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Abstract This paper investigates the global dynamics
of an n-dimensional cash-in-advance model where ex-
ternal habits persist for n periods. We find that habit
formation is an important determinant to the dynamic
property of the economy and identifies conditions gen-
erating entropic chaos. Our results indicate that the
possibility of chaotic motion increases with the depre-
ciation rate of habits.

Keywords Cash-in-advance economy · Chaos ·
Persistent habit

1 Introduction

Recently, there is considerable interest in studying the
formation of consumption habits and their impact on
economic performance. Empirical estimations of habit
formation can be found in [6, 14] and [26]. These pa-
pers all highlight the significance of persistent habits.
These empirical results lead theoretical studies to con-
sider persistent habits in macroeconomic models; see,
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among others, [1–4, 12, 13, 27] and [7]. Although
these authors may use different terms to describe the
habit persistence, they all mean that current consump-
tion is affected by past consumptions.1

Most of these studies considering persistent habits
restrict their analysis to a complete depreciation of
habits after one period due to empirical and theoretical
tractability. However, it is quite unreasonable to think
that consumption habits only last for one period and
will be gone thereafter. An attempt to estimate persis-
tent habits lasting for two periods can be found in [14].
In theoretical studies, an example of incomplete depre-
ciation of habits is given by Ryder and Heal [27], who
assume that habit formation is composed by “all” past
consumptions with decreasing weights.

The purpose of this paper is to define a more sat-
isfactory and general habit formation in which habits
depreciate gradually and persist for n periods, where n

is an arbitrary finite positive integer. It has been shown
by previous studies that complex dynamics may arise
when including habit formation into the model.2 When
complex dynamics is present, the economic transition
becomes very sensitive to the initial condition. A slight
difference between two initial conditions may lead to

1Based on the model setting, Becker [4] calls persistent habits as
“consumption addiction” while de la Croix [12] describes them
as “bequeathed tastes”. Besides, some of these papers consider
“internal habits,” while the others—“external habits”.
2See [2, 12, 13] and [7].
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two different dynamical paths. Hence, when a dynam-
ical system exhibits complicated motion, a traditional
method to study the linear property around steady
states does not suffice and an analysis of the global
property is needed.

When dynamics is rather complex, cycles or even
chaos may emerge under certain conditions. If so, fluc-
tuations can also be generated endogenously by a non-
linear deterministic model without any shocks to the
fundamentals. This is different from traditional macro-
economic models which tend to explain oscillations by
using unexpected shocks. Day [10, 11] is one of the pi-
oneers who investigated the possibility of chaotic mo-
tion in the Solow growth model.3

It is well known now that complex dynamics can
be easily generated in monetary models.4 Complicated
motion in money-in-the-utility models with nonsepa-
rable utility function and separable utility function are
considered by Matsuyama [21] and Fukuda [15], re-
spectively. Michener and Ravikumar [24] and Chen
and Li [7] show that chaos can occur in a Lucas–
Stokey type monetary model where consumers con-
sume cash goods and credit goods. Auray et al. [2]
introduce habit persistence as a way to generate com-
plex dynamics in a cash-in-advance (CIA) economy
and find that chaotic dynamics can emerge for reason-
able degrees of habit.

In this paper, we follow this research line to con-
sider the habit persistence of consumptions in a mon-
etary model. However, there are two features to dis-
tinguish this paper from the previous studies. First, we
use a more general formation of consumption habits
to investigate how their formation affects the dynamic
transition of the economy. We assume that habits per-
sist for n periods which can be easily adjusted to any
situations.5 For example, with a complete depreciation
of habits after one period, our model returns to the one
of Auray et al. [2]. On the other hand, with a choice of
duration of habits equal to the current time, the habit
formation is the same as the one used in Ryder and
Heal [27], who assume that all past consumptions af-
fect current consumption.

3See [5] and [25] for chaotic dynamics in one-dimensional (1-
D) growth models.
4Beside growth models and monetary economies, overlapping-
generations (OLG) models can also display complex dynamics;
see [16, 23] and [29].
5The parameter n can be any finite positive integer.

Second, from the methodological point of view, this
paper also contributes to the literature on economic
dynamics of chaos by providing a new technique to
study a high-dimensional dynamical system (a high-
order difference equation).6 Since an investigation of
a high-dimensional dynamical system is quite diffi-
cult, there are only very few papers studying eco-
nomic models with high-dimensional dynamical sys-
tems. Even for a 1-D dynamical system (a first-order
difference equation), to trace the dynamic transition
of the economy is not easy. This is why most stud-
ies of 1-D dynamical systems restrict their analysis to
the Li–Yorke chaos because of the appeal of easy ver-
ification. However, with more advanced mathematical
methods and computer techniques, some economists
explore the possibility of complicated dynamics in a
two-dimensional (2-D) dynamical system by showing
either numerical simulation or solid proofs; this ap-
proach can be found in [7, 13, 22, 29] and [8]. Since
the Li–Yorke chaos is only defined for 1-D dynamical
systems, studies of 2-D dynamical systems need to uti-
lize other types of chaos. The most often used type of
chaos in 2-D nonlinear systems is the horseshoe struc-
ture.7 The utilization of the horseshoe structure is quite
popular in 2-D dynamical systems because it can be
analyzed by geometric methods.

Depending on the length of persistent habit, the
economic transition can be represented by a high-
dimensional dynamical system. A monetary model
with the persistent habits lasting for n periods will
generate an n-dimensional (n-D) dynamical system.
So far as we know, no economic research focuses on
the occurrence of chaotic motion in an n-D system. Al-
though it might be difficult, a geometric construction
of a horseshoe structure is possible for a 2-D system.
However, the construction becomes quite impossible
for high-dimensional systems. This leads us to select
another type of chaos which is defined for an n-D dy-
namical system. The entropic chaos is then chosen and
used in this paper. It is very difficult to study the dy-
namic motion and to prove the occurrence of chaos
in an n-D dynamical system because of the lack of
geometric intuition and the analysis is much more ab-
stract. Our goal in the present paper is to give rigorous

6Here we refer to a difference equation with the order greater
than or equal to 2 as a high-dimensional system.
7See [13] and [29].



Habit formation and chaotic dynamics in an n-dimensional cash-in-advance economy 51

proofs (instead of numerical experiments) for condi-
tions generating entropic chaos. Hence, we adopt a
newly-developed method by Juang et al. [17] and Li
and Malkin [19] to approximate an n-D dynamical
system by using a 1-D dynamical system and study the
possibility of entropic chaos; also refer to Li et al. [20].

We begin our analysis by assuming that habits last
for one or two periods and then extend the duration
of habits to n periods. We find that the dimension of
the dynamical system increases with the duration of
habit persistence. For all cases, we provide sufficient
conditions for the occurrence of entropic chaos. Our
results indicate that habit formation (the duration and
the depreciation rate of persistent habits), the degree of
persistent habits and the elasticity of labor supply are
important determinants to the dynamic property of the
economy. Including incomplete depreciation of habit
will lower the critical value of the degree of persistent
habits for the chaotic motion to occur. Therefore, if the
depreciation rate is quite low, the critical value of the
degree of persistent habits will not remain within the
range supported by the empirical data even when the
elasticity of labor supply is high.

The remainder of the paper is organized as follows.
In the next section, we develop a CIA economy with
persistent habits of consumptions. The dynamic prop-
erty is analyzed in Sect. 3. The conclusion is given in
Sect. 4.

2 The model

The model is based on [2]. We consider an economy
with infinitely living identical agents who were born
in period 0. We use pt and Mt to denote the common
price and the nominal money demand, respectively. In
period t , individuals use the real money balance Mt

pt

brought from the previous period to buy goods. Hence,
agents face the following cash-in-advance constraint:

ct ≤ Mt

pt

, (1)

where ct represents households’ consumption.
Households supply ht units of time for work to earn

the real wage wt . The production function is Yt = ht .
In period t , government injects money into the econ-
omy by giving a nominal lump-sum transfer Tt to
households. We assume that nominal money supply
M̄t grows at the rate of μ. That is, M̄t+1 = (1 +μ)M̄t .

Thus, Tt = M̄t+1 − M̄t . Households allocate the trans-
fer, the real money balance carried from the previous
period, and their wage income on the consumption and
the money balance they plan to carry to the next pe-
riod. Therefore, the budget constraint for households
is

ct + Mt+1

pt

= wtht + Mt

pt

+ Tt

pt

. (2)

The preference is separable in consumption and la-
bor, and is represented as

∞∑

t=0

βt

[
log(dt ) − h

1+ϕ
t

1 + ϕ

]
, (3)

where β ∈ (0,1) is the discount factor and ϕ ≥ 0 is the
inverse of the labor supply elasticity.

We assume that agents have persistent habits of
consumption and will compare their current consump-
tion with the past consumptions. We go with the liter-
ature of the catching up with the Joneses by assuming
that agents have external habits of consumption. Un-
like previous studies which usually assume that per-
sistent habits depreciate completely after one period,
we assume that habits depreciate gradually at the rate
η ∈ [0,1] within n periods. Hence, habits are com-
posed by

vt (c̄t−1, c̄t−2, . . . , c̄t−n) =
n−1∑

i=0

(1 − η)i c̄t−i−1, (4)

where c̄t−i is the average consumption in period t − i.
Note that when η = 1 (or n = 1), the depreciation of
habits is complete after one period since (4) only de-
pends on the average consumption in the previous pe-
riod (vt (c̄t−1) = c̄t−1), and we will return to the simple
case studied by Auray et al. [2]. With n = t , (4) relies
on all past consumptions and this kind of habit forma-
tion is considered by several theoretical and empirical
studies (see [6, 9, 26, 27]).8

Agents compare their current consumption with
the past average consumptions (habits) and only the

8The habit formation (xt ) in period t used in these papers is

xt = x0e
−at + b

∫ t

0
ea(s−t)cs ds,

where a and b are constant. The variables x0 and cs denote
the initial condition and consumption at time s, respectively;
see [26].



52 H.-J. Chen, M.-C. Li

component of current consumption which is above the
habits will be beneficial to utility. Hence, the variable
dt is composed by the current consumption, ct , and
habits. We set dt to dt = ct −θvt (c̄t−1, c̄t−2, . . . , c̄t−n),
where θ ∈ (0,1) measures the degree of persistent
habits.

The equilibrium is defined as follows. Given the
money supply rule and the initial habit, the per-
fect foresight equilibrium comprises the sequences
of {wt,pt , ct , ht , Mt , M̄t }∞t=0 such that: (i) given
{wt,pt , M̄t }, {ct , ht ,Mt+1}∞t=0 are optimal choices of
the representative household; (ii) the equilibrium wage
rate is wt = 1; (iii) goods market clears, Yt = ct ; and
(iv) money market clears, M̄t = Mt .

Households then maximize (3) subject to (1) and (2).
The optimization decisions are

1

dt+1
= λt+1 + γt+1, (5)

h
ϕ
t = γtwt , (6)

γt

pt

= β

pt+1
(λt+1 + γt+1), (7)

where λ and γ are the Lagrangian multipliers of (1)
and (2), respectively. As is common in the litera-
ture, we assume that (1) is binding in the equilibrium.

Defining the inverse of real money balance as ρt = pt

Mt

and combining (5), (6) and (7) as well as applying the
equilibrium condition, we obtain

(
Mt

pt

)1+ϕ

= β

μ

Mt+1

pt+1
d−1
t+1. (8)

Substituting the definitions of dt and ρt into (8) im-
plies that at the equilibrium, the economy can be rep-
resented by the following difference equation:

(
ρ−1

t

)1+ϕ = β

μ

(
ρ−1

t+1

)[
ρ−1

t+1

− θvt+1
(
ρ−1

t , ρ−1
t−1, . . . , ρ

−1
t−n+1

)]−1
. (9)

Equation (9) shows that the dynamic behavior of the
economy can be represented by a difference equation
in the inverse of real money balance.

3 Chaotic dynamics

In this section, we use (9) to study the dynamic behav-
ior of the economy. Substituting (4) into (9), we ob-

tain:

ρt+1 = 1

θ

ρtρt−1 · · ·ρt−n+1(1 − β
μ
ρ

1+ϕ
t )

ρt−1ρt−2 · · ·ρt−n+1 + (1 − η)ρtρt−2 · · ·ρt−n+1 + · · · + (1 − η)n−1ρtρt−1 · · ·ρt−n+2

= 1

θ

∏n−1
i=0 ρt−i

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

(
1 − β

μ
ρ

1+ϕ
t

)
, (10)

where, by convention, we define 00 = 1. Equation
(10) shows that the order of the difference equation
which represents the dynamic behavior of the econ-
omy equals the length of persistent habits. This im-
plies that the dynamic property depends on the dura-
tion of habits. To study the dynamic behavior of (10),
we begin from two simpler cases: persistent habits
that last for 1 and 2 periods, and then extend our
analysis to a general case where habits last for n

periods. We investigate sufficient conditions generat-
ing entropic chaos in all three cases. When persis-
tent habits last only for 1 period, the appearance of
the Li–Yorke chaos provides a sufficient condition for

the occurrence of entropic chaos. Due to convenience
and easiness of verification, we follow the literature
to study the possibility of the Li–Yorke chaos in this
case. When the persistent habits last for 2 periods, we
analyze the possibility of chaos in the horseshoe struc-
ture which provides a sufficient condition for the oc-
currence of entropic chaos. When persistent habits last
for n periods, no graphic methodology can be used and
we utilize the theorems developed by Juang et al. [17]
and Li and Malkin [19] to provide a sufficient condi-
tion for the existence of entropic chaos. This result in
the last case can be applied to any positive integer n.
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Fig. 1 The graphs of fθ with θ = 0.65, β = 0.99, μ = 0.1,
and ϕ = 5, the diagonal line, and the first three iterations of the
critical point of fθ

3.1 Persistent habits of one period

When habits persist for one period (η = 1 or n = 1),
(10) can be written as

ρt+1 = fθ (ρt ), (11)

where fθ (ρt ) = 1
θ
ρt (1 − β

μ
ρ

1+ϕ
t ). For iterations, we

write fθ = fθ (ρt ) to denote the identity function by
f 0

θ and inductively define f τ
θ = fθ ◦ f τ−1

θ for positive
integer τ . The appearance of a 3-period cycle under
certain parameter values has been verified by Auray
et al. [2]. To complement their study, we show a nu-
merical simulation of the dynamic behavior of fθ with
θ = 0.65 in Fig. 1.9 It exhibits that the first three iter-
ations of the critical point ρ̄ where f

′
θ (ρ̄) = 0 satisfy

the condition fθ (ρ̄) > ρ̄ > f 3
θ (ρ̄) > f 2

θ (ρ̄) and hence,
chaotic dynamics in the sense of Li and Yorke occur;
refer to Proposition 1 of [2].

3.2 Persistent habits of two periods

When habits persist for two periods (n = 2), (10) be-
comes

ρt+1 = 1

θ

ρt−1ρt

ρt−1 + (1 − η)ρt

(
1 − β

μ
ρ

1+ϕ
t

)
. (12)

Although (12) looks quite similar to (11), the study of
its global property is much more difficult. In the fol-
lowing theorems we show that the dynamic property
of (12) could be quite complex and is sensitive to the
parameter values. First, we show that cycles can occur.

Theorem 1 Equation (12) has a steady state at ρ∗ =
1+ϕ

√
μ(1−2θ+ηθ)

β
, which loses its stability at the criti-

cal value θ∗ = 1+ϕ
(2+ϕ)(2−η)+η

and then generates a two-
period cycle.

Proof Let ρt−1 = ρt = ρ∗ = 1+ϕ

√
μ(1−2θ+ηθ)

β
. Then

ρt+1 = 1

θ

ρt−1ρt

ρt−1 + (1 − η)ρt

(
1 − β

μ
ρ

1+ϕ
t

)

= 1

θ

ρ∗ρ∗
ρ∗ + (1 − η)ρ∗

(
1 − β

μ
ρ

1+ϕ∗
)

= 1

θ

ρ∗
1 + (1 − η)

(1 − 1 + 2θ − ηθ) = ρ∗.

Thus, ρ∗ is a steady state of (12).
The Jacobian matrix of (12) is

[
0 1

(1−η)ρ2
t

θ(ρt−1+(1−η)ρt )2 (1 − β
μ
ρ

1+ϕ
t )

ρ2
t−1

θ(ρt−1+(1−η)ρt )2 (1 − β
μ
ρ

1+ϕ
t ) − βρt−1ρt

μθ(ρt−1+(1−η)ρt )
(1 + ϕ)ρ

ϕ
t

]

and, at the steady state ρ∗, it becomes
[ 0 1

1−η
2−η

(1+ϕ)+ 1
2−η

− 1+ϕ
θ(2−η)

]
and has the characteristic

9Empirical studies indicate that the elasticity of labor supply is
less than 1, so we assign ϕ = 5 in Fig. 1.

polynomial p(x) = x2 −[(1 +ϕ)+ 1
2−η

− 1+ϕ
θ(2−η)

]x −
1−η
2−η

. Let θ∗ = 1+ϕ
(2+ϕ)(2−η)+η

. Then p(−1) = 0, hence
the value −1 is an eigenvalue of the Jacobian matrix
of (12) with θ = θ∗. Therefore, the steady state ρ∗
undergoes a period-doubling bifurcation and a two-
period cycle appears. �
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Theorem 1 illustrates that the degree of habit per-
sistence (θ ), the depreciation rate of habit persistence
(η) and the inverse of labor supply elasticity (ϕ) are
crucial factors to determine the emergence of a two-
period cycle of (12). Taking the derivatives of θ∗ with
respect to η and ϕ, we obtain

∂θ∗
∂η

= (1 + ϕ)2

[(2 + ϕ)(2 − η) + η]2
> 0, (13)

∂θ∗
∂ϕ

= 2

[(2 + ϕ)(2 − η) + η]2
> 0. (14)

Equations (13) and (14) imply that the critical value θ∗
increases with η and ϕ. A numerical example of θ∗(η)

is given in Fig. 2(a). It shows that θ∗ ≈ 0.7075 if η =
0.92 and θ∗ = 0.75 if η = 1. Empirical estimations by
Ferson and Constantinides [14] and Braun et al. [6]

suggest that a reasonable value of θ is between 0.5 and
0.9 when habit lasts for one period. Hence, Fig. 2(a)
indicates that for η equal to or close to 1, cycles may
occur under reasonable range of θ . Setting η = 0.92, a
numerical example of θ∗(ϕ) is given in Fig. 2(b).

We now turn to show that under certain parame-
ter values, chaotic dynamics will occur in the sense of
topological entropy and entropic chaos, the definitions
of which are given as follows:

Definition 1 Let g : X → X be a continuous map on
the space X with metric d . For n ∈ N and ε > 0,
a set S ⊂ X is called an (n, ε)-separated set for
g if for every pair of points x, y ∈ S with x �= y,
there exists an integer k with 0 ≤ k < n such that
d(gk(x), gk(y)) > ε. The topological entropy of g is
defined to be

htop(g|X) = lim
ε→0,ε>0

lim sup
n→∞

log(max{#(S) : S ⊂ X is an (n, ε)-separated set for g})
n

,

where #(S) is the cardinality of elements of S.
We say that g has entropic chaos on X if

htop(g|X) > 0.

Topological entropy describes the total exponential
complexity of the orbit structure with a single num-
ber in a rough but expressive way. The topological en-
tropy is positive for chaotic systems and is zero for
non-chaotic systems. To say that a system has entropic
chaos means that at least some part of its phase space
has complicated behaviors so that every two nearby
orbits diverge tremendously and their long-time be-
haviors cannot be predicted precisely. It is well known
that for 1-D systems with entropic chaos, there are infi-
nitely many numbers of periodic cycles with different
periods.

In the following theorem, we give a sufficient con-
dition for the presence of entropic chaos in a 2-D sys-
tem, by following the pioneer article of Smale [28]
in the theory of chaotic dynamical systems, to show
that (12) has a so-called Smale’s horseshoe and hence
has entropic chaos.

Theorem 2 If 1 − η + θ <
1+ϕ

(2+ϕ)
2+ϕ
1+ϕ

, then (12) has

entropic chaos.

Proof The dynamics of (12) with (ρt , ρt+1) 
→
(ρt+1, ρt+2) is equivalent to the dynamics of the fam-
ily of maps (x, y) 
→ F(x, y), where

F(x, y) =
(

y,
1

θ

xy

x + (1 − η)y

(
1 − β

μ
y1+ϕ

))
.

Since 1−η+θ <
1+ϕ

(2+ϕ)
2+ϕ
1+ϕ

, 1
θ

< 1
θ(1−η)

(
1+ϕ

(2+ϕ)
2+ϕ
1+ϕ

−θ);

hence we can take a positive real number ω such that

1

θ
< ω <

1

θ(1 − η)

(
1 + ϕ

(2 + ϕ)
2+ϕ
1+ϕ

− θ

)
. (15)

Let S be the following trapezoid in the plane:

S =
{
(x, y) ∈ R

2 : 0 < y < 1+ϕ

√
μ

β

and
y

ω
< x < 1+ϕ

√
μ

β

}
.
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(a) (b)

Fig. 2 The graph of the critical value θ∗ = 1+ϕ
(2+ϕ)(2−η)+η

with a ϕ = 5 and b η = 0.92

Fig. 3 The set S and its
image F(S) form a
“horseshoe”, where
θ = 0.5, β = 0.99, μ = 0.1,
ϕ = 5, η = 0.92, ω = 2.5

Let L be the left boundary of S, that is, in a parame-
terization form,

L =
{(

z

ω
, z

)
∈ R

2 : 0 < z < 1+ϕ

√
μ

β

}
.

Let g(z) be the projection of the map F on L to
the y-axis, that is, g(z) = πyF( z

ω
, z) where πy is the

y-coordinate projection. Then

g(z) = 1

θ

z
ω
z

z
ω

+ (1 − η)z

(
1 − β

μ
z1+ϕ

)

= 1

θ

z

1 + ω(1 − η)

(
1 − β

μ
z1+ϕ

)

and the graph of y = g(z) for z ∈ (0, 1+ϕ

√
μ
β
) is the bot-

tom boundary of the image F(S); see Fig. 3. The max-

imum of g on the interval (0, 1+ϕ

√
μ
β
) is

g

(
1+ϕ

√
μ

β(2 + ϕ)

)

= 1+ϕ

√
μ

β

1 + ϕ

(2 + ϕ)
2+ϕ
1+ϕ

1

θ(1 + ω(1 − η))

which is greater than 1+ϕ

√
μ
β

due to inequality (15).

Moreover, the graph of y = wz with 0 < y < 1+ϕ

√
μ
β



56 H.-J. Chen, M.-C. Li

represents the left boundary of S and is always above
the graph of y = g(z); indeed, inequality (15) gives us
that

ωz >
z

θ
>

1

θ

z

1 + ω(1 − η)

>
1

θ

z

1 + ω(1 − η)

(
1 − β

μ
z1+ϕ

)
= g(z).

Thus, F(S) ∩ S has two vertical strips, namely, V1 on
the left and V2 on the right. Similarly, F−1(S) ∩ S has
two horizontal strips, namely, H1 on the bottom and
H2 on the top. We have F(Hk) = Vk for k = 1,2.

For integers m ≤ 0 and n ≥ 0, let Sn
m = ⋂n

i=m F i(S).
Then S1

0 = V1 ∪ V2 is a union of two vertical strips
in S. As in the one-dimensional case, for n ≥ 1,

Sn
0 = F

(
Sn−1

0

) ∩ S

= [
F

(
Sn−1

0

) ∩ V1
] ∪ [

F
(
Sn−1

0 ∩ V2
)]

= F
(
Sn−1

0 ∩ H1
) ∪ F

(
Sn−1

0 ∩ H2
)
.

In particular, for n = 2, S2
0 = F(S1

0 ∩ H1) ∪ F(S1
0 ∩

H2) = F([V1 ∪ V2] ∩ H1) ∪ F([V1 ∪ V2] ∩ H2) is the
union of 22 vertical strips in S1

0 . By induction, Sn
0 is the

union of 2n vertical strips. Taking n → ∞, we have
that S∞

0 = ⋂∞
n=1 Sn

0 is the union of infinitely many
vertical strips or segments (occurring while the widths
of strips converge to zero as n → ∞). If z ∈ S∞

0 , then
z ∈ F i(S) and F−i (z) ∈ S for all i ≥ 0. Thus S∞

0 is
the set of points whose backward iterates stay in S.

Considering the sets S0
m, we have that S0

−1 = H1 ∪
H2 is the union of two horizontal strips in S. Then
S0

−2 is the union of four horizontal strips in S0
−1.

Continuing by induction, we have that for m ≤ 0,
S0

m is the union of 2−m horizontal strips and S0−∞ =⋂0
m=−∞ S0

m is the union of infinitely many horizon-
tal strips or segments (occurring while the heights of
strips converge to zero as m → −∞). If z ∈ S0−∞, then
z ∈ F−i (S) and F i(z) ∈ S for all i ≥ 0. Thus S0−∞ is
the set of points whose forward iterates stay in S.

By the definition of Λ, we have that Λ = S∞
0 ∩S0−∞

is the intersection of infinitely many vertical strips
(or segments) and infinitely many horizontal strips (or
segments), and Λ is the set of points such that both the
forward and backward iterates stay in S.

Let Σ2
2 = {i = (. . . , i−1, i0, i1, . . .) : ik ∈ {1,2} for

all k ∈ Z} be the two-sided sequence space with the
metric d(i, j) = ∑∞

k=−∞
δ(ik,jk)

4|k| , where δ(s, t) is 0 if

s = t and is 1 if s �= t . The shift map σ on Σ2
2 is

defined by σ(i) = j where jk = ik+1 for all k ∈ Z.
Let Σ̄2

2 be the space obtained form Σ2
2 by identify-

ing (. . . , i−1, i0, i1, . . .) and (. . . , j−1, j0, j1, . . .) if ei-
ther ik = jm = 1 or ik = jm = 2 for all k ∈ Z and all
m ≤ 1; that is, by identifying two sequences if they are
itineraries of the same point in S. Define h : Λ → Σ̄2

2
by h(z) = (. . . , i−1, i0, i1, . . .) where Fk(z) ∈ Hik for
all k ∈ Z. We prove that h is a semi-conjugacy from
F |Λ to σ |Σ̄2

2 .
First we prove that σ ◦ h = h ◦ F on Λ. Let h(z) =

(. . . , i−1, i0, i1, . . .) and h(F (z)) = (. . . , j−1, j0,

j1, . . .). Then Fk+1(z) ∈ Hik+1 but also Fk+1(z) =
Fk(F (z)) ∈ Hjk

. Thus ik+1 = jk and σ(h(z)) =
h(F (z)).

Next we prove the continuity of h. Let h(z) =
(. . . , i−1, i0, i1, . . .). A neighborhood of (. . . , i−1, i0,

i1, . . .) is given by U = {(. . . , j−1, j0, j1, . . .) : jk =
ik for − k0 ≤ k ≤ k0}. With k0 fixed, the continuity of
F insures that there is a δ > 0 such that if w ∈ Λ with
|w− z| ≤ δ, then Fk(w) ∈ Hik for −k0 ≤ k ≤ k0. Thus
if w ∈ Λ with |w − z| ≤ δ then h(w) ∈ U .

Last we check whether h is surjective. We apply in-
duction on n to show that

⋂n
k=1 Fk(Hi−k

) is a vertical
strip for all strings of symbols (. . . , i−1, i0, i1, . . .) ∈
Σ̄2

2 . Let (. . . , i−1, i0, i1, . . .) ∈ Σ̄2
2 . For n = 1, this set

is just F(Hi−1) = Vi−1 , which is a vertical strip. Then

n⋂

k=1

Fk(Hi−k
) = F

( n⋂

k=2

Fk−1(Hi−k
)

)
∩ F(Hi−1)

is a vertical strip. Letting n go to infinity,⋂∞
k=1 Fk(Hi−k

) is a vertical strip or segment. Simi-
larly,

⋂0
k=−∞ Fk(Hi−k

) is a horizontal strip or seg-
ment. Thus

⋂∞
k=−∞ Fk(Hi−k

) is nonempty; say z is in
this intersection. Therefore, h(z) = (. . . , i−1, i0, i1, . . .)

and h is surjective. This completes the proof that h is
a semi-conjugacy from F |Λ to σ |Σ̄2

2 .
The space Σ̄2

2 is obtained from Σ2
2 by identify-

ing two sequences if they are itineraries of the same
point in S. Thus the shift map σ on Σ2

2 and F |Λ
both naturally project to the shift map σ on Σ̄2

2 . No-
tice that the semi-conjugacy ḡ : Σ2

2 → Σ̄2
2 is injec-

tive outside a countable set, namely, the itineraries of
points in the backward orbits of turning points. The
Variational Principle says that topological entropy is
the supremum of metric theoretic entropies; more pre-
cisely, if g : X → X is a homeomorphism of a com-
pact metric space (X,d) then htop(g) = sup{hμ(g) :
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Fig. 4 Orbit diagram in η

with θ = 0.65, n = 2,
β = 0.99, μ = 0.1, and
ϕ = 5

μ is an f -invariant Borel probability measures on X};
refer to Theorem 4.5.3 of Katok and Hasselblatt [18].
Therefore, by the Variational Principle it suffices to
consider non-atomic measures, since purely atomic
measures have zero entropy. Consider a non-atomic
σ -invariant measure ς on Σ2

2 and pull it back via
the semi-conjugacy ḡ to a measure ḡ∗ς on Σ̄2

2 . Thus
ḡ establishes a bijective correspondence between ς

and ḡ∗ς so the measure-theoretic entropies coincide.
By the Variational Principle, we have htop(σ |Σ̄2

2 ) =
supζ hζ (σ |Σ̄2

2 ) ≥ supς hḡ∗ς (σ |Σ̄2
2 ) = supς hς (σ |Σ2

2 )

= htop(σ |Σ2
2 ). Since g is a semi-conjugacy from F |Λ

to σ |Σ̄2
2 , htop(f |[0,1]) ≥ htop(σ |Σ̄2

2 ) = htop(σ |Σ2
2 )

= log(2). The proof of the theorem is complete. �

Theorem 2 demonstrates that chaotic motion will
emerge if the depreciation of habits is large enough.
Figure 4 presents the bifurcation diagram with varying
η and we can see that the economy undergoes from
simple to complex dynamics as η increases.

To compare results under complete and incomplete
habit depreciation, the plots (a) and (b) in Fig. 5 show
the bifurcation diagrams with varying θ for η = 1
and η = 0.81, respectively. From these two figures,
we find that a decrease in η reduces the possibility of
chaotic motion. Figure 5(a) illustrates that with com-

plete depreciation (η = 1), chaotic motion will oc-
cur for the value of θ ∈ [0.5,0.9]. However, Fig. 5(b)
shows that with a minor decrease in η (η = 0.81) and a
slightly longer persistence of habits (n = 2), only sim-
ple dynamics and periodic cycles will be present for
θ ∈ [0.5,0.9]. This is because when the depreciation
of habits decreases, consumptions will have larger im-
pacts on the current consumption. Hence, it is more
difficult for agents to change their behavior unless the
degree of habit persistence is sufficiently low. Similar
results can be obtained if the persistence of habits be-
comes longer (i.e., if n increases).

3.3 A general case: persistent habits of n periods

In this section, we analyze the general case where
habits last for n periods and (10) represents an n-D
system. We first identify conditions generating period-
doubling bifurcation of a steady state for (10).

Theorem 3 Equation (10) has a steady state at ρ∗∗ =
1+ϕ

√
μ
β
(1 − θ

η
[1 − (1 − η)n]), which loses its stability at

the critical value

θ∗∗ = η(2 − η)(1 + ϕ)

(2 − η)(2 + ϕ) + η − (1 − η)n[(2 − η)(2 + ϕ) + (−1)nη]
and then generates a two-period cycle.
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Fig. 5 Orbit diagram in θ

with β = 0.99, μ = 0.1,
ϕ = 5, n = 2, and a η = 1
and b η = 0.81

(a)

(b)
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Proof Let ρt−i = ρ∗∗ = 1+ϕ

√
μ
β
(1 − θ

η
[1 − (1 − η)n])

for 0 ≤ i ≤ n − 1. Then

ρt+1 = 1

θ

∏n−1
i=0 ρt−i

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

(
1 − β

μ
ρ

1+ϕ
t

)

= 1

θ

ρ∗∗∑n−1
j=0(1 − η)j

(
1 − β

μ
ρ

1+ϕ∗∗
)

= 1

θ

ρ∗∗∑n−1
j=0(1 − η)j

(
θ

η

[
1 − (1 − η)n

]) = ρ∗∗.

Thus, ρ∗∗ is a steady state of (10).
The Jacobian matrix of (10) is

⎡

⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 · · · 0 1
∂ρt+1

∂ρt−n+1

∂ρt+1
∂ρt−n+2

∂ρt+1
∂ρt−n+3

∂ρt+1
∂ρt−n+4

· · · ∂ρt+1
∂ρt−1

∂ρt+1
∂ρt

⎤

⎥⎥⎥⎥⎦
,

where, for 1 ≤ k ≤ n − 1,

∂ρt+1

∂ρt−k

= (1 − η)k

θ

( ∏n−1
i=0 ρt−i

ρt−k

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

)2

×
(

1 − β

μ
ρ

1+ϕ
t

)

and

∂ρt+1

∂ρt

= 1

θ

( ∏n−1
i=0 ρt−i

ρt

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

)2(
1 − β

μ
ρ

1+ϕ
t

)

− β(1 + ϕ)

θμ

∏n−1
i=0 ρt−i

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

ρ
ϕ
t .

At the steady state ρ∗∗, we have that for 1 ≤ k ≤ n−1,

∂ρt+1

∂ρt−k

∣∣∣∣
ρt−i=ρ∗∗,0≤i≤n−1

= (1 − η)k

θ

(
1

∑n−1
j=0(1 − η)j

)2(
1 − β

μ
ρ

1+ϕ∗∗
)

= (1 − η)k

∑n−1
j=0(1 − η)j

= η(1 − η)k

1 − (1 − η)n

and

∂ρt+1

∂ρt

∣∣∣∣
ρt−i=ρ∗∗,0≤i≤n−1

= 1

θ

(
1

∑n−1
j=0(1 − η)j

)2(
1 − β

μ
ρ

1+ϕ∗∗
)

− β(1 + ϕ)

θμ

ρ∗∗∑n−1
j=0(1 − η)j

ρ
ϕ∗∗

= η

1 − (1 − η)n
+ 1 + ϕ − 1 + ϕ

θ

η

1 − (1 − η)n
.

Thus the Jacobian matrix of (10) at the steady state ρ∗∗
has the characteristic polynomial

p(x) = xn −
n−1∑

k=0

∂ρt+1

∂ρt−k

∣∣∣∣
ρt−i=ρ∗∗,0≤i≤n−1

xn−1−k.

Since

p(−1) = (−1)n −
n−1∑

k=0

∂ρt+1

∂ρt−k

∣∣∣∣
ρt−i=ρ∗∗,0≤i≤n−1

(−1)n−1−k

= (−1)n − (−1)n−1η

1 − (1 − η)n
− (−1)n−1(1 + ϕ) + 1 + ϕ

θ

(−1)n−1η

1 − (1 − η)n
−

n−1∑

k=1

(−1)n−1−k η(1 − η)k

1 − (1 − η)n

= (−1)n − (−1)n−1η

1 − (1 − η)n
− (−1)n−1(1 + ϕ) + 1 + ϕ

θ

(−1)n−1η

1 − (1 − η)n
+ (−1)n−1η

1 − (1 − η)n

1 − η + (−1)n(1 − η)n

2 − η

= (−1)n−1η

1 − (1 − η)n

[
1 + ϕ

θ
− (2 − η)(2 + ϕ) + η − (1 − η)n[(2 − η)(2 + ϕ) + (−1)nη]

η(2 − η)

]
,
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we have p(−1) = 0 if θ is equal to the critical value
θ∗∗. This says that one of the eigenvalues of the Ja-
cobian matrix of (10) at the steady state ρ∗∗ passes
through −1 if θ varies through the critical value θ∗∗
and hence a period-doubling bifurcation occurs and a
two-period cycle appears. �

Theorem 3 provides a sufficient condition for the
emergence of a two-period cycle. It shows that the crit-
ical value θ∗∗ depends on the length of the persistent
habits (n). To study the possibility of chaos for an n-D
dynamical system, we modify the theorems of [17] and
[19] to prove the occurrence of entropic chaos.10

Theorem 4 Let θ = 1+ϕ

(2+ϕ)
2+ϕ
1+ϕ

and θ̄ = 1+ϕ
2+ϕ

, then

there exists a unique θ∗ ∈ (θ, θ̄ ) such that if θ ∈ (θ, θ∗]
then for any η close to 1, (10) has entropic chaos.

Proof Consider fθ in (11). By Proposition 1 of [2],
there exists a unique θ∗ ∈ (θ, θ̄ ) such that if
θ ∈ (θ, θ∗], then fθ has Li–Yorke chaos and hence
htop(fθ ) > 0. Let θ ∈ (θ, θ∗]. Then there exists a

unique ρ̄ ∈ (0, (
μ
β
)

1
1+ϕ ) such that f ′

θ (ρ̄) = 0. Let
B = fθ (fθ (ρ̄)) and C = fθ (ρ̄). Then 0 < B < C. For
η < 1, define Φη : [B,C]n+1 → R by

Φη(ρt−n+1, . . . , ρt , ρt+1)

= ρt+1 − 1

θ

∏n−1
i=0 ρt−i

∑n−1
j=0[(1 − η)j (

∏n−1
i=0 ρt−i

ρt−j
)]

×
(

1 − β

μ
ρ

1+ϕ
t

)
.

Let Yη be the set of solutions of the difference equation

Φη(ρt−n+1, . . . , ρt , ρt+1) = 0, (16)

i.e., the set of sequences ρ = (ρt ) = (. . . , ρ−1, ρ0,

ρ1, . . .) such that for any t ≥ n − 1,

1. ρt ∈ [B,C]; and
2. n+1 consecutive components ρt−n+1, . . . , ρt , ρt+1

of ρ satisfy (16).

Let σ be the shift map on Yη , i.e., (σ (ρ))t =
ρt+1 for all t ≥ n − 1. Then on [B,C]n+1, the func-
tion Φη is C1 for each η and is continuous in η

10A simple version of the theorems of [17] and [19] is given in
the Appendix.

and so are the partial derivatives ∂iΦη for 1 ≤ i ≤
n + 1. Now letting η = 1, we have the limit function
Φη(ρt−n+1, . . . , ρt , ρt+1) = ρt+1 − fθ (ρt ), where fθ

is given in (11). By Theorem 5 in the Appendix, for
all η near 1, there is a closed σ -invariant subset Γη of
Yη in the product topology, such that htop(σ |Γη) > 0.
Therefore, the dynamics of the economy system has
entropic chaos. �

The result of Theorem 4 fits well with the nu-
merical results in Fig. 4. If ϕ = 5, then θ ≈ 0.6197
and θ̄ ≈ 0.8571. Figure 4 with θ = 0.65 indicates
that the system has complex dynamics for all η close
to one. Moreover, it provides a sufficient condition
for the occurrence of entropic chaos when persistent
habit lasts for n periods. The approach we use is to
approximate an n-dimensional dynamical system by
a 1-dimensional dynamical system. This method is
useful when studying the global property of a high-
dimensional dynamical system. Furthermore, Theo-
rem 4 illustrates occurrence of chaos crucially depend-
ing on the formation of habits (the length and the de-
preciation rate of persistent habits).

4 Conclusion

We investigate the global dynamics of a CIA model
where consumption habits persist for n periods. We
find that the length and the depreciation rate of persis-
tent habits, the degree of habits in consumption, and
the labor supply elasticity are important determinants
to the dynamic property of a monetary economy. In
economic research, only very few papers concern the
global property of a high-dimensional dynamical sys-
tem due to the difficulty of analysis and tractability.
With the technique to approximate an n-D dynamical
system by a 1-D dynamical system, economists can
explore many other interesting questions without the
limitation to reduce economic models to 1-D or 2-D
systems.

In this paper, we show that the qualitative prop-
erties are very different when considering the oc-
currence of chaotic dynamics of a monetary econ-
omy with complete or incomplete habit depreciation.
Hence, a more precise estimation of habit formation is
needed for future research. However, Ferson and Con-
stantinides [14] find that estimation of a two-lag con-
sumption model is problematic and is hard to be pre-
cise. Therefore, advanced econometric techniques are
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needed to overcome the estimation problems concern-
ing habit formation.

Appendix

The following theorem is a simple version of Theo-
rem 3 of [17] and Theorem 3.3 of [19].

Theorem 5 Consider a difference equation of order n

in the form

Φη(ρt−n+1, . . . , ρt , ρt+1) = 0, t ≥ n − 1, (17)

where η ∈ [0,1] is a parameter and the real-valued
function Φλ is defined on a (n + 1)-dimensional cube
[B,C]n+1 ⊂ R

n+1 with constants 0 < B < C. Assume
that (i) Φη is C1 on [B,C]n+1 for each η ∈ [0,1];
(ii) the function η 
→ Φη is continuous on [0,1]; and
(iii) for i = 1,2, . . . , n + 1, the function η 
→ ∂iΦη is
continuous on [0,1], where ∂iΦη is the partial deriv-
ative of Φη with respect to the ith variable. Sup-
pose that for η = 1, the difference equation (17) re-
duces to a difference equation of order one in the form
ρt+1 − ϕ(ρt ) = 0, t ≥ n − 1, where ϕ : [B,C] → R is
a C2 function with positive topological entropy. Let Yη

be the set of solutions for (17), i.e. the set of sequences
ρ = (ρ0, ρ1, ρ2, . . .) such that for any t ≥ n − 1,

1. ρt ∈ [B,C]; and
2. n+1 consecutive components ρt−n+1, . . . , ρt , ρt+1

of ρ satisfy (17)

Let σ be the shift map on Yη , i.e., σ(ρ) = ρ′, where
ρ′

t = ρt+1 for all t ≥ n − 1. Then there exists ε > 0
such that for any 1 − ε < η < 1, there is a closed σ -
invariant subset Γη of Yη in the product topology such
that htop(σ |Γη) > 0.

References

1. Abel, A.: Asset prices under habit formation and catching
up with the Jones. Am. Econ. Rev. Papers Proc. 80, 38–42
(1990)

2. Auray, S., Collard, F., Feve, P.: Money and external habit
persistence: a tale for chaos. Econ. Lett. 76, 121–127
(2002)

3. Auray, S., Collard, F., Feve, P.: Habit persistence, money
growth rule and real indeterminacy. Rev. Econ. Dyn. 8, 48–
67 (2005)

4. Becker, G.S.: Habits, addictions and traditions. Kyklos 34,
327–346 (1992)

5. Boldrin, M., Nishimura, K., Shigoka, T., Yano, M.:
Chaotic equilibrium dynamics in endogenous growth mod-
els. J. Econ. Theory 96, 97–132 (2001)

6. Braun, P.A., Constantinides, G.M., Ferson, W.E.: Time
nonseparability in aggregate consumption. Eur. Econ. Rev.
37, 897–920 (1993)

7. Chen, H.-J., Li, M.-C.: Chaotic dynamics in a monetary
economy with habit persistence. J. Econ. Behavior Organ.
65, 245–260 (2008)

8. Chen, H.-J., Li, M.-C., Lin, Y.-J.: Chaotic dynamics in an
overlapping generations model with myopic and adaptive
expectations. J. Econ. Behavior Organ. 67, 48–56 (2008)

9. Constantinides, G.M.: Habit formation: a resolution of the
equity premium puzzle. J. Political Econ. 98, 519–543
(1990)

10. Day, R.: Irregular growth cycles. Am. Econ. Rev. 72, 406–
414 (1982)

11. Day, R.: The emergence of chaos from classical economic
growth. Q. J. Econ. 98, 201–213 (1983)

12. de la Croix, D.: The dynamics of bequeathed tastes. Econ.
Lett. 53, 89–96 (1996)

13. Feichtinger, G., Hommes, C., Milik, A.: Chaotic consump-
tion patterns in a simple 2-D addiction model. Econ. Theory
10, 147–173 (1997)

14. Ferson, W.E., Constantinides, G.M.: Habit persistence and
durability in aggregate consumption. J. Financ. Econ. 29,
199–240 (1991)

15. Fukuda, S.-I.: The emergence of equilibrium cycles in
a monetary economy with a separable utility function.
J. Monet. Econ. 32, 321–334 (1993)

16. Grandmont, J.-M.: On endogenous competitive business
cycles. Econometrica 53, 995–1045 (1985)

17. Juang, J., Li, M.-C., Malkin, M.: Chaotic difference equa-
tions in two variables and their multidimensional perturba-
tions. Nonlinearity 21, 1019–1040 (2008)

18. Katok, A., Hasselblatt, B.: Introduction to the modern the-
ory of dynamical systems. Cambridge University Press,
Cambridge (1995)

19. Li, M.-C., Malkin, M.: Topological horseshoes for pertur-
bations of singular difference equations. Nonlinearity 19,
795–811 (2006)

20. Li, M.-C., Lyu, M.-J., Zgliczynski, P.: Topological entropy
for multidimensional perturbations of snap-back repellers
and one-dimensional maps. Nonlinearity 21, 2555–2567
(2008)

21. Matsuyama, K.: Endogenous price fluctuations in an opti-
mizing model of a monetary economy. Econometrica 59,
1617–1631 (1991)

22. Medio, A., Negroni, G.: Chaotic dynamics in overlapping
generations models with production. In: Barnett, W.A., Kir-
man, A.P., Salmon, M. (eds.) Non-Linear Dynamics and
Economics, pp. 3–44. Cambridge University Press, Cam-
bridge (1996)

23. Michel, P., de la Croix, D.: Myopic and perfect foresight in
the OLG model. Econ. Lett. 67, 53–60 (2000)

24. Michener, R., Ravikumar, B.: Chaotic dynamics in a cash-
in-advance economy. J. Econ. Dyn. Control 22, 1117–1137
(1998)



62 H.-J. Chen, M.-C. Li

25. Mitra, T.: A sufficient condition for topological chaos with
an application to a model of endogenous growth. J. Econ.
Theory 96, 133–152 (2001)

26. Naik, N.Y., Moore, M.J.: Habit formation and intertempo-
ral substitution in individual food consumption. Rev. Econ.
Stat. 78, 321–328 (1996)

27. Ryder, H.E., Heal, G.M.: Optimal growth with intertem-
porally dependent preferences. Rev. Econ. Stud. 40, 1–31
(1973)

28. Smale, S.: Diffeomorphisms with many periodic points. In:
Differential and Combinatorial Topology (A Symposium in
Honor of M. Morse), pp. 63–80. Princeton University Press,
Princeton (1965)

29. Yokoo, M.: Chaotic dynamics in a two-dimensional over-
lapping generations model. J. Econ. Dyn. Control 24, 909–
934 (2000)


	Habit formation and chaotic dynamics in an n-dimensional cash-in-advance economy
	Abstract
	Introduction
	The model
	Chaotic dynamics
	Persistent habits of one period
	Persistent habits of two periods
	A general case: persistent habits of n periods

	Conclusion
	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


