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a b s t r a c t

Due to lack of efficient approaches of mixed production, the present production approach of the TFT-LCD
industry is batch production that each glass substrate is cut into LCD plates of one size only. This study
proposes an optimization algorithm for cutting stock problems of the TFT-LCD industry. The proposed
algorithm minimizes the number of glass substrates required to satisfy the orders, therefore reducing
the production costs. Additionally, the solution of the proposed algorithm is a global optimum which
is different from a local optimum or a feasible solution that is found by the heuristic algorithm. Numerical
examples are also presented to illustrate the usefulness of the proposed algorithm.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This study considers the cutting stock problem (CSP) of TFT-LCD
(thin-film transistor liquid–crystal display) industry which aims to
seek an optimal production schedule of cutting several LCD panels
with different sizes from a given glass substrate to meet the orders.
The glass substrate is one of important raw materials in the whole
manufacturing process of LCD. If an enterprise designs a produc-
tion scheme using the minimum number of glass substrates based
on the orders received, it can reduce the manufacturing costs and
increase the product’s competitiveness in the market.

The CSP attempts to plan the optimal production schedule for
minimizing the production costs, i.e. minimum trim loss. Different
variants of CSP are available. An important variant of the CSP is the
one-dimensional CSP. Many approaches for this problem have been
proposed. For instance, Holthaus (2002) considered the integer
one-dimensional cutting stock problem with different types of
standard lengths and the objective of cost minimization. Umetani,
Yagiura, and Ibaraki (2003) designed an approach which is based
on meta-heuristics, and incorporates an adaptive pattern genera-
tion technique. Gradisar and Trkman (2005) also proposed a com-
bined method for the solution to the general one-dimensional
cutting stock problem (G1D-CSP).

Another variant of CSP is the two-dimensional CSP. In this var-
iant, a set of order pieces is cut from a large supply of rectangular
stock sheets of fixed size in a way that minimizes the total cost.
Based on this goal, we are interested in finding ‘cutting patterns’
that minimize the unused area (trim loss). The problem is called
ll rights reserved.
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two-dimensional cutting problem. Cutting and Packing problems
belong to an old and very well-known family, called CP in Dyckhoff
(1990) and Sweeney and Paternoster (1992). This is a family of nat-
ural combinatorial optimization problems.

The two-dimensional cutting and packing problem is widely ap-
plied in optimally cutting raw materials such as glass, steel and pa-
per, in two-dimensional bin packing, and in layout designing
problems. Many scholars have devoted themselves to developing
many methods one after another to solve the problem; these meth-
ods can be grouped into two major types.

(i) Deterministic: Deterministic methods take advantage of ana-
lytical properties of the problem to generate a sequence of
points that converge to a global solution. For example, Chen,
Sarin, and Balasubramanian (1993) presented a mixed inte-
ger programming model for a class of assortment problems.
Li and Tsai (2001) proposed a new method which finds the
optimum of cutting problems by solving few linear mixed
0–1 problems. Li, Chang, and Tsai (2002) developed an
approach using the piecewise linearization technique of
the quadratic objective function to improve an approximate
model for two-dimensional cutting problems.

(ii) Heuristic: Heuristic algorithms can obtain a solution quickly,
but the quality of the solution cannot be guaranteed. G and
Kang (2001) developed a heuristic that finds efficient layouts
with low complexity for two-dimensional pallet loading
problems of large size. Wu, Huang, Lau, Wong, and Young
(2002) introduced an effective deterministic heuristic, Less
Flexibility First, for solving the classical NP-complete
rectangle-packing problem. Leung, Chan, and Troutt (2003)
proposed an application of a mixed simulated annealing–
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genetic algorithm heuristic for the two-dimensional orthog-
onal packing problem. Beasley (2004) also presented a
heuristic algorithm for the constrained two-dimensional
non-guillotine cutting problem. The main defect of these
heuristic algorithms is that they fail to claim the solution
obtained is a global optimum unless the whole solution space
is completely searched. Toward TFT-LCD industry involving
mass production, the costs can be further reduced substan-
tially if a global optimum can be derived instead of a local
optimum or a feasible solution. For more detailed articles
about the cutting optimization problem, readers can consult
Lodi, Martello, and Monaci (2002) and Valério de Carvalho
(2002).

Many approaches for two-dimensional cutting stock problem
have also been proposed. Hifi (1997) discussed one of the best-
known exact algorithms, due to Viswanathan and Bagchi (1993),
for solving constrained two-dimensional cutting stock problem
optimally. They proposed a modification of this algorithm in order
to improve the computational performance of the standard ver-
sion. Cung, Hifi, and Cun (2000) developed a new version of the
algorithm in Hifi (1997) for solving exactly some variants of (un)-
weighted constrained two-dimensional cutting stock problems.
Leung, Yung, and Troutt (2001) applied a genetic algorithm and a
simulated annealing approach to the two-dimensional non-guillo-
tine cutting stock problem and carried out experimentation on sev-
eral test cases. Vanderbeck (2001) developed a nested
decomposition approach for two-dimensional cutting stock prob-
lem. Burke, Kendall, and Whitwell (2004) presented a new best-
fit heuristic for the two-dimensional rectangular stock-cutting
problem and demonstrated its effectiveness.

The two-dimensional cutting stock problem considered in this
study is to derive the minimum number of glass substrates based
on the available cutting combinations to meet the order demands.
Due to lack of efficient approaches of mixed production, the pres-
ent production approach is batch production that each glass sub-
strate is cut into LCD plates of one size only. However, the
computational result shows that the mixed production has a high-
er utilization of a glass substrate. Moreover, the proposed optimi-
zation algorithm can significantly reduce production costs to
enhance the competitiveness of products.

The main advantages of the proposed method are listed as
follows:

1. In comparison with the batch production, the proposed method
presents a mixed production approach that generates LCD
plates of various sizes in a glass substrate to increase the utili-
zation of glass substrates (i.e. total area of produced products/
total area of glass substrates).

2. The proposed method provides the optimal production scheme
according to the quantities of the orders.

3. The proposed method is able to find out all the alternative solu-
tions with the same optimal objective value (i.e., different cutting
combinations under the same utilization of a material substrate).

The rest of this paper is organized as follows: in Section 2, the
mathematical models of a cutting optimization problem are formu-
lated. In Section 3, a cutting stock optimization algorithm is pro-
posed. Section 4 presents numerical examples to illustrate the
proposed method and concluding remarks are included in Section 5.

2. Mathematical models

Since the mixed production has a higher utilization of a glass
substrate than batch production, herein we construct some models
to find out all cutting combinations in a glass substrate. To facili-
tate the discussion, the following notations are introduced first:

(l0,w0): The length and width of the glass substrate.
Z: Number of LCD products with different sizes which have to
be produced.
(lz,wz): The length and width of the zth LCD product,
lzwz � lzþ1wzþ1, z = 1,2, . . .,Z.
J: Index of multiple solutions with the same objective value.
T: Number of possible cutting combinations with different
objective values.
ct

zj: The cutting quantity of the zth product of the jth alternative
solution with the same objective value in the tth iteration,
z = 1,2, . . .,Z, t = 1,2, . . .,T, j = 1,2, . . ., J.

First, let Obj(0) = l0w0, consider the following model:

2.1. Model 1.1

Max ObjðtÞ ¼
XZ

z¼1

ct
z1ðlzwzÞ ð1Þ

subject to

ObjðtÞ � Objðt � 1Þ: ð2Þ

This model aims to find the possible cutting combinations with
different objective values. For t = 1, the constraint Obj(1) 6 Obj(0)
represents to use the maximum portion of a glass substrate. For
t = 2,3, . . .T, the constraint Obj(t) 6 Obj(t � 1) represents that the
utilization of a glass substrate decreases as t increases. After each
t iteration, we can obtain a solution and an objective value. Because
distinct solutions may exist under the same objective value, we de-
velop the following model for finding multiple solutions:

2.2. Model 1.2

Max
XZ

z¼1

ct
zjðlzwzÞ ð3Þ

subject to

XZ

z¼1

ct
zj � ct

z;j�1

���
��� P 1; for all j: ð4Þ

If the objective value obtained of Model 1.2 is equal to Obj(t)
deriving from Model 1.1 in the tth iteration, then alternative solu-
tions exist. The purpose of constraint (4) is to search for an alterna-
tive solution. For example, let Obj(0) = 200, (l1,w1) = (5,5),
(l2,w2) = (5,10) and (l3,w3) = (10,10). The possible cutting combi-
nations can be obtained by using Models 1.1 and 1.2 as follows:

Step 1: Let t = 1, j = 1, and Obj(0) = 200. Using Model 1.1 to find
the possible cutting combination, we have the following model:
Max Objð1Þ ¼ c1
11ð5 � 5Þ þ c1

21ð5 � 10Þ þ c1
31ð10 � 10Þ

s:t: Objð1Þ � Objð0Þ; c1
11; c

1
21; c

1
31 2 integer:

Solving the above model, we can obtain a possible cutting com-
bination ðc1

11; c
1
21; c

1
31Þ ¼ ð8; 0; 0Þ; and the objective value is

Obj(1) = 200.

Step 2: Using Model 1.2 to find the alternative solutions, we
have the following model:
Max c1
12ð5 � 5Þ þ c1

22ð5 � 10Þ þ c1
32ð10 � 10Þ

s:t: jc1
12 � 8j þ jc1

22 � 0j þ jc1
32 � 0j � 1; c1

12; c
1
22; c

1
32 2 integer:
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Solving the above model, we can find an alternative solution
ðc1

12; c
1
22; c

1
32Þ ¼ ð6; 1; 0Þ with the same objective value 200. By

performing this process iteratively, all the alternative solutions
can be found. However, the absolute terms in constraint (4)
must be linearized so that Model 1.2 can be transferred into
a linear programming problem. Consider the following
propositions for linearizing an absolute term contained in a
constraint:

Proposition 1. Let a 2 f0;1g; b � 0 then:

jx�aj ¼ x�aþ2aa�2b()
ðiÞ�Ma� x�a�Mð1�aÞ
ðiiÞMða�1Þþx� b�Mð1�aÞþx

ðiiiÞ b�Ma

8><
>:

Proof 1.

(i) If x � a P 0, then a = 0, b = 0 based on (i) and (iii); which
results in x � a + 2aa � 2b = x � a.

(ii) If x � a 6 0, then a = 1, b = x based on (i) and (ii); which
results in x � a + 2aa � 2b = a � x. h
By Proposition 1, Model 1.2 is equivalently transformed into an-
other linear program formulated as below.

2.3. Model 1.3

Max
XZ

z¼1

ct
zjðlzwzÞ

subject to

XZ

z¼1

ðct
zj � ct

z;j�1 þ 2ct
z;j�1az � 2bzÞ � 1; for all j; ð5Þ

�Maz � ct
zj � ct

z;j�1 � Mð1� azÞ; for all j and z; ð6Þ
0 � bz � Maz; for all j and z; ð7Þ
Mðaz � 1Þ þ ct

zj � bz � Mð1� azÞ þ ct
zj; for all j and z; ð8Þ

where az are 0–1 variables, M is a large constant and the other vari-
ables are defined as before.

Model 1.3 is a linear programming problem solvable to obtain a
global optimum and capable of finding out all possible cutting
combinations even there are multiple solutions.

According to the above discussions, for the iteration of t
(t = 1,2, . . .,T), Model 1.1 is applied to solve the possible cutting
combinations with different utilizations of a glass substrate. For
the iteration of j, Model 1.3 is applied to solve the multiple solu-
tions under a certain utilization derived from Model 1.1. Therefore
some possible cutting combinations can be acquired by Model 1.1
and Model 1.3. However Models 1.1 and 1.3 only check the total
measure of the LCD plates is less than that of a glass substrate. Next
this study aspires to verify all rectangles of each cutting combina-
tion can be allocated into a glass substrate. Suppose the lengths
and widths of n rectangles are given. A two-dimensional cutting
optimization problem is to allocate all of these rectangles within
an enveloping rectangle on x-axis and y-axis which occupies min-
imum area. The concept of the problem is stated as follows:

2.4. Model 2.1

Min xy

subject to

1. All of the n rectangles are non-overlapping.
2. All of the n rectangles are within the range of x and y.
3. 0 < x 6 l0 and 0 < y 6 w0.
The related terminologies used in the model, referring to Li and
Tsai (2001) are stated below:

(x,y): The top right corner coordinates of the enveloping
rectangle.
(pi,qi): The dimension of rectangle i, pi is the long side and qi is
the short side, pi and qi are constants, i 2 K , K is the set of given
rectangles.
x0i: Distance between center of rectangle i and original point
along the x-axis.
y0i: Distance between center of rectangle i and original point
along the y-axis.
si: An orientation indicator for rectangle i, i 2 K . si = 1 if pi is par-
allel to the x-axis; si = 0 if pi is parallel to the y-axis.

The conditions of non-overlapping between rectangles i and k
can be reformulated by introducing two binary variables uik, vik

as follows:

Condition 1: (uik,vik) = (0,0), rectangle i is at the right of rectangle k.
Condition 2: (uik,vik) = (1,0), rectangle i is at the left of rectangle k.
Condition 3: (uik,vik) = (0,1), rectangle i is at above of rectangle k.
Condition 4: (uik,vik) = (1,1), rectangle i is at below of rectangle k.

Model 2.1 is a nonlinear programming problem which is diffi-
cult to solve for finding an optimal solution. By referring to the lin-
earization technique of Li and Tsai (2001), we can formulate the
original problem as a linear programming problem below:

2.5. Model 2.2

Min xþ y ð9Þ

subject to

ðx0i � x0kÞ þ uikl0 þ v ikl0 �
1
2
½pisi þ qið1� siÞ

þ pksk þ qkð1� skÞ�; 8i; k 2 K; ð10Þ

ðx0k � x0iÞ þ ð1� uikÞl0 þ v ikl0 �
1
2
½pisi þ qið1� siÞ

þ pksk þ qkð1� skÞ�; 8i; k 2 K; ð11Þ

ðy0i � y0kÞ þ uikw0 þ ð1� v ikÞw0 �
1
2
½pið1� siÞ

þ qisi þ pkð1� skÞ þ qksk�; 8i; k 2 K; ð12Þ

ðy0k � y0iÞ þ ð1� uikÞw0 þ ð1� v ikÞw0 �
1
2
½pið1� siÞ

þ qisi þ pkð1� skÞ þ qksk�; 8i; k 2 K; ð13Þ

l0 � x � x0i þ
1
2
½pisi þ qið1� siÞ�; 8i 2 K; ð14Þ

w0 � y � y0i þ
1
2
½pið1� siÞ þ qisi�; 8i 2 K; ð15Þ

x0i �
1
2
½pisi þ qið1� siÞ� � 0; 8i 2 K; ð16Þ

y0i �
1
2
½pið1� siÞ þ qisi� � 0; 8i 2 K; ð17Þ

where uik, vik, si, sk are 0–1 variables, and x; y; x0i; x
0
k; y

0
i; y
0
k are bounded

continuous variables.
Constraints (10)–(13) are non-overlapping conditions and con-

straints (14)–(17) ensure that all rectangles are within the envel-
oping rectangle. Model 2.2 can be solved efficiently to obtain the
global optimum which is an upper bound of Model 2.1.

By Model 2.2, we know whether we are able to use the least
square measure of the lager rectangle to produce the needed smal-
ler rectangles or not. In addition, we try our best to make the sur-
plus area centralized for cutting even smaller products once again.



Fig. 1. Flowchart of the proposed algorithm.
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By using Model 2.2 to examine all possible cutting combina-
tions, we can get the feasible cutting combinations for designing
the optimal production plan. Assume that cm ¼ ðcm

1 ; c
m
2 ; . . . ; cm

Z Þ de-
notes the mth feasible cutting combination, oz represents the quan-
tity ordered of the zth product and gm denotes the number of glass
substrates that have to be cut by the mth feasible cutting combina-
tion. In order to minimize the total quantity of glass substrates re-
quired for fulfilling the demand of orders, the optimal production
model is formulated as follows:
2.6. Model 3

Min
XM

m¼1

gm ð18Þ

subject to

XM

m¼1

cm
z gm P oz; for z ¼ 1;2; . . . ; Z; ð19Þ

where gm 2 integer.
According to the solution of Model 3, we can know the min-

imal number of the required glass substrates and how many
glass substrates are cut by each feasible cutting combination,
respectively.
3. Solution algorithm

The algorithm of cutting stock problems is described as
follows:
Input:{(l0,w0), (lz,wz), oz, t = 1, and m = 1}
Processes:
{
Step 1: Let j = 1 and do Model 1.1

if ðct
zj ¼ 0Þ for all z then go to Step 5

Step 2: Compare cm
z with ct

zj
if ðcm

z > ct
zj for some m or ct

zj ¼ 0Þ then go to Step 5
if ðcm

z � ct
zj for some m) then go to Step 4

Step 3: Verify the feasibility of combination ct
zj

do Model 2.2
if (feasible) then ðcm

1 ; c
m
2 ; . . . ; cm

Z Þ ¼ ðct
1j ; c

t
2j ; . . . ; ct

ZjÞ and m = m + 1
Step 4: Find possible cutting combination in the same utilization

j = j + 1 and do Model 1.3
if (Objective of Model 1.3 = Obj(t)) then go to Step 2
else t = t + 1 and go to Step 1

Step 5: Find the optimal production combination
if (m P 2) do Model 3

}
Output:
{

if (m P 2) output (the optimal production combination (g1, g2, . . ., gM))
else output (no feasible production combination)

}
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According to the above algorithm, we can obtain the optimal pro-
duction scheme to produce plates most efficiently. The process of

the algorithm is depicted in Fig. 1.

4. Example

In a TFT-LCD plant, assume the dimension of the glass substrate
is 150 cm � 180 cm. This plant wants to produce three kinds of
products (40 in., 42 in. and 46 in.). The ratio of length to width of
the LCD plates is 16:10. The information of these products is listed
in Table 1.

To enhance the understanding of the proposed algorithm, the
following illustrates the solution process of the example problem
step by step.

Initial: Let t = 1 and m = 1.

Step 1-1: Let j = 1. By using Model 1.1, we find the solution
(2,1,2) with the objective value 26,620.
Step 1-2: Because current feasible cutting combination set is
empty, proceed straight to Step 3.
Step 1-3: Verify the possible cutting combination (2,1,2) by
model 2.2. The result reveals that (2,1,2) is infeasible. There-
fore, remove (2,1,2).
Step 1-4: Let j = 2 and add the constraint
jc1

12 � 2j þ jc1
22 � 1j þ jc1

32 � 2j � 1 to Model 1.2 for finding alter-
native solutions. By solving Model 1.3, we find that the objec-
tive obtained is no equal to 26,620. Then let t = 2 and go to
Step 1.
Step 2-1: Let j = 1 and solve Model 1.1. We find another possible
cutting combination (0,4,1) with the objective value 26,360.
Step 2-2: The feasible cutting combination set is empty, then
proceed to Step 3.
Step 2-3: Verify the feasibility of (0,4,1) by Model 2.2. The result
shows that it is infeasible. Therefore, remove (0,4,1).

J.-F. Tsai et al. / Computers & Indu
Fig. 2. The graphic solution of the opt
Step 2-4: Let j = 2 and add the constraint
jc2

12 � 0j þ jc2
22 � 4j þ jc2

32 � 1j � 1 to Model 1.2 for finding alter-
native solutions. By solving Model 1.3, the objective value found
is not equal to 26,360. Then let t = 3 and go to Step 1.
Step 3-1: Let j = 1 and solve Model 1.1. We find another possible
cutting combination (0,5,0) with the objective value 25,200.
Step 3-2: The feasible cutting combination set is empty, then
proceed to Step 3.
Step 3-3: Verify the feasibility of (0,5,0) by Model 2.2. The result
indicates that (0,5,0) is feasible. Then record the feasible cut-
ting combination ðc1

1; c
1
2; c

1
3Þ ¼ ð0; 5; 0Þ and let m = 2.

Step 3-4: Let j = 2 and add the constraint
jc3

12 � 0j þ jc3
22 � 5j þ jc3

32 � 0j � 1 to Model 1.2 for finding alter-
native solutions. By solving Model 1.3, the objective value
obtained is not equal to 25,200. Then let t = 4 and go to Step 1.
Step 4-1: Let j = 1 and solve Model 1.1. We find another possible
cutting combination (3,1,1) with the objective value 25,010.
Step 4-2: (3,1,1) does not meet the stop condition and there is
no feasible cutting combination satisfies the condition,
cm

1 � 3; cm
2 � 1; cm

3 � 1 for some m. Then proceed to Step 3.
Step 4-3: Verify the feasibility of (3,1,1) by Model 2.2. The result
shows that (3,1,1) is infeasible. Therefore, remove (3,1,1).
Step 4-4: Let j = 2 and add the constraint
jc4

12 � 3j þ jc4
22 � 1j þ jc4

32 � 1j � 1 to Model 1.2 for finding alter-
native solutions. By solving Model 1.3, the objective value
acquired is not equal to 25,010. Then let t = 5 and go to Step 1.

Continuing the solution process, we find that the possible cut-
ting combination (0,0,3) is also a feasible cutting combination.
Then add (0,0,3) into the feasible cutting combination set. After
several iterations, we get the cutting combination (0,0,2). This cut-
ting combination satisfies the termination condition
cm

z � ct
zj; z ¼ 1;2 and cm

3 > ct
3j (i.e., 3 > 2) for some m. Therefore,

stop the solution process.
imal cutting combination (0,5,0).



Fig. 3. The graphic solution of the optimal cutting combination (2,0,2).

Table 1
Dimensions and orders of the products.

Product (in.) Length (cm) Width (cm) Area Order

40 85 54 4590 1000
42 90 56 5040 1000
46 100 62 6200 1000
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According to the orders of products and the obtained set of fea-
sible cutting combination as shown in Table 2, we solve Model 3
with LINGO (2004) to find the best objective value 700 and the
optimal solution g1 = 200, g7 = 500 and the other variables are zero.
The solution process of this problem takes 546 s by using a
Pentium 4 CPU 3.2 G PC. The graphic solutions of the optimal
solutions are shown in Figs. 2 and 3.

If the plant adopts the production way suggested by the pro-
posed algorithm, it can use g1 and g7 to achieve the highest utiliza-
tion of the glass substrate and only consume 700 glass substrates
to accomplish the orders. By the batch production approach, the
number of glass substrates needed to fulfill the orders is 734. Addi-
tionally, the difference of the order quantities does not change the
result that the proposed method is superior to the batch produc-
Table 2
Feasible cutting combinations.

Feasible cutting combinations ðcm
1 ; c

m
2 ; c

m
3 Þ

m = 1: (0,5,0) m = 2: (1,4,0) m = 3: (2,3,0) m = 4: (3,2,0)
m = 5: (4,1,0) m = 6: (5,0,0) m = 7: (2,0,2) m = 8: (0,3,1)
m = 9: (1,2,1) m = 10: (2,1,1) m = 11: (3,0,1) m = 12: (0,0,3)
m = 13: (0,1,2)
tion. Table 3 lists results compared between the proposed method
and the batch production of four examples with different order
quantities. Since the computational time is not affected by the or-
der quantities very much, the computation times of these four
problems are all about 550 s. The results demonstrate that the pro-
posed algorithm can solve the cutting stock problems of big size
products in the TFT-LCD industry effectively.

In the proposed algorithm, the process of finding all feasible
cutting combinations is the most time-consuming according to
our testing. The computational time mainly depends on how many
various LCD plates can be cut from a glass substrate. Therefore, the
proposed method is suitable for the cutting stock problem of big
size LCD products. The problems with more than 30 various small
LCD plates that have to be cut from a glass substrate may integrate
some heuristic or distributed algorithms to reduce the computa-
tional time for finding the feasible cutting combinations and that
is an interesting issue for further research. The extended problems
with the same size of glass substrate 180 cm � 150 cm and eight
products listed in Table 4 are solved within 10 min. The results
shown in Table 5 reveal that the proposed method utilizes fewer
glass substrates than the batch method and has significant saving
ratios.
Table 3
Differences between the mixed production and the batch production.

Order quantities
(40 in.,42 in.,46 in.)

Number of glass substrates Saving

Proposed
method (m)

Batch
method (b)

Quantities Ratio
(%)

(1000,2000,3000) 1567 1600 33 2.06
(2000,1000,3000) 1534 1600 66 4.13
(3000,2000,1000) 1300 1334 34 2.55
(1000,1000,1000) 1400 1467 34 4.57

Saving ratio = 1 � (m/b).



Table 4
Dimensions and orders of the products.

LCD panels Order #

Product # (Length, width) 1 2 3 4

1 (90,56) 5500 8500 9000 9900
2 (93,60) 7700 8500 9000 10,000
3 (99,63) 8100 8500 8500 8950
4 (95,66) 8500 8700 8750 9550
5 (98,64) 9000 9900 9950 10,500
6 (100,62) 9500 9650 10,500 11,550
7 (108,72) 13,000 13,500 15,550 17,000
8 (126,82) 15,000 15,500 20,500 21,550

Table 5
Comparison results of the proposed method and batch method.

Order # Number of glass substrates Saving

Proposed method (m) Batch method (b) Quantities Ratio (%)

1 24,715 34,702 9987 28.78
2 26,350 36,835 10,485 28.46
3 30,042 43,052 13,010 30.22
4 32,268 46,049 13,781 29.93

Saving ratio = 1 � (m/b).
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5. Conclusions

This study proposes a cutting stock optimization method for
TFT-LCD industry, which can find the optimal cutting way accord-
ing to the quantities of orders. The optimization techniques for
finding alternative solutions and the approach for linearizing
absolute terms are also presented. The results of numerical exam-
ples illustrate the usefulness of the proposed method. Especially
to the TFT-LCD industry which needs mass production, an effec-
tive method can reduce production costs and promote the com-
petitiveness of products. The directions for further research are
to take more production situations and factors into consideration,
such as the costs, the defect rate and the time of delivery and to
integrate heuristic or distributed algorithms to enhance the com-
putational efficiency. Using column generation techniques to
solve this problem is also a very interesting topic for further
investigation.
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