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This study examines a multiple lot-sizing problem for a single-stage production system with an inter-
rupted geometric distribution, which is distinguished in involving variable production lead-time. In a
finite number of setups, this study determined the optimal lot-size for each period that minimizes total
expected cost. The following cost items are considered in optimum lot-sizing decisions: setup cost,
variable production cost, inventory holding cost, and shortage cost. A dynamic programming model is
formulated in which the duration between current time and due date is a stage variable, and remaining
demand and work-in-process status are state variables. This study then presents an algorithm for solving
the dynamic programming problem. Additionally, this study examines how total expected costs of opti-
mal lot-sizing decisions vary when parameters are changed. Numerical results show that the optimum
lot-size as a function of demand is not always monotonic.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple lot-sizing production-to-order (MLPO) problems have
been studied for several decades (Bowman, 1955). Such problems
typically arise from variations in production yield. Consider a pro-
duction system with an uncertain process yield. To fulfill a partic-
ular customer demand, lots may need to be released several times
to minimize total expected costs. The MLPO problem is to deter-
mine the optimal lot-size for each possible lot release.

This study describes and formulates a single-stage MLPO prob-
lem with one salient feature—uncertain production lead-time.
According to Yano (1987), this feature may arise due to many fac-
tors such as unreliable vendors, unreliable transportation time, job
queuing, machine breakdowns, and rework. Uncertain lead-time
characteristic has seldom been considered in MLPO studies;
although it has been examined in production control studies
(Hsu, Wee, & Teng, 2007). In this study, we assume production
lead-time is a random variable; the probability for one period is
p and that for two periods is 1 � p.

In the MLPO problem, process yield follows an interrupted geo-
metric (IG) distribution. The delivery agreement includes due
dates; that is, customers will not accept products after delivery
due dates, and salvage values of products are negligible. In con-
trast, finished goods produced ahead of the due date become
ll rights reserved.
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inventory and incur holding costs. The following cost items are in-
cluded: setup cost, variable production cost, inventory holding
cost, and shortage cost.

An example of the MLPO problem in this study is a process of
drawing special steel coils. The manufacturing process has two
operations: pickling and wire drawing. The pickling operation
removes rust from steel coils. The processing time required for pick-
ling a steel coil varies. In practice, a steel coil undergoes one or two
pickling operations depending on the duration the coil has been in
air. The drawing operation reduces the size of the input coil. Draw-
ing speed is very fast. All coils in a lot are inspected when the whole
lot is complete. The drawing operation involves a die that is worn
gradually over time. When this die is excessively worn, the output
does not meet specifications. This implies that the integrated draw-
ing process follows an IG distribution, and production lead-time for
a lot from release to output takes one or two periods. Special steels
are customized products that in most cases cannot be sold to other
customers. Thus, we assume product salvage value is negligible.

This study develops a dynamic programming (DP) approach to
solve the MLPO problem. Several lemmas are proposed to reduce
the DP problem solution space. Numerical experiments show that
the optimum lot-size, as a function of demand, is not necessarily
monotonic. This study experimentally investigated how total ex-
pected costs of optimal lot-sizing decisions vary when various
parameters change.

The remainder of this paper is organized as follows. A literature
review is given in Section 2. Section 3 presents the MLPO problem
as a DP model by including a simple example to facilitate under-
standing the formulation. Lemmas for reducing the DP solution
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Notation

D quantity required by a customer
T number of periods in the decision time horizon
t index of time, t = 0 is the due date, t = 0,1,2, . . . ,T
a setup cost incurred at each lot input, a > 0
b variable production cost per unit, b > 0
kt lot-size released at t
Wt a binary variable indicating the demand of a setup,

Wt ¼
0 if kt ¼ 0
1 if kt > 0

�
Dt remaining demand at t (number of demand units still

not fulfilled at t)
h inventory holding cost per unit per period ($/unit-

period), h > 0
m shortage cost per unit, m > 0
p probability of producing a lot in one period

1 � p probability of producing a lot in two periods
h probability that the production system is in-control
Ykt

a random variable for the number of output units for
lot kt

Rt(kt+1) number of work-in-process (WIP) at t,

Rtðktþ1Þ¼
0 if the realized production time for ktþ1 is one period;
ktþ1 otherwise

�

st = (Dt,Rt(kt+1)) the production system status at t, also called
state t

Ct(st,kt) total expected cost incurred after t
C�t ðstÞ ¼ Min

06kt61
fCtðst; ktÞg minimum total expected cost incurred

after t
Nt(st) optimal lot-size at state st; that is,

Min
06kt61

fCtðst ; ktÞg ¼ Ctðst ;NtðstÞÞ
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space are presented in Section 4. An algorithm for solving the DP is
presented in Section 5. Numerical examples are given in Section 6.
Conclusions are provided in Section 7.

2. Related literature

Grosfeld-Nir and Gerchak (2004) and Yano and Lee (1995) com-
prehensively surveyed studies of MLPO problem. Such studies can
be categorized as: single-stage and multiple-stage. This study is in
the category of single-stage MLPO problems; thus, recent studies
in this category are reviewed.

Recent single-stage MLPO studies can be analyzed from multi-
ple perspectives. The first perspective is associated with customer
demand and delivery requirements. Customer demand may be
stochastic (Gerchak & Grosfeld-Nir, 1998) or deterministic. Delivery
requirements can be based on due dates or quantities. In a quan-
tity-based agreement (also called rigid-demand delivery), the quan-
tity ordered must delivered in full; that is, partial delivery is
unacceptable. In due-date-based agreements (also called non-rigid
demand delivery), customers will not accept products after the due
date. Prior studies are either based on rigid-demand (e.g., Anily,
1995; Anily, Beja, & Mendel, 2002; Beja, 1977; Zhang & Guu,
1998), or non-rigid demand (e.g., Guu & Zhang, 2003; Pentico,
1988; Sepehri, Silver, & New, 1986; Wang & Gerchak, 2000).

The second perspective is associated with production character-
istics such as process yield, lead-time, and quality classifications.
Previous studies assumed process yield is governed by a probabil-
ity distribution, which includes the discrete uniform (Anily, 1995),
the binomial distribution (Beja, 1977; Pentico, 1988; Sepehri et al.,
1986), the interrupted geometric (Anily et al., 2002; Guu & Zhang,
2003; Zhang & Guu, 1998), the general distribution (Zhang & Guu,
1997), and the stochastically proportional (Grosfeld-Nir & Gerchak,
1990; Wang & Gerchak, 2000). In terms of lead-time, few studies
(Wang & Gerchak, 2000) addressed an MLPO problem in which
production lead-time is longer than the time epochs between
any two lot releases. Most reseachers assumed production out-
comes have only two possible states, either acceptable or unaccept-
able quality, while a few other studies (Gerchak & Grosfeld-Nir,
1999) examined scenarios that may have three or more out-
comes—for example, high quality, medium quality and unaccept-
able quality.

The third perspective is associated with cost items and objec-
tive functions for the MLPO decision making. The most widely
addressed cost items include setup cost, variable production cost,
inventory cost, and shortage cost. A few researchers also consid-
ered inspection cost (Grosfeld-Nir, Gerchak, & He, 2000) and dis-
posal cost (Wang & Gerchak, 2000). For the objective function,
most researchers attempted to minimize total expected cost, while
a few considered the impact of risk caused by cost variance (Gros-
feld-Nir & Gerchak, 1996).

The fourth perspective is associated with the solution approach.
Most formulations of MLPO problems include recursive formulas
and have been widely interpreted as DP problems. Therefore, DP
has been widely used to solve MLPO problems; however, such a
solution approach may be very demanding computationally. Some
researchers proposed lemmas to reduce the solution space (Anily,
1995; Beja, 1977; Zhang & Guu, 1998); some others attempted to
develop near–optimal heuristic rules (Pentico, 1988; Sepehri
et al., 1986); and a few others approximately model the DP prob-
lem using a relatively simpler non-DP problem for cases with ex-
tremely large/small demand quantities (Anily et al., 2002).

The four perspectives highlight the various complex scenarios
that can occur in single-stage MLPO problems. Some researchers
investigated multiple-stage MLPO problems, in which additional
complexity may arise due to inclusion of lot-sizing decisions made
at the start of each stage. For example, a production system with
two stages needs a lot-sizing decision for the first stage. Releasing
all output items of the first stage immediately to the next stage
may not be an optimal decision. A lot-sizing decision at the start
of the second stage is needed. Example studies that addressed
the multiple-stage MLPO problem include Grosfeld-Nir (2005)
and Grosfeld-Nir and Robinson (1995).

Compared to those in literature, the singe-stage MLPO problem
in this study is unique in that it includes one salient feature—uncer-
tain production lead-time. This feature has rarely been considered in
either single-stage or multiple-stage MLPO studies.

3. Modeling

To model the MLPO problem, the notation is first presented, fol-
lowed by a description of the IG distribution. A simple example is
then given to explain the idea of the formulation. Finally, the cost
function of the MLPO problem is modeled using a recursive for-
mula, and its boundary conditions (BCs) are defined.

3.1. IG distribution

As process yield is governed by an IG distribution, the produc-
tion system manufactures each unit in a one-by-one manner and
operates in two possible states in-control or out-of-control. The out-
put unit is non-defective when the system is in-control, and is
defective when the system is out-of-control. The process can
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Fig. 1. A simple example illustrating the decision structure.
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switch from an in-control state to an out-of-control state, but not
vice versa. This irreversible characteristic leads to the naming of
‘‘interrupted” geometric distribution. The IG distribution can be
interpreted as follows. To produce exactly ykt

non-defective units,
the system must be in-control for the first ykt

units and out-of-con-
trol at the ðykt

þ 1Þth unit; the probability is ð1� hÞhykt . In contrast,
the probability of producing kt non-defective units is hkt because
the system must be in-control for each unit produced. The IG dis-
tribution is as follows:

PðYkt ¼ ykt
Þ ¼

ð1� hÞhykt ykt
¼ 0;1;2; . . . ; kt � 1;

hkt ykt
¼ kt :

(

3.2. Simple example

Consider an order demand D with T = 3 as the current time
(Fig. 1). Three lot-sizing decisions must be made at t = 3, 2, and
1, respectively. At t = 3, consider the state s3 = (D,0), where lot k3

is released. If lot k3 is completed at t = 2, then D2 ¼ D3 � yk3
,

R2(k3) = 0, and s2 ¼ ðD3 � yk3
;0Þ. If lot k3 is not completed at t = 2,

then D2 = D3, R2(k3) = k3, and s2 = (D3,k3).
At t = 2, consider the state s2 ¼ ðD3 � yk3

;0Þ, where lot k2 is
released. If lot k2 is completed at t = 1, then D1 ¼ D2 � yk2

,
R1(k2) = 0, and s1 ¼ ðD2 � yk2

;0Þ. If lot k2 is not completed at t=1,
then D1 = D2, R1(k2) = k2, and s1 = (D2,k2)

At t = 2, consider the state s2 = (D3,k3), where lot k2 is released. If
lot k2 is completed at t = 1, then D1 ¼ D2 � yk3

� yk2
. That is, two

lots, k3 and k2, are now completed, where the realized production
time of lot k3 is two periods and that of lot k2 is one period. Nota-
t

tk))(,( 1+= tttt kRDs

Fig. 2. A decision structu
bly, R1(k2) = 0 because all released lots (k3 and k2) are now com-
pleted. Therefore, s1 ¼ ðD2 � yk3

� yk2
;0Þ. If lot k2 is not completed

at t = 1, then D1 ¼ D2 � yk3
, R1(k2) = k2, and s1 ¼ ðD2 � yk3

; k2Þ. The
other portions in Fig. 1 about the production system status can
be likewise derived by following the above procedure.

3.3. Cost function formulation

Fig. 2 shows the general representation of a lot-sizing decision
made at st = (Dt,Rt(kt+1)). Cost function Ct(st,kt) in the intermediate
stage, when t P 1, can be formulated as follows:

Ctðst ; ktÞ ¼ H1 þ p �
XRtðktþ1Þ

yRt ðktþ1Þ
¼0

Xkt

ykt
¼0

pðyRtðktþ1ÞÞ � pðykt
Þ � ðH2 þ H3Þ

þ ð1� pÞ �
XRtðktþ1Þ

yRt ðktþ1 Þ
¼0

pðyRtðktþ1ÞÞ � ðH4 þ H5Þ ð1Þ

where

H1 ¼ aWt þ bkt;

H2 ¼ hðt � 1ÞðyRtðktþ1Þ þ ykt
Þ;

H3 ¼ C�t�1ðst�1 ¼ ðDt � yRtðktþ1Þ � ykt
;0ÞÞ;

H4 ¼ hðt � 1ÞyRtðktþ1Þ;

H5 ¼ C�t�1ðst�1 ¼ ðDt � yRtðktþ1Þ; ktÞÞ:

where H1 is the aggregated production cost for lot kt, including both
setup and variable production costs. At st = (Dt,Rt(kt+1)) with a lot kt

released, the possible outcomes of st�1 can be represented in two
1−t

),( )(1 1 tkRtt kyDs
tt +

−=−

p

p−1

)0,( )(1 1 ttt kkRtt yyDs −−=
+−

re in the DP model.
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cases, which lead to the derivation of the second and third terms in
(1) (Fig. 2).

Case 1. st�1 ¼ ðDt � yRtðktþ1Þ � ykt
;0Þ, with probability p. The num-

ber of total output units is yRtðktþ1Þ þ ykt
, with a joint probability

pðyRtðktþ1ÞÞ � pðykt
Þ. These output units are produced at t-1 and incur

an inventory holding cost of H2. The expected inventory holding

cost can then be expressed as
PRtðktþ1Þ

yRt ðktþ1 Þ
¼0

Pkt
ykt
¼0pðyRtðktþ1ÞÞ � pðykt

Þ�
H2. The term

PRtðktþ1Þ
yRt ðktþ1 Þ

¼0

Pkt
ykt
¼0pðyRtðktþ1ÞÞ � pðykt

Þ � H3 is the minimum

total expected cost incurred after t � 1.

Case 2. st�1 ¼ ðDt � yRtðktþ1Þ; ktÞ with probability 1 � p. The number
of total output units is yRt ðktþ1Þ, with an occurrence probability
pðyRtðktþ1ÞÞ. These output units are produced at t � 1 and incur an
inventory holding cost H4. The expected inventory holding cost

can then be represented as
PRt ðktþ1Þ

yRt ðktþ1 Þ
¼0pðyRtðktþ1ÞÞ � H4. The termPRt ðktþ1Þ

yRt ðktþ1 Þ
¼0pðyRtðktþ1ÞÞ � H5 denotes the minimum total expected cost

incurred after t � 1.
3.4. Boundary conditions

As a recursive formula, (1) has two BCs. The first BC is intended
to address costs incurred at t while Dt = 0; that is, st = (0,Rt(kt+1)).
Since demand now has been fulfilled, no lot needs to be released.
Therefore, we can conclude:

C�t ðst ¼ ð0;Rtðktþ1ÞÞÞ ¼ 0: ð2Þ

The second BC addresses the costs incurred at t = 0 with a status
s0 = (D0,R0(k1)). The WIP R0(k1) is produced after t = 0 and cannot
be used to fulfill the customer demand. Shortage cost for unful-
filled demand D0 > 0 is mD0. At t = 0, no lot is released and the cost
incurred is

C�0ðs0 ¼ ðD0;R0ðk1ÞÞÞ ¼
mD0 if D0 > 0;
0 if D0 ¼ 0:

�
ð3Þ

In summary, (1) is a recursive formula for determining costs
prior to the due date, (2) is a BC for cost in the situation in which
demand has already been satisfied, and (3) is a BC for cost in the
case in which demand has not been satisfied at the due date.

4. Solution space reduction

The recursive formula in (1), as well as its two BCs, define a DP
problem, where Nt(st) is to be found. To reduce the solution space,
Lemma 1 is proposed to define an upper bound for Nt(st), with
Proposition 1 as a prerequisite to its proof.

Proposition 1. Given t P 1, Dt P 1, Rt(kt+1) P Dt, st = (Dt,Rt(kt+1)),
and s0t ¼ ðDt;Rtðktþ1Þ þ 1Þ, then C�t ðs0tÞ > C�t ðstÞ.

Proof.

8kt ; Ctðs0t ; ktÞ � Ctðst ; ktÞ ¼ hðt � 1ÞðE½YRtðktþ1Þþ1� � E½YRtðktþ1Þ�Þ

¼ hðt � 1ÞðhRtðktþ1Þþ1Þ > 0:

That is, Ctðs0t; ktÞ > Ctðst; ktÞ, "kt.
Let kt ¼ Ntðs0tÞ. Then Ctðs0t;Ntðs0tÞÞ > Ctðst;Ntðs0tÞÞ.
By definition,

C�t ðs0tÞ ¼ Min
kt

fCtðs0t ; ktÞg ¼ Ctðs0t ;Ntðs0tÞÞ;

C�t ðstÞ ¼ Min
kt

fCtðst ; ktÞg ¼ Ctðst ;NtðstÞÞ:

Therefore,

C�t ðstÞ ¼ Ctðst;NtðstÞÞ 6 Ctðst;Ntðs0tÞÞ < Ctðs0t ;Ntðs0tÞÞ ¼ C�t ðs0tÞ

. h
This proposition implies that while the WIP is greater than the
remaining demand, changing a state by including one more unit in
WIP typically increases cost. It is intuitively rational when consid-
ering a case in which the remaining demand is 12 units. With an IG
distribution, we infer that all the states with 12 units or more in
WIP lead to the same probability for meeting remaining demand.
However, for a state with additional quantity in WIP, holding cost
of finished goods increases.

Lemma 1. Given t P 1, Dt P 1, and st = (Dt,Rt(kt+1)), then
Nt(st) 6 Dt.

Proof. If Nt(st) = 0, trivially, one can obtain Nt(st) = 0 < 1 6 Dt. If
Nt(st) P 1, "kt > Dt,

Ctðst ; ktÞ � Ctðst ;DtÞ ¼ bðkt � DtÞ þ phðt � 1ÞðE½Ykt � � E½YDt �Þ

þ ð1� pÞ �
XRtðktþ1Þ

yRt ðktþ1Þ
¼0

pðyRtðktþ1ÞÞ � ½C
�
t�1ðst�1 ¼ ðDt � yRtðktþ1Þ; ktÞÞ

� C�t�1ðst�1 ¼ ðDt � yRtðktþ1Þ;DtÞÞ�[bðkt � DtÞ þ phðt � 1ÞðE½Ykt �
� E½YDt �Þ > 0ðby Proposition 1Þ

That is, Ct(st,kt) > Ct(st,Dt) for any kt > Dt. This implies that Nt(st) 6 Dt.
h

This lemma implies that the optimal lot size should always be
less than or equal to remaining demand. It is helpful to reducing
the solution space of the dynamic program. This lemma is intui-
tively rational. Likewise, consider a case in which the remaining
demand is 12 units. With an IG distribution, releasing a lot with
at least 12 units would lead to the same probability of meeting
remaining demand. Thus, at most 12 units should be released in
this case.

Lemmas 2 and 3 are intended to quickly compute Nt(st) and
C�t ðstÞ for cases of st = (1,Rt(kt+1)). In Lemmas 2 and 3, thresholds
a and b are derived to determine whether to release a lot at
st = (1,0) and st = (1,Rt(kt+1) > 0), respectively.

Lemma 2. For st = (1,Rt(kt+1)), where Rt(kt+1) = 0,

if C�t�1ðst�1 ¼ ð1;0ÞÞ 6 a; then NtðstÞ ¼ 0 and

C�t ðstÞ ¼ C�t�1ðst�1 ¼ ð1;0ÞÞ;

if C�t�1ðst�1 ¼ ð1;0ÞÞ > a; then NtðstÞ ¼ 1 and

C�t ðstÞ ¼ aþ bþ phðt � 1Þhþ pð1� hÞC�t�1ðst�1 ¼ ð1; 0ÞÞ

þ ð1� pÞC�t�1ðst�1 ¼ ð1;1ÞÞ;

where a¼ ½aþbþphðt�1Þhþð1�pÞC�t�1ðst�1¼ð1;1ÞÞ�=½1�pð1�hÞ�.

Proof. If kt = 0, then Ctðst ;0Þ ¼ C�t�1ðst�1 ¼ ð1;0ÞÞ. If kt = 1, then
Ctðst; 1Þ ¼ a þ b þ phðt � 1Þh þ pð1 � hÞC�t�1ðst�1 ¼ ð1; 0ÞÞ þ ð1 � pÞ
C�t�1ðst�1 ¼ ð1; 1ÞÞ. Then,

Ctðst ;0Þ�Ctðst;1Þ¼C�t�1ðst�1¼ð1;0ÞÞ
� ½aþbþphðt�1Þhþpð1�hÞC�t�1ðst�1¼ð1;0ÞÞ
þð1�pÞC�t�1ðst�1¼ð1;1ÞÞ�

¼C�t�1ðst�1¼ð1;0ÞÞ � ½1�pð1�hÞ�
� ½aþbþphðt�1Þhþð1�pÞC�t�1ðst�1¼ð1;1ÞÞ�:

Let a ¼ ½aþ bþ phðt � 1Þhþ ð1� pÞC�t�1ðst�1 ¼ ð1;1ÞÞ�=½1� pð1� hÞ�
Then, Ctðst;0Þ�Ctðst ;1Þ¼ ½C�t�1ðst�1 ¼ð1;0ÞÞ�a� � ½1�pð1�hÞ� There-
fore, we conclude that

if C�t�1ðst�1 ¼ ð1;0ÞÞ 6 a; then NtðstÞ ¼ 0;

if C�t�1ðst�1 ¼ ð1;0ÞÞ > a; then NtðstÞ ¼ 1:

And C�t ðstÞ for each case can be accordingly computed. h



Fig. 3. The set of states considered in Steps 1 and 2.
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Lemma 3. For st = (1,Rt(kt+1)), where Rt(kt+1) > 0,

if C�t�1ðst�1 ¼ ð1;0ÞÞ 6 b; then NtðstÞ ¼ 0 and
C�t ðstÞ ¼ hðt � 1ÞE½YRtðktþ1Þ� þ ð1� hÞC�t�1ðst�1 ¼ ð1; 0ÞÞ;

if C�t�1ðst�1 ¼ ð1;0ÞÞ > b; then NtðstÞ ¼ 1 and

C�t ðstÞ ¼ aþ bþ hðt � 1ÞE½YRtðktþ1Þ� þ phðt � 1Þhþ pð1� hÞ2C�t�1

� ðst�1 ¼ ð1;0ÞÞ þ ð1� pÞð1� hÞC�t�1ðst�1 ¼ ð1;1ÞÞ;

where b¼½aþbþphðt�1Þhþð1�pÞð1�hÞC�t�1ðst�1¼ð1;1ÞÞ�=fð1�hÞ
½1�pð1�hÞ�g.

Proof. If kt = 0, then Ctðst; 0Þ ¼ hðt � 1ÞE½YRtðktþ1Þ� þ ð1� hÞC�t�1

ðst�1 ¼ ð1;0ÞÞ. If kt = 1, we have

Ctðst;1Þ ¼ aþ bþ hðt � 1ÞE½YRtðktþ1Þ� þ phðt � 1Þh
þ pð1� hÞ2C�t�1ðst�1 ¼ ð1;0ÞÞ
þ ð1� pÞð1� hÞC�t�1ðst�1 ¼ ð1;1ÞÞ:

Let b¼½aþbþphðt�1Þhþð1�pÞð1�hÞC�t�1ðst�1¼ð1;1ÞÞ�=fð1�hÞ½1�
pð1�hÞ�g Then, Ctðst;0Þ�Ctðst;1Þ¼½C�t�1ðst�1¼ð1;0ÞÞ�b� �fð1�hÞ½1�
pð1�hÞ�g. This implies that
Fig. 4. The set of states cons
if C�t�1ðst�1 ¼ ð1;0ÞÞ 6 b; then NtðstÞ ¼ 0;

if C�t�1ðst�1 ¼ ð1;0ÞÞ > b; then NtðstÞ ¼ 1:

Thus, C�t ðstÞ for each case can be accordingly computed. h

In summary, Proposition 1 is a prerequisite of Lemma 1. Lemma
1 is used to define the upper bound for releasing a lot, which helps
reduce the solution space of the DP. Both Lemmas 2 and 3 are used
to accelerate decision making when Dt = 1.

5. Dynamic programming algorithm

Based on the above lemmas, we propose an algorithm for com-
puting NT(sT), beginning with sT = (D,0).

Algorithm Computing_Optimal_Lot_Size (sT = (D,0))
Step 1: Based on the first BC, compute Nt(st) and C�t ðstÞ at

st = (0,Rt(kt+1)).
Step 2: Based on the second BC, compute N0(s0) and C�0ðs0Þ at

s0 = (D0,R0(k1)).
Step 3: Based on Lemma 2, compute Nt(st) and C�t ðstÞ at

st = (1,Rt(kt+1) = 0) for 1 6 t 6 T.
idered in Steps 3 and 4.



Fig. 5. The set of states considered in Steps 5 and 6.
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Step 4: Based on Lemma 3, compute Nt(st) and C�t ðstÞ at
st = (1,Rt(kt+1) > 0) for 1 6 t 6 T.

Step 5: Based on (1) and Lemma 1, compute Nt(st) and C�t ðstÞ at
st = (2 6 Dt 6 D � 1,Rt(kt+1) P 0) for 1 6 t 6 T.

Step 6: Based on (1) and Lemma 1, compute NT(sT) and C�t ðstÞ at
sT = (D,0).

The DP algorithm is utilized to calculate the cost function of
each state in the DP decision tree, whose number of states could
be quite huge. The complexity of the DP decision tree can be
understood by examining the three component variables of a state
st, which involves t, Dt, and Rt(kt+1). Step 1 determines Nt(st) and
C�t ðstÞ for plane Dt = 0 based on the first BC, and Step 2 is for the
plane t = 0 based on the second BC (Fig. 3). With the results ob-
tained from Steps 1 and 2, Step 3 together with Step 4 determine
Nt(st) and C�t ðstÞ for plane Dt = 1 (Fig. 4) based on Lemmas 2 and
3. The results for the remaining planes are computed by Steps 5
and 6 (Fig. 5).
6. Numerical examples

The properties of the multiple lot-sizing problems are examined
using numerical examples. First, this work examines how the value
1200

1600

2000

2400

0 0.1 0.2 0.3 0.4 0.5

Cost

Fig. 6. Total expected cost as a function of p (T =
of decision parameters, T, D, p, h, a, b, h, and m, affect total expected
cost. Second, this work examines whether NT(sT) against the order
size D is monotonically increasing.

6.1. Properties of decision parameters

We could readily justify that the total expected cost decreases
as the values of cost parameters, a, b, h, and m decrease, while total
expected cost decreases as the value of h increases. However, the
relationships between total expected cost and parameters p, T,
and D are not explicit and must be examined by numerical tests.

To examine the relationship between p and total expected cost,
700 cases are used, which are designed by setting D = 30, m = 200,
a = 100 and b = 1, and varying the other parameter values as fol-
lows: T = 3, 4, 6, and 10; p = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1; h = 0.5,
0.6, 0.7, 0.8, and 0.9; and h = 0, 1, 3, 5, and 10.

Experimental results imply that total expected cost decreases
with p when the value of p is sufficiently large (Fig. 6). This implies
that a company that with shorter production lead-time tends to in-
cur less cost. Suppose a motivational mechanism is established by
sharing with workers a certain percentage (say, 20%) of the cost-sav-
ing amount. The proposed model can then be used to determine the
percentage that should be shared with workers for a particular p.
0.6 0.7 0.8 0.9 1 p

h= 0

h= 1

h= 3

h= 5

h= 10

4, D = 30, h = 0.9, a = 100, b = 1, and m = 200).



T

Fig. 7. Total expected cost as a function of T (T = 2,4,6,8,10, D = 50, p = 0.5, h = 0.9, a = 100, b = 1, h = 0.025, and m = 200).
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To examine the impacts of T and D on total expected cost, we
used 700 cases which are designed by setting a = 100, b = 1 and
m = 200, and varying the other parameter values as follows: T = 2,
4, 6, 8, and 10; D = 10, 20, 30, 40, and 50; p = 0, 0.1, 0.3, 0.5, 0.7,
0.9, and 1; h = 0.025, 2.5; and h = 0.6, 0.9.

Total expected cost decreases with T (Fig. 7), implying that the
production of rush orders (with a small T value) increases cost. To
ensure a constant contribution margin, say, 30%, for any lead-time
commitment, one must adopt a price discrimination policy. That is,
as lead-time commitment decreases the unit price charged in-
creases. Thus, the proposed model is helpful in determining the
pricing policy in terms of lead-time commitment.

Total expected cost increases as D increases in a convex manner
(Fig. 8). In Fig. 8, a scenario is considered in which unit price for any
order size is constant. Based on revenue and cost curves, profit, as a
function of order size, does not increase monotonically (Fig. 8). This
highlights the need for computing an optimal order size, which is
one application of the proposed MLPO model.

6.2. Counter-examples of monotonic property

To justify whether NT(sT) is increasing monotonically with re-
spect to D, this work uses two scenarios, p=0.7 and p=1.0. The other
parameters are T = 6, a = 50, b = 1, h = 1, m = 200, and h = 0.95. The
proposed model is used to compute NT(sT) for 1 6 D 6 100. Fig. 9
presents computational results, revealing that NT(sT) as a function
of D is not necessarily monotonic, further supporting the impor-
Opt
orde

$

Fig. 8. Total expected cost and revenue as a function of D (T = 6, D = 10
tance of applying the proposed model to the lot-sizing decision.
The size of NT(sT) for p = 0.7 is in general larger than that for
p = 1.0 (Fig. 9). Thus, the optimal lot-size for this scenario with var-
iable lead-times was larger than that with a constant lead-time.

7. Conclusions

This study addresses a new single-stage MLPO problem, which
is distinguished by its inclusion of one salient feature—production
lead time is uncertain with two possible outcomes. That is, produc-
tion lead time is either one or two periods. Such a problem has ap-
peared in various production processes, such as when the drawing
of steel coils; however, it has scarcely been studied in literature.
This study formulates the MLPO problem as a dynamic problem
and examines its properties via numerical experiments.

Some properties of decision variables (optimal lot-sizes) are
summarized as follow. First, the optimal lot-size at any period is
less than or equal to remaining demand, as proved in Lemma 1.
Second, optimal lot-size as a function of demand is not necessarily
monotonic. Third, optimal lot-size with variable lead-time tends to
be larger than that with a fixed lead-time.

Properties of decision parameters T and p are also summarized.
Total cost appears to decreases with T, implying that the unit sell-
ing price can be lowered when customers accept an extended lead-
time. While the value ofp is large enough, the higher is p, the lower
the total expected cost tends to be. This implies that a production
system would be more cost-competitive if its production lead-time
D
imal 
r size

, 20,30,40,50, p = 0.5, h = 0.9, a = 100, b = 1, h = 0.025, and m = 200).



Fig. 9. The optimum lot-sizing decisions as a function of D for two particular scenarios.
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could become shorter, in terms of probability. With the proposed
DP model, this study determined the lowest total expected cost
for any production scenario, and in turn determined the appropri-
ate quoted price.

If salvage costs for after-due products are not negligible, some
lemmas in this work may not be valid. Therefore, one possible
extension is to develop an MLPO model that includes substantial
salvage costs. Another extension is to investigate the MLPO prob-
lem with more than two possible outcomes in production lead-
time. The proposed approach appears to be applicable to such an
extension; however, formulating and solving a relatively much
more complex DP problem is challenging. Additionally, some other
extensions include investigating different probability distributions
for modeling process yield and a scenario of a multiple-stage pro-
duction system.
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