentVertex);
subsequence = TransformControlBlock(G’,
currentVertex, currentVertex.level,
controlNodes);
// the directed connected graph G’ of the
branch bounded by currentVertex and
endVertex
subsequence.parentBlock = newNode;

//collect every subSequence (corresponding
to each branch)

newNode.subSequences.append(subSequence);
}
// assign ‘‘AndJoin” or ‘‘XorJoin”to be the end
vertex of the node
newNode.endVertex= endVertex;
S.nodes.append(newNode);
nextVertex = newNode.endVertex.next;
break;

case ‘‘EndProcess”:
exit while;

}
previousVertex = currentVertex; //remember last
traversed vertex
currentVertex = currentVertex.next; //continue to
traverse next node}
}
PseudoCode SetLevel(startVertex, level, currentControlNodes,

controlNodes) {
n = level;
currentVertex= startVertex;
while ((currentVertex.type != ‘‘AndJoin” & &
currentVertex.type != ‘‘XorJoin”)jj n>=level) {

if (currentVertex.type== ‘‘AndSplit” jj
currentVertex.type== ‘‘XorSplit”) {

currentVertex.level=n;
currentControlNodes.push(n, currentVertex);
n ++;
currentVertex=currentVertex.next;
// currentVertex.next returns the first node in one
branch after currentVertex.

} else if (currentVertex.type== ‘‘AndJoin” jj
currentVertex.type== ‘‘XorJoin”) {

n –;
currentVertex.level=n;

controlNodes.push(currentControlNodes.get
(currentVertex.level),currentVertex);

// get the spilt activity s associated with level n
from currentControlNodes stack and
// then push the pair (s, currentVertex) into
controlNodes stack
currentControlNodes.pop(currentVertex.level);
if (n<level) exit while;
else currentVertex= currentVertex.next;

} else {
currentVertex.level=n;
currentVertex= currentVertex.next;

}
}
return controlNodes;

}

5.2. Anomaly detection methods

The methods for detecting the artifact usage anomalies in a pro-
cess specification are presented in this section, named DetectMiss-
ingProduction, DetectRedundantWrite and DetectConflictWrites,
respctively. Each is aimed at detecting a type of artifact usage
anomalies identified in Section 4. The details of these methods
are shown in the following subsections. An example described in
Section 5.2.1.3 is adopted to demonstrate their how they work
correspondingly.
5.2.1. Method for detecting missing production anomalies
5.2.1.1. Calculation of propagated artifacts from predecessors. Given a
sequence S of the process derived from transformation, let S.AAv

denote the set of artifacts propagated from the predecessors of
activity v and S:AA0v be the set of artifacts of which each can be
propagated to the direct successors of v after the execution of v.
At the top level, S.AAS.startVertex = Iw for the starting node of S. During
the traverse of sequence S, when a node n is reached, S.AA is calcu-
lated as follows:

� If n represents a task activity v,v has only one direct successor x.
S:AA0v and S.AAx are calculated as follows:
– For each destroyed artifact d 2 Iv \ O�v , remove d from S:AAu

v
or S:AAc

v where d is included.
– For each produced artifact d 2 ðOþv n IvÞ, add d to S:AAu

v and
remove d from S:AAc

v if d is included.



Table 5.5
Steps to calculate the conflict write.

ps PA = {d1,d2,d3,d13}, UA = ;, RA = ;
t1 PA = {d1,d2,d3,d13}, UA = ;, RA = {d1,d2,d3,d13}
t2 PA ¼ fd1 ; d2 ; d3 ; d13; ðd5Þ; ðd6Þ; ðd7Þg;UA ¼ fd3 ;d13g;RA ¼ fd1 ; d2 ; d3 ; d13g
t3 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g;UA ¼ fd3 ;d13g;RA ¼ fd1 ; d2 ; d3 ; d13; ðd6Þg
as1 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g;UA ¼ fd3 ;d13g;RA ¼ fd1 ; d2 ; d3 ; d13; d6g
xs1 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g;UA ¼ fd3 ;d13g;RA ¼ fd1 ; d2 ; d13; d6 ; ðd3Þg
as2 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; ðd9Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t4 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; ðd8Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t5 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; ðd10Þg;UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
aj2 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t6 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13; ðd9Þg;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ; ðd8Þg
as3 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; ðd9Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t40 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; ðd8Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t50 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; ðd10Þg;UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
aj3 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3g
t60 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13; ðd9Þg;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ; ðd8Þg
as4 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d8 ; d10 ; ðd9Þg;UA ¼ fd3 ;d13;d9g;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d8g
t400 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d10 ;d9 ; ðd8Þg;UA ¼ fd3 ;d13;d9g; RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d8g
t500 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d8 ; d9 ; ðd10Þg;UA ¼ fd3 ;d13;d9g; RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d8g
aj4 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13; d9g;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d8g
t600 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13; ðd9Þg; RA ¼ fd1 ;d2 ;d13;d6 ;d3 ; ðd8Þg
xj1 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d9 ; d8 ; d10g;UA ¼ fd3 ; d13; d9g;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d8g
t7 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g; UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d13; d6 ; ðd3Þ; ðd9Þ; ðd11Þg
t8 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; ðd11Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d3 ;d9 ;d11g
t9 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g; UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d3 ;d13; d6 ; ðd4Þg
xs2 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g; UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d13; d6 ; d4 ; ðd3Þg
t10 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; ðd12Þg;UA ¼ fd3 ; d13g;RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3g
t11 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7g; UA ¼ fd3 ;d13g;RA ¼ fd1 ;d2 ;d13; d6 ; d4 ; ðd3Þ; ðd12Þg
xj2 PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6 ; d7 ; d12g;UA ¼ fd3 ;d13g;RA ¼ fd1 ; d2 ; d13 ;d6 ;d4 ;d3 ;d12g

aj1
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t12
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d9 ;d11; ðd6Þg

xs3
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; ðd15Þg;UA ¼ fd3 ; d13; d9g;
RA ¼ fd1 ;d2 ;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11; ðd13Þg

xs4
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t13
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

t14
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

xj4
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t15
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ; ðd15Þg;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

xs5
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t130
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

t140
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

xj5
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t150
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ; ðd15Þg;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

xs6
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ;d15g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t1300
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9 ;d15g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

t1400
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; ðd14Þg;UA ¼ fd3 ; d13 ;d9 ;d15g;
RA ¼ fd1 ;d2 ;d13;d4 ;d3 ;d12;d8 ;d11; ðd6Þ; ðd9Þg

xj6
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ;d15g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t1500
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ; ðd15Þg;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

xj3
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14g;UA ¼ fd3 ;d13;d9 ;d15g;
RA ¼ fd1 ;d2 ;d13;d6 ;d4 ;d3 ;d12;d8 ;d9 ;d11g

t16
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ; ðd16Þg;UA ¼ fd3 ;d13;d9 ;d15g;
RA ¼ fd4 ;d12;d8 ;d11; ðd1Þ; ðd2Þ; ðd3Þ; ðd6Þ; ðd9Þ; ðd13Þ; ðd15Þg

as5
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ;d16g;UA ¼ fd3 ;d13; d9 ; d15g;
RA ¼ fd4 ;d12;d8 ;d11;d1 ;d2 ;d3 ;d6 ;d9 ;d13; d15g

t17
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ;d16g;UA ¼ fd3 ;d13; d9 ; d15g;
RA ¼ fd4 ;d12;d8 ;d11;d1 ;d2 ;d3 ;d6 ;d9 ;d15; ðd13Þ; ðd16Þg

t18
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ;d16g;UA ¼ fd3 ;d13; d9 ; d15g;
RA ¼ fd4 ;d12;d8 ;d11;d1 ;d2 ;d3 ;d6 ;d9 ;d13; d15; ðd16Þg

aj5
PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ;d16g;UA ¼ fd3 ;d13; d9 ; d15g;
RA ¼ fd4 ;d12;d8 ;d11;d1 ;d2 ;d3 ;d6 ;d9 ;d13; d15; d16g

pe PA ¼ fd1 ; d2 ; d3 ; d13; d5 ; d6; d7; d9; d8; d10;d11;d12; d15; d14 ;d16g;UA ¼ fd3 ;d13; d9 ; d15g;
RA ¼ fd4 ;d12;d8 ;d11;d1 ;d2 ;d3 ;d6 ;d9 ;d13; d15; d16g
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S:AAx ¼ S:AA0v ¼
S:AA0uv ¼ ðS:AAu

v n ðIv \ O�v ÞÞ [ ðO
þ
v n IvÞ

S:AA0cv ¼ ðS:AAc
v n ðIv \ O�v ÞÞ n ðO

þ
v n IvÞ

(

� If n represents a control block with subsequences SS =
(SS1,SS2, . . . ,SSk) and k P 2, each vertex within the block will be
recursively traversed as follows:
– The traverse starts from n.startVertex which is the start vertex

of the control block.


 S:AA0n:startVertex ¼ S:AAn:startVertex, since n.startVertex the start
vertex of the control block.
– For each subsequence SSi, apply method DetectMissingPro-
duction recursively to calculate each SSi.AA.

– The traverse terminates on n.endVertex which is the end ver-
tex of the control block. All SSi.AA are merged according to
the type of the control block.


 If n is an XOR control block,
S:AA0n:endVertex ¼ S:AAn:endVertex

¼
S:AAu

n:endVertex ¼
Tk
i¼1

SSi:AAu
SSi :endVertex

S:AAc
n:endVertex ¼

Sk
i¼1

SSi:AASSi :endVertex n S:AAu
n:endVertex

8>>><
>>>:

 If n is an And control block,
S:AA0n:endVertex ¼ S:AAn:endVertex

¼

S:AAu
n:endVertex ¼

Sk
i¼1

SSi:AAu
SSi :endVertex

n
Sk
i¼1
ðSSi:O

� n SSi:AAu
SSi :endVertexÞ

S:AAc
n:endVertex ¼

Sk
i¼1

SSi:AASSi :endVertex n S:AAu
n:endVertex

n
Sk
i¼1

SSi:O
� n SSi:AAu

SSi :endVertex

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
5.2.1.2. Rules for detecting missing production anomalies. During the
traverse of sequence S, the missing production anomalies defined
in Section 4.2 can be detected with the following rules:

� No Propagation
– When an activity v is reached and MAu

v ¼ Iv n AAv – ;, a miss-
ing production anomaly occurs for each artifact d 2 MAu

v due
to No Propagation.
� Conditional Propagation
– When an activity v is reached and MAc

v ¼ Iv \ AAc
v – ;, a miss-

ing production anomaly occurs for each artifact d 2 MAc
v due

to Conditional Propagation.

� Uncertain Propagation

For an And control block with subsequences SS = (SS1,
SS2, . . . ,SSk) and k P 2, before merging SSi:AASSi :endVertex of subse-
quences, if 9i; j ^ 1 6 i; j 6 k ^ i – j ^ ðUPSSi ;SSj

¼ SSi:I \ ðSSj:I\
SSj:O

�Þ– ;Þ, a missing production anomaly may occur for each
artifact d 2 UPSSi ;SSj

due to Uncertain Propagation.

5.2.1.3. An example: a process of resolving issues through e-mail
votes. To demonstrate the three analysis methods proposed in Sec-
tion 5, this subsection introduces a process for resolving issues
through e-mail votes (White, 2008) as an example. The methods
presented are applied on this example to illustrate the steps to de-
tect the artifact usage anomalies. Fig. 5.1 shows the control flow
graph of the e-mail voting process where the artifacts are stated
with details in Table 5.1. The result of representing the example
with our process model is shown in Fig. 5.2. The artifact usages
of activities are listed in Table 5.2.

5.2.1.4. Detection of missing production anomalies. Table 5.3 shows
the calculation of propagated artifacts according to the activity ta-
ken order of the e-mail voting process introduced in Section 5.2.1.3.
During detection, the method processes each activity once only and
generates two sets of artifacts on each activity. The rules defined are
applied on the calculated results of the operated activity recur-
sively. The activity anomalies detected are listed in the table.

5.2.2. Method for detecting redundant write anomalies
5.2.2.1. Calculation of redundant write. Given a sequence S of the
process derived from transformation, let S.NCv denote the set of
artifacts unused before activity v and S:NC 0v denote the set of arti-
facts unused after executing v. During the traverse of sequence S,
when a node n is reached, S.NC is calculated as follows:

� If n represents a task activity v, S:NC0v ¼
S:NC 0uv ¼ ðS:NCu

v n Iv Þ [ Oþv ;
S:NC 0cv ¼ S:NCc

v n Iv n Oþv :

�
– For each read or destroyed artifact d 2 Ivord 2 Iv \ O�v ,

remove d from NCu
v and NCc

v .
– For each produced or updated artifactd 2 Oþv , add d toNCu

v and
remove d from NCc

v .

� If n represents a control block with subsequences SS = (SS1,

SS2, . . . ,SSk) and k P 2, method DetectRedundantWrite is recur-
sively applied to calculate SSi.NC of branches and then merge
SS1.NC to SSk.NC according to the type of the control block.
– If n is an XOR control block,

S:NC0n:endVertex ¼ S:NCn:endVertex

¼

S:NCu
n:endVertex

¼
Tk
i¼1

SSi:NCu
SSi :endVertex

S:NCc
n:endVertex

¼
Sk
i¼1

SSi:NCSSi :endVertex n S:NCu
n:endVertex

8>>>>>>>><
>>>>>>>>:

– If n is an And control block,


 the unconditional set S:NCu

n:endVertex is constituted with
two parts:
� the intersection

Tk
i¼1SSi:NCu

SSi :endVertex of the sets of
artifacts unused before the end vertexes of subse-
quence SSi,1 < i 6 k, and
� the artifacts in ð

Sk
i¼1SSi:NCu

SSi :endVertex nS:NCu
n:startVertexÞnSk

i¼1ðSSi:I n SSi:NCu
SSi :endVertexÞ which contains the ones

produced in subsequences without using by the paral-
lel activities before the end vertex of n. The case of an
artifact reproduced after the last use in branch SSi is
concerned.
S:NC0n:endVertex ¼ S:NCn:endVertex

¼

S:NCu
n:endVertex

¼
Tk
i¼1

SSi:NCu
SSi :endVertex

[
Sk
i¼1

SSi:NCu
SSi :endVertex n S:NCu

n:startVertex

� �

n
Sk
i¼1
ðSSi:I n SSi:NCu

SSi :endVertexÞ

S:NCc
n:endVertex

¼
Sk
i¼1

SSi:NCSSi :endVertex n S:NCu
n:endVertex

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
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5.2.2.2. Rules for detecting redundant write anomalies. After visiting
the endVertex of the top level sequence S, i.e. the end vertex of
the process, the redundant write anomalies defined in Section 4.3
can be detected with the following rules:

� Explicit redundant write
– If EC ¼ NCu

S:endVertex n Ow – ;, a redundant write anomaly
occurs for every artifact d 2 EC due to No Consumption After
Last Write.
� Potential redundant write
– If CC ¼ NCc

S:endVertex n Ow – ;, a redundant write anomaly
occurs for every artifact d 2 CC due to Conditional Consump-
tion After Last Write.
5.2.2.3. Detection of redundant write anomalies. Table 5.4 shows the
steps to calculate the set of unused artifacts for each activity in the
e-mail voting process introduced in Section 5.2.1.3. During calcula-
tion, the method processes each activity once only and generates
two sets of artifacts on each activity.

In this case, the redundant write anomalies detected belong to
one of the following classes:

� Explicit redundant writeEC = NCunOw = {d5,d7,d11,d14}n{d16} =
{d5,d7,d11,d14} is not empty and thus, a redundant write anom-
aly occurs for every artifact d 2 EC due to Completely Unused for
the Process.

� Potential redundant writeCC = NCcnOw = {d12}n{d16} = {d12} is
not empty and thus, a redundant write anomaly occurs for d12

due to Conditional unused for the process.
5.2.3. Method for detecting conflict write anomalies
5.2.3.1. Calculation of conflict writes. Given a sequence S of the pro-
cess derived from transformation, let S.PA, S.UA and S.RA be the sets
of artifacts produced, updated and read respectively within se-
quence S. Initially, the three sets are empty. During the traverse
of sequence S, when a node n is reached, S.PA, S.UA and S.RA are cal-
culated as follows:

� If n represents a task activity v,
S:PA ¼ S:PA [ ðOþv n Iv Þ;
S:UA ¼ S:UA [ ðOþv \ Iv Þ;
S:RA ¼ S:RA [ ðIv n Oþv n O�v Þ:

8<
:

– For every artifact d produced by v, i.e. d 2 ðOþv n IvÞ, add d to
S.PA.

– For every artifact d updated by v, i.e. d 2 ðOþv \ Iv Þ, add d to
S.UA.

– For every artifact d read by v, i.e. d 2 ðIv n Oþv n O�v Þ, add d to
S.RA.

� If n represents a control block with subsequences SS =
(SS1,SS2, . . . ,SSk) and k P 2, the method is recursively applied
to each subsequence. Then, SSi.PA, SSi.UA and SSi .RA belong to
the subsequence and are merged according to the following
rules:
S:PA ¼ S:PA [
[k
i¼1

SSi:PA;

S:UA ¼ S:UA [
[k
i¼1

SSi:UA;

S:RA ¼ S:RA [
[k
i¼1

SSi:RA:
5.2.3.2. Rules for detecting conflict write anomalies. For an And con-
trol block with subsequences SS = (SS1,SS2, . . . ,SSk) and k P 2, the
conflict write anomalies defined in Section 4.4 can be detected
with the following rules:
� Multiple parallel productions
– Before merging SSi.PA, if 9i; j ^ 1 6 i; j 6 k ^ i – j ^ ðMPAssi ;ssj

¼
SSi:PA \ SSj:PA – ;Þ a conflict writes anomaly may occur
for every artifact d 2 MPAssi ;ssj

due to multiple parallel
productions.
� Multiple parallel updates
– Before merging SSi.UA, if 9i; j ^ 1 6 i; j 6 k ^ i – j ^ ðMUAssi ;

ssj ¼ SSi:UA \ SSj:UA – ;Þ a conflict writes anomaly may occur
for every artifact d 2 MUAssi ;ssj

due to multiple parallel
updates.
� Parallel read and update
– Before merging SSi.UA and SSi.RA, if $i,j ^ 1 6 i, j 6 k ^ i – j ^

(SSi.RA \ SSj.UA – ;), then a conflict writes anomaly may
occur for every artifact d 2 SSi.RA \ SSj.UA due to parallel read
and update.
5.2.3.3. Detection of conflict write anomalies. Table 5.5 shows the
steps to calculate the sets of artifacts produced, updated and read
by activities in the e-mail voting process introduced in Section
5.2.1.3. During calculation, the method processes each activity
once only and generates three sets of artifacts on each activity.

In this case, the conflict write anomalies detected belong to one
of the following classes:

� Multiple parallel productions
MPAxj1 ;t11 ;xj2 ¼ ðPAxj1 n PAas1 Þ \ ðPAt8 n PAas1 Þ \ ðPAxj2 n PAas1 Þ ¼ ; and
MPAt17 ;t18 ¼ ; are empty and thus, no conflict write anomaly
occurs because of multiple parallel productions.

� Multiple parallel updates
MUAxj1 ;t11 ;xj2 ¼ ðUAxj1 n UAas1 Þ \ ðUAt8 n UAas1 Þ \ ðUAxj2 n UAas1 Þ ¼ ;
and MUAt17 ;t18 ¼ ; are empty and thus, no conflict write anomaly
occurs due to multiple parallel updates.

� Parallel read and update
SSxj1 :UA \ SSt8 :RA ¼ ðUAxj1 n UAas1 Þ \ ðRAt8 n RAas1 Þ ¼ fd9g is not
empty and thus, a conflict write anomaly occurs for d9 due to
parallel read and update.

6. Comparisons

6.1. Comparisons of anomalies identified in the approaches

The artifact usage anomalies identified in this paper are classified
according to the classification proposed by Sun and Zhao (2004), Sun
et al. (2004, 2006) who claimed that the definition of the types of
artifact usage anomalies – missing data, redundant data, and con-
flicting data – is sufficient in analyzing the data flow at a conceptual
level. Each anomaly, addressed by the two groups, Sadiq et al. (2004)
and Sun and Zhao (2004), Sun et al. (2004, 2006), working on the
analysis in a data-flow dimension, can be found a correspondence
in our model. The mapping relations are shown in Table 6.1. Besides,
Theorems 1–3 can be applied to help avoid the anomalies.

However, Sadiq et al. (2004), Sun and Zhao (2004), Sun et al.
(2004, 2006) are not concerned with destroy operations, each of
which is essential for deleting the artifact instance which is not re-
quired by the succeeding activities or a member of the process out-
puts. In their approaches, a missing production anomaly caused by
an activity destroying an artifact before it is consumed cannot be
identified. A lack of recognizing the critical anomalies endanger
the accuracy of analyzing the workflow execution result. The de-
stroy operations are concerned in our previous work (Hsu and
Wang, 2007), but the anomalies are presented conceptually. There
are three distinct anomalies – early destruction, conditional
destruction, and uncertain destruction – caused by destroying an
artifact requested in a succeeding process, formulated here.



Table 6.1
The mappings of the anomalies addressed.

Our approach Sun et al. Sadiq et al. 
Our Previous 

Work (Hsu
and Wang, 2007) 

No production 
Absence of 

initialization 

Missing data 

Insufficient Data 

Mismatched Data 

Delayed production 
Delayed 

initialization 

No producer 

Conditional production 

Misdirected data 

Branch hazard 

Exclusive production 

Improper 

routing N/A Branch hazard 

Missing 

production

Uncertain production 

Missing 

data 

Uncertain 

availability 
Misdirected data Parallel hazard 

Conditional 

consumption 

after last write 

Contingent 

redundancy 
Branch hazard 

Redundant 

write 
No consumption 

after last write 

Redundant 

data 
Inevitable 

redundancy 

Redundant data 

mismatched data 

No consumer 

Conflict Multiple parallel Conflict Multiple 
Lost data Contradiction 

write productions data initializations 
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In addition, the anomalies happening within a control block are
illustrated conceptually in the methods proposed in Sadiq et al.
(2004), Hsu and Wang (2007). There is no formal formulation for
systematically discovering the artifact usage anomalies in a work-
flow model. Furthermore, the cases of causing conflict write anom-
alies: more than one activity initializes or updates an identical
artifact in parallel or two activities perform read and update on
the same artifact concurrently, are partially addressed in Sadiq
et al. (2004), Sun and Zhao (2004), Sun et al. (2004, 2006). These
anomalies are identified and formulated in this paper also. Regard-
ing the conflict write anomalies, the comparison between the
anomalies formulated in our method and those identified in Sun
et al. (2006), Sadiq et al. (2004) and Hsu and Wang (2007) are
shown in Table 6.2.

6.2. Comparison of the detection methods

Our previous work creates a table for each artifact to display the
artifact usage. In contrast with the table, we utilize another presen-
tation, e.g. Table 5.2, to show the operation of each activity per-
forming on each artifact. Comparing with the distributed tables,
it is easier to identify how each artifact is processed in a business
process with the integrated presentation.
Table 6.2
The mapping of the conflict write anomalies addressed in the four approaches.

Our approach Sun et al.

Conflict write Multiple parallel productions Multiple initializa
Multiple parallel updates N/A
Parallel read and update
Sun et al. (2006) proposed a process data diagram through
extending the UML activity diagram. The extension enriches the
presentation power of an activity diagram to support artifact usage
analysis. However, the irrelevant information could be represented
in a diagram to interfere in the artifact usage analysis. Comparing
to the extension, the methods published in Son and Kim (2005),
Chang et al. (2002), Hsu and Wang (2007) are defined with their
own notations. These custom-made notations are constructed
without explaining the reasons of redefining a new one which cor-
responds to a specific one specified in BPMN. Adopting the BPMN
notation instead of using BPMN is another case of redefinition.
Our process model is defined by ridding unrelated elements and
keeping related ones of the BPMN for fitting the model to analyze
artifact usage. Three advantages obtained from the adaptation are
that: (1) using a standardized graphical notation BPMN keeps the
understandability held by it, (2) simplifying the arrangement of
structures in a model reduces the analysis complexity and (3) elim-
inating the elements irrelevant to artifact usage analysis dimin-
ishes the possibility of design errors.

In addition, our detection methods work on a sequence of
nodes transformed from a business process. Let the process
specification be BP = (G,VT,D, IW,OW). The transformation mecha-
nism goes through each vertex and edge of G(V,E) twice only to
Sadiq et al. Our previous work

tions Lost data (conceptual) Parallel hazard (conceptual)

N/A
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transform the graph into a sequence of nodes. Thus, the com-
plexity of the transformation is O(jVj + jEj). Existing approaches
(Sun et al., 2006, Hsu and Wang, 2007) detect the anomalies
defined upon critical paths, but the computing time required
for calculating critical paths is O(jVj2) more than the one of
the transformations.

Our detection methods are assigned individually to detect a par-
ticular type of defined artifact usage anomalies over the sequence of
nodes. During detection, the methods process each node once only
and generate two or three sets of artifacts on each node. The maxi-
mum storage demand of the set is (jDj), a bit-array is utilized for rep-
resenting each element of the sets. Based on the data structure, time
consumption of the operations, such as union, intersection, and com-
plement, working on the elements is seen as constant.

If the number of nodes in BP is n, method DetectRedundantWrite
can detect the anomaly in O(n) time. If the destroy operation is not
considered in method DetectMissingProduction, the time required
by detecting missing production anomalies is O(n) also. Otherwise,
involving destroy operation, checking the missing production
anomalies on each pair of branches is requisite for each AND
control block. Thus, with destroy operations, the time required by
executing method DetectMissingProduction is O(n2 + n) = O(n2). In
addition, checking the conflict write anomalies on each pair of
branches is requisite for each AND control block, thus the time re-
quired by executing method DetectConflictWrites is O(n2 + n) =
O(n2), less than O(n3) time in previous approaches.

7. Conclusion and future work

Introducing an artifact usage analysis technique into workflow
design phase is the main contribution of this paper. This paper pre-
sents a business process model for describing a business process
and analyzes the artifact usages on this model to achieve this goal.
Artifact usage in our model is characterized by its state transition
diagram.

This work identifies thirteen cases of improper artifact usage
affecting workflow execution and categorizes these anomalies into
three types. The anomalies are identified by considering the de-
stroy operations which are lack of concern before. A set of methods
for discovering these anomalies is also presented. The execution
time required by the set of methods is less than the methods pro-
posed before. An example is demonstrated the usability of the pro-
posed methods.

We currently continue our research in several directions. First,
we plan to implement the proposed model and methods on current
workflow management systems, such as Agentflow Flowring Tech-
nology Corp. (2006), so that our research result can be tested in
real-world applications. Second, we continue the analysis on com-
posite artifacts with more complex usages using Revise operations.
Thirdly, we integrate resource constrains analysis techniques with
our work to build a practical workflow design methodology.
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