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Fig. 4-1-1 Scanning electron microscopy (SEM) photography of active pattern
with the source, the drain, ten nano-wire channels and MILC seeding window. The
inset plot shows the each nano-wire width of 67 nm.
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Fig.4-1-2 SEM photography of MILC poly-Si grain structure. The average
poly-Si lateral grain size is about 250 nm.
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Fig. 4-1-3 Device characteristics of S1. (W /L =1um/5 um) PDMILC poly-Si
TFT transfer lq - Vg curve with (solid-line) and without (dash-line) NHz; plasma
passivation.
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Fig. 4-1-4 Device characteristics of S1 (W /L =1um /5 um) PDMILC poly-Si
TFT output Iy - V4 curve with (solid-line) and without (dash-line) NH3 plasma
passivation.
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Fig. 4-1-5 Device characteristics of M2 (W /L =0.5um x 2 /5 um) PDMILC

poly-Si TFT transfer lg - V, curve with (solid-line) and without (dash-line) NH3
plasma passivation.
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Fig. 4-1-6 Device characteristics of M2 (W /L =05um x 2 /5 um) PDMILC

poly-Si TFT output Iy - Vg4 curve with (solid-line) and without (dash-line) NH3
plasma passivation.

49



108 200
] W/L=0.18umX5/5um

-4
10 . . Vd=5V
— with NH3 plasma passivation

105 |— — w/o NH3 plasma passivation
106
107
108
10°

10-10,

Drain current (A)
Field effect mobility (cm*/Vs)

10-11,

10-12,

10-13,

10

Gate voltage (V)

Fig. 4-1-7 Device characteristics of M5 (W /L =0.18 um x 5/ 5 um) PDMILC
poly-Si TFT, transfer lq- V, curve with (solid-line) and without (dash-line) NHs
plasma passivation.
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Fig. 4-1-8 Device characteristics of M5 (W /L =0.18 um x 5/ 5 um) PDMILC
poly-Si TFT, output Iy - Vg4 curve with (solid-line) and without (dash-line) NH3
plasma passivation.
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Fig. 4-1-9 Device characteristics of M10 (W /L =67 nm x 10 /5 um) PDMILC
poly-Si TFT, transfer lq- V, curve with (solid-line) and without (dash-line) NHs
plasma passivation.
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Fig. 4-1-10  Device characteristics of M10 (W /L =67 nm x 10 /5 um) PDMILC
poly-Si TFT, output Iy - Vg4 curve, with (solid-line) and without (dash-line) NH;
plasma passivation.
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Table 4-1-1. Device parameters of PDMILC TFTs with the same L =5
um at different widths. All parameters were extracted at Vg = 5 V, except

for the field-effect mobility (urg) which were extracted at V4 = 0.1 V.

Device NH3-plasma Hee Vin SS lon/ N
name passivation (cm?/VS) (V) (V/dec.) lorr x10%?
x10° (cm™)
w/o 18.11 4.79 0.80 2.93 10.60

S1 with 38.25 0.31 0.48 1.87 3.66
w/o 21.39 4.70 0.78 1.15 9.87

M2 with 42.37 0.27 0.40 4.02 3.81
w/o 30.62 4,56 0.67 1.87 8.87

M5 with 57.54 0.24 0.32 2.46 3.51
M10 vv_/o 42.29 4.05 0.59 2.93 7.92
with 84.63 0.06 0.23 4.61 3.07
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Fig. 4-1-11  PDMILC poly-Si TFTs’ uge versus the multi-channel with different
widths, with and without NH3 plasma passivation.
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Fig. 4-1-12  PDMILC poly-Si TFTS’ lon/lo Versus the multi-channel with different
widths, with and without NH3 plasma passivation.
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Fig. 4-1-13  PDMILC poly-Si TETs” V4, versus the multi-channel with different
widths, with and without NH3 plasma passivation.
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Fig. 4-1-14  PDMILC poly-Si TFTs’ SS versus the multi-channel with different
widths, with and without NH3 plasma passivation.
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Fig. 4-1-15  Extraction of N; plot of the M10 PDMILC TFTs, with and without
NH; plasma passivation.
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Fig. 4-1-16  PDMILC poly-Si TFTs” N; versus the multi-channel with different
widths, with and without NH3 plasma passivation.
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Table. 4-2-1 Devices dimension of all proposed Ni-PDMILC poly-Si
TFTs. All devices have the same active channel thickness of 50 nm and
gate TEOS-oxide thickness of 50 nm

Device Gate  Eachgate Effective  Channel Each Effective
name | number length (L) length (Ley) number channel  width (Weg)
width (W)

G1s1 1 5um Sum 1 1um 1um
G1M10 1 5um Sum 10 84 nm 0.84 um
G2M10 2 2.5um Sum 10 84 nm 0.84 um
G3M10 3 1.67 um Sum 10 84 nm 0.84 um
G4M10 4 1.25um Sum 10 84 nm 0.84 um
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Fig. 4-2-1 Off-state electrical field simulation results of single-gate and
dual-gates poly-Si TFT, by ISE TCAD v. 7 ( a 2-D device simulator).
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Off-state lateral electrical field simulation results of single-gate and

dual-gates poly-Si TFT by ISE TCAD v. 7 (a 2-D device simulator).
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Fig. 4-2-3 The peak lateral electrical file (E.,) versus different gate number TFT
structure. In off-state electrical field simulation results of multi-gate a poly-Si TFT
by ISE TCAD v. 7 (a 2-D device simulator).
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Fig. 4-2-4 Scanning electron microscopy (SEM) photography of active pattern
with the source, drain, ten nanowire channels and dual-gate
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Fig.4-2-5 SEM photography of Magnified area of multiple nanowire channels.
The each nanowire width is 84 nm.

SEl 150KV X140,000 100nm WD S 1mm

Fig. 4-2-6 The SEM photography of MILC poly-Si grain structure. The average
poly-Si lateral grain size is about 250 nm. The inset optical microscopy photography
depicts a MILC length of 30 um
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Fig. 4-2-7 Comparison of Iy - Vg fransfer characteristics of of G1S1,
G1M10,G2M10,G3M10, and G4M10 Ni-MILC poly-Si TFT with the same device
effective length (Ler) of 5 um.
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Fig. 4-2-8 The transfer curve of G4M10 TFT with linear and saturation region.
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Fig. 4-2-9 Comparison of Iy - Vg output characteristics of G1S1, G1M10,
G2M10, G3M10, and G4M10 Ni-MILC poly-Si TET with the same device effective
length (Les) of 5 um
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Fig. 4-2-10  Leakage current and maximum drain ON/OFF current ratio versus
different multi-gate structure Ni-PDMILC poly-Si TFTs
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Fig. 4-2-11  The Vy, and SS versus different multi-gate structure Ni-PDMILC
poly-Si TFTs
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Fig. 4-2-12  The DIBL versus different multi-gate structure Ni-PDMILC poly-Si
TFTs
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Fig. 4-3-1 A series of G1IM10 TFT transfer curves after different

hot-carrier stress conditions with 1000-second duration.
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Fig. 4-3-2 The degradation in MILC and SPC of GIM10 TFT transfer
curves before and after hot-carrier stress with 1000-second duration.
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Fig. 4-3-3 Gm degradation as a function of the stress time with
different multi-gate number TFTs
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Fig. 4-3-6 Threshold voltage (Vi) degradation as a function of the stress
time with different multi-gate number TFTs
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